

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

<p>(51) International Patent Classification⁶ : C08G 63/189, 63/181</p>		<p>A1</p>	<p>(11) International Publication Number: WO 97/09366</p> <p>(43) International Publication Date: 13 March 1997 (13.03.97)</p>
<p>(21) International Application Number: PCT/US96/13759</p> <p>(22) International Filing Date: 27 August 1996 (27.08.96)</p> <p>(30) Priority Data: 08/522,882 1 September 1995 (01.09.95) US</p> <p>(71) Applicant: EASTMAN CHEMICAL COMPANY [US/US]; 100 North Eastman Road, Kingsport, TN 37660 (US).</p> <p>(72) Inventor: MINNICK, Larry, Allen; 410 Sycamore Drive, Bluff City, TN 37618 (US).</p> <p>(74) Agent: HARDING, Karen, A.; P.O. Box 511, Kingsport, TN 37662-5075 (US).</p>		<p>(81) Designated States: CA, JP, MX, European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).</p> <p>Published <i>With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.</i></p>	
<p>(54) Title: PET COPOLYESTERS CONTAINING SUCCINIC AND NAPHTHALENEDICARBOXYLIC ACID MOIETIES HAVING IMPROVED BARRIER PROPERTIES</p> <p>(57) Abstract</p> <p>Disclosed are terpolymers having improved barrier properties and tensile strength relative to PET comprising copolymers derived from acid components comprising 45 to 85 mol % terephthalic acid; 10 to 40 mol % of at least one naphthalenedicarboxylic acid and 5 to 15 mol % of at least one aliphatic dicarboxylic acid having 1 to 6 carbon atoms and glycol component comprising ethylene glycol. The copolymers of the present invention may be formed into a variety of articles such as blood tubes, serum vials, containers, films and sheeting.</p>			

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	United Kingdom	MW	Malawi
AT	Austria	GE	Georgia	MX	Mexico
AU	Australia	GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway
BF	Burkina Faso	IE	Ireland	NZ	New Zealand
BG	Bulgaria	IT	Italy	PL	Poland
BJ	Benin	JP	Japan	PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belarus	KG	Kyrgyzstan	RU	Russian Federation
CA	Canada	KP	Democratic People's Republic of Korea	SD	Sudan
CF	Central African Republic	KR	Republic of Korea	SE	Sweden
CG	Congo	KZ	Kazakhstan	SG	Singapore
CH	Switzerland	LI	Liechtenstein	SI	Slovenia
CI	Côte d'Ivoire	LK	Sri Lanka	SK	Slovakia
CM	Cameroon	LR	Liberia	SN	Senegal
CN	China	LT	Lithuania	SZ	Swaziland
CS	Czechoslovakia	LU	Luxembourg	TD	Chad
CZ	Czech Republic	LV	Latvia	TG	Togo
DE	Germany	MC	Monaco	TJ	Tajikistan
DK	Denmark	MD	Republic of Moldova	TT	Trinidad and Tobago
EE	Estonia	MG	Madagascar	UA	Ukraine
ES	Spain	ML	Mali	UG	Uganda
FI	Finland	MN	Mongolia	US	United States of America
FR	France	MR	Mauritania	UZ	Uzbekistan
GA	Gabon			VN	Viet Nam

- 1 -

PET COPOLYESTERS CONTAINING SUCCINIC AND
NAPHTHALENEDICARBOXYLIC ACID MOIETIES
HAVING IMPROVED BARRIER PROPERTIES

5 PET is currently useful for the fabrication of injection molded vacuum blood tubes. PET has good gas barrier properties and as a result blood tubes prepared from the resin have adequate retention of vacuum for selected applications. However, improved gas barrier 10 properties are desirable to extend the shelf life of these tubes in selected applications. Copolymers of polyethylene terephthalate (PET), naphthalenedicarboxylic acid and at least one aliphatic dicarboxylic acid have been found to possess improved 15 gas barrier properties relative to PET. Surprisingly these copolymers also maintain the heat resistance and impact properties of PET.

Background of the Invention

20 Blood tubes for the medical industry have traditionally been prepared from glass. In recent years, the possibility of infectious disease being spread by contact with blood from broken tubes has caused the medical industry to increasingly depend on 25 plastic tubes. Tubes are now being prepared from injection molded resins such as PET. These tubes are prepared and maintained under reduced pressure to allow for a convenient method for the sampling of blood. Because of the need to maintain reduced pressure in 30 these tubes, there is a need for resins that will provide improved barrier properties relative to PET and therefore, give the extended shelf-life needed in selected applications.

35 Poly(ethylene-2,6-naphthalenedicarboxylate) (PEN) displays improved barrier properties relative to PET.

- 2 -

However, this resin is quite expensive and due to the increased melting point and melt viscosity requires very high processing temperatures relative to PET.

U.S. Patent 4,401,805 describes PET copolymers containing 1-45 mol % of aliphatic dicarboxylic acids containing 3 to 8 carbon atoms which are reported to have good barrier properties. However, the addition of only aliphatic dicarboxylic acids lowers the heat resistance properties of the resultant polyester relative to those of PET. The addition of aromatic dicarboxylic acids other than terephthalic acid is not disclosed.

Research Disclosure No. 36009 (April, 1994) describes PET copolymers containing either 10-50 mol % isophthalic acid, or 10-30 mol % of either succinic acid, glutaric acid, adipic acid, or mixtures of these aliphatic acids. These copolymers are reported to be useful for the preparation of blood tubes.

Research Disclosure No. 36903 (January, 1995) discloses PET copolymers containing glutarate, succinate, adipate or mixtures thereof that are reported to have improved shelf-life in blood tubes. Terpolymers of PET, isophthalic and naphthalenedicarboxylic acids are also disclosed.

Research Disclosure No. 29484 (October, 1988) discloses various PEN copolymers.

Description of the Invention

The present invention provides novel copolymers derived from acid components comprising 45 to 85 mol % terephthalic acid; 10 to 40 mol % of at least one naphthalenedicarboxylic acid and 5 to 15 mol % of at least one aliphatic dicarboxylic acid having 2 to 8 carbon atoms and glycol component comprising ethylene glycol. Injection molded, blow molded and extruded

- 3 -

articles made therefrom are also disclosed. Preferably said copolymers comprise 60 to 75 mole % terephthalic acid; 20 to 30 mole % of at least one naphthalenedicarboxylic acid and 5 to 10 mole % of said 5 at least one aliphatic dicarboxylic acid.

The naphthalenedicarboxylic acid isomer is selected from 1,4-, 1,5-, 2,6-, 2,7-, 1,2-, 1,3-, 1,7-, 1,8-, 2,3-, 2,4-, 2,5-, and 2,8-naphthalenedicarboxylic acid isomers. Mixtures of the various isomers may also be 10 used. The isomer(s) chosen may be added to the reaction as either an acid or an ester. Preferably, the naphthalenedicarboxylic acid is 2,6-naphthalene- dicarboxylic acid isomer.

15 The aliphatic dicarboxylic acid is preferably selected from oxalic, succinic, malonic, glutaric, adipic, 1,4-cyclohexanedicarboxylic acid and the like. More preferably the aliphatic dicarboxylic acid is selected from succinic, glutaric and adipic acid, and most preferably is succinic acid.

20 The copolymers are readily prepared by either batch or continuous polycondensation processes well known to those skilled in the art. The dicarboxylic acid moieties may be derived from the acids or their lower alkyl esters, such as the dimethyl esters. Useful 25 copolymers will have inherent viscosity (IV) values of 0.4 to 1.1.

Typical catalysts which may be used in the 30 polymerization of these copolymers include the titanium alkoxides, dibutyl tin laurate, combinations of zinc, manganese, or magnesium acetates or benzoates with antimony oxide or antimony triacetate.

In general, up to 20 mol % of other aliphatic and aromatic diols can be used to prepare the polyesters as long as 80 mol % is ethylene glycol. Examples of such 35 diols include propylene glycol; diethylene glycol;

- 4 -

1,2-propylene glycol; 2,4-dimethyl-2-ethyl-hexane-
1,3-diol; 2,2,4-trimethyl-1,3-pentanediol; 2,2-dimethyl-
1,3-propanediol; 2-ethyl-2-butyl-1,3-propanediol;
2,2-diethyl-1,3-propanediol; 2-methyl-2-propyl-
5 1,3-propanediol; 2-ethyl-2-isobutyl-1,3-propanediol;
1,3-butanediol; 1,4-butanediol; 1,5-pentanediol;
1,6-hexanediol; 2,2,4-trimethyl-1,6-hexanediol,
1,2-cyclohexanedimethanol; 1,3-cyclohexanedimethanol;
2,2,4,4-tetramethyl-1,3-cyclobutanediol; 0-, m-, and
10 p-xylylene diols; 4,4'-sulfonyldiphenol;
4,4'-oxydiphenol; 4,4'-isopropylidenediphenol; and
2,5'-naphthalenediol.

The compositions of the present invention have
excellent barrier properties and are readily processable
15 at temperature ranges similar to PET. For example, such
copolymers can be injection molded into blood tubes,
serum vials, laboratory bottles and the like at
temperatures ranging from 250°C to 280°C. The
copolymers may also be formed into a variety of other
20 articles such as containers, films and sheets by well
known molding techniques such as injection molding,
extrusion blow molding, extrusion molding and extrusion
stretch molding. The heat deflection temperature and
other elevated temperature properties of these
25 copolymers are at least equal to PET.

Moreover, the copolymers of the present invention
are clear. Clarity is essential in several
applications, including blood tubes.

Small amounts of other ingredients may be added to
30 the composition of the present invention to enhance
their performance properties. For example, lubricants,
stabilizers, antioxidants, ultraviolet light absorbing
agents, mold release agents, metal deactivators,
zeolites, fillers, and the like can be used so long as

- 5 -

they do not hinder the present invention from accomplishing the objective.

Examples

5 The polyesters and copolyesters made in the Examples were extruded into thin film (nominally 10 mil) using a 3/4 inch Killion single screw extruder for use in permeability testing. These materials were also molded into tensile and flexural bars using a Toyo 90
10 injection molding machine for use in mechanical property testing. Inherent viscosity (I.V.) was measured at 25°C using 0.5 gram of polyester per 100 ml of a solvent consisting of 60 wt% phenol and 40 wt% tetrachloroethane.

15

Examples 1-5

Polyesters of terephthalic acid (T), 2,6-naphthalenedicarboxylic acid (N), succinic acid (S) and ethylene glycol (EG) as listed in Table 1 were prepared
20 via polycondensation as follows. An excess of ethylene glycol was reacted with the listed acid components at about 200 to 220°C to remove water and methanol from the reaction mixture. The dimethylester of terephthalic acid and naphthlenedicarboxylic acid were used.
25 Succinic acid was used in its acid form. Polymerization was conducted under reduced pressure at 285°C.

- 6 -

Table 1

Ex. #	mole % T	mole % N	mole % S	mole % EG
5	1	100	—	100
	2	50	50	—
	3	85	—	15
	4	75	20	5
	5	60	25	15

10 The properties of the resultant polyesters were measures as follows: I.V.s (described above), oxygen transmission rates (ASTM D3985), toughness (tensile elongation to break - ASTM D638) and heat of deflection temperatures (HDTs - ASTM D648) and are shown in Table 15 2, below.

Table 2

Ex #	IV	Permeability (cc-mil/100in ² -24hr-atm)	% tensile elong. to break	HDT (C @ 66/264 psi)
20	1	0.56	12.6	95/70/63
	2	0.61	6.9	8/86/73
	3	0.55	7	257/56/51
	4	0.66	8.3	258/73/65
	5	0.72	6.6	86/63/60

25 These examples show that the gas barrier properties of PET can be improved significantly by the addition of the combination of succinic and 2,6-naphthalene-dicarboxylic acids. Surprisingly, these improvements can be obtained without the detrimental effects of 30 lowered toughness and increased melt viscosity that is obtained in PET containing only 2,6-naphthalene-

- 7 -

dicarboxylic acid (>50 mol %). Also, these improvements can be obtained without the detrimental effects of lowered HDT that is obtained in PET containing only succinic acid.

CLAIMS

WE CLAIM

1. A copolyester derived from acid components comprising 45 to 85 mol % terephthalic acid; 10 to 40 mol % of at least one naphthalenedicarboxylic acid and 5 to 15 mol % of at least one aliphatic dicarboxylic acid having 2 to 8 carbon atoms and glycol component comprising ethylene glycol.
- 10 2. The copolyester of claim 1 wherein said acid components comprise 60 to 75 mole % terephthalic acid; 20 to 30 mole % of at least one naphthalenedicarboxylic acid and 5 to 10 mole % of said at least one aliphatic dicarboxylic acid.
- 15 3. The copolyester of claim 1 wherein said naphthalenedicarboxylic acid is selected from the group consisting of 1,4-, 1,5-, 2,6-, 2,7-, 1,2-, 1,3-, 1,7-, 1,8-, 2,3-, 2,4-, 2,5-, 2,8-naphthalenedicarboxylic acid and mixtures thereof.
- 20 4. The copolyester of claim 1 wherein said aliphatic dicarboxylic acid is selected from the group consisting of succinic acid, malonic acid, glutaric acid, adipic acid and 1,4-cyclohexanedicarboxylic acid.
- 25 5. The copolyester of claim 4 wherein said aliphatic dicarboxylic acid is selected from the group consisting of oxalic, succinic, glutaric and adipic acid.
- 30 6. The copolyester of claim 4 wherein said aliphatic dicarboxylic acid is succinic acid.
7. The copolyesters of claim 1 wherein said glycol component further comprises up to 20 mol % of at least one second glycol.
- 35 8. The copolyester of claim 7 wherein said second glycol is selected from the group consisting of propylene glycol; diethylene glycol; 1,2-propylene

- 9 -

glycol; 2,4-dimethyl-2-ethyl-hexane-1,3-diol;
2,2,4-trimethyl-1,3-pantanediol; 2,2-dimethyl-
1,3-propanediol; 2-ethyl-2-butyl-1,3-propanediol;
2,2-diethyl-1,3-propanediol; 2-methyl-2-propyl-
5 1,3-propanediol; 2-ethyl-2-isobutyl-1,3-propanediol;
1,3-butanediol; 1,4-butanediol; 1,5-pantanediol;
1,6-hexanediol; 2,2,4-trimethyl-1,6-hexanediol,
1,2-cyclohexanedimethanol; 1,3-cyclohexanedimethanol;
2,2,4,4-tetramethyl-1,3-cyclobutanediol; 0-, m-, and
10 p-xylylene diols; 4,4'-sulfonyldiphenol;
4,4'-oxydiphenol; 4,4'-isopropylidenediphenol; and
2,5'-naphthalenediol.

9. A formed article made from the copolyester of
claims 1 through 8.

15 10. The article of claim 9 wherein said article is
selected from the group consisting of blood tubes, serum
vials, laboratory bottles, containers, films and
sheeting.

INTERNATIONAL SEARCH REPORT

International Application No
PCT/US 96/13759

A. CLASSIFICATION OF SUBJECT MATTER
IPC 6 C08G63/189 C08G63/181

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 6 C08G

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
P,X	JP 08 156 211 A (KANEBO LTD) 18 June 1996 see the whole document & CHEMICAL ABSTRACTS, vol. 125, no. 16, 14 October 1996 Columbus, Ohio, US; abstract no. 197962, FUJITA, AKIHIDE: "Polyester sheets for thermoforming" see abstract ---	1-5,9,10
A	RESEARCH DISCLOSURE, vol. 283, no. 42, 1987, HAVANT GB, pages 685-690, XP000026949 ANONYMOUSLY: "Poly(alkylene 2,6-naphthalenedicarboxylate) copolymers containing aliphatic dicarboxylic acids" --- -/-	1-10

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

- *T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- *&* document member of the same patent family

Date of the actual completion of the international search

20 December 1996

Date of mailing of the international search report

09.01.97

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+ 31-70) 340-2040, Tx. 31 651 epo nl,
Fax (+ 31-70) 340-3016

Authorized officer

Decocker, L

INTERNATIONAL SEARCH REPORTInternational Application No
PCT/US 96/13759

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	RESEARCH DISCLOSURE, vol. 369, no. 03, January 1995, HAVANT GB, page 2 XP000494395 ANONYMOUSLY: "Fabrication of blood tubes with improved shelf-life from selected copolymers and terpolymers by injection molding" cited in the application -----	1-10

INTERNATIONAL SEARCH REPORT

International Application No
PCT/US 96/13759

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
JP-A-08156211	18-06-96	NONE	