(54) 发明名称
用于调节风扇的特性的系统

(57) 摘要
本发明涉及用于调节风扇的特性的系统，具体而言，提供了一种可调节的风扇 (22)，该风扇 (22) 具有能够将旋转叶片 (16) 支承在相对于风扇 (22) 的旋转轴线 (20) 的多个定向 (18) 上的旋转毂 (10, 12, 14)。
1. 一种系统，包括：
风扇 (22)，包括：
多个旋转叶片 (16)；以及
包括多个可变定向支座 (26) 的旋转毂 (10, 12, 14)，其中，所述可变定向支座 (26) 中的每一个均构造成独立地将所述多个旋转叶片 (16) 中的一个支承在相对于所述风扇 (22) 的旋转轴线 (20) 的多个定向 (18) 上。

2. 根据权利要求 1 所述的系统，其特征在于，所述多个定向 (18) 包括相对于所述旋转轴线 (20) 的多个叶片高度 (28)。

3. 根据权利要求 1 所述的系统，其特征在于，所述多个定向 (18) 包括相对于所述旋转轴线 (20) 的多个叶片角度 (30)。

4. 根据权利要求 1 所述的系统，其特征在于，所述可变定向支座 (26) 包括所述旋转毂 (10, 12, 14) 中的第一安装槽 (32) 和第二安装槽 (34)，所述第一和第二安装槽 (32, 34) 彼此不同地成角度。

5. 根据权利要求 4 所述的系统，其特征在于，所述第一安装槽 (32) 平行于所述旋转轴线 (20)，并且所述第二安装槽 (34) 不平行于所述旋转轴线 (20)。

6. 根据权利要求 4 所述的系统，其特征在于，所述第一和第二安装槽 (32, 34) 均不平行于所述旋转轴线 (20)。

7. 根据权利要求 6 所述的系统，其特征在于，所述第一和第二安装槽 (32, 34) 在 X 形构造 (60) 中彼此相交。

8. 根据权利要求 6 所述的系统，其特征在于，所述第一和第二安装槽 (32, 34) 在 V 形构造 (70) 中彼此相交。

9. 根据权利要求 4 所述的系统，其特征在于，所述旋转叶片 (16) 包括从 T 形基部 (134) 延伸的叶片部 (136)，所述第一安装槽 (32) 包括第一高度调节特征 (132)，以选择性地将所述 T 形基部 (134) 支承在第一多个高度 (28)，并且所述第二安装槽 (34) 包括第二高度调节特征 (132)，以选择性地将所述 T 形基部 (134) 支承在第二多个高度 (28)。

10. 根据权利要求 1 所述的系统，其特征在于，所述可变定向支座 (26) 包括延伸到所述旋转毂 (10, 12, 14) 中的安装槽 (32)，所述安装槽 (32) 在相对于所述旋转轴线 (20) 的不同高度 (28) 包括多个侧向沟槽 (138)，并且所述旋转叶片 (16) 包括延伸到所述安装槽 (32) 内的叶片部 (136) 和选择性地延伸到所述多个侧向沟槽 (138) 中的一个内的侧向唇部 (140)。

11. 根据权利要求 1 所述的系统，其特征在于，所述可变定向支座 (26) 包括延伸到所述旋转毂 (10, 12, 14) 中的安装槽 (32)，所述安装槽 (32) 包括开口部 (174) 和扩大的内部 (176)，所述旋转叶片 (16) 包括穿过所述开口部 (174) 延伸到所述安装槽 (32) 内的叶片部 (136)，并且所述旋转叶片 (16) 包括侧向唇部 (140)，所述侧向唇部 (140) 经由布置在所述扩大的内部 (176) 中的一个或更多间隔块 (172) 而选择性地固定在多个高度 (28)。

12. 根据权利要求 1 所述的系统，其特征在于，所述系统包括可调节叶片安装系统 (24)，所述可调节叶片安装系统 (24) 具有将多个旋转叶片 (16) 支承在所述旋转毂 (10, 12, 14) 的周边周围的多个可变定向支座 (26)，其中，所述多个可变定向支座 (26) 中的每个支座均构造成将相应的旋转叶片 (16) 支承在多个高度 (28) 或多个角度 (30)。
13. 一种系统，包括：
风扇毂 (10, 12, 14)，其包括可调节叶片安装系统 (24)，所述可调节叶片安装系统 (24) 具有构造出将多个旋转叶片 (16) 支承在所述风扇毂 (10, 12, 14) 的周边周围的多个可变定向支座 (26)，其中，所述多个可变定向支座 (26) 中的每个支座 (26) 均构造出将相应的旋转叶片 (16) 支承在多个高度 (28) 或多个角度 (30)。

14. 根据权利要求 13 所述的系统，其特征在于，所述多个可变定向支座 (26) 中的每个支座均构造成将所述相应的旋转叶片 (16) 支承在所述多个高度 (28)。

15. 根据权利要求 13 所述的系统，其特征在于，所述多个可变定向支座 (26) 中的每个支座均构造成将所述相应的旋转叶片 (16) 支承在所述多个角度 (30)。
用于调节风扇的特性的系统

技术领域
[0001] 所公开的主题涉及风扇，诸如用于冷却各种设备的风扇。

背景技术
[0002] 各种工业和产品采用风扇来使诸如空气的气体从一个位置移动到另一个位置。例如，风扇可用于冷却电子元件、机械装置、热交换器、燃烧发动机、电动机和各种其它设备。风扇还可用于通风或空气质量控制，诸如使建筑物、工作区域等通风。如所认识到的，每种应用均可能要求不同的流率、压力、噪音水平或其它特性。此外，每种应用均可能具有不同的约束，诸如尺寸（例如风扇的长度、宽度和深度）。结果，每个风扇通常均具有固定大小和布置的风扇叶片，这些风扇叶片提供了一组固定的运行参数。由于美国电气制造商协会 (National Electrical Manufacturers Association, NEMA) 和国际电工技术委员会 (International Electrotechnical Commission, IEC) 改变与风扇有关的标准，所以必须生产新的风扇来满足这些新标准。因此，存在着调节风扇以适应不同的标准和应用要求的需求。

发明内容
[0003] 下文概括了在范围上与原始要求保护的发明相称的某些实施例。这些实施例并不意图限制要求保护的发明的范围，相反，这些实施例仅仅意图提供本发明的可能形式的简要概述。实际上，本发明可涵盖可能与下文陈述的实施例类似或不同的各种形式。
[0004] 在第一实施例中，一种系统包括具有旋转叶片和旋转轴的风扇。旋转轴具有构造出将旋转叶片支承在相对于风扇的旋转轴线的多个定向上的可变定向支座。
[0005] 在第二实施例中，一种系统包括具有可调节叶片安装系统的风扇轴。可调节叶片安装系统具有构造出多个旋转叶片支承在风扇的周边的多个可变定向支座。多个可变定向支座中的每个支座均构造出将相应的旋转叶片支承在多个高度或多个角度。
[0006] 在第三实施例中，一种系统包括具有叶片部和第一轨道安装部的可调节风扇叶片。第一轨道安装部构造出随风扇轴的第二轨道安装部或第三轨道安装部在相对于风扇轴的旋转轴线的多个高度或多个角度。

附图说明
[0007] 当参照附图阅读下文的详细描述时，本发明的这些及其它的特征、方面和优点将变得更好理解。在全部附图中相似的附图标记始终表示相似的零件，其中：
图 1 是示出了带有安装在可变定向上的旋转叶片的双轴向、径向和轴向 / 径向风扇轴的实施例的图；
图 2 是带有可安装的风扇叶片的双轴向风扇轴的一个实施例的局部透视图；
图 3 是带有可安装的风扇叶片的径向风扇轴的一个实施例的局部透视图；
图 4 是带有可安装的风扇叶片的轴向 / 径向风扇轴的一个实施例的局部透视图；
图 5 是类似于图 2 的双轴向风扇毂但带有不改变风扇叶片的方向的可安装角度的双轴向风扇毂的一个实施例的局部透视图；

图 6 是带有风扇叶片的风扇毂的一个实施例的示意性侧视图，其中各风扇叶片均安装在风扇毂的周边周围的各个可安装位置；

图 7 是在每隔一个风扇毂的周边周围的可安装位置安装的风扇叶片的一个实施例的示意性侧视图，该图参考图 6 点出了叶片数量的减少；

图 8-图 10 是图 1 的线 8-8 内截取的局部侧视图，示出了可以通过将风扇叶片安装在风扇毂中的备选沟槽中来调节风扇叶片高度；

图 11-图 13 示出了图 8-图 10 的高度调节系统的一个备选实施例，该高度调节系统提供了单个扩展的槽以保持叶片的基部并用间隔件将基部固定到位；以及

图 14-图 16 是带有联接到驱动装置的可调节叶片的风扇的实施例的分解图。

【0008】 符号说明：
2 轴向方向
4 径向方向
6 周向方向
10 双轴向毂 (hub)
12 径向毂
14 轴向 / 径向毂
16 旋转叶片
18 可变定向
20 旋转轴线
22 旋转机器
24 可调节的叶片安装系统
26 可变定向支座 (mount)
28 高度
30 角度
32 单个安装槽
33 高度调节件
34 第二安装槽
36 第二安装槽
35 高度调节件
37 高度调节件
60 X 形构造
62 可逆的方向
64 可逆的方向
66 相应的角度
68 相应的角度
70 V 形构造
72 不同方向
不同方向
角度
轴线
轴线
风扇毂
第二安装槽
第二安装槽
V形构造
轴线
不同方向
不同方向
轴线
轴线
角度
角度
风扇毂
旋转叶片高度
高度调节特征
T形基部
叶片部
肋状槽
侧向沟槽
间隔件
侧向唇
最大旋转叶片高度
外表面
最小旋转叶片高度
gou槽
扩展体积
间隔件
开口部
扩大的内部
过渡部
底部
轴向风扇
安装系统
旋转机器
前板
连接系统
具体实施方式

下文将描述本发明的一个或更多具体实施例。为了尽量提供这些实施例的简明描述，说明书中可能未描述实际实施方案的全部特征。应该认识到，在任何此类实际实施方案的开发过程中，与任何工程或设计项目中一样，必须做出众多针对实施方案的决定以实现开发者的具体目标，例如服从于可能因实施方案而异的系统相关和商业相关的约束。此外，应该认识到，此类开发努力可能复杂且耗时，但对于受益于此公开内容的普通技术人员来说却是一項例行的设计、装配和制造工作。

当介绍本发明的各种实施例的元件时，冠词“一”、“一个”、“该”和“所述的”意图指存在着一个或更多该元件。用语“包含”、“包括”和“具有”意图是包括性的且指可存在除所列元件以外的其它元件。

如下文进一步讨论的，所公开的实施例包括带有旋转毂的风扇系统，该旋转毂包括用于风扇叶片的可调节安装的叶片安装系统。该叶片安装系统可使风扇叶片在特定条件下能够针对各种标准或应用要求而被调节，从而使单个风扇能够适合于多种应用。例如，叶片安装系统可使相对于旋转毂对叶片的高度、角度、数量、间距或其任何组合的调节成为可能。在某些实施例中，叶片安装系统可包括布置在毂的周边周围的多个可变定位装置，其中每个可变为正向支座均包括多个可选安装高度和 / 或多个可选安装角度。例如，每个可变定位支座均可包括具有多个可选安装高度的至少一个安装槽，诸如多个沟槽、突起、嵌件或其它高度锁定特征，这些高度锁定特征与风扇叶片的基座匹配以将风扇叶片固定在特定高度。再例如，每个可变定向支座可包括多个安装槽，诸如第一和第二安装槽，这些安装槽可以不同角度定向，以将风扇叶片固定在不同角度。因此，所公开的实施例使风扇叶片的高度和角度的调节成为可能，使得风扇可构造用于轴向流动、反向轴向流动或径向流动。此外，所公开的实施例使风扇叶片的调节成为可能，以改变质量流率、压力、流动方向和风扇的外径。还可能通过从某些可变定向支座增加或移除风扇叶片而调节叶片的数量和 / 或间距。以下讨论参照图 1- 图 16 来描述带有可变叶片支座的风扇的各种实施例的特征，但并不意图局限于所示的实施例。

现在转到附图，图 1 是可采用双轴向毂 10、径向毂 12 或轴向 / 径向毂 14 的可调节风扇的系统或族群的一个实施例的图，其中旋转叶片 16 安装在相对于毂 10、12、14 的旋转轴线 20 的可变定向 18（例如高度和 / 或角度）上。在图 1 和以下附图的讨论中，可参照沿
旋转轴线 20 的轴向方向 2、远离旋转轴线 20 延伸的径向方向 4 以及围绕轴 10、12、14 的旋转轴线 20 延伸的周向方向 6。本文公开的系统可包括能够使旋转轴 10、12、14 沿周向方向 6 绕轴线 20 转动的旋转机器 22。各旋转轴 10、12、14 均包括由布置在相应的旋转轴 10、12、14 的周边围的的多个可变方向向支座 26 组成的可调节叶片安装系统 24。可变方向向支座 26 构成将旋转叶片 16 支承在相对于风扇轴 10、12、14 的旋转轴线 20 的多个可变方向向 18 (例如高度和/或角度) 上。例如，可变方向向支座 26 可构造在使得安装在轴 10、12、14 中的旋转叶片 16 相对于风扇轴 10、12、14 的旋转轴线 20 的多个高度 28 和/或角度 30 成为可能。

[0013] 在所示的可调节叶片安装系统 24 的实施例中，可变方向向支座 26 可使叶片 16 的高度 28 和/或角度 30 的变化成为可能，以调节流率、流动方向、压力、噪音水平或其任何组合。例如，可变高度 28 使得风扇直径能够改变，而可变叶片角度 30 可使风扇的质量流率或流动方向的变化成为可能。此外，叶片安装系统 24 可通过选择性地使用在轴 10、12、14 周围的周向方向 6 上的可变方向向支座 26 中的一些或全部而使叶片 16 的间距或角度的变化成为可能。例如，叶片安装系统 24 可在每一个周向位置、每隔一个周向位置或任何其它构造选择性地安装叶片 16。用叶片安装系统 24 实现的叶片 16 的可变间距和/或数量可单独使用或者与经由可变方向向支座 26 的高度 28 和/或角度 30 的变化结合使用。

[0014] 在一些实施例中，每个可变方向向支座 26 均包括带有多个高度调节件 33 的单个安装槽 32，诸如在径向向 12 中示出的。换言之，每个可变方向向支座 26 均可相对于旋转轴线 20 布置在不可调节的角度。在其它实施例中，每个可变方向向支座 26 均可提供相互排斥的安装角度 30。例如，每个可变方向向支座 26 均可包括多个相互排斥的安装槽，诸如第一安装槽 34 和第二安装槽 36，如在双轴向轴 10 和轴向/径向向 14 中示出的。在轴 10、14 的多槽构造（例如槽 34、36 中，每个可变方向向支座 26 均能够将叶片 16 安装在多个不同的角度 30。然而，所示的槽 34、36 彼此部分地重叠或交叉，使得不能同时将叶片 16 安装在两个槽 34、36 中。在其它实施例中，槽 34、36 可以不彼此重叠，因而可以不相互排斥。此外，第一安装槽 34 包括多个高度调节件 35，且第二安装槽 36 包括多个高度调节件 37。因此，轴 10、14 提供了叶片 16 的高度 28 和角度 30 两者的可调节性。

[0015] 在所示的双轴向轴 10 的实施例中，第一安装槽 34 和第二安装槽 36 彼此不同地成角度，并且不平行于旋转轴线 20。此外，轴 10 的第一安装槽 34 和第二安装槽 36 相对于轴线 20 相反地成角度，使得槽 34、36 以相反的角度支承叶片而使流动方向（例如，双轴向流动方向）逆转。结果，如果叶片 16 安装在槽 34 中，则可沿第一轴向方向 2 引导流动。另一方面，如果叶片 16 安装在槽 36 中，则可沿第一轴向方向 2 相反的第二轴向方向 2 引导流动。

[0016] 类似地，在所示的轴线/径向向 14 的实施例中，第一安装槽 34 和第二安装槽 36 彼此不同地成角度，而槽 34、36 中的至少一个大致平行于旋转轴线 20。例如，所示的槽 34 大致平行于旋转轴线 20，而槽 36 不平行于旋转轴线 20。结果，如果叶片 16 安装在槽 34 中，则可沿径向方向 4 引导流动。另一方面，如果叶片 16 安装在槽 36 中，则可沿轴向方向 2 引导流动。

[0017] 在其它实施例中，第一安装槽 34 和第二安装槽 36 两者均不平行于旋转轴线 20，同时槽 34、36 彼此不同地成角度。例如，槽 34、36 可构造在相同的轴向流动方向 2 上提供可变角度或斜度。因此，槽 34、36 可在轴线 20 的同一侧远离旋转轴线 20 成角度。在某些
实施例中，横 34, 36 相对于轴线 20 的角度可在大约 0 度至 90 度、5 度至 60 度或者 10 度至 45 度之间的范围内。此外，横 34, 36 可彼此不同地至少大约 5 度至 90 度、5 度至 60 度或 5 度至 45 度或者 5 度至 30 度的范围，即横 34, 36 之间的角度。

图 2 是图 1 的双轴向风扇 10 的一个实施例的局部透视图，示出了从其中一个可变定向支座 26 的第一安装槽 34 和第二安装槽 36 拆解的旋转叶片 16。在所示的实施例中，叶片 10 中的每个可变定向支座 26 均具有在 X 形构造 60 中相交的第一安装槽 34 和第二安装槽 36。X 形构造 60 使得风扇叶片 16 能够以相对于旋转轴线 20 的相应角度 66 和 68 相互排斥地安装成相反地成角度或在可逆的方向 62, 64 上。在某些实施例中，角度 66 和 68 可彼此大致相同，并且可在大约 0 度至 60 度、0 度至 45 度、0 度至 30 度或者 0 度至 15 度之间的范围内。例如，角度 66 和 68 可为大约 5 度、10 度、15 度、20 度、25 度、30 度、35 度、40 度或 45 度。在其它实施例中，角度 66 和 68 可彼此不同，但可具有在上述范围内的角度。此外，如果角度 66 和 68 彼此不同，则角度可相差大约 5 度至 50 度，5 度至 25 度或者 5 度至 10 度。作为 X 形构造 60 的结果，当叶片 16 从第一安装槽 34 变到第二安装槽 36 时，叶片 10 可保持固定在旋转机械 22，反之亦然。旋转机械 22 也可保持在特定支承结构、设备、管道等中的固定位置。通过这种方式，可以仅通过使横 34, 36 中的叶片 16 位置旋转而容易地使轴向流动方向反转。尽管图 2 示出了在 X 形构造 60 中相交的横 34, 36，但其它实施例可在其它构造中使两个或更多横相交。例如，如图 4 所示，图 5 所讨论的，第一安装槽 34 和第二安装槽 36 可在 V 形构造中相交。此外，如图 8 所示，图 9 所示，图 13 更详细地讨论的，每个可变定向支座 26 均可选择性地使针对安装在风扇 12 中的旋转叶片 16 的多个高度成为可能。例如，每个安装槽 34 均包括多个高度调节件 35，而每个安装槽 36 均包括多个高度调节件 37，使得每个叶片 16 均可安装在相对于叶片 12 的径向方向的多个高度。

图 3 是图 1 的径向风扇 12 的一个实施例的局部透视图，示出了从其中两个可变定向支座 26 的安装槽 34, 36 拆解的旋转叶片 16。在所示的实施例中，叶片 12 中的每个可变定向支座 26 均具有大致平行于旋转轴线 20 定向的单个安装槽 32，从而形成用于风扇叶片 16 的安装的径向流动构造。结果，叶片 12 的安装槽 32 不提供叶片 12 相对于轴线 20 的任何角度或斜度。然而，如下文详细讨论的，每个可变定向支座 26 均可选择性地使针对安装在风扇 12 中的旋转叶片 16 的多个高度成为可能。例如，每个安装槽 32 均包括多个高度调节件 33，使得每个叶片 16 均可安装在相对于叶片 12 的径向方向的多个高度。此外，可变定向支座 26 选择性地使待安装在风扇 12 中的旋转叶片 16 的可变数量成为可能。例如，叶片 16 可选择性地安装在全部或仅仅其中一些安装槽 32 中，以改变叶片 16 的数量和间距。

图 4 是图 1 的轴向 / 径向风扇 14 的一个实施例的局部透视图，示出了其中一个可变定向支座 26 的第一安装槽 34 和第二安装槽 36 拆解的旋转叶片 16。第一安装槽 34 和第二安装槽 36 构造成在轴向流动构造与径向流动构造之间选择性地更改叶片 14。换言之，径向流动构造将叶片 14 限定为径向流动风扇（即沿径向方向的流动），而轴向流动构造将叶片 14 限定为轴向流动风扇（即沿轴向方向的流动）。因此，可将所示的叶片 14 描述为混合型叶片，因为能使叶片 14 作为两种不同的风扇类型（即轴向和径向）运行。

在所示的实施例中，叶片 14 中的每个可变定向支座 26 均具有在 V 形构造 70 中相交的第一安装槽 34 和第二安装槽 36。V 形构造 70 使风扇叶片 16 能够相对于彼此以角度 76
相互排斥地安装在不同方向 72.74 上。例如，第一安装槽 34 的第一方向 72 可沿轴线 73 延伸，而第二安装槽 36 的第二方向 74 可沿轴线 75 延伸。在所示的实施例中，第一轴线 73 可在轴向方向 2 上大致平行于旋转轴线 20，而第二轴线 75 远离旋转轴线 20 成角度。在其它实施例中，如下文参照图 5 所讨论的，安装槽 34.36 两者均可在轴线 20 的同一侧远离旋转轴线 20 成角度。如所示，安装槽 34.36 的轴线 73.75 以角度 76 彼此远离而成角度，该角度 76 可为大约 0 度至 60 度，0 度至 45 度，0 度至 30 度或者 0 度至 15 度。例如，角度 76 可为大约 5 度，10 度，15 度，20 度，25 度，30 度，35 度，40 度或 45 度。作为 V 形构造 70 的结果，当叶片 16 从第一安装槽 34 变到第二安装槽 36 时，毂 14 可保持固定至旋转机器 22，反之亦然。旋转机器 22 也可保持在特定支承结构，设备，管道等中固定位置。通过这种方式，可以仅通过使叶片 16 位置旋转而容易地在叶片 16 位于槽 34 中的径向流动方向 4 与叶片 16 位于槽 36 中的轴向流动方向 2 之间改变流动方向。

【0022】当旋转叶片 16 安装在第二安装槽 36 中时，风扇毂 14 构成为轴向风扇毂。在这种构造中，可通过从风扇旋转机器 22 移除毂 14，使毂 14 的定向逆转，然后将毂 14 重新安装到风扇旋转机器 22 上，从而选择性地使轴向流动方向 2 逆转。结果，所示的毂 14 能够在径向风扇构造，第一轴向流动方向上的轴向风扇构造以及与第一轴向流动方向相反的第二轴向流动方向上的轴向风扇构造之间改变风扇构造。

【0023】图 5 是风扇毂 80 的一个实施例的局部透视图，示出了从其中一个可变定向支座 26 的第一安装槽 82 和第二安装槽 84 拆解的旋转叶片 16。安装槽 82.84 构造成在第一轴向流动构造与第二轴向流动构造之间选择性地更改毂 80。在所示的实施例中，毂 80 中的每个可变定向支座 26 均具有在 V 形构造 86 中相交的第一安装槽 82 和第二安装槽 84，该 V 形构造 86 远离平行于旋转轴线 20 的轴线 88 而成角度。V 形构造 86 使得风扇叶片 16 能够以相对于彼此和轴线 88 角度相互排斥地安装在不同方向 90,92 上，从而限定第一轴向流动构造和第二轴向流动构造。例如，第一安装槽 82 的第一方向 90（例如第一轴向流动构造）可沿轴线 91 延伸，而第二安装槽 84 的第二方向 92（例如第二轴向流动构造）可沿轴线 93 延伸。如所示，第一轴线 91 相对于轴线 88 以角度 94 定位，而第二轴线 93 相对于轴线 88 以角度 96 定位在轴线 88 的同一侧。角度 94 可在大约 0 度至 45 度，0 度至 30 度或者 0 度至 15 度之间的范围内。角度 96 可在大约 0 度至 60 度，0 度至 45 度或者 0 度至 30 度之间的范围内。此外，角度 94 与 96 之间的差可为大约 0 度至 45 度，0 度至 30 度或者 0 度至 15 度。例如，角度 94 与 96 之间的差可为大约 5 度，10 度，15 度，20 度，25 度，30 度，35 度，40 度或 45 度。

【0024】作为 V 形构造 86 的结果，当叶片 16 从第一安装槽 82 变到第二安装槽 84 时，毂 80 可保持固定至旋转机器 22，反之亦然。旋转机器 22 也可保持在特定支承结构，设备，管道等中的固定位置。通过这种方式，可通过使叶片 16 位置旋转而容易地改变轴向流动构造。通过改变角度 94,96，毂 80 可重构成增大或减小质量流率，压力，噪音或风扇的其它特性，同时将风扇维持为带有沿相同的轴向流动方向 2 的流动的轴向风扇。

【0025】图 6～图 7 示出了带有安装的旋转叶片 16 的风扇毂 110。图 6 示出了可由风扇毂 110 中包括的可变定向支座 26 的数量确定的风扇叶片的最大数量。在该实施例中，旋转毂 110 包括 12 个可变定向支座 26，因而风扇毂 110 可包括最多 12 个旋转叶片。可选择性地安装或移除旋转叶片。例如，图 7 描绘了选择性地构造为仅包括 6 个旋转叶片 16 的
图 6 的风扇毂 110。结果，在图 7 的实施例中，叶片 16 安装在每隔一个可变定向支座 26 中。通过这种方式，图 7 中的叶片 16 之间的周向间隔是图 6 中的叶片 16 之间的周向间隔的两倍。在其它实施例中，选择性地安装在系统中的旋转叶片 16 的数量可增加或减少。例如，叶片 16 可安装在仅仅 4 个等距间隔开的可变定向支座 26 中，从而导致为图 6 的间距的三倍的周向间距。

[0026] 图 8-图 10 描绘了在图 1 的线 8-8 内截取的局部侧视图，示出了通过将旋转叶片 16 安装在风扇毂 10,12,14 的安装槽 32,34,36 中的高度调节特征 132 对对旋转叶片高度 130 进行的调节。在所示的实施例中，旋转叶片 16 包括 T 形基部 134 和从 T 形基部 134 延伸的叶片 136。高度调节特征 132 可选择性地将 T 形基部 134 支承在多个高度。例如，图 8-图 10 的实施例将高度调节特征 132 描绘为在相对于旋转轴线 20 的不同高度带有侧向沟槽 138 的肋状槽 133。侧向沟槽 138 由中间唇、叉状件、横档或者间隔件 139 彼此间隔开。在所示的实施例中，侧向沟槽 138 由间隔件 139 彼此等距地间隔开。此外，侧向沟槽 138 和间隔件 139 布置在安装槽 32,34,36 的相反侧。虽然当前实施例描绘了旋转叶片 16 的 T 形基部 134，但是基部 134 可包括提供了一个侧向唇 140（例如一个或两个侧向唇 140）的任何形状。侧向沟槽 138 构造成接纳 T 形基部 134 的侧向唇 140，以选择性地将叶片 16 沿径向方向锁定在不同叶片高度 130。在所示的实施例中，高度调节特征 132 在安装槽 32,34,36 的相反侧包括对应于侧向沟槽 138 的 8 个高度位置。在其它实施例中，高度调节特征 132 可包括 2 至 50,2 至 25,2 至 15 个或对应于侧向沟槽 138 的任何其它数量的高度位置。

[0027] 图 8 呈示了选择性地安装在最大旋转叶片高度 130,142 的旋转叶片 16。可通过将旋转叶片 16 的基部 134 安装在最接近风扇毂 10,12,14 的外表面 144 的位置而获得最大旋转高度 130,142。旋转叶片的高度 130 随着旋转叶片 16 的基部 134 选择性地更接近风扇毂 10,12,14 的旋转轴线 20 安装而减小。例如，图 9 呈示了选择性地更接近风扇毂 10,12,14 的旋转轴线 20 三个槽槽安装的旋转叶片基部 134，导致旋转叶片高度 130 减小。在当前实施例中，可通过将旋转叶片 16 安装在最接近风扇毂 10,12,14 的旋转轴线 20 的槽槽 148 中而获得最小旋转叶片高度 146。例如，图 10 呈示了选择性地安装在最接近旋转轴线 20 的槽槽 148 中的旋转叶片 16，导致旋转叶片 16 配置有最小叶片高度 146。

[0028] 图 11-图 13 呈示了图 8-图 10 的高度调节系统的一个备选实施例，提供了构造成将旋转叶片 16 铰定到位的扩展体积 170 和间隔件 172。在该实施例中，各安装槽 32,34,36 的扩展体积 170 均包括开口部 174 和扩展的内部 176。如前文所述，旋转叶片 16 包括叶片部 136 和 T 形基部 134，该 T 形基部 134 包括相反的侧向唇 140。旋转叶片 16 的叶片部 136 穿过开口部 174 延伸到安装槽 32,34,36 内。T 形基部 134 经由扩展的内部 176 中的一个或更多间隔件 172 而选择性地固定在多个高度。如图 11 中所示，可通过在开口部 174 的颈部或过渡部 178 将 T 形基部 134 选择性地安装在扩展的内部 176 中而获得最大叶片高度 142。一个或更多间隔件 172 填充扩展的内部 176 在 T 形基部 134 的底部与扩展的内部 176 的底部 180 之间的剩余空隙。叶片部 136 的高度 130 随着 T 形基部 134 选择性地更接近扩展的内部 176 的底部 180 安装而减小。例如，图 12 呈示了叶片高度 130 小于图 11 的高度 130,142，因为叶片 16 的 T 形基部 134 安装在颈部 178 与扩展的内部 176 的底部 180 中间。通过将叶片 16 的 T 形基部 134 选择性地安装在扩展的内部 176 的底部 180 而获得最小旋转叶片高度 146。在各构造中，一个或更多间隔件 172 填充扩展的内部 176 内部的 T 形基部
134 的上方、下方、左方和 / 或右方的空间，从而将叶片 16 支承并固定在相对于旋转轴线 20 沿径向方向 2 的期望高度 130。

[0029] 图 14- 图 16 是带有可调节叶片 16 的风扇的实施例的分解图。图 14 显示出了带有安装系统 201 的轴向风扇 200 的一个实施例。风扇 200 包括旋转机器 202，带有可调节叶片安装系统 24 的双轴向风扇毂 10，安装在双轴向风扇毂 10 中的旋转叶片 16，前板 204，后板 224 以及连接系统 206。双轴向风扇毂 10 经由连接系统 206 安装在旋转机器 202 上，该连接系统 206 包括与旋转机器 202 上的对应螺纹相匹配的多个螺纹紧固件 208。板 204, 224 在可调节叶片安装系统 24 上方延伸，以阻挡污染物进入叶片安装系统 24 例如可变定向支座 26 中。此外，板 204, 224 可包括密封件 210（例如环形密封件）, 该密封件 210 在周向上布置在板 204, 224 的周边周围，从而进一步阻挡污染物进入叶片安装系统 24 中。如上所述，可通过移除叶片 16 然后将各叶片重新安装在合适的高度和 / 或角度而将叶片 16 相对于毂 10 重新定向。因此，可移除前板 204 而露出可变定向支座 26 以使之重构成为可能，接着在重构完成之后重新附连前板 204。

[0030] 图 15 显示出了带有安装系统 221 的径向风扇 220 的一个实施例。径向风扇 220 包括旋转机器 202，带有可调节叶片安装系统 24 的径向风扇毂 12，前板 204，后板 224 以及连接系统 206。类似地于图 13 的实施例，径向风扇毂 12 经由连接系统 206 安装在旋转机器 202 上，该连接系统 206 包括与旋转机器 202 上的对应螺纹相匹配的多个螺纹紧固件 208。板 204, 224 在可调节叶片安装系统 24 的相反的前侧和后侧上方延伸，以阻挡污染物进入叶片安装系统 24 例如可变定向支座 26 中。如上所述，前板 204 可包括密封件 210（例如环形密封件），以进一步阻挡污染物进入叶片安装系统 24 中。同样，后板 224 可包括密封件 226（例如环形密封件），以进一步阻挡污染物进入叶片安装系统 24 中。在所示的实施例中，后板 224 具有比前板 204 的直径 230 更大的直径 228。扩大的后板 224 可与叶片 16 重叠，以帮助沿径向方向 4 引导气流。如上所述，可通过移除各叶片 16 然后将各叶片重新安装在合适的高度而将叶片 16 相对于毂 12 重新定向。因此，可移除前盖 204 而露出可变定向支座 26 以使重构成为可能，接着在重构完成之后重新附连前盖 204。

[0031] 图 16 显示出了带有安装系统 241 的轴向 / 径向风扇 240 的一个实施例。轴向 / 径向风扇 240 包括旋转机器 202，后板 224，带有可调节叶片安装系统 24 的轴向 / 径向风扇毂 14，前板 204 以及连接系统 206。类似地于图 13 的实施例，轴向 / 径向风扇毂 14 经由连接系统 206 安装在旋转机器 202 上，该连接系统 206 包括与旋转机器 202 上的对应螺纹相匹配的多个螺纹紧固件 208。板 204, 224 在可调节叶片安装系统 24 的相反的前侧和后侧上方延伸，以阻挡污染物进入叶片安装系统 24 例如可变定向支座 26 中。如上所述，板 204, 224 可包括密封件 210, 226（例如环形密封件），以进一步阻挡污染物进入叶片安装系统 24 中。在所示的实施例中，后板 224 的直径 228 与前板 204 的直径 230 大致相同。特别地，直径 228 相对于图 15 的实施例减小，以使风扇 240 能够作为轴向流动风扇或径向流动风扇运行。然而，所示的后板 224 可由诸如图 15 中所示的具有更大直径 228 的另一后板 224 替代，以在风扇 240 构成为径向风扇时帮助沿径向方向 4 引导气流。如上所述，可通过移除各叶片 16 然后将各叶片重新安装在合适的高度和 / 或角度而将叶片 16 相对于毂 14 重新定向。因此，可移除前盖 204 而露出可变定向支座 26 以使重构成为可能，接着在重构完成之后重新附连前盖 204。
[0032] 本发明的技术效果包括能够适合于大量应用的可调节风扇。例如，该风扇能够适合于通过调节旋转风扇叶片的高度而增大或减小空气流量或风扇直径。此外，可通过调节旋转叶片角度来改变风扇流动方向。实际上，在一些实施例中，可基于叶片安装而将流动方向改为相反的方向。此外，在一些实施例中，该风扇能够适合于变成径向或轴向风扇。

[0033] 该书面描述使用了包括最佳模式的示例来公开本发明，并且还使本领域的任何技术人员能够实践本发明，包括制造和使用任何装置或系统，以及执行任何并入的方法。本发明的可专利范围由权利要求来限定，并且可包括本领域技术人员想到的其它示例。如果这种其它示例具有与权利要求的文字语言并无区别的结构元件，或者如果它们包括与权利要求的文字语言无实质性区别的等同结构元件，则这种其它示例预期落在权利要求的范围内。
图 2
图 4
图 7