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(57) A data processing system, e.g. a graphics processing system, has an execution pipeline that includes one or more
programmable execution stages 101 which execute instructions to perform data processing operations provided to
the execution pipeline by a host processor and in which execution threads 102 are grouped together into thread
groups in which the threads 102 of the group are executed in lockstep, one instruction at a time. The system also
includes a compiler 109 that compiles programs for the execution pipeline to generate instructions for execution
stages 101 of the execution pipeline. The compiler 109 is configured to, for an operation to be executed for a thread
group by an execution stage 101 of the execution pipeline that comprises a memory transaction, e.g. an atomic
lock operation: issue to the execution stage an instruction or set of instructions for executing the operation for the
thread group to: perform the operation for the thread group as a whole; and to provide the result of the operation to
all the active threads of the thread group. At least one execution stage 101 of the execution pipeline is configured
to, in response to an instruction or set of instructions for executing an operation for a thread group perform the
operation for the thread group as a whole; and provide the result of the operation to all the active threads of the

thread group.
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Data Processing Systems

The present invention relates to data processing systems, and in particular to the
operation of graphics processing systems that include one or more programmable

processing stages ("shaders").

Graphics processing is typically carried out in a pipelined fashion, with one or more
pipeline stages operating on the data to generate the final render output, e.g. frame
that is displayed. Many graphics processing pipelines now include one or more
programmable processing stages, commonly referred to as "shaders". For
example, a graphics processing pipeline may include one or more of, and typically
all of, a geometry shader, a vertex shader and a fragment (pixel) shader. These
shaders are programmable processing stages that execute shader programs on
input data values to generate a desired set of output data (e.g. appropriately
transformed and lit vertex data in the case of a vertex shader) for processing by the
rest of the graphics pipeline and/or for output. The shaders of the graphics
processing pipeline may share programmable processing circuitry, or they may

each be distinct programmable processing units.

A graphics processing unit (GPU) shader core is thus a processing unit that
performs graphics processing by running small programs for each graphics item in
a graphics output to be generated such as a render target, e.g. frame (an “item” in
this regard is usually a vertex or a fragment (pixel)). This generally enables a high
degree of parallelism, in that a typical render output, e.g. frame, features a rather
large number of vertices and fragments, each of which can be processed

independently.

A shader program to be executed by a given "shader" of a graphics processing
pipeline will be provided by the application that requires the graphics processing
using a high level shader programming language, such as GLSL, HLSL, OpenCL C,
etc.. This shader program will consist of "expressions" indicating desired
programming steps defined in the relevant language standards (specifications).

The high level shader program is then translated by a shader language compiler to

binary code for the target graphics processing pipeline. This binary code will
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consist of "instructions" which are specified in the instruction set specification for
the given target graphics processing pipeline. The compilation process for
converting the shader language expressions to binary code instructions may take
place via a number of intermediate representations of the program within the
compiler. Thus the program written in the high level shader language may be
translated into a compiler specific intermediate representation (and there may be
several successive intermediate representations within the compiler), with the final
intermediate representation being translated into the binary code instructions for the

target graphics processing pipeline.

A known way to improve shader execution efficiency is to group execution threads
(where each thread corresponds, e.g., to one vertex or one fragment (pixel)) into
“groups” or "bundles" of threads, where the threads of one group are run in
lockstep, one instruction at a time, i.e. each thread in the group executes the same
single instruction before moving onto the next instruction. This way, it is possible to
share instruction fetch and scheduling resources between all the threads in the
group. (Other terms used for such thread groups include “sub-groups”, "warps" and
"wavefronts". For convenience the term thread group will be used herein, but this is
intended to encompass all equivalent terms and arrangements, unless otherwise

indicated.)

In such thread groups, the shared instructions are executed for each thread and
when memory access (e.g. for loads, stores and atomics) is required by a particular
thread, a “lock” is obtained by the thread to ensure exclusive access to the data in
memory being accessed by the thread, i.e. excluding the other threads from
accessing the memory location, with each thread obtaining independent locks.
However, because the threads cannot guarantee independent forward progress in
all circumstances (because some steps executed by one thread may depend on
other steps executed by other threads), a lock obtained by one thread may cause a
deadlock for the whole thread group. This then causes one or more of the threads

to spin indefinitely waiting for the lock to become available.

For example, the simple code sequence

while( !'mtx lock = mtx.trylock() )
{
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// critical section

}

can deadlock non-intuitively.

This is because the sequence requires that the flow of code is divergent and so
threads from the divergent path (i.e. with a different program counter) must be
masked out from execution. In a system having a “lowest program counter first”
scheduling policy, threads which did not obtain the lock would therefore be

favoured, but these would then spin indefinitely waiting for the lock.

One solution to this problem is to re-order the code to suit the scheduling behaviour
of the specific system being used, e.g. using the following code sequence:

if( my warp lane == )
{
while( !mtx.try lock() );

}
// execute locked work

if( my warp lane == )
{

mtx.unlock () ;

}

However, this requires that the compiler does not optimise the instruction

sequences, or has support for ordering semantics on the instructions.

The Applicants believe therefore that there remains scope for improvements to the
handling of thread groups, for example in graphics processing pipelines that include

one or more shader stages.

According to a first aspect of the present invention, there is provided a method of
operating a data processing system comprising an execution pipeline that
comprises one or more programmable execution stages which execute instructions
to perform data processing operations, and in which execution threads are grouped
together into thread groups in which the threads of the thread group are executed in

lockstep, one instruction at a time, the method comprising:
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for an operation to be executed for a thread group by an execution stage of
the execution pipeline of the data processing system that comprises a memory
transaction:
issuing to the execution stage an instruction or set of instructions to
cause the execution stage to:
perform the operation for a thread group as a whole; and
to provide the result of the operation to all the active threads
of the thread group; and
the execution stage of the execution pipeline in response to the
instruction or set of instructions:
performing the operation for a thread group as a whole; and
providing the result of the operation to all the active threads

of the thread group.

According to a second aspect of the present invention, there is provided a data
processing system comprising:
an execution pipeline that includes one or more programmable execution
stages which execute instructions to perform data processing operations and in
which execution threads are grouped together into thread groups in which the
threads of the group are executed in lockstep, one instruction at a time; and
a compiler that compiles programs for the execution pipeline to generate
instructions for execution stages of the execution pipeline;
wherein the compiler is configured to, for an operation to be executed for a
thread group by an execution stage of the execution pipeline that comprises a
memory transaction:
issue to the execution stage an instruction or set of instructions to
cause the execution stage to:
perform the operation for a thread group as a whole; and
to provide the result of the operation to all the active threads
of the thread group; and
wherein at least one execution stage of the execution pipeline is configured
to, in response to the instruction or set of instructions:
perform the operation for a thread group as a whole; and
provide the result of the operation to all the active threads of the

thread group.
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The present invention relates to the execution of operations in data processing
pipelines in which execution threads are grouped together into thread groups
("warps"), with the threads in a thread group being executed together in lockstep,
one instruction at a time, i.e. each thread in the group executes the same single
instruction before moving onto the next instruction. A thread group may contain any
suitable and desired number of threads. Preferably a thread group is made up of

four individual threads.

In the present invention, for one or more operations (that involve a memory
transaction) to be executed, an instruction or set of instructions that are executed
by the threads of a thread group for the operation are issued to a programmable
execution stage of the execution pipeline, where they are executed. The instruction
or set of instructions are executed for the thread group as a whole and the result of
this thread group (warp)-wide operation is delivered to all active threads in the
thread group. (An active thread is one which is currently executing an instruction or
waiting to execute an instruction, i.e. as opposed to inactive threads which have

diverged or terminated their execution.)

Thus, rather than executing the instruction or set of instructions for the operation for
each thread in the group, the instruction or set of instructions is executed by the

execution stage for the thread group as a whole.

By performing the operation for the thread group as a whole, i.e. for all the active
threads which are being executed in lockstep, this helps to prevent the threads from
deadlocking. This is because the operation is being performed for all the active
threads in the thread group together, so no thread must wait for the operation to
complete for another thread, e.g. while accessing the memory using a lock, before

that thread can perform the operation.

Furthermore, because the operation is being performed for the thread group as a
whole and thus, e.g., making it redundant for each thread to perform the operation
individually, the processing involved, bandwidth required, data transferred and thus

power consumed is reduced.
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The operation may comprise any suitable and desired data processing operation

that involves a memory transaction.

In a preferred embodiment the operation comprises an atomic operation. An
“atomic” memory operation is an operation sequence that reads a memory location,
performs an arithmetic operation between the memory value and a register value,
and then writes the result of the arithmetic operation back to the same memory
location. This sequence of operations is carried out so that to every observer, it
looks as if the sequence has either not been performed at all, or been performed in

its entirety. It is executed as one indivisible unit, hence the name “atomic”.

The atomic operation, performed for the thread group as a whole, may comprise
any suitable and desired atomic operation. For example, the atomic operation may
comprise a permute operation, e.g. containing shuffle instructions to change the
order of a set of data, a similar low level instruction or instructions, e.g. a reduction
operation, a basic arithmetic instruction or instructions, e.g. addition, subtraction,

division, etc., or a compare or exchange instruction or instructions, etc..

In a preferred embodiment the atomic operation, performed for the thread group as
a whole, comprises a lock operation. A “lock” operation is an operation to reserve
access to storage, e.g. memory, exclusively for an execution thread obtaining the
lock, such that the data in storage it is accessing cannot be accessed, and thus
potentially changed, by another execution thread while the lock is in place. Thus
generally while the lock is in place a further operation, e.g. an arithmetic operation,
is performed using the data that the execution thread has access to, with this being

the result that is then provided to the active threads in the thread group.

It will be appreciated that this particular type of atomic operation, i.e. a lock
operation, is particularly suited to the present invention as it helps to solve the
problem of deadlocking threads in a thread group when one or more threads are
waiting for a lock which is currently held by another thread. By obtaining and using
the lock for the thread group as a whole, i.e. such that the thread group as a whole
has exclusive access to the data in memory being accessed by the thread group,
this helps to prevent the threads from deadlocking because independent locks for

each individual thread are not required.
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The instruction or set of instructions to perform the operation for the thread group
as a whole and to provide the result of the operation to all the active threads of the
thread group may be provided in any suitable and desired way. Preferably the
compiler for execution stage in question includes the instruction(s) in the set of

instructions that are issued to the execution pipeline, as will be described below.

In one preferred embodiment, the instructions for performing the operation for the
thread group as a whole are visible to the application program interface and thus a
programmer may explicitly include the instructions in the application program code
for the operation to be performed (with the compiler then generating an instruction
or set of instructions to perform the operation for the thread group as a whole and to
provide the result of the operation to all the active threads of the thread group, in

response thereto).

In an embodiment, the compiler is configured also or instead to (be able to)
automatically (of its own volition) provide the instruction or set of instructions to
perform the operation for the thread group as a whole and to provide the result of
the operation to all the active threads of the thread group, i.e. without the instruction
or set of instructions having been included explicitly, e.g. by a programmer, in the
application program code. Thus preferably the method further comprises the step of
(and the compiler is configured to): automatically inserting an instruction or set of
instructions for performing the operation for the thread group as a whole and
providing the result of the operation to all the active threads of the thread group in

the compiled application program code for the operation.

The compiler may automatically provide the instruction or set of instructions in any
suitable and desired way. For example, the compiler may be configured to identify
opportunities to insert an instruction or set of instructions for performing an
operation for a thread group as a whole when compiling the application program

code, e.g. by recognising one or more particular steps in the program code.

(Of course, the compiler may not identify an opportunity to issue to an execution
stage an instruction or set of instructions for executing an operation for the thread

group as a whole, in which case the compiler will not issue an instruction or set of
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instructions for executing an operation for a thread group as a whole, e.g. if it is not

determined to be beneficial for the operation’s execution.)

The instruction or set of instructions for performing the operation for the thread
group as a whole and providing the result of the operation to all the active threads
of the thread group could be configured to apply only to a single thread group, with
other thread groups not encountering this instruction or set of instructions when
they perform the operation. However preferably the instruction or set of instructions
for performing the operation for the thread group as a whole and providing the
result of the operation to all the active threads of the thread group is provided for

and encountered by all the thread groups performing the operation.

In a preferred embodiment, the compiler is configured to (be able to) re-order the
steps in the program code, e.g. to improve the efficiency of its execution for a
thread group. For operations, e.g. atomic operations, that may be performed
individually for each thread in a thread group, e.g. per-thread locking operations, as
these operations may naturally diverge, that can make them difficult for a compiler
to optimise, e.g. because re-ordering the steps in the program code may introduce
deadlocks. However, when, in accordance with the present invention, the operation
is performed for the thread group as a whole, that makes it easier to re-order with
respect to the rest of the other steps in the program code because there is less risk
of deadlocking. This means that the compiler can more safely re-order the steps in
the program code or re-schedule the operation performed for the thread group as a

whole, with reduced risk of deadlocking.

Therefore preferably the method comprises the step of (and the compiler is
configured to): re-ordering (the issuing of) an instruction or set of instructions that
perform an operation for a thread group as a whole relative to other instructions in
the shader program in question. Thus the compiler may bring forward or move back
the instruction or set of instructions for executing an operation for a thread group as
a whole. Such re-ordering may help to optimise (OpenCL) driver software

implementation.

In a preferred embodiment the operation is performed, i.e. the instruction(s) are

executed, only once for a thread group as a whole. Thus once the operation has
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been performed for a thread group as a whole, e.g. when encountered initially by
one of the threads in a thread group, and the result of the operation provided to all
of the active threads in the thread group, in this embodiment the operation is not
performed again when, e.g., another thread of the thread group encounters the
operation subsequently. This is because the result of the operation has already
been provided to all of the active threads in the thread group, so threads
encountering the operation can simply refer to the result, e.g. by reading from a

register, rather than performing it themselves.

The operation may be performed for the thread group as a whole, and the result of
the operation may be provided to all the active threads of the thread group, in any

suitable and desired way.

In one embodiment the instruction or set of instructions is executed by the
execution stage for one of the threads in the thread group on behalf of the other
threads in the thread group, such that the operation is performed for the thread
group as a whole and the result of the operation is provided to all the active threads
of the thread group. Thus, when one of the threads encounters (e.g. by reaching
the necessary program counter) the instruction or set of instructions (which is
preferably the first thread to encounter the instruction) the instruction or set of
instructions is executed by the execution stage for that thread only (but on behalf

the thread group as a whole).

The instruction or set of instructions may be executed for one thread on behalf of
the other threads in the thread group in any suitable and desired way. Preferably
all the threads in the thread group, e.g. those which encounter the instruction or set
of instructions, apart from the thread for which the instruction or set of instructions is
being executed, are masked off, thus making these masked threads temporarily
inactive. Masking off the other threads in the thread group prevents these threads
from encountering the instruction while the instruction or set of instructions is
executed by the one thread, such that operation is performed for the thread group
as a whole. The mask may be removed when the instruction or set of instructions
has been executed and the result of the operation has been provided to all the

active threads of the thread group.
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Therefore in one preferred embodiment, the method comprises the step of (and the
execution stage is configured to): when the instruction or set of instructions is
received by the execution stage, the instruction or set of instructions having been
fetched for a thread in the thread group: the execution stage masking all the (e.g.
active) threads in the thread group apart from the thread that fetched the instruction
or set of instructions; and the execution stage executing the instruction or set of
instructions for the thread to perform the operation for the thread group as a whole

and to provide the result of the operation to all the active threads of the thread

group.

In another embodiment each of the execution threads in the thread group is
arranged to check the status of the other threads in the thread group when they
encounter the instruction or set of instructions, e.g. to check if another thread
already has executed, or started to execute, the instruction or set of instructions.
This helps to ensure that the instruction or set of instructions is only executed once,
otherwise this may cause the thread and/or thread group to deadlock. In this case

the threads will not execute in lockstep.

In another embodiment, in response to the instruction or set of instructions, the
operation is performed collectively for the thread group by the execution stage, i.e.
compared to the above described embodiment in which the instruction or set of
instructions is executed for one thread on behalf of the thread group. Therefore
preferably the method comprises the steps of (and the execution stage is
configured to): when the instruction or set of instructions is received by the
execution stage, the execution stage executing the instruction or set of instructions

collectively for the thread group.

The instruction or set of instructions may be executed collectively for the thread
group in any suitable and desired way. In one embodiment the instruction or set of
instructions is executed by the execution stage for the thread group (i.e. the
execution stage which is configured to execute all the other instructions for the, e.g.

shader, program being executed for the thread group).

In another embodiment the instruction or set of instructions are executed by a

separate execution stage from the execution stage that is being used to execute
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operations for the threads, i.e. such that they are not carried out for a particular
thread, e.g. on behalf of the thread group, but rather separately for the thread group
as a whole. Preferably the separate execution stage comprises a scalar engine,
e.g. which is arranged alongside the execution stage for the thread group. The
separate execution stage, e.g. the scalar engine, is then configured to return the

result of the operation to the active threads of the thread group.

Once the operation has been performed by the execution stage of the execution
pipeline, the result of the operation is provided to all of the active threads in the
thread group, i.e. a uniform (the same) result is provided to all the active threads.
(Any inactive threads in the thread group are assumed not to require the result of
the operation.) The result may be provided to the active threads in the thread group

in any suitable and desired way.

In a preferred embodiment the result is provided to one or more storage
arrangements, €.g. memory or registers, that can be read by the active threads in
the thread group. The storage arrangement may comprise a shared storage
arrangement, e.g. a shared memory or register, that can be read by all the active
threads in the thread group. This is particularly convenient because there may be
other reasons to use a storage arrangement, e.g. a register, for the thread group as
a whole, e.g. to store other data used with the execution of operations for the thread
group. In another embodiment the storage arrangements may comprise a separate
storage arrangement, e.g. a separate (e.g. private) memory or register, for each of

the active threads in the thread group.

In one embodiment the result of the operation is broadcast to all the active threads
in the thread group, e.g. the execution stage sends a message to all the active
threads to let them know that the result is available to be read, e.g. from a storage

arrangement.

The execution stage may be associated with a particular storage arrangement or
arrangements to which the result of the operation is provided, e.g. the register for a
thread, and thus the execution stage may already know in advance where to return
the result of the operation. In another embodiment the instruction or set of

instructions to provide the result of the operation to all of the active threads in the
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thread group contains an indication of the location of the storage arrangement(s),
e.g. the registers, to provide the result of the operation to. This is then used by the

execution stage to determine where to provide the result of the operation.

To allow the result of the operation to be provided to the active threads in the thread
group, e.g. by broadcasting a message to the active threads in the thread group
and/or by providing the result to separate storage arrangements for each of the
active threads in the thread group, preferably the execution stage knows which
threads in the thread group are active (this is particularly the case when the
execution stage comprises a scalar engine). This may be achieved in any suitable
and desired way. Preferably the instruction or set of instructions to provide the
result of the operation to all of the active threads in the thread group comprises an

indication of the active threads in the thread group.

In another embodiment, e.g. in which the result of the operation is provided to a
separate storage arrangement for each of the active threads in the thread group,
the write to the, e.g. registers, for the inactive threads is masked out to prevent the

result being provided to these threads.

The method and the data processing system in accordance with the present
invention may be arranged to work with program code which is divergent when
executed. The divergence of the execution may happen before and/or after the
operation is performed for the thread group as a whole. If the threads diverge
before the operation is performed for the thread group as a whole then preferably
the divergent, e.g. inactive, threads are masked to help prevent any potential

deadlocking.

Thus the operation may only be performed for those threads who are convergent
(e.g. naturally convergent, as much as is appropriate) at the time of the instruction
or set of instructions being executed by the execution stage. The divergent
threads, i.e. those which are not convergent at the time of the instruction or set of
instructions being executed, e.g. owing to having taken a different condition in an
“if, then, else” statement, are preferably masked out, e.g. stalled, and do not

execute the operation. Preferably the divergent threads also include any inactive
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threads. This allows the operation to be performed for, and its result provided to,

only the active threads.

The invention also extends to the compiler itself. Thus, according to another aspect
of the present invention, there is provided a compiler that compiles programs to
generate instructions for execution stages of an execution pipeline that includes
one or more programmable execution stages that execute instructions to perform
data processing operations, and in which execution threads are grouped together
into thread groups in which the threads of the group are executed in lockstep, one
instruction at a time, wherein the compiler is configured to, for an operation to be
executed for a thread group by an execution stage of the execution pipeline that
comprises a memory transaction:
issue to the execution stage an instruction or set of instructions to:
perform the operation for the thread group as a whole; and
to provide the result of the operation to all the active threads

of the thread group.

According to another aspect of the present invention, there is provided a method of
compiling a program to generate instructions for an execution stage of an execution
pipeline that includes one or more programmable execution stages that execute
instructions to perform data processing operations, and in which execution threads
are grouped together into thread groups in which the threads of the group are
executed in lockstep, one instruction at a time, the method comprising:
for an operation to be executed for a thread group by an execution stage of
the execution pipeline of the data processing system that comprises a memory
transaction:
issuing to the execution stage an instruction or set of instructions to:
perform the operation for the thread group as a whole; and
to provide the result of the operation to all the active threads

of the thread group.

The invention also extends to an execution pipeline having one or more execution
stages that can perform processing in response to (and using) the instructions of

the present invention.
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Thus, according to another aspect of the present invention, there is provided an
execution pipeline for a data processing system that includes one or more
programmable execution stages which execute instructions to perform data
processing operations, and in which execution threads may be grouped together
into thread groups in which the threads of the group are executed in lockstep, one
instruction at a time, wherein:
at least one execution stage of the execution pipeline is configured to, when

executing instructions in an instruction stream, in response to an instruction or set
of instructions in the instruction stream for executing an operation for a thread
group:

perform the operation for the thread group as a whole; and

provide the result of the operation to all the active threads of the

thread group.

According to another aspect of the present invention, there is provided a method of
operating an execution pipeline for a data processing system that includes one or
more programmable execution stages which execute instructions to perform data
processing operations, and in which execution threads are grouped together into
thread groups in which the threads of the group are executed in lockstep, one
instruction at a time, the method comprising:
at least one execution stage of the execution pipeline, when executing
instructions in an instruction stream, in response to an instruction or set of
instructions in the instruction stream for executing an operation for a thread group:
performing the operation for the thread group as a whole; and
providing the result of the operation to all the active threads of the

thread group.

As will be appreciated by those skilled in the art, these aspects of the present
invention can and preferably do include any one or more or all of the preferred and

optional features of the invention described herein, as appropriate.

Preferably all the execution stages (each execution stage) of the execution pipeline

can and do operate in the manner of the present invention.
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Each programmable processing stage (execution unit) may comprise any suitable
programmable hardware element such as programmable processing circuitry.
Each programmable processing stage may be provided as a separate circuit
element to other programmable stages of the processing pipeline or the
programmable processing stages may share some or all of their programmable
processing circuitry (that is then differently programmed to serve as the desired

programmable processing stage).

As described above, preferably the data processing system of the present invention
comprises a graphics processing system comprising a graphics processing
pipeline. The graphics processing pipeline may in this case be used to perform
graphics processing (in which case preferably each thread in a group of threads
corresponds to one vertex or one fragment (pixel) and/or sampling point) but it
could also be operated as a compute shader pipeline (e.g. in accordance with
OpenCL) (in which case each thread will, e.g., correspond to an appropriate

compute shader work item).

Thus, the execution pipeline may be a graphics processing pipeline, a compute

shader pipeline, etc..

In these arrangements, the graphics (or other) processing pipeline preferably

comprises a sequence of different processing stages, which each perform, e.g., a
different operation to provide the output of the processing pipeline. Preferably the
processing pipeline comprises one or more, e.g. a plurality of, processing stages,

e.g. which work together to implement the operation of the invention.

In the case of a graphics and/or compute shader processing pipeline, the execution
units (stages) preferably comprise programmable, shading stages of the processing
pipeline such as the vertex shader, fragment shader, etc.. These stages can be
implemented as desired and in any suitable manner, and can perform any desired
and suitable shading, e.g. vertex shading, fragment shading, etc., functions,
respectively and as appropriate. In the case of a fragment shader, for example, the
fragment shader may render a primitive or primitives to generate a set of render

output values, e.g. representing a frame for display. These output values may then
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be exported to external memory for storage and use, such as to a frame buffer for a

display.

As well as the programmable processing (shader) stages, the graphics processing
pipeline may also contain any other suitable and desired processing stages that a
graphics processing pipeline may contain such as a rasteriser, an early depth (or an
early depth and stencil) tester, a late depth (or depth and stencil) tester, a blender,

a tile buffer, a write out unit, etc..

The present invention can be used for all forms of output that a graphics (or other)
processing pipeline may be used to generate, such as frames for display, render to
texture outputs, compute shader outputs, etc.. The output, e.g. fragment shaded,
data values from the processing are preferably exported to external, e.g. main,

memory, for storage and use, such as to a frame buffer for a display.

The present invention is applicable to any suitable form or configuration of graphics
processor. |t is particularly applicable to tile based graphics processors and
graphics processing systems. Thus in a preferred embodiment, the graphics
processing system and graphics processing pipeline are a tile-based system and

pipeline, respectively.

In a particularly preferred embodiment, the various functions of the present
invention are carried out on a single graphics processing platform that generates
and outputs the rendered fragment data that is, e.g., written to the frame buffer for

the display device.

The present invention can be implemented in any suitable system, such as a
suitably configured micro-processor based system. In a preferred embodiment, the
present invention is implemented in a computer and/or micro-processor based

system.

The various functions of the present invention can be carried out in any desired and
suitable manner. For example, the functions of the present invention can be
implemented in hardware or software, as desired. Thus, for example, unless

otherwise indicated, the various functional elements, stages and "means" of the
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invention may comprise a suitable processor or processors, controller or controllers,
functional units, circuitry, processing logic, microprocessor arrangements, etc., that
are operable to perform the various functions, etc., such as appropriately dedicated
hardware elements and/or programmable hardware elements that can be

programmed to operate in the desired manner.

It should also be noted here that, as will be appreciated by those skilled in the art,
the various functions, stages, etc., of the present invention may be duplicated
and/or carried out in parallel on a given processor. Equally, the various processing

stages may share processing circuitry, etc., if desired.

Subject to any hardware necessary to carry out the specific functions discussed
above, the data processing system and pipeline can otherwise include any one or

more or all of the usual functional units, etc., that data processing pipelines include.

It will also be appreciated by those skilled in the art that all of the described aspects
and embodiments of the present invention can, and preferably do, include, as
appropriate, any one or more or all of the preferred and optional features described

herein.

The methods in accordance with the present invention may be implemented at least
partially using software e.g. computer programs. It will thus be seen that when
viewed from further aspects the present invention provides computer software
specifically adapted to carry out the methods herein described when installed on
data processing means, a computer program element comprising computer
software code portions for performing the methods herein described when the
program element is run on data processing means, and a computer program
comprising code means adapted to perform all the steps of a method or of the
methods herein described when the program is run on a data processing system.
The data processor may be a microprocessor system, a programmable FPGA (field

programmable gate array), etc..

The invention also extends to a computer software carrier comprising such software
which when used to operate a graphics processor, renderer or microprocessor

system comprising data processing means causes in conjunction with said data
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processing means said processor, renderer or system to carry out the steps of the
methods of the present invention. Such a computer software carrier could be a
physical storage medium such as a ROM chip, CD ROM, RAM, flash memory, or
disk, or could be a signal such as an electronic signal over wires, an optical signal

or a radio signal such as to a satellite or the like.

It will further be appreciated that not all steps of the methods of the invention need
be carried out by computer software and thus from a further broad aspect the
present invention provides computer software and such software installed on a
computer software carrier for carrying out at least one of the steps of the methods

set out herein.

The present invention may accordingly suitably be embodied as a computer
program product for use with a computer system. Such an implementation may
comprise a series of computer readable instructions either fixed on a tangible, non-
transitory medium, such as a computer readable medium, for example, diskette, CD
ROM, ROM, RAM, flash memory, or hard disk. It could also comprise a series of
computer readable instructions transmittable to a computer system, via a modem or
other interface device, over either a tangible medium, including but not limited to
optical or analogue communications lines, or intangibly using wireless techniques,
including but not limited to microwave, infrared or other transmission techniques.
The series of computer readable instructions embodies all or part of the

functionality previously described herein.

Those skilled in the art will appreciate that such computer readable instructions can
be written in a number of programming languages for use with many computer
architectures or operating systems. Further, such instructions may be stored using
any memory technology, present or future, including but not limited to,
semiconductor, magnetic, or optical, or transmitted using any communications
technology, present or future, including but not limited to optical, infrared, or
microwave. ltis contemplated that such a computer program product may be
distributed as a removable medium with accompanying printed or electronic
documentation, for example, shrink wrapped software, pre-loaded with a computer

system, for example, on a system ROM or fixed disk, or distributed from a server or
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electronic bulletin board over a network, for example, the Internet or World Wide
Web.

A number of preferred embodiments of the present invention will now be described
by way of example only and with reference to the accompanying drawings, in
which:

Figure 1 shows schematically an exemplary computer graphics processing
system;

Figure 2 shows schematically a graphics processing pipeline that can be
operated in the manner of the present invention;

Figure 3 shows schematically a group of execution threads;

Figure 4 shows a flow chart of the operation of the group of execution
threads shown in Figure 2;

Figure 5 shows schematically the architectural layout of a shader core that
that can be operated in the manner of the present invention;

Figure 6 shows a flow chart of the operation of a compiler that that can be
operated in the manner of the present invention;

Figures 7a, 7b and 7c show schematically the execution operation of
various embodiments of the present invention;

Figures 8a and 8b show schematically the result handling of various
embodiments of the present invention; and

Figure 9 shows a flow chart of the operation according to an embodiment of

the present invention.

A number of preferred embodiments of the present invention will now be described

in the context of the processing of computer graphics for display.

Figure 1 shows schematically a typical computer graphics processing system.

An application 2, such as a game, executing on a host processor 1 will require
graphics processing operations to be performed by an associated graphics
processing unit (graphics processing pipeline) 3. To do this, the application will
generate API (Application Programming Interface) calls that are interpreted by a
driver 4 for the graphics process pipeline 3 that is running on the host processor 1

to generate appropriate commands to the graphics processor 3 to generate
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graphics output required by the application 2. To facilitate this, a set of
"commands" will be provided to the graphics processor 3 in response to commands
from the application 2 running on the host system 1 for graphics output (e.g. to

generate a frame to be displayed).

Figure 2 shows the graphics processing pipeline 3 of the present embodiment in

more detail.

The graphics processing pipeline 3 shown in Figure 2 is a tile based renderer and
will thus produce tiles of a render output data array, such as an output frame to be

generated.

(In tile based rendering, rather than the entire render output, e.g., frame, effectively
being processed in one go as in immediate mode rendering, the render output, e.g.,
frame to be displayed, is divided into a plurality of smaller sub regions, usually
referred to as "tiles". Each tile (sub region) is rendered separately (typically one
after another), and the rendered tiles (sub regions) are then recombined to provide
the complete render output, e.g., frame for display. In such arrangements, the
render output is typically divided into regularly sized and shaped sub regions (tiles)

(which are usually, e.g., squares or rectangles), but this is not essential.)

The render output data array may typically be an output frame intended for display
on a display device, such as a screen or printer, but may also, for example,
comprise intermediate data intended for use in later rendering passes (also known

as a "render to texture" output), etc..

When a computer graphics image is to be displayed, it is usually first defined as a
series of primitives (polygons), which primitives are then divided (rasterised) into
graphics fragments for graphics rendering in turn. During a normal graphics
rendering operation, the renderer will modify the (e.g.) colour (red, green and blue,
RGB) and transparency (alpha, a) data associated with each fragment so that the
fragments can be displayed correctly. Once the fragments have fully traversed the
renderer, then their associated data values are stored in memory, ready for output,

e.g. for display.
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Figure 2 shows the main elements and pipeline stages of the graphics processing
pipeline 3 that are relevant to the operation of the present embodiment. As will be
appreciated by those skilled in the art there may be other elements of the graphics
processing pipeline that are not illustrated in Figure 2. It should also be noted here
that Figure 2 is only schematic, and that, for example, in practice the shown
functional units and pipeline stages may share significant hardware circuits, even
though they are shown schematically as separate stages in Figure 2. It will also be
appreciated that each of the stages, elements and units, etc., of the graphics
processing pipeline as shown in Figure 2 may be implemented as desired and will
accordingly comprise, e.g., appropriate circuitry and/or processing logic, etc., for

performing the necessary operation and functions.

As shown in Figure 2, the graphics processing pipeline 3 includes a number of
stages, including vertex shader 20, a hull shader 21, a tesselator 22, a domain
shader 23, a geometry shader 24, a rasterisation stage 25, an early Z (depth) and
stencil test stage 26, a renderer in the form of a fragment shading stage 27, a late Z
(depth) and stencil test stage 28, a blending stage 29, a tile buffer 30 and a

downsampling and writeout (multisample resolve) stage 31.

The vertex shader 20 takes the input data values associated with the vertices, etc.,
defined for the output to be generated, and processes those data values to
generate a set of corresponding "vertex shaded" output data values for use by
subsequent stages of the graphics processing pipeline 3. The vertex shading, for
example, modifies the input data to take account of the effect of lighting in the

image to be rendered.

The hull shader 21 performs operations on sets of patch control points and
generates additional data known as patch constants, the tessellation stage 22
subdivides geometry to create higher order representations of the hull, the domain
shader 23 performs operations on vertices output by the tessellation stage (similar
to a vertex shader), and the geometry shader 24 processes entire primitives such
as a triangles, points or lines. These stages together with the vertex shader 21
effectively perform all the necessary fragment frontend operations, such as

transformation and lighting operations, and primitive setup, to setup the primitives to
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be rendered, in response to commands and vertex data provided to the graphics

processing pipeline 3.

The rasterisation stage 25 of the graphics processing pipeline 3 operates to
rasterise the primitives making up the render output (e.g. the image to be displayed)
into individual graphics fragments for processing. To do this, the rasteriser 25
receives graphics primitives for rendering, rasterises the primitives to sampling
points and generates graphics fragments having appropriate positions (representing

appropriate sampling positions) for rendering the primitives.

The fragments generated by the rasteriser are then sent onwards to the rest of the

pipeline for processing.

The early Z/stencil stage 26 performs a Z (depth) test on fragments it receives from
the rasteriser 25, to see if any fragments can be discarded (culled) at this stage. To
do this, it compares the depth values of (associated with) fragments issuing from
the rasteriser 25 with the depth values of fragments that have already been
rendered (these depth values are stored in a depth (2) buffer that is part of the tile
buffer 30) to determine whether the new fragments will be occluded by fragments
that have already been rendered (or not). At the same time, an early stencil test is

carried out.

Fragments that pass the fragment early Z and stencil test stage 26 are then sent to
the fragment shading stage 27. The fragment shading stage 27 performs the
appropriate fragment processing operations on the fragments that pass the early Z
and stencil tests, so as to process the fragments to generate the appropriate

rendered fragment data.

This fragment processing may include any suitable and desired fragment shading
processes, such as executing fragment shader programs on the fragments,
applying textures to the fragments, applying fogging or other operations to the
fragments, etc., to generate the appropriate fragment data. In the present
embodiment, the fragment shading stage 27 is in the form of a shader pipeline (a

programmable fragment shader).



10

15

20

25

30

-23-

There is then a "late" fragment Z and stencil test stage 28, which carries out, inter
alia, an end of pipeline depth test on the shaded fragments to determine whether a
rendered fragment will actually be seen in the final image. This depth test uses the
Z buffer value for the fragment's position stored in the Z-buffer in the tile buffer 30 to
determine whether the fragment data for the new fragments should replace the
fragment data of the fragments that have already been rendered, by comparing the
depth values of (associated with) fragments issuing from the fragment shading
stage 27 with the depth values of fragments that have already been rendered (as
stored in the depth buffer). This late fragment depth and stencil test stage 28 also

carries out any necessary "late" alpha and/or stencil tests on the fragments.

The fragments that pass the late fragment test stage 28 are then subjected to, if
required, any necessary blending operations with fragments already stored in the
tile buffer 30 in the blender 29. Any other remaining operations necessary on the

fragments, such as dither, etc. (not shown) are also carried out at this stage.

Finally, the (blended) output fragment data (values) are written to the tile buffer 30
from where they can, for example, be output to a frame buffer for display. The
depth value for an output fragment is also written appropriately to a Z buffer within
the tile buffer 30. (The tile buffer will store colour and depth buffers that store an
appropriate colour, etc., or Z value, respectively, for each sampling point that the
buffers represent (in essence for each sampling point of a tile that is being
processed).) These buffers store an array of fragment data that represents part (a
tile) of the overall render output (e.g. image to be displayed), with respective sets of
sample values in the buffers corresponding to respective pixels of the overall render
output (e.g. each 2x2 set of sample values may correspond to an output pixel,

where 4x multisampling is being used).

The tile buffer is provided as part of RAM that is located on (local to) the graphics

processing pipeline (chip).

The data from the tile buffer 30 is input to a downsampling (multisample resolve)
write out unit 31, and thence output (written back) to an external memory output

buffer, such as a frame buffer of a display device (not shown). (The display device
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could comprise, e.g., a display comprising an array of pixels, such as a computer

monitor or a printer.)

The downsampling and writeout unit 31 downsamples the fragment data stored in
the tile buffer 30 to the appropriate resolution for the output buffer (device) (i.e. such
that an array of pixel data corresponding to the pixels of the output device is

generated), to generate output values (pixels) for output to the output buffer.

Once a tile of the render output has been processed and its data exported to a main
memory (e.g. to a frame buffer in a main memory (not shown)) for storage, the next
tile is then processed, and so on, until sufficient tiles have been processed to

generate the entire render output (e.g. frame (image) to be displayed). The process

is then repeated for the next render output (e.g. frame) and so on.

Other arrangements for the graphics processing pipeline 3 would, of course, be

possible.

The above describes certain features of the operation of the graphics processing
system shown in Figure 1. Further features of the operation of the graphics
processing system shown in Figure 1 in accordance with embodiments of the

present invention will now be described.

As can be seen from Figure 2, the graphics processing pipeline 3 includes a
number of programmable processing or "shader" stages, namely the vertex shader
20, hull shader 21, domain shader 23, geometry shader 24, and the fragment
shader 27. These programmable shader stages execute respective shader
programs that have one or more input variables and generate sets of output
variables and that are provided by the application. To do this, the application 2
provides the shader programs implemented using a high-level shader programming
language, such as GLSL, HLSL, OpenCL, etc.. These shader programs are then
translated by a shader language compiler to binary code for the target graphics
processing pipeline 3. This may include the creation of one or more intermediate
representations of the program within the compiler. (The compiler may, e.g., be

part of the driver 4, with there being a special API call to cause the compiler to run.
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The compiler execution can thus be seen as being part of the draw call preparation

done by the driver in response to API calls generated by an application).

Each shader in the graphics processing pipeline, e.g. as shown in the embodiment
of Figure 2, is a processing unit that, based on commands received by the graphics
processing pipeline from the application, performs graphics processing by running
small programs for each graphics item in a graphics output to be generated (an
“item” in this regard is usually a vertex, a fragment or a pixel). The present
embodiments relate to the situation where execution threads to be executed by a
shader (where each thread corresponds to one graphics item) have been organised
into a “group” or "bundle" of threads that are to be run in lockstep, one instruction at

a time, and are to perform an atomic memory operation, e.g. a lock operation.

(An “atomic” memory operation is an operation sequence that reads a memory
location, performs an arithmetic operation between the memory value and a register
value, and then writes the result of the arithmetic operation back to the same
memory location. This sequence of operations is carried out so that to every
observer, it looks as if the sequence has either not been performed at all, or been
performed in its entirety. It is executed as one indivisible unit, hence the name

“atomic”.)

Figure 3 shows a schematic of an execution stage 51 (“lockstep unit”) for such a
group of threads, comprising four individual execution lanes 52 (“Lane 17, “Lane 27,
“‘Lane 37, “Lane 4”) which perform the execution of instructions for the individual
threads. The results 53 (“Atomic MSG #1”, “Atomic MSG #2”, “Atomic MSG #3”,
“Atomic MSG #4”) of an operation executed by the execution lanes 52 (through the
execution of an instruction or set of instructions) for the threads are provided for

each execution thread 52 individually.

Figure 4 is a flow chart showing the operation for a group of threads, e.g. as shown
in Figure 3, when performing an atomic operation. First, the compiled instructions
for the atomic operation are fetched from an instruction cache 54 and decoded, e.qg.
by an execution stage (step 61, Figure 4). The execution threads in the thread
group each work through the instructions, using data accessed from the registers of

the threads (step 62, Figure 4) to be used in the atomic operation, e.g. in an
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arithmetic operation. The atomic operation is executed by the execution stage for
each thread (step 63, Figure 4), which generally involves writing data to a shared

memory area or cache (step 64, Figure 4).

Once the atomic operation has been executed, the result of the operation (“Atomic
MSG #17, “Atomic MSG #2”, “Atomic MSG #3”, “Atomic MSG #4”) 53), e.g. a

modification of the register data owing to the arithmetic operation, is written back to
the registers for each of the threads in the thread group (step 65, Figure 4), so that

the result can be accessed by each of the threads in the thread group.

Figures 5 to 9 illustrate various preferred embodiments of the above operation.

Figure 5 shows a schematic of a shader core 101, e.g. of the graphics processing
unit (pipeline) 3 shown in Figure 1, in accordance with embodiments of the present
invention. The shader core 101 includes multiple execution units 102 (“warp units”)
which each support a group of four execution threads. Each execution unit 102
includes four sets of registers 103 (i.e. one for each thread, with each set of
registers preferably having at least 32 registers), as well as a shared local memory

area 104 (“storage bank”).

Each execution unit 102 is in data communication with an interconnect 105
(“message path”). Also in data communication with the interconnect 105 is a scalar
execution unit 106 and a separate “load/store/atomic” pipeline 107 which handles
the load/store and atomic operations, e.g. to an external system memory or a cache

hierarchy.

The operation of a compiler for a shader core in accordance with an embodiment of
the present invention will now be described with reference to the flow chart of
Figure 6.

As described above, when graphics processing operations are to be performed for
an application by an associated graphics processing unit (graphics processing
pipeline), the application will generate API (application programming interface)
calls, e.g. as part of a shader program, that are received by a compiler (not shown)

(step 71, Figure 6). This enables the compiler to generate appropriate instructions



10

15

20

25

30

-27 -

for the graphics processing unit to generate the graphics output required by the
application. These instructions are common to each thread group for which the

shader program is to be performed, e.g. for a draw call.

The API calls are parsed by the compiler (step 72, Figure 6), with the compiler
identifying operations which are to be performed or could be performed on a thread

group wide basis (step 73, Figure 6).

If the API calls explicitly include a step or steps in the program code for an
operation to be performed for the thread group as a whole, the compiler compiles
the API calls into an appropriate instruction or set of instructions for issuing to the

graphics processing unit for execution (step 74, Figure 6).

Additionally or alternatively, if the compiler is able to include an instruction or set of
instructions to perform an operation for the thread group as a whole of its own
volition in a shader program, the compiler will try to identify appropriate steps in the
API calls and/or opportunities to optimise the shader program for a thread group by
performing an operation for the thread group as a whole (step 74, Figure 6), and if it
identifies such steps/opportunities will insert the instruction or set of instructions in

the compiled shader program automatically.

The compiled instructions are then issued to the graphics processing unit (step 75,
Figure 6), e.g. by writing them to an instruction cache, from where they can be

fetched by the execution stage for a thread group.

Figures 7a, 7b, 7¢, 8a and 8b each show an execution unit 102 (“lockstep unit”) to
be used for the execution of a group of execution threads. Similar to as is shown in
Figure 5, the execution unit 102 includes four individual execution lanes 110 (“lane

17, “lane 27, “lane 37, “lane 4”) , i.e. one lane per execution thread.

In the execution unit 102 shown in Figures 7a, 7b, 7¢c and 8a, again similar to as is
shown in Figure 5, an individual set of registers 103 (“R1”) is provided for each

individual execution lane 110.
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In the execution unit 102 shown in Figure 8b, instead of individual registers a
shared register 111 is provided which can be read by each of the execution

threads.

In the system shown in Figure 7c, similar to as is shown in Figure 5, a scalar
execution unit 1086 is provided in data communication with the execution unit 102 for

the group of execution threads.

Operation of the group of execution threads when executing an operation for the
group of execution threads as a whole will first be described with reference to

Figures 5, 7a, 8a and 9.

Figure 9 shows a flow chart showing the execution steps taken by a group of

execution threads in accordance with an embodiment as shown in Figure 7a.

The compiled instructions, stored in the instruction cache 108, are fetched by the
execution unit 102 (step 201, Figure 9), when referred to by a program counter of
the execution unit (the program counter being shared by each of the execution
threads). The execution threads in the thread group each work through the
instructions in turn, the instructions being shared and executed by each of the

threads in the thread group in lockstep.

Each instruction or set of instructions is assessed as to whether it is an atomic
operation which is to be performed for the thread group as a whole (step 202,
Figure 9) until one of the threads in the thread group encounters such an atomic
operation which is to be performed for the thread group as a whole. (If the
instructions encountered by the threads do not relate to the atomic operation which
is to be performed for the thread group as a whole, after the instruction or set of
instructions have been determined not to relate to such an operation (step 202,
Figure 9), the execution of the instructions is the same as for the operations

described with reference to Figure 2.)

In the embodiment in which the atomic operation comprises a lock operation, the
lock operation program code may take the form:

While( warp mtx.try lock() );
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// execute locked work for whole warp

warp mtx.unlock() ;

In one embodiment this results in the following atomic exchange instructions (to

obtain and release the lock) being issued to the execution stage:
WATOM32.lock.AXCHG r0, rl, dO0 // rO0O — src addr, rl - dst

addr, d0 - val, p =0

WATOM32.lock.AXCHG r0, d0, d1 // r0O — src addr, d0 - dst, di

- val, p =20

The first instruction exchanges the value (e.g. it expects 0 and replaces it with 1) to
obtain the lock (equivalent to the “try_lock” instruction), and the second instruction
exchanges the value (e.g. it expects 1 as the lock is held and replaces it with 0) to

release the lock.

The instruction takes the following arguments:

atom-opc: Operation to perform

src: address whose value to modify

dst: address where the result is written
val: argument to operation

p: Operation mode: (0=lock, l=generic)

This instruction performs an atomic exchange operation with a lock across the
threads of the thread group. This operation atomically stores the result of the
operation to the destination (dst) address location for the first thread to encounter
the instruction, using an atomic compare and exchange operation to skip all the
other active threads in the thread group if the source (src) location is not set. The
operation returns the result 0 if the src location has already been set and 1

otherwise.

If the operation is an atomic add operation, e.g. without using a lock, in one

embodiment the instruction takes the form:
WATOM64 .atom.AADD r0O, rl, d0 // r0O — src addr, rl - dst

addr, dO0 - val, p =1
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This instruction atomically performs an atomic add operation on the source (src)
address location for the first active thread to encounter the instruction, with the
other active threads in the thread group using the existing result. The old value in
the source (src) address location before the operation is returned as the result of

the operation.

Returning to Figures 5, 7a, 8a and 9, when one of the threads (e.g. being executed
by the “Lane 1” execution lane 110 in Figure 7a) in the thread group encounters the
instruction (fetched from the instruction cache (step 201, Figure 9)) for the atomic
operation which is to be performed for the thread group as a whole, this is
recognised by the execution unit 102 as to be performed for the thread group as a
whole (step 202, Figure 9). The execution unit 102 then masks off the other threads
in the thread group (step 203, Figure 9), i.e. renders them inactive, as shown in

Figure 7a.

(At this stage, if the atomic operation which is to be performed for the thread group
as a whole comprises a lock operation, the lock of the data in memory being
accessed by the thread is obtained, thus effectively obtaining the lock for the thread

group as a whole.)

Data from the set of registers 103 of the execution lane 110 corresponding to the
thread active in the lockstep unit 102 (“Lane 17, Figure 7a) is then accessed (step
204, Figure 9) to be used in the atomic operation, e.g. in an arithmetic operation.
The atomic operation can then be executed by the execution lane 110 associated
with the thread (step 205, Figure 9), which generally involves performing the atomic
operation on, and writing data to, the shared memory area, using the

“load/store/atomic” pipeline 107 (step 206, Figure 9).

Once the atomic operation has been executed, the result of the operation (a
uniform result (“Atomic MSG”) 113), e.g. a modification of the register data owing to
the arithmetic operation, is written back to the set of registers 103 of each of the
execution lanes 110 of the execution stage 102 (step 207, Figure 9), as shown in
Figures 7a and 8a (apart from for any execution lanes which were masked out for

the execution of the operation for the thread group as a whole), so that the result
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can be accessed by each of the threads in the thread group when they reach the

instruction or set of instructions for the atomic operation.

After the result of the operation has been written to the set of registers 103 of the
execution lanes 110, the mask on the execution lanes 110 of the execution stage
102 is removed (step 208, Figure 9). Processing of the commands received by the
graphics processing pipeline from the application is then continued, i.e. by working
through the instructions fetched from the instruction cache, with the process
described above with reference to Figures 5, 7a, 8a and 9 being repeated

whenever an atomic operation is to be performed for the thread group as a whole.

The operation of the embodiment shown in Figure 7b is very similar to that
described for the embodiment shown in Figure 7a. The only difference is that
instead of the execution lane 110 for the thread that encounters the atomic
operation which is to be performed for the thread group as a whole, e.g. “Lane 1” as
shown in Figure 7a, being used to perform the atomic operation, the instruction or
set of instructions for the atomic operation is executed for the thread group as a
whole by the execution unit 102, thus avoiding any of the execution lanes 110
having to be masked out. Similar to the embodiment shown in Figure 7a, the result
of the atomic operation is written back to each of the set of registers 103 for the

execution lanes 110 of the execution unit 102.

The operation of the embodiment shown in Figure 7c is very similar to that
described for the embodiment shown in Figure 7b, except that instead of the
execution unit 102 executing the instruction or set of instructions, the execution of
the atomic operation is performed by a separate scalar execution unit 106 (as
shown in Figure 5). Similar to the embodiments shown in Figures 7a and 7b, the
result of the atomic operation is written back to each of the set of registers 103 for
the execution lanes 110 of the execution unit 102.

In another embodiment, as shown in Figure 8b, a shared register 111 is provided
which can be read by each of the execution lanes 110 in the execution unit 102. In
this embodiment, the step of providing the result of the atomic operation to all of the

active threads of the thread group (step 207, Figure 9) comprises writing the result
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to the shared register 111, from where it can be accessed by the execution lanes
110 for the individual threads.

It can be seen from the above that performing a warp-wide operation for a thread
group as a whole, i.e. for all the threads which are being executed in lockstep, helps
to avoid the threads deadlocking. This is because the operation is being performed
for all the threads in the thread group together, so no one thread is waiting for the
operation to complete for another thread, e.g. while accessing the memory using a

lock, before that thread can perform the operation.

Furthermore, because the operation is being performed for the thread group as a
whole and thus, e.g., making it redundant for each thread to perform the operation
individually, the processing involved, bandwidth required, data transferred and thus

power consumed is reduced.
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Claims

1. A method of operating a data processing system comprising an execution
pipeline that comprises one or more programmable execution stages which execute
instructions to perform data processing operations, and in which execution threads
are grouped together into thread groups in which the threads of the thread group
are executed in lockstep, one instruction at a time, the method comprising:
for an operation to be executed for a thread group by an execution stage of
the execution pipeline of the data processing system that comprises a memory
transaction:
issuing to the execution stage an instruction or set of instructions to
cause the execution stage to:
perform the operation for a thread group as a whole; and
to provide the result of the operation to all the active threads
of the thread group; and
the execution stage of the execution pipeline in response to the
instruction or set of instructions:
performing the operation for a thread group as a whole; and
providing the result of the operation to all the active threads

of the thread group.

2. A method as claimed in claim 1, wherein the operation to be executed for

the thread group comprises an atomic operation.

3. A method as claimed in claim 1 or 2, wherein the operation comprises a lock
operation.
4. A method as claimed in any one of the preceding claims, wherein the

execution stage of the execution pipeline performs the operation for a thread group
as a whole and provides the result of the operation to all the active threads of the
thread group by:

executing the instruction or set of instructions for one of the threads of the
thread group to perform the operation for the thread, while masking all of the

threads in the thread group apart from the thread for which the instruction or set of
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instructions is being executed, so as to make the masked threads temporarily

inactive.

5. A method as claimed in any one of claims 1 to 3, wherein the execution
stage performs the operation for a thread group as a whole and provides the result
of the operation to all the active threads of the thread group by:

performing the operation for the thread group as a whole in a separate

execution unit that is associated with the execution stage.

6. A method as claimed in any one of the preceding claims, wherein the result
of the operation is provided to all the active threads of the thread group by writing

the result to respective separate storage for each of the active threads in the thread

group.

7. A method as claimed in any one of the preceding claims, wherein the result
of the operation is provided to all the active threads of the thread group by writing

the result to shared storage that can be read by all the active threads in the thread

group.

8. A method as claimed in any one of the preceding claims, wherein the
operation to be executed for a thread group that comprises a memory transaction is
part of a program to be executed by the execution stage, and the method further
comprises:

reordering instructions in the program to be executed by the execution stage
relative to the instruction or set of instructions that perform the operation for the
thread group as a whole, before issuing the instructions for the program to the

execution stage for execution.

9. A data processing system comprising:

an execution pipeline that includes one or more programmable execution
stages which execute instructions to perform data processing operations and in
which execution threads are grouped together into thread groups in which the
threads of the group are executed in lockstep, one instruction at a time; and

a compiler that compiles programs for the execution pipeline to generate

instructions for execution stages of the execution pipeline;
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wherein the compiler is capable of, for an operation to be executed for a
thread group by an execution stage of the execution pipeline that comprises a
memory transaction:
issuing to the execution stage an instruction or set of instructions to
cause the execution stage to:
perform the operation for a thread group as a whole; and
to provide the result of the operation to all the active threads
of the thread group; and
wherein at least one execution stage of the execution pipeline is capable of,
in response to the instruction or set of instructions:
performing the operation for a thread group as a whole; and
providing the result of the operation to all the active threads of the

thread group.

10. A data processing system as claimed in claim 9, wherein the operation to

be executed for the thread group comprises an atomic operation.

11. A data processing system as claimed in claim 9 or 10, wherein the operation

comprises a lock operation.

12. A data processing system as claimed in any one of claims 9 to 11, wherein
the execution stage of the execution pipeline performs the operation for a thread
group as a whole and provides the result of the operation to all the active threads of
the thread group by:

executing the instruction or set of instructions for one of the threads of the
thread group to perform the operation for the thread, while masking all of the
threads in the thread group apart from the thread for which the instruction or set of
instructions is being executed, so as to make the masked threads temporarily

inactive.

13. A data processing system as claimed in any one of claims 9 to 11, wherein

the execution stage performs the operation for a thread group as a whole and

provides the result of the operation to all the active threads of the thread group by:
performing the operation for the thread group as a whole in a separate

execution unit that is associated with the execution stage.
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14. A data processing system as claimed in any one of claims 9 to 13, wherein
the result of the operation is provided to all the active threads of the thread group by
writing the result to respective separate storage for each of the active threads in the

thread group.

15. The data processing system as claimed in any one of claims 9 to 14,
wherein the result of the operation is provided to all the active threads of the thread
group by writing the result to shared storage that can be read by all the active

threads in the thread group.

16. A data processing system as claimed in any one of claims 9 to 15, wherein
the operation to be executed for a thread group that comprises a memory
transaction is part of a program to be executed by the execution stage, and the
compiler is capable of:

reordering instructions in the program to be executed by the execution stage
relative to the instruction or set of instructions that perform the operation for the
thread group as a whole, before issuing the instructions for the program to the

execution stage for execution.

17. A compiler that compiles programs to generate instructions for execution
stages of an execution pipeline that includes one or more programmable execution
stages that execute instructions to perform data processing operations, and in
which execution threads are grouped together into thread groups in which the
threads of the group are executed in lockstep, one instruction at a time, wherein the
compiler is capable of, for an operation to be executed for a thread group by an
execution stage of the execution pipeline that comprises a memory transaction:
issuing to the execution stage an instruction or set of instructions to:
perform the operation for the thread group as a whole; and
to provide the result of the operation to all the active threads

of the thread group.

18. A method of compiling a program to generate instructions for an execution
stage of an execution pipeline that includes one or more programmable execution

stages that execute instructions to perform data processing operations, and in
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which execution threads are grouped together into thread groups in which the
threads of the group are executed in lockstep, one instruction at a time, the method
comprising:
for an operation to be executed for a thread group by an execution stage of
the execution pipeline of the data processing system that comprises a memory
transaction:
issuing to the execution stage an instruction or set of instructions to:
perform the operation for the thread group as a whole; and
to provide the result of the operation to all the active threads

of the thread group.

19. An execution pipeline for a data processing system that includes one or
more programmable execution stages which execute instructions to perform data
processing operations, and in which execution threads may be grouped together
into thread groups in which the threads of the group are executed in lockstep, one
instruction at a time, wherein:
at least one execution stage of the execution pipeline is capable of, when
executing instructions in an instruction stream, in response to an instruction or set
of instructions in the instruction stream for executing an operation for a thread
group:
performing the operation for the thread group as a whole; and
providing the result of the operation to all the active threads of the

thread group.

20. A method of operating an execution pipeline for a data processing system
that includes one or more programmable execution stages which execute
instructions to perform data processing operations, and in which execution threads
are grouped together into thread groups in which the threads of the group are
executed in lockstep, one instruction at a time, the method comprising:
at least one execution stage of the execution pipeline, when executing
instructions in an instruction stream, in response to an instruction or set of
instructions in the instruction stream for executing an operation:
performing the operation for the thread group as a whole; and
providing the result of the operation to all the active threads of the
thread group.
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21. A computer readable storage medium storing computer software code which
when executing on a processor performs a method as claimed in any one of claims
1to 7, 18 and 20.

22. A method of operating a data processing system substantially as herein

described with reference to any one of the accompanying drawings.

23. A data processing system substantially as herein described with reference

to any one of the accompanying drawings.

24. A compiler substantially as herein described with reference to any one of the

accompanying drawings.

25. A method of operating a compiler substantially as herein described with

reference to any one of the accompanying drawings.

26. An execution pipeline substantially as herein described with reference to

any one of the accompanying drawings.

27. A method of operating an execution pipeline substantially as herein

described with reference to any one of the accompanying drawings.
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