(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Burcau

AT Y

(43) International Publication Date (10) International Publication Number
10 September 2004 (10.09.2004) PCT WO 2004/077212 A2
(51) International Patent Classification’: GO6F AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,

CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, HI,

(21) International Application Number: GB. GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,

PCT/IN2004/000023 KG, KP, KR, KZ, 1.C, LK, LR, LS, LT, LU, LV, MA, MD,
(22) International Filing Date: 29 January 2004 (29.01.2004) MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG,
. . PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL,, SY, TJ, TM,
(25) Filing Language: English TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM,
(26) Publication Language: English ZW.
(30) Priority Data: (84) Designated States (unless otherwise indicated, for every
118/ MUM/2003 30 January 2003 (30.01.2003) IN kind of regional protection available): ARTPO (BW, GH,
. . GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
(1) ?Elgg;‘ggz)’éé ‘éef s ’z’;‘; i’ﬁ’&i ;’];CSP[’Ig fI)N]V‘]‘)MAN Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), Euro-
; Pawani
Plot, Near Vipul Apartment, Bhakti Marg, Mulund (West) pean (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, R,
» vear vipul Ap ’ & " GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK,
Mumbai 400 080, Maharashtra (IN). TR), OAPI (BF, BJ, CE, CG, CI, CM, GA, GN, GQ, GW,
— (72) Inventor; and ML, MR, NE, SN, TD, TG).
== (75) Inventor/Applicant (for US only): RAO, Vinayak, K. .
= [IN/IN]; A/4 Vishwakarma Jyoti, Subhash Lane, Malad ~Declarations under Rule 4.17:
—— (East), Mumbai 400 097, Maharashtra (IN). — as to applicant’s entitlement to apply for and be granted
= ’ ’ a patent (Rule 4.17(ii)) for the following designations AE,
=== (81) Designated States (unless otherwise indicated, for every AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ,
— kind of national protection available): AE, AG, AL, AM, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE,
= [Continued on next page]
= (54) Title: DATA SERVER INDEPENDENT OF COMMUNICATION PROTOCOLS, OPERATING SYSTEMS, FORMATS,
== FEATURES AND SYNTAXES
= 116 160
= N A N ya—
=] I i CONFIG i
— x | g
— 20 Repository E Multifunctional Server i — i
—— N atabase
= 1oa | StatioMetaData 4% patabase Web Mall 4 E i
— 1‘;30Q|\ Dynamic MetaData :l 105 E Web !
— | i Mail i
=—_ 135 o Heseages i] // { Defaults {I
—] f\ Data Dictionary ! Universal Object Parser | }
—— : Lexical Syntax ! Preferences I
— 1251 Rules Engine T’ Object Handler | oM™ | g Semantios i —— |
— ; Ef\ Static Meuristics | | ~= nalyz Validators : !
— 1
— ~~ST Dynamic Heuristics § 400 405 /Vﬁo 410 E i
|
%‘ | Operating System Independent layer ! {'
|
4,_‘> Data structure Resource Kemnal » ;]
o 1 : engine Manager e } }
e e e e e e e] !
y— \\ N \\ L —— i
o 200 205, 220
ll: 210 &
— 21,
~
<

& (57) Abstract: The present invention relates generally to the field of a data archival and retrieving mechanism, servicing clients
& irmrespective of functionality, features, communication protocols, operating systems ("OS"), formats, semantics and syntaxes. More
particularly the present invention relates to a system and method of data mapping and functionality mapping which enables an ap-
plication specific server system to function as a database with the functionality extensions of middleware, web servers, mail servers
etc. simultaneously allowing applications written for these servers to talk independent of operating systems, vendors or development
g tools without programming effort.

WO 2004/077212 A2 [N 0800 0000 A

EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, — asto the applicant’s entitlement to claim the priority of the
JP,. KE, KG, KP. KR, K7, LC, LK, LR, LS, LT, LU, LV, MA, earlier application (Rule 4.17(iii)) for all designations
MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM,

PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ,

T™M, TN, TR, TT, TZ, UA, UG, UZ, VC, VN, YU, ZA, ZM, Published:

ZW, ARIPO patent (BW, GH, GM, KE, LS, MW, MZ, SD, — without international search report and to be republished
SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, upon receipt of that report

KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG,

CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT,

LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BE, BJ, For two-letter codes and other abbreviations, refer to the "Guid-
CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, ance Notes on Codes and Abbreviations” appearing at the begin-
7G) ning of each regular issue of the PCT Gagzette.

10

15

20

25

30

WO 2004/077212 PCT/IN2004/000023

* TITLE OF INVENTION

Data Server independent of communication protocols, operating systems, formats, features and

‘syntaxes

BACKGROUND OF THE INVENTION

Over the years, need based applications saved daia the best way they could support them. The solution
providers often did not foresee the rapid changes in technolrogy that would follow, and have an impact
on their own products and the scope of the projects they were involved in. Further, the increase in
specialization of the skills led to the development of restricted, specialized knowledge and domains of
work, rather than the best solutions required. This gave rise to heterogeneous data and data formats.
For example, applications like MS Excel, MS Word and MS Outlook could have been developed to save
their data in a table or column format rather than formats such as ‘. XLS’, <.DOC’, ‘.EML’ formats. Further,
such applications could have been developed to use a presentation logic that would display a document
or spreadsheet in a layout that would be easy for users to understand, while saving the data in a
database format. In addition, applications were typically desktop or single user and as automallon'
progressed, the need arose io make such appllcallons support multiple-users. As a result of thls need,

servers such as mail servers, web servers and database servers came into existence.

The most generic and popular methodelogy of sharing information and functionality is the client - server
architecture, typically in which a machine designated as ‘Server’ has the best hardware and software,
configured to be shared across clients. Generally the resources that are sharable across clients includes
the network hardware, the Hard Disk Space, the Central Processing Unit's processing time,. server
memory and data generated by application(s). The application-specific functionality classifies these
servers as database servers, web servers, mail servers etc. Each of these servers have different
functionality, which understands specific sources of request patterns and responds in a specific pattern.
quther, technology evolution created different architectures, syntaxes, featuresl and vendors for these
servers. The disparity in the hardware includes the endian dependencies of the central processing unit.

These disparities in both the data and the functionality were due to different development tools being

10

15

20

25

30

WO 2004/077212 PCT/IN2004/000023

used by different vendors. Moreover, the underlying operating system differed along with the operating

system specific features used in implementation. For example, consider a system with Microsoft

Windows NT as the OS has Microsoft SQL Server 7 or SQL 2000 installed on it. Any application or

database instance uses the underlying file system of the OS for persisting the data. Further such
examples are LDAP on Linux, HPFS on IBM 0S2. Some of the additional reasons were the
implementation design, which captured or used data and the mode of communication used to capture
data. Further, the associated hardware used for communication and archiving data differed and there
were li‘mitations of resources such a software, hardware, time and economics. The ignorance to

changes in technology with respect to skill sets of users and tool manufacturing industries also

_ contributed in a significant manner. In other words alternative paths were available, but were never

used.

However with globalization and increasing mergers and acquisitions, the need arose to built applications
fo communicate, exchange, share data and share functionality too, based on these different
technologies. There did exist solutions in the form of several application tools, which solved the above-
mentioned disparities in architecturss, syntaxes, features and vendors. However, these application tools
were too complex to use and required reprogramming effort because they never supported seamless
migration or dafa exchange without compromising cerizin aspecie of data and server architecture.
Further, they were expensive and required iremendous resources and technical expertise. Some of the
other known solutions include middleware, which allowed data and functionality exchange between two
or more applications for more than one database and operating sysiem servers. However, once a
middleware is written for a particular application, it cannot be used for another, as it is very application
specific. In addition, middleware had a limitation because no middleware could map functionality,
features and syntax integration across functional servers such a database servers, web servers and
mail servers without reprogramming effort. Further middleware requires knowledge of the functionality

and the data format of applications required to communicate and if needed the applications need to

have an import export exchange format available.

10

15

20

25

30

WO 2004/077212 PCT/IN2004/000023
Accordingly, a need exists for a system and method by which we can make applications and their data
talk and interact on a common platform, in a common format so as to understand, translate, respond
and behave as per application requests without any changes. There also exists a need for a solution,
which functions as a data server, which is indepenqlent of operating systems and can communicate with

other relational and non-relational database management systems despite of differing syntaxes and

* data formats. There exists a further need for data server to function as a middleware, manipulate data

from different sources, and carry out data and application migration.

SUMMARY OF THE INVENTION

To meet the foregoing needs, the present invention provides a software-implemented process, system,
and method for use in a computing environment. In the history. of computing the best multi-user server
application with the capability to manipulate client data requests is the database server. Typically a
database server works on ceriain objects created to service set of functionalities expectedA for a set
pattern of data with a predefined scope of feaiures. Also any database server is architecturally best
designed io search, sort, manipulate and archive business intelligence and application objects. In the
present invention, a database server is perceived as a collective functionality of the server sub-
components delivering individual functionality in a linked or relational way. Typically any application built
on the dalabase server creates or uses these sub-objects as per the business intelligence required.
Applications built similarly on like database servers from different vendors still could not communicate
because either the sub objects supported by the server architecture had functionality / feature / syntax

differences or the object itself was non existent in the server architecture.

The present invention decomposes server functionality into component objects, maps functionalities,
features, related syntax and semantics under various architectural constraints so that this decomposed
object entity encapsulates all vendor deliverable functional features and accessing mechanism criteria’s
without compromising any performance or functional issues with respect to any resource usage where

the state entities of the objects are tracked. This methodology “OOQV” (Operation, Object, Option

10

15

20

25

30

WO 2004/077212 PCT/IN2004/000023

Value) ensures that per object we have a virtual entity derived, which we term “Object Interface”. The
interface specification designed has member “elements” which are based on the features and
functionalities expected from the object under various criteria’s of operations, which can be performed
on the object i.e. each element primarily maps to an “object option”, which serves to contain “option
values” defined by user in a query at run time. The methodology creates a functional linkage or map,
which associates a “process” or a callback modules / function to service the member element, which can
have arguments as values provided by the user in input query. The decomposition also derives
sequences of “processes” or modules to be executed with a set of options for an object, to deliver the
operations specific functionality. The invention also “maps” or quantifies server resources associated
with each “state entity” of the decomposed object under various stages right from beginning of an
operation till completion. Basically it means we perceive any object under any state of transition — right
from creation or instantiation of the object till destruction as a composition of various resources i.e. RAM
(virtual or in a static state of transition), DISK (final persistence or in a state of secondary swapped
storage), CPU (in a state of dynamic transition), Network (in a state of communication), Timer (in a state
io enforce predefined harmonics during transition). The methodology of perceiving an object as a
resource composition (RAM/DISK/CPU/Network/Timer) in various ratios helps to achieve best resource
utilization in a concurrent environment. The objects and its interface specifications can be dynamic and
defined in tha Look Up Table changezble by the user. The entire design is based on state machines and
modules comprising of various events communication via messages that is it is event driven using Finite
State Machine (FSM) concept the functionality is broken down into a series of evenis scheduled by
kernel. This design approach of execution of modules or processes in an event driven mechanism also
optimizes runtime the code execution as chaining of these state machine entities to execute callback
function or modules to service each request as per options and values specified in the input query can
be decided runtime as per user input query for delivering an option functionality the callback function
may choose more than one algorithm (“workflow”) to deliver the functionality in optimum resources.
Hence the program decided the execution flow rather than the programmer who has coded the
functional logic. The design of these callback functions strictly maintains ACID (Atomicity, Consistency,

Isolation, Durability) properties and guarantees that any dynamic sequence change does not affect

4

10

15

20

25

30

35

WO 2004/077212 PCT/IN2004/000023
functionality. These callback functions also maintain the state of the object (in RAM or Disk) and its
linkages with other objects during phases of transition. This approach of object and object interface
design gives guaranteed portability of applications written and developed for the any functional servers
independent of vendor, operating systems, syntax and semantics, server architecture, features and

functionality, without reprogramming effort and no additional resource requirement.

Object Interface = X Elemen[s / options
values

Operations on object = 2 Modules / processes
Set of functions

Set of Algorithms

BRIEF DESCRIPTION OF THE DRAWINGS

The various objects and advantages of the present invention will become apparent o those of ordinary

skill in the relevant art after reviewing the following detailed description and accompanying drawings,

whersin:

Fig 1(a) is a block diagram of the architecture of the data server.

Fig 1(b) is a screenshot depicting the Error Repository.

Fig 2 is a block diagram depicting th;sz configuration of the OS Independent Layer.
Fig 3 is a flow diagram depicting the functioning of the OS Independent Layer.

Fig 4 is a block diagram depicting the configuration of the Universal Object Parser.

5

10

15

20

25

30

WO 2004/077212 PCT/IN2004/000023

Fig 5 is a flow diagram depicting the functioning of the Universal Object Parser.
Fig 6 is a block diagram depicting the configuration of the Multifunctional Server.
Fig 7(a) and 7(b) is a flow diagram depicting the functioning of the Multifunctional Server.

Fig 8 depicts whereby the end-user can predict the pattern of resource usage in the most effective way

and can tune, customize or derive a newer server from the framework of events and state map entities.

Fig 9 illustrates the State Machine Map of an Agent-wise list to display the current settings and can be

used to configure the events corresponding to the states.

Figure 10 depicis a screenshot to accomplish a complete mulii-functional server as a set of agents

doing / executing specific tasks, Resource wise.

Figure 11 depicts a screenshot to accomplish a Database server as a set of agents doing / executing

specific tasks, Resource wise.

Figure 12 depicts a screenshot to accomplish a Web server as a set of agents doing / executing specific

tasks, Resource wise.

Figure 13 depicts a screenshot to accomplish a Mail server as a set of agents doing / executing specific

tasks, Resource wise.

DETAILED DESCRIPTION OF THE INVENTION

10

15

20

25

30

WO 2004/077212 PCT/IN2004/000023

While the present invention is susceptible to embodiment in various forms, there is shown in the
drawings and will hereinafter be described a presently preferred embodiment with the understanding
that the present disclosure is to be considered an exemplification of the invention and is not intended to

limit the invention to the specific embodiment illustrated.

In the present disclosure, the words “a” or “an” are to be taken to include both the singular and the

plural. Conversely, any reference to plural items shall, where appropriate, include the singular.

Referring now to the drawings, more partidularly Fig. 1, there is shown a System of data archival and
retrieving mechanism, servicing clients irrespective of functionality, features, communication protocols,
operating systems, formats, semantics and syntaxes. The System is a three layered structured
comprising of a Multifunctional Server 100, a Universal Object Parser 105, an Operating System (OS)

independent layer 110, Repository 115 and Config module 160 to configure Database, Web and Mail

etc.

The Multifunctional Server 100 is configured fo support the features and funclionalities for every
smallest sub object entity in the data server architecture. The Multifunctional Server 100 analyses the
operations for the object with options and parameters specified in the request command, executes them
taking care of multi-user consirainis and generates the resuliant response buffer. The Universal Object
Parser 105 is configured to validate and parse syntaxes and semantics, which are vendor specific or OS
specific to create an Interface Object for the Multifunctional Server 100. The Universal Object Parser
105 is also responsible for the sub objects, which are specific for vendor server architectures. For
example Synonyms and Tablespace are database objects supported in ORACLE but similar sub objects
are missing in SQL server. The Universal Object Parser 105 architecture consists of a server object
dictionary, which encapsulates all sub objects independent of vendors and their related reserved SQL
words. The OS independent layer 110 is configured to isolate any operating system dependencies,
which are used by applications specific for the OS, including network protocols, file formats or any

kernel objects, which form a part of the OS architecture.

7

10

15

20

25

30

WO 2004/077212 PCT/IN2004/000023

The Repository 115 is a collection of compressed or hashed persistent index data, so as to achieve
fastest way of accessing whenever needed. This repository is used for mapping search algorithms
according to the resources, encryption algorithm, includes meta-data for the database, Error ID of an
errors, Heuristics tables etc. The logical segregation of data as per persistence is depicted in the figure
1 that handles the sequencing and isolation of varying or dynamic 'data to the end so as not to disturb

the existing static data structure.

Static Metadata 120 is the basic fixed pattern of persistence, which is the design assumption when
creating a database with bare minimum necessities of compulsory objects. The location of these

assumed objects in terms of blocks and extents are hard coded with respect to start of the database file.

Dynamic Metadata 125 is a delimited SQL file, which is parsed and executed at run time to create other
metadata objects based on the assumption of the fixed siatic base objecis. The reason of this design
consideration was that the basic architeciure supporied dynamic agent creation and binding as per
various functional servers may require newer SQL scripis to persist data as per each functional server

added or plugged later.

Error Messages 130 is basically a lookup table of error strings and iis preseniation logic, which is partly
static and has some dynamic contents derived later as per Object, Operation, Option and Value
(QOQYV) principle. Consider an option(s) specified in the user query failed and triggered an error. This
error Eould either be a logical, Environmental or User Error. Figure 1 (b) is an Error Repository
screenshot. As explained in this architecture methodology wherein each option is associated with a
callback module, such a callback module gets executed as specified in the query. For example, If the
user fired a query such as “Create Database XYZ size 10G; “ then as per the OOOQV principle where the
Operation is Create, the Object is Database, the Options are “Database Name” with Value XYZ and
“Size” with Value 10M. As per the state machine design an associated module is executed relevant to

each option hence in case function named F1() delivers size option and fails due to “insufficient disk

10

15

20

25

30

WO 2004/077212 PCT/IN2004/000023

space” or “security rights” the error code 174 generated by the code serves to highlight the exact
operation on an object with a specific option which failed and what paraméters (10G) in the command
was the cause of error. Hence the end user gets a very precise description of the cause of error and the
developer gets the precise location in the source code that clearly isolates the module, which serviced
the operation and object 170 for related value. The error code 174 generation and sequencing has been
designed considering various operations (such as CREATE / ALTER / bROP / SELECT efc), Objects
170 (such as Database / TableSpace / Table / Index etc), the type of notification 186 required (such as a
Message Box, Error Log, Beep etc) when the error is triggered with various levels of warning intensity
right from a basic popup to halting of the server. These values of operands are defined using various
enumerations and bit-wise error codes are generated which can be decomposed into type of notification
186, operation 190, object 194, module 198 in which the error occurred and corresponding value of

string used for formatting user parameters.

Data Dictionary 135 and Rule Engine 140 are typically collection of reserved words and any other

syntax and semantic script repository, which is user definable and can be used fo parse, SQL, XML, or

any web scripts.

Static Heuristics 145 is 2 Look-Up Table (multi-dimensional mairix) of resource utilization of a specific
data structure zlgorithm versus performance or versus degradation of perfoimance under exiremities of
resource and loads of data and specific data types. These may include searching, sorting, hashing,

compression and encryption of data streams.

Dynamic Heuristics 150 is the statistics that are gathered related to real-time operation on specific
server objects and are generally persisted virtual tables which maybe required for historical analysis.
There are many database rule engines which optimize or re-write queries to enhance performance. The

statistical conditions and rules to optimize the query rewrites are defined here are based on which

database query operations are to be performed.

10

15

20

25

30

WO 2004/077212 PCT/IN2004/000023

The Config file 160 is used to configure the servers or server instances. As per the settings defined in
the config file 160, the various servers use this defined information on booting up. In the event no value
is defined for a particular parameter in the config file 160, then the system takes the default value. ‘As

depicted in the figure, the config file 160 further includes configuration details as per various functional

" servers. For example this file includes details of Database, Web and Mail server.

As illustrated in Fig 2, the OS Independent Layer 110 comprises of a Data Structure Algorithm and
manipulation engine 200, Resource Manager such as a Memory Manager 205, a Network Manager 210, .
a Djsk Manager 215 and Kernel Objects 220. The OS Independent Layer 110 encapsulates all the
hardware resources required by any application such as Random Access Memory (RAM), Hard Disk
Drive (HDD), network, Central Processing Unit and any kernel objects used for implementing multi-user

functionality. The OS independent layer helps to achieve OS independence.

The Memory Manager 205 is configured to support basic memory allocation and de-allocation functions
with exiended support for viriual secondary storage. Hence allocations larger than the memory available
are easily supported. The Memory Manager 205 has a built-in debugger which tracks any loose
unreleased allocations and even defragments the non-contiguous memory blocks. The Network
Manager 210 is configured to support all neiwork protocols used for client-‘server network
communications independent of the nature of client. For example, database clients use Named Pipes,
TCPIP, IPX etc, web clients use HTTP / FTP etc and the mail clients use SMTP, POP. The Disk
Manager 215 is configured to allow all extended file seeks, reads, writes for large files (64 bit). It helps

optimize disk access and manages disk caching for most frequently used data locks.

The OS Independent layer 110 also supports OS portable Kemel objects (KO) 220 like processes,
threads, events, queues, mutexes, semaphores, timers etc. These KO are independent of OS
architecture and endian dependencies. The entire architecture implements FSM based kernel objects,
which work on the principle of co-operative multithreading. Wherever the server sub object functionality /

feature demands synchronous and asynchronous behavior the implementation design uses these KO

10

10

15

20

25

30

WO 2004/077212 PCT/IN2004/000023

220 in a unique or hybrid model of asynchronous or synchronous architecture. For managing data
manipulations across various concurrent request sessions the OS Independent Layer 110 supports
every possible data structure algorithm in a unique wrapped way which isolates algorithm specific
functionality from the pattern of arguments and data expected. Hence in case a be_tter algorithm is
devised for searching, sorting, hashing eté there is no change in the layers tiered over the OS layer. So
without disturbing existing functionality any future enhancements in algorithms need not require a

recompilation of tiers written over the OS Independent layer 110.

The OS Independent Layer 110 accepts any request packet irrespective of the source of generation. It
is responsible for the compatibility of the major and popularly used network protocols widely supported
by most OS. Once the protocol compatibility is achieved any request reaches the multifunctional server.
The Network Manager 210 in the present invention is designed to support almost all protocols
irrespective of server functionality. For example Database servers usually use Named Pipes for small
number of clients. Generally the default protocol is dictated by the OS on which the server functionality
is supported like TCP/IP for Linux, IPX / SPX for Netware, NETBEUI for Windows XX, AppleTalk for

Macs. Web servers have HTTP and FTP based communication support, Mail servers uses the SMTP /

POP protocol.

As illustraied in Fig 3, as soon as the Mulifunctional Server 100 is initialized 300, the Network Manager
210 checks the hardware and associated protocols bound with the hardware 305. When a Client sends
a request 310 to the Server 100, the OS Independent Layer 110 analyzes the request as per the source
of request 315, to identify the nature of the Client to ascertain whether the request has been sourced
from a database client, an ODBC client, web clients or a browser. Once the source of the request is
analyzed, the OS Independent Layer 110 isolates the Protocols and Standards of the request and
identifies the limitations of the Client from which the request is sourced 320. When the OS Independent
Layer 110 successfully receives the request, it is verified for data integrity 330 by the Cyclic
Redundancy Check method as per the source of request. On verification, if the request cannot be

sufficiently verified, an error code is generated 325 as per the operation and the object. The OS

11

10

15

20

25

30

WO 2004/077212 PCT/IN2004/000023

Independent Layer 110 then proceeds to isolate the source Client and verify whether the request from
the Client is an existing Client 340 with which the Server 100 already has an established interactive
session or whether the Client is a first-time Client. In case the request is not from an existing Client, the
OS Independent Layer 110 proceeds to all;)cate Server 100 resources 345 such as memory block
(Random Access Memory) or persistent data (Hard Disk Data) to the request fill the session instance is
active. The OS Independent Layer 110 then proceeds to create Kernel Objects 350, which are
associated with the Client session instance to manage any data transactions between the Client and the
Server ill the session dies. The OS Independent Layer 110 then proceeds to pass the request to the
Parser for further processing 360. However, on isolation of the source Client and verification, if the
Client is found to be an existing Client, with which the Server already has an established interactive
session, then the OS Independent Layer 110 associates the machine identification, session
identification, transaction identification and the query identification of the Client, with its existing session

365. The Server then proceeds to pass the request io the Universal Object Parser 105 for further

processing 360.

As illustrated in Fig 4, the second step is to analyze and respond fo the query in the format expected so
that the client applications written for a specific server do not feel any change and continues to work on
the server as if was using the original features and syntaxes of the vendor server. where the Universal
Object Parser 105 comes into picture. Major issues of portability aiise as apart from syntax / semantic

differences the objects and features supported by the server cause porting discrepancies.

The Universal Object Parser 105 comprises of an Object Handler 400, a Command Analyzer 405 and a
Lexical Syntax and Semantics Validator (LSS Validator) 410. As soon as request packets are
successfully received, the Universal Object Parser 105 comes into play to process the request. The
Object Handler 400 is configured for each sub object supported by the server functionality. The Object
Handler isolates the vendor dependent syntaxes, semantics, object features. Further, any future
enhancements in these sub object(s) supported can be incorporated in the Object Handler 400 without

disturbing the Server architecture. The Command Analyzer 405 is configured to isolate the nature of

12

10

15

20

25

30

WO 2004/077212 PCT/IN2004/000023

request and is also responsible for associating it with any previous session data if needed. The Lexical

Syntax and Semantics (LSS) Validator 410 is configured to validate the request for syntax and

semantics specified irrespective of vendor syntax.

As illustrated in Fig 5, the requests can be sent from the Server or the operating system independent
layer to the Universal Object Parser 500. The options specified in the request are counted 501, if there
is more than one option 502 then proceed to analyze option in the query with respect to objects and
operation 503. Further after analyzing the option 503, analyze the option values if any as specified 504.
Further mapping the options to object interface’s elements as per syntax map defined in the LUT 505.
After this mapping is complete, then decrease the count 506. After decreasing the count 506, then
check whether the count is greater than zero 502. In the event the count is zero 502, then assume the
defaults for the remaining values 507. Further after assuming the remaining options 507, then the
Lexical Syntax and Semantié (LSS) Validator proceeds to validate the request to check whether it is
lexically compliant 508. If the request is found to be lexically non-compliant, the LSS Validator 410
proceeds to generate an error code 510 based on the operations and objecis. However, if the request if
found to be lexically compliant, the LSS Validator 410 proceeds to check the syntax, which have been
specified, irrespective of vendor synta* 515. If the request is syntactically non compliant, the LSS
Validator 410 proceeds to report an error by generating an error code 510. However, if the request is
found fo be syniactically compliant, the LSS Validator 410 proceeds to check for the semantics of the
request 520. If the packet data is found to be semantically non-compliant, then the LSS Validator 410
proceeds to generate an error code 510. However, if the request is found to be semantically compliant,
the LSS Validator passes the request 525 to the Command Analyzer 405. The Command Analyzer 405
isolates the nature of the request 530 and then checks if the request is associated with any previous
session data 540. If the request is not Aassociated with any previous session data, the Object Handler
400 proceeds to create 545 an Object Interface for each sub object supported by the Server
functionality. However, on checking if the request is associated with any previous session data, if the
Command Analyzer 405 finds that the request is associated with any previous session data, the

Command Analyzer proceeds to associate the options and values as per the object and operation

13

10

15

20

25

30

WO 2004/077212 PCT/IN2004/000023

specified 550. The Object Handler 400 then proceeds to create an Object Interface for each sub object

supported by the Server functionality 545.

As illustrated in Fig 6, the Server 100 supports sub-object features and consists of different agents,
which support generating responses. The Dispatcher Agent 600 is configured to wrap protocol layer and
creates the response buffer in the format expected as per the nature of cli‘ent (for example either in
ODBC / http / ftp formats) and is also responsible for cursor management caching requests and

coordinating bandwidth distribution based on nature of query, protocol limitations and response priority,

size of data etc.

The Scheduler Agent 605 is configured to schedule the various functions carried out by the Server 100.
The Scheduler Agent 605 forms the kernel of the Server 100. The Scheduler Agent 605 performs the
tasks of getling the er;vironment status, checking for hardware and OS restrictions, starting the Server
100 boot process and communicating with all the other agents in the network. The scheduler agent
combined with the OS Independent Layer 110 schedules and creates KOs 220 across OS architeciures,
which helps the Server and daia generated migrate across OS. The Server 100 is purely based on
FINITE STATE MACHINE approach hence any agent or thread communication is via messaging
scheduled by the Scheduler Agent 605, which raises events and these evenis are implemenied as per
object features and functioning required. The implementation takes care of deadlocking and resource
conflicts using object specific semaphores and event chaining mechanism hence one gels a very
effective CPU utilization through co-operative multithreading. It is also responsible to dynamically

activate any functional agent based on need and configuration.

The Network Agent 610 is configured to receive and transmit concurrent requests and responses,
irrespective of their protocol, with optimal utilization of available resources. The Network Agent 610 is
responsible for reading incoming data from one or a plurality of Clients, reading and writing data and
establishing a connection with a Server 100 irrespective of its functionality. These could be any clients

irrespective of type of clients, their protocol and protocol functionality.

14

10

15

20

25

30

WO 2004/077212 PCT/IN2004/000023

The Disk Agent 615 is configured to map patterns of data irrespective of the server protocols and data
formats in which requests are received, in a relational database management system. The Disk Agent
615 is responsible for reading and writing different patterns of data from a database, initializing log files,
writing logs into log files and to persist committed daté blocks. The Disk Agent 615 is primarily
responsible to read or persist any logical request / response data taking care of data integrity using
journaling mechanism to guarantee fault tolerance and disaster recovery. It is also responsible to
optimize disk access and manage secondary storage memory in case any query requires more storage

space than available RAM for processing.

The Timer Agent 620 manages any periodic event or resource monitoring across process running
concurrently on the OS that is System Monitor (SMON) and across kernel objects within the server
instance that is Process Monitor (PMON). The present invention uses co-operative multithreading the
entire kernel scheduling is asynchronous but a lot of tasks are fime bound. Hence timer agent triggers
the events and the sub objects that required time spegcific functionalities. This makes our architecture a
hybrid model or asynchionous and synchronous event driven architecture. It also manages periodic

data and cache flushing and hence delivers checkpointing functionality.

Ag illustrated in Fig 7, when a requast is seni 700 from the Universal Object Parser 105 to the Server
100, the Server 100 checks if the request from the Client is an existing Client 701 with which the Server
100 already has an established interactive session or whether the Client is a first-time Client. In case the
request is not from an existing Client, the Server 100 proceeds to allocate Server 100 resources 702
such as memory block (Random Access Memory) or persistent data (Hard Disk Data) to the request till
the session instance is active. However, on isolation of the source Client and verification, if the Client is
found to be an existing Client, with which the Server already has an established interactive session,
then the Server associates the machine identification, session identification, transaction identification
and the query identification of the Client 703, with its existing session The Server 100 then proceeds to

isolate the operations from the request 704 and checks if there exist objects in the request 705. If there

15

10

15

20

25

30

WO 2004/077212 PCT/IN2004/000023

do not exist objects in the request, it generates an error code 706. If there exist objects it connects using
the objects 707. However, if there do not exist objects in the request, it connects using an object
environment 708. Any command or operation to be executed on any server object requires an
environment prerequisite ~ which maybe related to authentication, operation rights etc For example, in a
query void of server objects. For example “CONNECT INTERNAL/XYZ'. When parsed the string

passes syntax validation but is void of any object specified on which operation “CONNECT"” has to be

performed.

The Operation Validator classifies it as a valid operation “CONNECT” with option “INTERNAL/XYZ".
Therefore, if the objects are missing, the missing entity OBJECT for the operétion “CONNECT" is
assumed to be the Server itself as CONNECT operation can be executed only on objects — SERVEB
(the machine configured to work as server) and Database (only if the server architecture supports
multiple database options per server instances). This is also a valid proposition only when there is a
concept of a single server environment. In case the network environment has more than one server
supporting the same functionality, the connect command has to be very explicit like “CONNECT/
APPDATA@INTERNAL/XYZ". The Server 100 then procseds to translate the Options or attributes 702
and classifies the names of the database, users and passwords for a specific server in a multi-server
environment. The oplion value validaior 710 verifies permissible characters and lengths of username or
password permitied 711. If it finds that the same are not permitted, it proceeds 1o generate an error
code 706. The value translator 712 converis the strings to a case (upper / lower) as required and
verifies if the value is valid 713 with requisite parameters is executed the Scheduler Agent 605. The
translated value 712 is then verifies if the value is valid then using the License Manager 714 check the
purchasing restrictions of the server product for the operation, count of operations, options and values of
options specified for the object (ex: concurrent users license, database siZe permitied etc) and next the
operation is executed 715. The request / privilege validation 716 verifies whether the user name
specified in the operation is valid and has a permissible scope to execute the operation. If it finds that
the user name specified in the operation is not valid or does not have the permissible scope to execute

the operation, it generates an error code 706. However, if the username specified in the operation is

16

10

15

20

25

30

WO 2004/077212 PCT/IN2004/000023

found to be valid and has a permissible scope to execute the operation, it carries out metadata/Object
schema validation 717 as per the scope of the identifier resolved by the object atiribute translator or it
generates an error code 7086. In the event the operation is analyzed 718, then proceed to check for

available resources 719. In the event the operation analyzed is not valid then the error handler 706 is

gives an error message.

The Multifunctional Server 100 then proceeds to analyze if there are any resources available 719 and
verifies 719 if is not available then an error code 706 is generated and checks if the constraints permit
resource acquisition 720. If not it then proceeds to check if there are any available resources or
resources can_be acquired 721. If it finds that there are no available resources, it generates an error
code 706. The Multifunctional Server 100 then proceeds to check for availability of resources and
checks for the allocation or acquisition of resources 721. It then proceeds to verify if there are no
resources available and if resources cannot be acquires, it proceeds to generate an error code 706. The
Multifunctional Server 100 then proceeds to check for shared resources 722. If there exisis shared
resources, it checks if there is a lock available 723. In case a lock does not exist, it waits for & command
timeout 724 and then sends a timeout error 725. If there is a lock available, it locks the partial or full
object as per query option 726. However, if the resources are not shared, it acquires the required
resources and proceeds to execute the requests 727. Further the checking is carried out for
ascertaining the dependencies that are to be executed prior to the command execution 722. In the event
there are no pre-dependencies, check whether dependencies has to be derived, evaluated or persisted
730. In the event when no prior dependencies have to be derived, evaluated or persisted then proceed
to execute pre-dependencies 731. In the event of pre-dependencies existing 729 then execute them
731. After the successful execution of pre-dependencies 731, the command is executed and the results
are calculated 732. Further the post dependencies are executed 733 and after the successful execution
734. The result is checked whether it requires persistence 735. If persistence is not required then
prepare the notification buffer 736. Also after the dependencies are derived, evaluated or persisted 735
then the notification buffer is prepared 736. This notification buffer then proceeds to notify results or

status 740. If the event the result requires persistence 735 then prepare the result buffer 737. Then the

17

10

15

20

25

30

WO 2004/077212 PCT/IN2004/000023

result is persisted as per the transactional needs 738. On successful persistence 739, the notification of

the result or the status is carried out 740. After the result or status nofification request processed and

responded 741.

‘ Figure 8 illustrates the server configuration map. The configuration file comprises of server tuning and

customization parameters. The figure depicts a resource such as a disk being consumed by a server
instance across multiple databases. The figure depicts the graphical interpretation of the server
resources allocation irrespective of concurrent server functionality instances. The left-hand side of the
figure 8 lists the configurations details such as the running instances including the Mumbai HO 800 and
Bangalore Branch 805. Each of these Instances further shows settings. Under the Mumbai HO 800
instance, the settings is possible for resources 810 or for functionality 815, various resources such as
Disk 820, Memory 830, CPU 840, Network 850Y and Timer 852 etc as depicted in the figure. Similarly
other parameters like Amemory in various functional needs like cache or static allocation or rollback
segment can be tuned. The best part of configuration is tuning of each agent specific resource usage
and its variance in performance with a specific server load. The figure depicts that the Database server
instance named FactoryDB 855 that is configured as depicted in the figure. The FactoryDB 855 has the
following database files 860 i.e. the Production table, QualityControl table and Warehouse table. The
filenames, filepath, filesize, InitialSize, Next Size and AutoExtend are explicitly defined. The Log files
865, RollBack Segment files 870 and swap filss 875 are shown. Further the right bottom image of the

figure depicts the percentage of Database disk utilization 880 by the various database files.

As depicted in the figures 8, this design approach whereby the end-user can predict the pattern of
resource usage in the most effective way. This prediction of the resource usage can tune, customize or

derive a newer server from the framework of events and state map entities provided by the architecture

design. '

Based on licensing policy or the query functional need the agents can be invoked and activated

dynamically or can be swapped and made defunct. This optimizes resources and saves a lot of CPU

18

10

15

20

25

30

WO 2004/077212 PCT/IN2004/000023

activity from doing or executing functionality, which currently is undesired. The event chain, which is

sequenced as per the agent design can be changed dynamically as per the query operation, object or

options specified.

Figure 9 illustrates the State Machine Map of an Agent-wise list 900 to display the cm]rrent settings and
can be used to configure the events 905 corresponding to the states 910. As shown in the figure 9 the
breakdown of various functional server or agents and associated sub objects (i.e; for database the sub-
objects are tablespace, Table, Index etc) and subsequent associations of these objects into features
and functionalities (as per OOOV) are mapped as a set of modules executed as events 905 as per
options specified by the user during the query execution. These functional patterns across vendor
syntaxes and server features are finally using only four resources - Disk, Network, RAM and CPU.
Hence using the OOQV principle of Operation, Object, Options and Values, finally they were mapped fo
these resource utilizations and patterns derived. These functional patterns were mapped in a state
diagram and their sequencing was saved in a repository oulside the server in a Repository 115. There
are resource specific agents to handle set of resources such as Disk, Network, RAM, CPU and other
agents that as per operational functionality demanded by the various servers needs having events 905
and modules 915 to consume CPU and deliver the desired output. These agents are actual functional
derivatives and each agent modules, if sequence and functionally wired (event chain) for handling

specific operations and objects. The figure illustrates the Scheduler Agent 920 having the evenis 205

and states 910 as depicted in the diagram.

Figure 10 depicts a screenshot to accomplish a complete multi-functional server as a set of agents
doing / executing specific tasks, Resource wise 1005, resources 1010 like DISK, NW, MEMORY,
TIMER are common agents which handle operations like disk management, concurrency and
connection pooling, memory and transaction management and synchronous tasks like éheckpoint,

scheduled jobs etc respectively irrespective of any functional server.

19

10

15

20

25

30

WO 2004/077212 PCT/IN2004/000023

The CPU operations which deliver specific functionalities as demanded by the relevant server such as
Database 1015, Web 1020, Mail 1025 eic are further sub divided into agents delivering / rendering
specific tasks such as DML agent, Index agent etc. Further three figure 11, 12 and 13 depict these
functionalities as a set of three diagrams which have nodes of different functional servers expanded to

display associated set of agents programmed to deliver server specific functionalities.

There are various common agents 1030 which have functional competence irrespective of server

functionalities such as scheduler, dispaicher etc.

The right side of the figure 10 shows the relationship between various states / events and modules

associated to deliver agent specific functionalities. These have been designed and implemented as per

OO0V methodology.

The Figure 11 depicts the same state machine map of diagram 10 where the Database 1015 node has
been expanded. This expanded node now displays associated set of agents programmed to deliver the
specific server functionality. The Database comprises of various agent such as the Client Agent 1105,
Distributor Agent 1110, DML Agent 1115, Index Agent 1120, Job Agent 1125, Server Agent 1130 etc.
The right side of the figure 11 shows the relationship between various states 1135, events 1140 and
modules 1145 associated fo deliver agent specific functionalities. There are various common agents
1030 which have functional competence irrespective of server functionalities such as scheduler,

dispatcher etc.

The Figure 12 depicts the same state machine map of diagram 10 where the Web Server 1020 node
has been expanded. This expanded node now displays associated set of agents programmed to deliver
the specific server functionality. The Web Server 1020 comprises of various agent such as the DNS
Agent, HTTP Agent, Parse Agent, Script Agent, ssl Agent etc. The right side of the figure 12 shows the

relationship between various states 1230, events 1235 and modules 1240 associated to deliver agent

20

10

15

20

25

30

35

WO 2004/077212 PCT/IN2004/000023

specific functionalities. There are various common agents 1030 which have functional competence

irrespective of server functionalities such as scheduler, dispatcher etc.

The Figure 13 depicts the same state machine map of diagram 10 where the Mail Server 1025 node has
been expanded. This expanded node now displays associated set of agents programméd to deliver the
specific server functionality. The Mail Server 1025 comprises of various agents such as the POP Agent
1300, SMTP Agent 1310 etc. The right side of the figure 13 shows the relationship between various
states 1330, events 1335 and modules 1340 associated to deliver agent specific functionalities. There
are various common agents 1030 which have functional competence irrespective of server

functionalities such as scheduler, dispatcher etc.

21

5

10

15

20

25

30

WO 2004/077212 PCT/IN2004/000023

What is claimed is:

1. A method of processing data independent of server functionality, communication protocols, data

formats, features and syntaxes, comprising:

creating an object interface for each object required to execute a plurality of pre-determined

operations wherein said object interface has all elements to provide functionally for each

operation;

isolating a plurality of operation, objects, options and option values from each instruction and

data received from said input memory until all instructions and data are isolated;

mapping said object to said object interface until said operation are mapped;

mapping said option and option value to the elements of said object interface till said objects and

operations are mapped; and
processing said operation as per said option and value in the said object interface;

whereby said data processor will be compatible with any functional server such as & database,

web, mail etc with any server architecture, independent of the vendor or its version and works;

whereby said data processor can achieve homogeneity of persistent data formats amongst

disparate functional servers; and

whereby said data processor can achieve cross-server functionality by extending the rules of

one server applicable for other.

2. The method according to claim 1, where said operations are from disparate functional servers.

22

10

15

20

25

30

WO 2004/077212 PCT/IN2004/000023

10.

The method according to claim 1, where said operations are from functional servers provided by

multiple vendors including different versions, syntaxes and features.

The method according to claim 1, where said data can be processed on any operating system

and any CPU based hardware.

The method according to claim 1, where the data processing can be made compatible with any

new versions, vendors, operating systems, just by upgrading the definition of the object interface

and elements are in said repository.

The method according to claim 1, where said elements can be defined dynamically.

The method according to claim 1, where said object interface and elements are stored in said

repository.

The method according to claim 1, where said repository can be used to define object interface

and element dynamically.

The method according to claim 1, where defaults are assumed from said repository, if options

and values are not defined.

The method according to claim 1, where further said repository can dynamically be upgraded
whereby making said data processor capable of being compatible with additional vendors,

versions of functional servers thereby making new additions and update possible.

23

10

15

20

25

30

WO 2004/077212 PCT/IN2004/000023

11.

12.

i3.

The method according to claim 1, where said invention receives and replies to request from the
any other functional server thus provides dynamic access to the data in real-time irrespective of

all or any combination of server vendor, operating system, versions, protocols, hardware, etc.
A method of optimizing operations execution time and resources, comprising:

storing a plurality of pre-determined algorithms in said repository for each pre-determined

processes along with required resources;

selecting a plurality of optional processes from the pre-determined set of said processing

required for execution of said operation for each object based on option values and available

resources,

tracking the state of said object with respect fo resource as required by sach of said process;

and

determiriing an optimal algorithm to execute said process based on the state of said object.

A system for providing a daia processor independent of communication protocols, operating

systems, formats, features and syntaxes, comprising:

a input means to accept instructions and data from the user

a parsing means to validate and parse syntaxes and semantics independent of vendor specific

syntax and features, independent of operating system whereby creating said object interface;

a repository means to store collections of data definitions, metadata, rules, objects and

heuristics; and

24

10

15

20

25

30

WO 2004/077212 PCT/IN2004/000023

14,

15.

i6.

a processing means to analyze said operations for the said object with said options and
parameters specified in the request command, executes them taking care of multi-user

constraints and generates the resultant response buffer;
A system according to claim 13, where said input means could be the operating system
independent library capable of accepting any request packet irrespective of source of generation

including any protocol, establishing or associating a connection, analyzing the integrity, verifying

the request and proceed to allocate the server resource.

The system according to claim 13, where said multifunctional server can have an established

connection and then proceeds to pass the request to the Universal Object Parser.
The system according fo claim 13, where said repository comprises:
a first memory means o fixed pattern with bare minimum necessities of compulsory objects;

a second memory means to supported dynamic agent creation and binding as per various
functional servers may require newer SQL scripts to persist data as per each functional server

added or plugged later;

a third memory means handling error strings and its presentation logic;
a fourth memory means to act as a collection of reserved words;

a fifth memory means to act as a syntax and semantic script repository;

a sixth memory means to capture resource utilization and other performance parameters;

25

10

15

20

25

30

WO 2004/077212 PCT/IN2004/000023

17.

18.

19.

20.

21.

22,

a seventh memory means to gathered statistical information related to real-time operation on

specific server objects.

The system according to claim 16, where said repository’s error message module acts to
generate unique error ID which helps to identify the precise location of the error and

supplements reporting the appropriate error from the entire string.

\

The system according to claim 13, where said multifunctional server comprises of various

different agents such as dispatcher, Scheduler, Network agent, Disk, Timer and Job agents.

The system according to claim 13, where said parsing means aids to respond to the query in the

format expected by various disparate client.
The system according to claim 13, where said parsing means comprises:
Object handler to isolates the vendor dependent syntaxes, semantics, object features;

Command Analyzer fo isolate the nature of request and for associating it with any previous

session data if needed; and

Lexical, syntax and Semantics Validator to validate the request for syntax and semantics

specified irrespective of vendor syntax.
The system according to claim 13, whe;e said repository is outside the main bin.

The system according to claim 13, where said invention can provide for seamless data

exchange without any reprogramming effort.

26

10

15

20

25

30

WO 2004/077212

23. The system according to claim 13, where said invention can provide a configuration file to be

used along with the said system.

27

PCT/IN2004/000023

WO 2004/077212

Fig. 1a
115
e _ﬂ[______ 100
| { v
| i ! -
! Repository | Multifunctional Server
120 !
i - P
; 2\5Sr Static MetaData ¢ Database Web Mail <
I
~SN Dynamic MetaData | ! 105
130 | ;
135\T{\ Error Messages | | A M
|
. 40\?}\ Data Dictionary i Universal Object Parser
' : Lexical Syntax
14?3\ Rules Engine i | Object Handler C:;g{;;:f & Semantics
~ST Statio Heuristics } Validators
150 | — AON N 110
er\ Dynamic Heuristics | | 400 405 P 410
| i
| .
i || Operating System Independent layer
!) | Data structure Resource Kernel »
{ 1 engine Manager
b | \\ \ \
200 205, 220
210 &
215.

1/16

PCT/IN2004/000023

CONFIG

Database

Web

Mail

Defaults

Restrictions

|
|
|
|
|
|
|
|
1
i
i
|
]
|
|
} Preferences
]
]
]
|
|
|
|
|
|
|
|
|
|
|
|

WO 2004/077212 , PCT/IN2004/000023

Fig. 1b
170 174 , 178
- OBJECTS “ErrorCode . ‘ , . Error Description:
-G PROFILES VRN, 10234707 . Invalid Gonstraint name. %s
------ €7 ROLES TVMN_ 10234700 |Invalid Scope Name '%s’
...... €2 USERS VMN_10234712 |Invalid Option specified '%s’
.. @) TABLESPACES VMN_10234778 |Nested table orvarray type columns are
..e=3 CLUSTERS not allowed for Temparary table
33 DBLINK VMN_1023482A |Duplicate Constraint Found
------ &t FUNCTIONS “|vMN_1023482E |Duplicate Primary ot Unigue Key
8] INDEXES 7 JVMN_10223321 |Missing DEFERRABLE keyword
------ (3 PACKAGES age 1 S A0)
...... PROCEDURES
..... R . SEQUENCES
...... &
; - invalid Constraint name '%s’
..... Ao VIEWS
...£§3 DBA COMMANDS
...... SERVER COMMANDS i} |
...... 28 ENVIRONMENT i

2/16

WO 2004/077212 PCT/IN2004/000023

Fig. 2

|

| |
' 220 '
205 210 215 ,

{ /V al A al /IV/ :
| A A e T |
| | | |
t Data structure { Memory Network . : Kernel }
} algorithm & I'| manager manager Disk Manager | | objects !
! | manipulation ! ! !
: engine : : :
|

} i Resource Manager i {
| e |
I i
| i

3/16

WO 2004/077212 PCT/IN2004/000023

Fig. 3

300

Server initialized

305
Network manager checks hardware /V

& associated protocols

l 310

Request received from clients /V
: A 315
0S library analyses the request /’/
as per source of request
l 320
Isolates protocols & standards /V
325
Generate error Verify for
code data integrity
N Allocate resource & | 345
Verify if it is an create session
existing client N instances
365
\,\ k-2 350
Tag with existing session Cre:;ep';f':;'"‘(’ge"t /V
request
360
\'\ Send to parser for L
processing request data

4/16

WO 2004/077212

Fig. 4

PCT/IN2004/000023
400
Object Handler /V
405
Command Analyzer /'/

Lexical Syntax and Semantics Validator

410

5/16

WO 2004/077212 PCT/IN2004/000023

Fig. 5a

500
Request sent from server / W/
OSLIB to parser

l 501
Count options specified on Query W

Check if count
greater than zero

Y 503

Analyze options in query with respect /I/
to objects and operations

l 504 507
Analyze option values if any /V Assume defaults for ﬂ/
specified remaining options

l 505

Map options to object interface /]/
elements as per syntax map defined
in lookup table

Il 506 _
Decrease count ﬂ/ @

6/16

WO 2004/077212 PCT/IN2004/000023

Fig. 5b
509

LSS validator validates
request for lexical compliance

Error code

515

LSS validator
validates request for syntax
compliance

520

LSS validator validates
request for semantics
compliance

525

Request passed to /\/

command analyzer
- 530
Command analyzer isolates the nature|/1/
of request
Checl 540
if request associated with
545 previous session data
Object handler creaies
interface object
550

Associate options & values as
per objects & operations ﬂ/
specified

|

7/16

WO 2004/077212 PCT/IN2004/000023
Fig. 6

(_)
600 605
V4 V4
Dispatcher Scheduler
Network agent Disk agent Timer agent Job agent
N\ N\ N\ N\

610 615 620 630

- _

8/16

WO 2004/077212

Fig. 7a

PCT/IN2004/000023
700

|T?equest sent from parser to server }//

702

N\ ¢ 4
IObject enl\nronment] I Objlect J
v 709
Option/Attribute | >~
translate
v 710
| Option(s) 4}4/

711

N Check is
option valid
712
Value translateﬂ

713

714

Check
with License

706

Manager,

| ‘i Error handler

Request
for privilege
yalidatio

£

117

Validate the
Metadata/Object

schema

9/16

_ WO 2004/077212 PCT/IN2004/000023

Fig. 7b

706

©

Analyze the Operation

ecK
are Resources
available

718

Error handler

720

permit resource acquisition
as per config
ile

Availability / Check for
resource

Y
v 722

Is lock
available

Resources [Tock partial /full object |/)/ Timeout error

successfully acquired as per query options
’ 728

heck object(s
dependencies and

Check whether
dependencies has to be

~yecuted prior to the actus derived evaluated or
Nman persisted

el

Y[
i 731
Execute pre gependenmew
Execute cormmand and 732
calculate results
o7 733
[Execule post dependencies |—2—
734

736

N

{ Successfuliy executed }2—

735

does result require

Prepare Notification Buﬁeu|
nersistence

737
LY W
[Prepare Result Buffer 738

¥
Persist result as per //
transaction needed
‘ 739

uccessful
40 persisted
7
Y d
\N v
Notify result /status | 741

L2
Hequeést processsed and /4
responded

WO 2004/077212 PCT/IN2004/000023

=49, CONFIGURATIONS L
| &% INSTANCES 800 DATABASE FILES ‘
2 Mumbai HO Praduction.dbf diwvamanidatabasel 1200MB]
&- 8 SETTINGS 810 || QualilyControldbf 865 ___ciwvamanidatabase\ 50MB]
1359 RESOURCES ~ 2~ |[__Warehouse.dvf 7 d:vamanidatabaset | 1600MB]
—7 &1t DISK 1L.DG FILES
820 : é‘_,@ DATABASES Invenl.oa.lgf 870 d:wvamanidatabasel 18MB #
; 8 II__QCLog.lof , | Clvamanidatabasel 20MB 2.0MB 1.0MB]
830 855 |.f) MarketingDB || ProdLog.of d:vamani\database\ 40MB o
TS5ty MEMORY o
i L& BasE i Rbs001.rbs 875 civaman\databasel 35MB &
840 | |-[3h CACHE |__Rbs002.rbs cvamanidatabaset 55MB 7]
§ !t'_? RBS | SWAP FILES .
850 I\l cpu Vaman001.swp clvamanl 520KB
3 g4 NETWORK { Database Utilization
852 | -1 NORMALDATA |
815, " ‘-7 LOBDATA § 880
N W %@) TIMER |
-4 FUNCTIONAL f O Warehouse
/I}a-ﬁ}l; Bangalore Br ! 56%
| 805 : 0 Production
E QualityControl 42%
2%

‘ 11/16

WO 2004/077212 PCT/IN2004/000023

Fig. 9

, NO_ STATE NO_STATE

“[ND_STATE NO_STATE NO_STATE

|NO_STATE NO_STATE NO_STATE

NO_STATE NO_STATE

A INDEX 910 NO_STATE NO_STATE
68 JoB NO_STATE NO_STATE

| o NETWORK IND_ NO_STATE NO_STATE
. 5] OPERATOR " [NO_STATE CONTROL_COMMAND |ND_STATE

~INO_STATE

% (
/\7] S Modules[165] Hvailable B8
! FA States [24] fSchdiByPassServer

DATABASE NO_STATE

. Added ffodules :
‘ SchdlconnectToPDC

| ﬁchdlCheckMasterType
- SchdIChackPackeliTyps
; SchdlCImcl;ThreadTwm

920; @[Events[e3] | -

m-[] SERVER [SchdiCheckClientType
a1l 8LOT : SchdiCheckCommandType |
LTy 1 SchdiCheckConneciStaty ‘
TIMER % SchdlCheckControlType !
i1 schdiCheckDatabaseExsts ;
| i; SehdiCheckDataFilleHead ;
) ! i§ SchdiCheckDataPackelTy ‘
[1SchdiCheckFilePath :
°® i SchdiCheckForUncommit !
i | SchdiCheckifServerRunni i
f; SchdICheckLogFileValidity |
i

12/16

WO 2004/077212

PCT/IN2004/000023

-1 Onerster

ESE Modules (165]
E-FH atates [24)
1 Events (B3

SehdIChackCannestStalug
SchdlCheckConlrolType
SchdlCheckDatabaseExist
SehdiCheskDiataFileHeads
SchdIChzckDstaPacketTye

[&ehdiCheckFilePaln i

i jSchdiChgckForlnsormmits

- §8chdICheckifSerzerRunnin -
SchdiCheckLogFlteWslidlly, .

Hﬂﬁ;l%i’l’&@&

e Blgrogs

RESOUICE-Wise ~ ?
= 05 RESOURCES
1005
| Lo oisk \\
~ a8 Network . 1010 NO_STATE NO_STATE

-8 Memony |WD_STATE NO_STATE NG_STATE
| O Timer 1015 0. ETATE HE_STATE RS
' @ CPU i Mt o] ; I
B- e o baatase Vi 0_STATE HO_STATE NOSTATE -

E] e Web ——— O_STATE MNQ_STATE NO_STATE i

1020 NO_STATE NO_STATE NO_STATE

C] @ Mail ~ - -

1025 0_STATE NO_STATE NOSTATE |

. |ND_STATE CONTROL_COMMAND [ND_STATE

. “|NO_STATE |paTaBase NO_STATE

Aarailable Modules . - - - A ride:f Mndul& i ;
5 1030 chmacmngtaul EchdiUpdaleanRecnrﬂ 4
"l // ¥ cohdlatiachatnstal)
I 542 common ' 15chdBroadeasiServarinfo |
| " Ih, pispateer ‘EachdiByPassSener
: R - SchdIChackClientType i
& EehdICheckCarmand T

13/16

WO 2004/077212 PCT/IN2004/000023

-Ky. RESOURCES \\
1005

.-l Disk Y SSION USEF

- Networke 1010 NO_STATE NO_STATE NO_STATE

-4 Memory EXEC_ST NO_STATE NO_STATE

(D) Timer 1015 NO_GTATE NO_STATE INSERT IN_CACHE

- cp‘:m " /1105 | SCHEDULER_MESSAGE |SCHEDULER_MESSAGE |UPDATE_IN_CACHE _|
E’. = Z"Zif % 110 NO_STATE NO_STATE NO_STATE
L Distibutor -2 [NO_STATE NO_STATE NO_STATE

120 e NO_STATE NO_STATE NO_STATE

1125 30K index 1115) DELET NO_STATE

TSR b |
%Repllcator 1130 | I

‘._fallahle’ Module
|{servAliocateEveny

¢ SeerlalogCall
SewvGenerateDeleteEvent

~EL Slot 1020
El@ Web — 2
&)

1025, SeAlterAccessRecord

SerAlterAllocateExtent

=) Mail /1030 It ServalierClusterRecord
0
B @ Common SewvAlterColumnRecord

""" SevAlterColumnRecord
ServalterConstrainiRecord
ServAlterDatabase

2 SenlterDealiocateUnusedExt
ServalterDefauliRoleRecord
SerAlterDependencyRecord
ServAlterEpiObject
3ServAlterFileRecord

’ SetvalterFreeExtentRecord
SeAlterindexRecord
SewAlterMetaDalaForAttach

14/16

WO 2004/077212 PCT/IN2004/000023

Fig. 12

......... B —

RESOURCES _ 1005

[l Disk \\ , : A : CLOSE EVEN
.5 Network 1010 CLIENT_INPUT |MASTER_INPUT |CLIENT_INPUT

0_STATE NO_STATE NO_STATE NO_STATE
JCLIENT_INPUT MASTER_INPUT |MASTER_INPUT [MASTER_INPUT
{NO_STATE NO_STATE NO_STATE CLIENT_INPUT
JMASTER_INPUT NO_STATE MASTER_INPUT |NO_STATE
CLIENT_INPUT CLIENT_INPUT |CLIENT MASTER_INPUT
{ND_STATE CLIENT_INPUT NO_STATE

. &5 Memory

.3 Timer 1015
g-[E CPU

w-f) Database 1205

i

s

- Modules [76]
m-FH States[83] |
5.5l Events [52] | [Open-Master-Gocket =~

‘{Cheek-Sockel-Type

| 1020
|
H

1210} .

¢ 1 -l Parse— s~ [[JCheck-Rootdir-Exists ignal-Socket-Closed

i iy L8 Soript 12154 Create-8sl-Child-Thread "
1 ?20 ., EE] S Load-Virtual-Hosts : .'
P ~# Thiotle 1205 || fopen-Senver-Log-File ;
i 142 Mail Open-8sl-Socket-I-Needed]

E-4% Commen 1025 | 2prepare-Client-Thread : j
E Prepare-Te-Read-Request : ’
1030 I Read-Input-From-Socket
1 Reload-Config-I-Needed :
Set-Sener-Process-State e ;
vmaccept-Client-Connection P T
{iwait-For-Socket-Input

15/16

WO 2004/077212

PCT/IN2004/000023

BBSDUFCB-W‘SB

: w RESOURCES \‘\

@ Disk

H
i
i
i

L. Network 1010 (

Eat Modules [54] 4
Emrn States [8]
m-fal Events[11] |

m S——
e

[m]

-1

Em

g&

;

[ISMTPAccepiClientConnection
% Dispatcher 1030|1SMTPCheckClientiPAllowed
a-E% Scheduler | SMTPCheckifSMTPEnabled
i 3 Operator , SMTPGetSMTPCommand

MASTEB INPUT

NO_STATE

VRSTER NPUT

5ﬁ us,allabla Modules :

| SMTP;,oadConf gl?arameter

| [FSMTPRInitialiseClientThread
: SMTPlnlhallseTheThread

SMTPReadMaIIRequest T

|EeMTPSendReadToNetForGacketinpu -

|4SMTPTerminateTheThread

I I SMTPWaitForSocketinput

i SHMTPWriteSeniceReady

|1 SMTPWriteServiceUnavailable

&) Memory 015 1“ > |MASTER_INPUT _ |NO_STATE MASTERINPUT _ |NO_STATE
€ Timer NO_STATE SMTP_SEFVER |NO_STATE MASTER_INPUT
(81 CPU 1020 | ‘ |SMTP_SERVER _ |NO_STATE SMTP_SERVER |NO_STATE
1025 -;g 3:‘3" se i 5 [NO_STATE SMTP_SERVER |NO_STATE NO_STATE
N\; ' M:“ 1310 SMTP_SERVER |NO_STATE SMTP_SERVER |NO_STATE
= /V NG_STATE SMTP_SERVER |NO_STATE DEFAULT
NO_STATE SMTP_SERVER |NO_STATE NO_STATE

SMTPSendHelpMessage
SMTPSendMailContent

16/16

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

