Title: METHODS AND APPARATUS PROVIDING THERMAL ISOLATION OF PHOTONIC DEVICES

Abstract: Described embodiments include photonic integrated circuits and systems with photonic devices, including thermal isolation regions for the photonic devices. Methods of fabricating such circuits and systems are also described.
METHODS AND APPARATUS PROVIDING THERMAL ISOLATION OF PHOTONIC DEVICES

TECHNICAL FIELD

[0001] Described embodiments relate generally to the field of electronic-photonic devices, and more particularly to the thermal isolation of electronic-photonic devices.

BACKGROUND

[0002] Optical transmission may be used as a means for communication between separate integrated circuit die (also referred to as inter-die connections), and between components on the same die (also referred to as intra-die connections). Photonic devices are a class of devices that are capable of sourcing, controlling, and/or detecting optical transmission of signals.

[0003] The term "silicon photonics" relates to the study and application of photonic systems that use silicon as an optical medium. Instead of, or in addition to, using silicon to facilitate the flow of electricity, silicon can be used to direct the flow of photons or light. Silicon is transparent to infrared light with wavelengths above about 1.1 micrometers. Silicon also has a high refractive index of about 3.5. The tight optical confinement provided by this high index allows for microscopic optical waveguides, which may have cross-sectional dimensions of only a few hundred nanometers, thus facilitating integration with current nano-scale semiconductor technologies that also employ silicon, such as complementary metal oxide semiconductor (CMOS) technologies. Silicon photonic devices can thus be made using existing semiconductor fabrication techniques. Further, because silicon is already used as a substrate for many electronic integrated circuits, it is possible to create hybrid devices employing both optical and electronic components integrated onto a single die.
In response to more demanding communication bandwidth, energy consumption, and performance standards for electronic devices such as semiconductor devices, photonic devices are increasingly being integrated with optical/electrical circuits to form a type of electronic-photonic device called an electronic-photonic integrated circuit. For example, in the semiconductor industry, photonic devices have various applications including communication within a die, between multiple die of a computer board, and between computer boards.

In inter-die communications via optical interconnects, each die on the circuit board can be interfaced with a photonic-electronic transmitter-receiver circuit, with two die operably connected via an optical waveguide. Likewise, in intra-die communications, optical waveguides may be used to connect components within a die, such as between an integrated optical source and a photonic detector.

FIG. 1 illustrates a block diagram of one example of a conventional photonic multiplexing system 100. The system 100 includes multiple earner wave input devices 110a, 110b, 110c, 110d (generally referred to as an input device 110), each of which may be, for example, an optical source configured to generate an optical carrier wave at a respective transmission wavelength. For example, each input device 110 may include a coherent light source, such as a laser (e.g., a hybrid silicon laser or a gallium arsenide laser), or other appropriate light source known in the art.

The optical carrier wave from each input device 110a-d is transmitted to a respective resonant earner wave modulator 120a-d along a respective optical waveguide 115a-d. Carrier wave modulators 120a-d are configured to receive respective optical carrier waves having different wavelengths from the respective input devices 110a-d, and to modulate data on the optical carrier wave that it receives. For example, carrier wave modulators 120a-d may be optical modulators configured to receive an optical data signal and output a modulated optical data
signal, or electro-optical modulators configured to receive an electrical data signal from an electrically conductive interconnect and output a modulated optical data signal. The modulated light from each of the carrier wave modulators 120a-d is then combined and transmitted onto a single transmission channel (e.g., optical waveguide 140) using an optical multiplexer 130. The multiplexed light is transmitted along optical waveguide 140 to an endpoint (not shown) that may include, e.g., one or more photonic detectors for detecting optical transmissions, where the light is de-multiplexed and demodulated before being used by an endpoint device.

[0008] Wave guiding of an optical carrier wave through optical waveguides 115, 140 occurs through internal reflection of electromagnetic waves of an optical carrier wave at the interface between a higher refractive index inner core and a lower refractive index outer cladding. For example, the inner core of an optical waveguide 115 may be formed of a silicon (Si) or silicon-containing material, and may have a refractive index of approximately 3.5. The cladding of an optical waveguide 115 may be formed of a material having a lower index of refraction, for example, a SiO₂ material with a refractive index of approximately 1.5.

[0009] Several components within a photonic system, and particularly components operating at a resonance frequency, can be affected by variations in temperature. Variations in temperature can result in changes in the device dimensions (due to thermal expansion) and refractive indices of materials. As one example, an optical laser providing one or more carrier wavelengths can be tuned by changing its temperature. As another example, changes in temperature can affect the operation of a resonant carrier wave modulator 120. The resonant frequency of a particular modulator 120 is controlled in part by the refractive indices of its resonant structures, which may change according to temperature, resulting in turn in a deviation of the resonant frequency of the modulator 120. Accordingly, certain photonic devices require a stable thermal environment to perform optimally.
One technique for providing a stable thermal environment for photonic devices includes active temperature control of one or more photonic devices, such as through an electric heating device. FIG. 2A shows a top-down view of photonic devices including an input device 110 (e.g., a laser), an optical waveguide 115, and a resonant carrier wave modulator 120, formed in a portion of a silicon die 230. A heating device 212 provides active temperature control of carrier wave modulator 120. Heating device 212 may be, for example, a resistive or inductive element, such as a polysilicon, silicon, or copper element, that is configured to receive energy (e.g., electrical energy) and output heat to the surrounding photonic devices. As shown in FIG. 2A, heating device 212 may be customized to modulator 120, by partially encircling modulator 120, or may have any other shape and be located near other temperature-sensitive photonic devices, as well as earlier wave modulator 120. In other embodiments, heating device 212 may be integrated with carrier wave modulator 120.

FIG. 2B shows a cross-sectional view of photonic devices formed in a portion of a silicon on insulator (SOI) integrated circuit die 230. Die 230 includes an input device 110 (e.g., a laser), an optical waveguide 115, and a resonant carrier wave modulator 120. Die 230 includes a substrate 232, which may be, for example, a bulk region of thermally conductive silicon. The SOI structure also includes an insulator region 233 (also referred to as a buried oxide or "BOX" region) composed of an insulating material, such as SiO$_2$, which acts as a bottom cladding layer for an optical waveguide 115. Die 230 may also include an interlevel dielectric (ILD) region 236 having a lower layer composed of, for example, SiO$_2$, formed above the device formation layer 235. The lower layer of ILD region 236 provides an upper cladding region for optical waveguide 115, and upper levels of the ILD region 236 are used for forming electrical connections in various locations of die 230, such as above the device formation region 235. Typically, photonic devices, including input device 110 (e.g., a laser), optical waveguide 115, and resonant carrier wave modulator 120, as well as heating device 212, are formed in the device formation
region 235 above the substrate 232. Device formation region 235 may include regions of silicon for forming photonic devices, such as the inner core of optical waveguide 115 and modulator 120, and regions of a cladding material, such as SiO₂, on the sides of optical waveguide 115 to serve as cladding surrounding a silicon waveguide core, and to serve as an insulating and mechanically supportive material for the devices formed in device formation region 235. Other photonic devices, such as other optical waveguides, lasers, filters, or photonic detectors, may also be formed in the device formation region 235, and may be subjected to active temperature control using a heating device 212.

[0012] Referring to FIG. 2B, while heating device 212 provides active temperature control of one or more photonic devices, such as modulator 120, in device formation region 235, it emits heat that dissipates in all directions, including into the substrate 232, which is formed of thermally conductive silicon, and into the ILD region 236. This results in wasted heat flux and a less efficient heating device 212. Additionally, photonic devices in die 230 are typically thermally coupled to the substrate 232, and any global temperature variation in the die 230 may have an effect on the photonic devices.

[0013] Accordingly, it is desirable to thermally isolate heating devices and photonic devices in a photonic system, in order to improve efficiency and to provide more stable operation of the photonic devices.

BRIEF DESCRIPTION OF THE DRAWINGS

[0014] FIG. 1 illustrates a block diagram of a conventional photonic system.

[0015] FIGS. 2A and 2B illustrate a top-down view and a cross-sectional view, respectively, of photonic devices in a die.
[0016] FIGS. 3A-3E illustrate a top-down view and cross-sectional views, respectively, of die including thermal isolation regions, in accordance with embodiments described herein.

[0017] FIGS. 4A-4G illustrate processes for forming a die including a thermal isolation region, in accordance with embodiments described herein.

[0018] FIG. 5 illustrates a cross-sectional view of a die including a thermal isolation region, in accordance with embodiments described herein.

[0019] FIGS. 6A-6E illustrate a top-down view, cross-sectional views, and a three-dimensional view, respectively, of die including thermal isolation regions, in accordance with embodiments described herein.

[0020] FIGS. 7A-7E illustrate processes for forming a die including a thermal isolation region, in accordance with embodiments described herein.

[0021] FIG. 8 illustrates a processor system, in accordance with embodiments described herein.

DETAILED DESCRIPTION

[0022] In the following detailed description, reference is made to various embodiments. These embodiments are described with sufficient detail to enable those skilled in the art to practice them. It is to be understood that other embodiments may be employed, and that various structural, logical and electrical changes may be made. In addition, where various processes are described, it should be understood that the steps of the processes may occur in an order other than how they are specifically described, unless noted otherwise.

[0023] Embodiments described herein include photonics devices and integrated circuits with a thermal isolation region for controlling dissipation of heat.
in a photonic system. For example, a thermal isolation region may be formed near
one or more temperature-sensitive photonic structures.

[0024] FIGS. 3A and 3B illustrate one embodiment. They show a top-down
view and a cross-sectional view, respectively, of photonic devices formed in a
portion of a die 330. As shown in FIG. 3A, die 330 may include one or more
temperature sensitive photonic devices of a photonic system, including, for example,
a resonant carrier wave modulator 320, such as a ring resonator or disk resonator, or
another type of resonant modulator. Carrier wave modulator 320 may be an electro-
optical modulator configured to receive an electrical data signal from an electrically
connected interconnect, such as an electrically conductive signal line, and modulate a
carrier wave in an adjacent optical waveguide 315 according to the received data.
Alternatively, carrier wave modulator 320 may be an optical modulator configured to
receive an optical data signal, such as from another optical waveguide.

[0025] Die 330 also includes one or more heating devices 312 providing
active temperature control of one or more of the photonic devices, such as the carrier
wave modulator 320. Heating device 312 can be a resistive element, such as a
polysilicon, silicon, or copper element, that is configured to receive electrical energy
from an electrically connected interconnect, such as a via, and output heat. Although
carrier wave modulator 320 and heating device 312 are shown as separate elements
FIG. 3A, it should be understood that heating device 312 may also be integrated with
carrier wave modulator 320.

[0026] Die 330 also includes a carrier wave input device 310, such as a
laser configured to output an optical carrier wave, which is another example of a
temperature sensitive photonic device. Die 330 also includes an optical waveguide
315 configured to carry an optical carrier wave that is modulated by the carrier wave
modulator 320. It should be understood that the described temperature-sensitive
photonic devices, structures, and arrangements are merely exemplary, and the
embodiments below may be applied in connection with any known temperature-sensitive photonic structures, including, e.g., temperature-sensitive photonic detectors, optical waveguides, filters, or other structures.

[0027] As shown in FIG. 3B, the photonic devices, such as input device 310, optical waveguide 315, and waveguide modulator 320, as well as heating device 312, may be formed in an integrated circuit. Die 330 includes a substrate 332, which may be, for example, a bulk region of thermally conductive silicon. Although not shown in FIG. 3B, substrate 332 may optionally include an insulator or "BOX" region 233 (FIG. 2B) composed of an electrically insulating material, such as SiO$_2$, providing a silicon-on-insulator (SOI) substrate. Photonic devices including input device 310, optical waveguide 315, and waveguide modulator 320 are formed in a device formation region 335 above a portion of the substrate 332. Device formation region 335 may include a silicon area for device formation, and a cladding material, such as SiO$_2$, to serve as cladding for an optical waveguide 315 that surrounds a silicon inner core and to optically and/or electrically insulate one or more of the photonic devices. Die 330 also includes one or more interlevel dielectric (ILD) regions 336 having, for example, SiO$_2$ as the lowest layer (i.e., the layer closest to device formation region 335).

[0028] As shown in FIGS. 3A and 3B, a thermal isolation region 340 is formed near or adjacent to heating device 312. Thermal isolation region 340 can be provided by forming an area of low thermal conductivity material in die 330. For example, as shown in FIG. 3B, thermal isolation region 340 can include low thermal conductivity material formed in an area of the substrate 332 below heating device 312. Thermal isolation region 340 prevents dissipation of heat from heating device 312 into the thermally conductive substrate 332. Thermal isolation region 340 may extend beyond the region of substrate 332 under heating device 312 into an area under one or more temperature sensitive photonic devices in die 330, such as under carrier wave modulator 320, in order to thermally isolate the temperature sensitive...
photonic devices from thermal changes in substrate 332. In addition, one or more additional thermal isolation regions 341 may be formed in an area of substrate 332 under temperature-sensitive photonic devices in die 330, in order to thermally isolate the temperature-sensitive photonic devices from thermal changes in substrate 332. For example, a second thermal isolation region 341 may be formed in an area of substrate 332 under input device 310.

[0029] Thermal isolation regions 340, 341 may be composed of, for example, a low thermal conductivity material, such as a material having low dielectric constant relative to the silicon of the substrate 332. For example, the dielectric constant k of silicon used to form substrate 332 of die 330 is typically approximately 11.7, and the SiO_2 used to form the insulator region 333 (FIG. 4B) of an SOI substrate, the cladding in device region 335, and/or the ILD region 336, is approximately 3.9. Techniques discussed below may provide a low thermal conductivity material 340 having a dielectric constant k in a range of approximately 1.0 to 3.8. Low thermal conductivity material 340 may also include a thermal conductivity that is lower than silicon used in the die 330. For example, low thermal conductivity material 340 may have a thermal conductivity less than approximately .006 W/cm°C.

[0030] One technique for forming low thermal conductivity material for a thermal isolation region 340, 341 is by doping an area of silicon or SiO_2 with a lower dielectric constant material than the material being doped. Examples of materials having lower dielectric constants than silicon and SiO_2 include fluorine and carbon. Doping silicon or SiO_2 with these or other lower dielectric constant materials reduces the dielectric constant of the doped material, thereby reducing the thermal conductivity of the doped material.

[0031] Another technique for forming low thermal conductivity material is to create an area of porous SiO_2. Certain techniques for depositing SiO_2, such as
plasma enhanced chemical vapor deposition (PECVD), form SiO₂ with voids or pores filled with ambient air or other gaseous material (referred to as porous SiO₂). The voids in porous SiO₂ may have a dielectric constant of nearly 1.0, resulting in porous SiO₂ having a lower dielectric constant than non-porous SiO₂. Further, porous SiO₂ may be doped with a low dielectric constant dopant, such as fluorine or carbon, to further reduce the thermal conductivity.

[0032] Another technique for forming low thermal conductivity material is to deposit SiO₂ using a spin-on deposition technique (referred to as "spin-on SiO₂"). Spin-on deposition techniques are typically used in silicon manufacturing processes to deposit materials such as photoresist, while techniques such as chemical vapor deposition are typically used to deposit SiO₂. Some examples of spin-on low dielectric constant polymers include polyimide, polynorbornenes, benzocyclobuten, and/or polytetrafluoroethylene (PTFE). Spin-on deposition of SiO₂ results in the SiO₂ having a lower dielectric constant, and lower thermal conductivity. Further, SiO₂ deposited using a spin-on deposition technique may be doped with a low dielectric constant dopant, such as fluorine or carbon, to further reduce the thermal conductivity.

[0033] FIG. 3C shows another embodiment of photonic devices formed in a die 330 including a thermal isolation region 342. Thermal isolation region 342 includes a low thermal conductivity material formed in an area of substrate 332 extending beneath heating device 312, input device 310, optical waveguide 315 and carrier wave modulator 320. Thermal isolation region 342 provides thermal isolation of substrate 332 from heating device 312, as well as thermal isolation of input device 310, optical waveguide 315 and resonant carrier wave modulator 320 from temperature variations in substrate 332. Other methods known in the art of depositing low thermal conductivity material may also be used.
More than one of the techniques described above for forming a low
thermal conductive material may be used in combination to provide thermal isolation
in die 330. For example, FIG. 3D illustrates a cross-sectional view of die 330, where
a first thermal isolation region 344 is formed under heating device 312 and extends
under one or more of the photonic structures 310, 315, 320. A second thermal
isolation region 346 is formed within the first thermal isolation region 344, localized
under heating device 312. Second thermal isolation region 346 may have a lower
thermal conductivity than the material of the first thermal isolation region 344. For
example, first thermal isolation region 344 may be composed of a porous SiO₂
material or an SiO₂ material deposited using a spin-on deposition technique, and the
porous or spun-on material in the second thermal isolation region 346 is doped using,
e.g., a fluorine or carbon dopant to provide a lower thermal conductivity.

FIG. 3E shows another embodiment of photonic devices formed in a
die 330 including a thermal isolation region. Die 330 includes a resonant carrier
wave modulator 320 integrated with a heating device 312. In FIG. 3E, device
formation region 365 includes a low thermal conductivity material. For example,
after the formation of silicon photonic devices above substrate 332, outer cladding
for optical waveguide 315 and insulating material for the other photonic devices in
die 300 can be provided in device formation region 365 by depositing spin-on SiO₂
or porous SiO₂ in device formation region 365. Alternatively, portions or all of a
region of SiO₂ material used to form device formation region 365 may be doped with
fluorine or carbon. Forming device formation region 365 with a low thermal
conductivity material reduces undesirable dissipation of heat from heating device
312, and thermally isolates temperature-sensitive photonic devices in die 330 from
temperature variations in substrate 332 and/or interlevel dielectric 336.

Further, die 330 includes an insulation region 363 providing a
silicon-on-insulator substrate, where the insulation region 363 is formed with low-
thermal conductivity material. For example, insulation region 363 may be formed
from spin-on SiO$_2$ or porous SiO$_2$, or from SiO$_2$ doped with fluorine or carbon. Forming insulation region 363 with a low thermal conductivity material further reduces undesirable dissipation of heat from heating device 312, and thermally isolates temperature-sensitive photonic devices in die 330 from temperature variations in substrate 332.

[0037] FIGS. 4A-4E illustrate examples of manufacturing processes for embodiments of die 330 including thermal isolation regions. In FIG. 4A, a silicon substrate 332 is provided. In FIG. 4B, an optional insulation 333 may be formed over silicon substrate 332, such as by thermally growing or depositing SiO$_2$ over substrate 332 using a chemical vapor deposition or other known process, to provide a silicon-on-insulator die. In another embodiment, a portion or all of insulation 333 in FIG. 4B is formed from a low thermal conductivity material. For example, a portion or all of insulation 333 can be formed using a plasma enhanced chemical vapor deposition (PECVD), to form porous SiO$_2$, or by depositing SiO$_2$ using a spin-on deposition technique. In other embodiments, the insulation 333 may be omitted.

[0038] In FIG. 4C, a trench 351 may be formed, for example by etching, in substrate 332, or, if present, into insulation 333 for an SOI substrate. Trench 351 can be formed using, for example, a dry etch process or other known etching techniques. In FIG. 4D, a layer 355 of low thermal conductivity material is deposited over substrate 332 and into trench 351. In one embodiment, the low thermal conductivity material is SiO$_2$ doped with a lower dielectric constant dopant, e.g., fluorine or carbon, that is deposited using standard techniques, such as chemical vapor deposition. In another embodiment, the low thermal conductivity material is porous SiO$_2$ deposited using a PECVD technique. In another embodiment, the low thermal conductivity material is SiO$_2$ deposited using a spin-on technique. In FIG. 4E, the excess low thermal conductivity material from layer 355 is removed from substrate 332 using known techniques, such as a chemical or mechanical polish, leaving thermal isolation region 340.
In FIG. 4F, photonic devices, such as an input device 310, an optical waveguide 315, a carrier wave modulator 320, or other photonic devices are formed above substrate 332. Heating device 312 is formed above thermal isolation region 340.

In FIG. 4G, device formation layer 335 is completed by depositing insulating and cladding material, such as SiO₂, surrounding the formed photonic devices 310, 315, 320. In another embodiment, a low thermal conductivity material, such as a doped SiO₂, porous SiO₂, or spin-on SiO₂ is used as an insulating and cladding material to complete the device formation region. Other regions, such as an ILD region 336 (FIG. 3B), can then be formed over the device formation region 335.

FIG. 5 shows another embodiment of a die including temperature isolation regions. In FIG. 5, a shallow trench isolation (STI) region 350 is formed in an area of substrate 332 under heating device 312. In existing CMOS manufacturing processes, STI regions composed of SiO₂ are used to electrically isolate devices within die 330. In the embodiment shown in FIG. 5, an STI region 350 composed of a low thermal conductivity material, such as a doped SiO₂, porous SiO₂, spin-on SiO₂, or other low thermal conductivity material, is formed in an area of substrate 332 below heating device 312. STI region 350 thermally isolates substrate 332 from heating device 312, and reduces unwanted dissipation of heat from heating device 312 into substrate 332. In addition to, or instead of, STI region 350 under heating device 312, die 330 can include an STI region 352 formed in an area of substrate 332 below one or more photonic devices, such as in an area below input device 310, in order to thermally isolate the photonic devices from thermal variations in substrate 332. STI regions 350, 352 can be partially, or substantially completely, formed from low thermal conductivity material.

FIGS. 6A-6E illustrate additional embodiments of die 430 including temperature sensitive photonic devices and thermal isolation regions. Exemplary
photonic structures shown in FIGS. 6A-6E include an input device 410, an optical waveguide 415, and/or a resonant carrier wave modulator 420, although it should be understood that any other photonic structures may be included, such as a photonic detector or optical filter. Die 430 also includes one or more heating devices 412, which may be separate heating elements or integrated with a carrier wave modulator 420. Die 430 includes a substrate 432, device formation region 435, and ILD region 436, which may be formed of similar materials discussed above in connection with FIGS. 3A-3E. Although not shown for purposes of clarity, substrate 432 may optionally include an insulation region 233 (FIG. 2B) providing an SOI substrate.

[0043] In FIGS. 6A and 6B, a thermal isolation region is provided by forming a physical gap 440 to create a thermal break between heating device 412 and adjacent material. At the temperature and dimensions used in silicon photonic systems, conduction is the most efficient heat flux mechanism. A thermal break involves removing a portion of the conductive material, leaving a gap or void that prevents thermal conduction across the gap. In another embodiment, gap 440 is formed in a portion of an insulation region 233 (FIG. 2A) of an SOI substrate underlying heating device 412. Gap 440 may be localized in an area of substrate 432 under heating device 412, or may extend into the area of substrate 432 under one or more photonic devices, such as carrier wave modulator 420, in order to thermally isolate the photonic devices from thermal variations in substrate 432.

[0044] Because a thermal break drastically reduces the dissipation of heat q in its respective direction, a relatively small gap is sufficient for thermal isolation of substrate 432. Gap 440 may be, for example, an air gap in substrate 432 on the order of a few nanometers, so long as the gap is sufficient to prevent thermal conduction.

[0045] In another embodiment shown in FIG. 6C, a gap 452 is provided within a shallow trench isolation (STI) region 450. STI region 450 may be composed of an electrically insulating material, such as SiO₂ or other oxides. STI
region 450 with gap 452 reduces the dissipation of heat \(q \) from heating device 412 into substrate 432 through STI region 450. Alternatively, STI region 450 may be composed of a low thermal conductivity material, as discussed above in connection with FIG. 5, such that gap 452 and STI region 450, in combination, provide for thermal isolation of substrate 432 from heating device 412.

[0046] In another embodiment shown in FIG. 6D, die 430 includes a gap 540 surrounding heating device 412 on multiple sides, including in portions of substrate 432, device formation region 435, and ILD region 436 surrounding heating device 412. Gap 540 provides thermal isolation to reduce heat dissipated by heating device 412 into substrate 432, as well as into ILD region 436 and other adjacent portions of device formation region 435 that are not meant to receive active temperature control from heating device 412, allowing for more efficient active temperature control and reduced global temperature flux. Gap 540 also improves the thermal isolation of overlying circuitry (i.e., formed in or above ILD region 436) and neighboring circuitry (i.e., in adjacent portions of die 430) from heating device 412, reducing the thermal effect of heating device 412 on the overlying and neighboring circuitry. Because the dissipation of heat \(q \) in the direction of the temperature-sensitive photonic structures that heating device 412 is intended to actively regulate is still desirable, gap 540 should provide little or no separation between heating device 412 and device formation region 435 in the direction of thermally-sensitive photonic structures to which it is providing active temperature control, such as carrier wave modulator 420.

[0047] As also shown in FIG. 6D, a second thermal isolation region can be provided by forming a separate gap 542 in the area of substrate 432 under one or more of the temperature-sensitive photonic devices, such as under carrier wave modulator 420. The second thermal isolation region 542 thermally isolates carrier wave modulator 420 from thermal variations in the substrate 432.
In the embodiments described above in connection with FIGS. 6A-6D, the respective gap may be etched such that sufficient material remains to provide mechanical support for overlying devices, such as heating device 412. As discussed above, a gap on the order of a few nanometers may be sufficient to provide thermal isolation of surrounding materials. Furthermore, as shown in FIG. 6E, interconnects 551, 552 that are used to provide electrical energy to heating device 412 extend into the material of device formation region 432 and/or ILD region 436 that surrounds gap 540. Interconnects 551, 552 provide mechanical support for heating device 412 despite a gap 540 surrounding substantially all sides of heating device 412. Similarly, signal lines 421, 422 that are configured to provide an electrical data signal to carrier wave modulator 420 extend into the material of device formation region 432 and/or ILD region 436, providing mechanical support for carrier wave modulator 420 despite the underlying gap 542 in substrate 432. Because heating device 412, carrier wave modulator 420 and other photonic devices are manufactured on a microscopic scale, the devices have relatively little mass, and thus the interconnects 551, 552 for heating device 412 and signal lines 421, 422 for carrier wave modulator 420 can provide mechanical support for the respective devices. Other photonic devices will typically include similar physical connections that extend into the surrounding material of device formation region 432 and/or ILD region 436, providing mechanical support for the photonic devices.

FIGS. 7A-7E illustrate a process for forming a thermal isolation region including a gap 440. In embodiments shown in FIGS. 7A-7E, a gap 440 is formed in substrate 432, by performing an etching process in substrate 432 after completing formation of the device formation region 435, including photonic devices such as input device 410, optical waveguide 415, and carrier wave modulator 420, and heating device 412. It should be understood, however, that gap 440 may instead be formed in substrate 432, or in an insulator region 233 (FIG. 2A), prior to the formation of photonic devices 410, 415, 420 and heating device 412 in device.
formation region 435, such as by performing a vacuum or etching process after providing the substrate 432.

[0050] In FIG. 7A, photonic devices, such as an input device 410, an optical waveguide 415, a carrier wave modulator 420, or other photonic devices, and a heating device 412 for providing active temperature control, are formed in device formation region 435 of a die 430. A material such as SiO₂ is deposited to complete the device formation region 435.

[0051] In FIG. 7B, an opening 448 is formed starting at a top surface of device formation region 435 in a location proximate to, but not directly over, heating device 412. Opening 448 traverses device formation region 435, and is formed using, for example, reactive ion etching or other techniques.

[0052] In FIG. 7C, gap 440 is formed through opening 448, such as by using a pulse etch process where the etching fluid passes through opening 448, or through a dry etch process.

[0053] After completion of the etching process, opening 448 may be filled with a dielectric material, as shown in FIG. 7D. For example, opening 448 can be filled with SiO₂ through a chemical vapor deposition process. Alternatively, opening 448 may be left open during further processing.

[0054] In FIG. 7E, an ILD region 436 is formed over the device formation region 435 and opening 448. It should be understood that the process described in connection with FIGS. 7A-7E could also be performed after formation of an ILD region 436 over device formation region 435.

[0055] It should also be understood that, while FIGS. 7A-7E show the formation of a gap 440 in a region of substrate 432 under heating device 412, the techniques described in connection with FIGS. 7A-7E can be used to form a gap 440 in any desired location in die 430, such as under one or more of the photonic devices,
in device formation region 435 or ILD region 436, in an STI region, or in the various locations described in connection with FIGS. 6A-6E.

[0056] Die including the thermal isolation regions described above may be implemented as part of an integrated circuit. The corresponding integrated circuit may be utilized in a typical processor system. For example, FIG. 8 illustrates a typical processor system 700 including a processor and/or a memory device employing one or more of the thermal isolation structures and techniques described in connection with FIGS. 3-7.

[0057] Processor system 700, which may be, for example, a computer system, includes a central processing unit (CPU) 760, such as a microprocessor, a digital signal processor, or other programmable digital logic devices, which communicates with one or more input/output devices 780 over a bus 750. A memory device 770 also communicates with CPU 760 over bus 750, such as through a memory controller. The memory device 770 may include, for example, RAM, a hard drive, a FLASH drive or removable memory. In the case of a computer system, processor system 700 may include other peripheral devices, such as removable media devices, that communicate with CPU 760 over bus 750. In some embodiments, memory device 770 may be combined with CPU 760 as a single integrated circuit. Integrated circuits implementing the thermal isolation structures and techniques described herein may be used to provide efficient and reliable thermal isolation of photonic devices, electronic devices, and materials in one or more of CPU 760, memory device 770, input/output devices 780, or in connection with many other aspects of a processor system 700.

[0058] The above description and drawings are only to be considered illustrative of specific embodiments, which achieve the features and advantages described herein. Modification and substitutions to specific processes, components, and structures can be made. For example, it should be understood that appropriate
types of semiconductor materials and memory elements other than those specifically described in connection with the above embodiments may be used. Accordingly, the embodiments of the invention are not to be considered as being limited by the foregoing description and drawings, but only by the scope of the appended claims.
CLAIMS

What is claimed as new and desired to be protected by Letters Patent of the United States is:

1. A photonic system comprising:

a temperature-sensitive photonic device formed in a die;

a heating device formed on the die, wherein the heating device is configured to provide temperature control for the temperature-sensitive photonic device; and

a thermal isolation region formed in an area of the die, wherein the thermal isolation region reduces dissipation of heat from the heating device into the die in the direction of the isolation region.

2. The photonic system of claim 1, wherein the die comprises:

a substrate;

a device formation region over the substrate; and

an interlevel dielectric region over the device formation region,

wherein the heating device and the temperature-sensitive photonic device are formed in the device formation region.

3. The photonic system of claim 2, wherein the thermal isolation region is located in the substrate.

4. The photonic system of claim 3, wherein the thermal isolation region is formed in a portion of the substrate under the heating device.
5. The photonic system of claim 1, wherein the thermal isolation region comprises a low thermal conductivity material that is less thermally conductive than material in the area of the die in which the thermal isolation region is formed.

6. The photonic system of claim 5, wherein the low thermal conductivity material has a dielectric constant that is lower than a dielectric constant of the material in the region of the die in which the thermal isolation region is formed.

7. The photonic system of claim 5, wherein the low thermal conductivity material has a thermal conductivity that is less than approximately .006 W/cm°C.

8. The photonic system of claim 5, wherein the low thermal conductivity material comprises silicon dioxide that has been doped with a dopant having a lower dielectric constant than the silicon dioxide.

9. The photonic system of claim 8, wherein the dopant comprises fluorine.

10. The photonic system of claim 8, wherein the dopant comprises carbon.

11. The photonic system of claim 5, wherein the low thermal conductivity material comprises porous silicon dioxide.

12. The photonic system of claim 5, wherein the low thermal conductivity material comprises spin-on deposited silicon dioxide.

13. The photonic system of claim 5, further comprising a second thermal isolation region formed within the low thermal conductivity material.

14. The photonic system of claim 5, wherein the thermal isolation region comprises a shallow trench isolation region.
15. The photonic system of claim 5, wherein the thermal isolation region comprises an insulator formed over a substrate in the die.

16. The photonic system of claim 5, wherein the thermal isolation region comprises an oxide formed around the heating device.

17. The photonic system of claim 1, wherein the isolation region comprises a physical gap between the heating device and material adjacent to a portion of the heating device.

18. The photonic system of claim 17, wherein the gap is between the heating device and material under the heating device.

19. The photonic system of claim 17, wherein the gap is between the heating device and material on a plurality of sides of the heating device.

20. The photonic system of claim 1, wherein the temperature-sensitive photonic device comprises a carrier wave modulator.

21. The photonic system of claim 1, wherein the temperature-sensitive photonic device comprises a laser.

22. An integrated circuit comprising:

 a substrate;

 a device formation region over the substrate;

 a temperature-sensitive photonic device formed in the device formation region;

 a heating device formed in the device formation region; and
a thermal isolation region formed in an area of the substrate under the heating device, wherein the thermal isolation region reduces dissipation of heat from the heating device into the substrate.

23. The integrated circuit of claim 22, wherein the thermal isolation region is formed in an area of the substrate under the heating device and the temperature-sensitive photonic device.

24. The integrated circuit of claim 22, wherein the thermal isolation region comprises a low thermal conductivity material.

25. The integrated circuit of claim 24, wherein the low thermal conductivity material comprises an oxide doped with a material having a lower thermal conductivity than the oxide.

26. The integrated circuit of claim 24, wherein the low thermal conductivity material comprises porous silicon dioxide.

27. The integrated circuit of claim 24, wherein the low thermal conductivity material comprises spin-on silicon dioxide.

28. The integrated circuit of claim 22, wherein the thermal isolation region comprises a physical gap between the heating device and the substrate.

29. The integrated circuit of claim 28, wherein the heating device is mechanically supported by at least one interconnect extending into the device formation region.

30. A method of forming an integrated circuit, the method comprising:

 providing a substrate;

 forming a temperature-sensitive photonic device above the substrate;
forming a heating device above the substrate, wherein the heating device is configured to dissipate heat toward the photonic device; and

forming a thermal isolation region in an area of the die neighboring the heating device, wherein the thermal isolation region reduces dissipation of heat from the heating device into the substrate in the direction of the isolation region.

31. The method of claim 30, wherein forming the thermal isolation region comprises forming a region of low thermal conductivity material that is less thermally conductive than material in the area of the die in which the thermal isolation region is formed.

32. The method of claim 31, wherein forming the region of low thermal conductivity material comprises:

etching a trench in the substrate; and

depositing the low thermal conductivity material in the trench.

33. The method of claim 32, wherein depositing the low thermal conductivity material in the trench comprises doping silicon dioxide with a material having a lower dielectric constant than the silicon dioxide.

34. The method of claim 32, wherein depositing the low thermal conductivity material in the trench comprises depositing porous silicon dioxide.

35. The method of claim 32, wherein depositing the low thermal conductivity material in the trench comprises depositing silicon dioxide using spin-on deposition.

36. The method of claim 31, wherein forming a region of low thermal conductivity material comprises forming an insulating layer between the substrate and the heating device.
37. The method of claim 36, wherein the insulating layer comprises an oxide doped with a material having a lower thermal conductivity than the oxide.

38. The method of claim 36, wherein the insulating layer comprises porous silicon dioxide.

39. The method of claim 36, wherein the insulating layer comprises spin-on silicon dioxide.

40. The method of claim 30, wherein forming the thermal isolation region comprises forming a physical gap between the heating device and material adjacent to a portion of the heating device.

41. The method of claim 40, wherein the gap is formed in the substrate.

42. The method of claim 40, wherein the gap is formed in a region above the substrate.

43. The method of claim 40, wherein forming the gap comprises performing a silicon etch to remove a portion of material adjacent to the heating device.

44. The method of claim 40, wherein forming the gap comprises performing a vacuum process to remove a portion of material adjacent to the heating device.

45. The method of claim 30, wherein the thermal isolation region is formed prior to forming the heating device.

46. The method of claim 30, wherein the thermal isolation region is formed after forming the heating device.

47. The method of claim 46, further comprising:
forming an opening near the heating device, wherein the opening passes into the substrate; and

forming the thermal isolation region under the heating device.
INTERNATIONAL SEARCH REPORT

International application No
PCT/US2013/045421

A. CLASSIFICATION OF SUBJECT MATTER

INV. G02B6/12

ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

G02B

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>
| X | DE 44 46 101 Al (SIEMENS AG [DE])
4 July 1996 (1996-07-04) | 1,5-16,
20-27,
30-39,
45-47 |
| Y | figure 2
----- | 2-4 |
| Y | EP 1 967 876 Al (IBIDEN CO LTD [JP])
10 September 2008 (2008-09-10)
abstract
----- | 2-4 |

* Special categories of cited documents:

- **"A"** document defining the general state of the art which is not considered to be of particular relevance
- **"E"** earlier application or patent but published on or after the international filing date
- **"L"** document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- **"O"** document referring to an oral disclosure, use, exhibition or other means
- **"P"** document published prior to the international filing date but later than the priority date claimed
- **"T"** later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- **"X"** document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- **"Y"** document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- **"A"** document member of the same patent family

Date of the actual completion of the international search

29 August 2013

Date of mailing of the international search report

04/11/2013

Name and mailing address of the ISA/Authorized officer

European Patent Office, P.B. 5818 Patentlaan 2
NL-2280 HV Rijswijk
Tel. (+31-31) 340-2040,
Fax: (+31-70) 340-3016

Orignac, Xavier

Form PCT/ISA/210 (second sheet) (April 2008)
INTERNATIONAL SEARCH REPORT

Box No. II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. [] Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:

2. [] Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. [] Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box No. III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

see additional sheet

1. [] As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.

2. [] As all searchable claims could be searched without effort justifying an additional fees, this Authority did not invite payment of additional fees.

3. [] As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. [] No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

 1-16, 20-27, 30-39, 45-47

Remark on Protest

[] The additional search fees were accompanied by the applicant's protest and, where applicable, the payment of a protest fee.

[] The additional search fees were accompanied by the applicant's protest but the applicable protest fee was not paid within the time limit specified in the invitation.

[] No protest accompanied the payment of additional search fees.
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>DE 4446101 A1</td>
<td>04-07-1996</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2008317402 A1</td>
<td>25-12-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2007074567 A1</td>
<td>05-07-2007</td>
</tr>
</tbody>
</table>
This International Searching Authority found multiple (groups of) inventions in this international application, as follows:

1. claims: 1-16, 20-27, 30-39, 45-47

 a photonic system comprising: a temperature-sensitive photonic device formed in a die; a heating device formed on the die, wherein the heating device is configured to provide temperature control for the temperature-sensitive photonic device; and a thermal isolation region formed in an area of the die, wherein the thermal isolation region reduces dissipation of heat from the heating device into the die in the direction of the isolation region, wherein the die comprises an interlevel dielectric region over the device formation region, and associated fabrication methods.

2. claims: 17-19, 28, 29, 40-44

 a photonic system comprising: a temperature-sensitive photonic device formed in a die; a heating device formed on the die, wherein the heating device is configured to provide temperature control for the temperature-sensitive photonic device; and a thermal isolation region formed in an area of the die, wherein the thermal isolation region reduces dissipation of heat from the heating device into the die in the direction of the isolation region, wherein the isolation region comprises a physical gap between the heating device and material adjacent to a portion of the heating device, and associated fabrication methods.