WO 01/80005 A2

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
25 October 2001 (25.10.2001)

PCT

(10) International Publication Number

WO 01/80005 A2

(51) International Patent Classification”:
(21) International Application Number:

(22) International Filing Date:

(25) Filing Language:

(26) Publication Language:

(30) Priority Data:
09/548,525

13 April 2000 (13.04.2000)

(75)

PCT/US01/11625

10 April 2001 (10.04.2001)

English

English

(63) Related by continuation (CON) or continuation-in-part
(CIP) to earlier application:
Us
Filed on

09/548,525 (CON)
13 April 2000 (13.04.2000) (81)

(71) Applicant (for all designated States except US): GNP
COMPUTERS, INC. [US/US]; 555 East Huntington

Drive, Monrovia, CA 91016 (US).

GOG6F 11/14 (72) Inventors; and

Inventors/Applicants (for US only): ROSTOWFSKE,
Bruce, D. [US/US]; 21643 Brookside Court, Walnut,
CA 91789 (US). BUSCHER, Thomas, H. [JM/US]; 818
South Marengo Drive #106, Pasadena, CA 91106 (US).
PECK, Andrew, W. [US/US]; 300 East Bellevue Drive
#109, Pasadena, CA 91101 (US). LITSKEVITCH, Peter
G. [BY/US]; 1218 Mayflower #B, Monrovia, CA 91016
(US).

Agents: BERLINER, Brian, M. et al.; O’Melveny & My-
ers LLP, 400 South Hope Street, Los Angeles, CA 90071-
2899 (US).

Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ,
DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR,
HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR,
LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ,

[Continued on next page]

(54) Title: DISTRIBUTED COMPUTING SYSTEM CLUSTERING MODEL PROVIDING SOFT REAL-TIME RESPONSIVE-
NESS AND CONTINUOUS AVAILABILITY

26

1/0

—M

/]

1/0

—M

|

2~ PRIMARY SERVER

24—\

TUPLE
SPACE

BACK-UP SERVER

F4—\

TUPLE
SPACE

v 32

16|

HUB

HUB /

1

42~ CLIENT

44\ CLIENT

euent | -48

1/0

SIS

1/0

il

1/0

14

(57) Abstract: A distributed computing system
comprises a primary server having a primary
virtual shared memory and a back-up server
having a back-up virtual shared memory. The
primary server periodically provides a state table
to the back-up server in order to synchronize the
virtual shared memory and the back-up virtual
shared memory. A plurality of client computer

T resources are coupled to the primary server and
w the back-up server through a network architecture.

The client computer resources further comprise
plural worker processes each adapted to
36 independently perform an operation on a data
object disposed within the primary virtual shared
memory without a predetermined assignment
between the worker process and the data object.
Upon an unavailability of either the primary
server or the back-up server, the worker process

12 performs the operation on the corresponding data

CONSOLE

object disposed within the back-up virtual shared
memory. The client computer resources further
comprise plural input/output (I/O) ports adapted
to receive incoming data packets and transmit
outgoing data packets.

WO 01/80005

A2 | I A O

NO,NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM,
TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF,
CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:
— without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

WO 01/80005 PCT/US01/11625

5

10

15

20

25

30

DISTRIBUTED COMPUTING SYSTEM CLUSTERING MODEL PROVIDING
SOFT REAL-TIME RESPONSIVENESS AND CONTINUOUS AVAILABILITY

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to distributed computer processing
systems, and more particularly, to a clustering model for plural computing
units utilizing a virtual shared memory to provide real-time responsiveness
and continuous availability.

2. Description of Related Art

With the constantly increasing complexity of scientific, engineering and

commercial applications, there is a high demand for systems providing large
amounts of computing power. For many such applications, mainframe
computer systems represent a traditional solution in view of their ability to
perform enormous numbers of computations at very high speeds. Such
mainframe computers have significant drawbacks, chiefly being their high cost
due in part to their use of highly customized hardware and software
developed specifically for each particular application. Moreover, mainframe
computers cannot be easily scaled to provide additional capacity as demand
increases. An additional drawback of mainframe computers is that they
represent a single point of failure. It is necessary to provide redundant
computer systems for applications demanding a high degree of system
availability, such as telecommunications applications, thereby further
increasing the cost and complexity of such systems.

As an alternative to mainframe computer systems, distributed
computing systems have been developed in which a plurality of computing
units (e.g., personal computers or workstations) are connected to a client-
server network. In a distributed computing system, the computational power
of the overall system is derived from the aggregation of separate computing
units. The primary advantages of such distributed systems are reduced cost

and scalability, since each computing unit may be provided using standard

WO 01/80005 PCT/US01/11625

10

15

20

25

30

commercial hardware and software, and the computing system may be
expanded as necessary by simply adding more computing units to the
network. A drawback of distributed computing systems is that it is difficulf to
develop software applications that can coordinate the disparate processes
performed on the separate computing units. These processes include the
sharing of data between the computing units, the creation of multiple
execution units, the scheduling of processes, and the synchronization of the
processes. Another drawback of distributed computing systems is providing
fault tolerance. When the computing units are executing long-running parallel
applications, the probability of a failure increases as execution time or the
number of computing units increases, and the crash of a single computing unit
may cause the entire execution to fail. |

Various fault-tolerant parallel programming models have been
developed to address these and other drawbacks of distributed computing
systems. One such model is Linda, a parallel computation model based on a
virtual shared memory. In Linda, processes in an application cooperate by
communicating through the shared memory, referred to as “tuple space.”
Each “tuple” within the tuple space contains a sequence of typed data
elements that may take any of various forms, including integers, floats,
characters, arrays of data elements, and the like. Processes access tuple
space using four basic operations, including: “out” for tuple creation; “eval” for
process "creation; “in” for destructive retrieval; and “rd” for non-destructive
retrieval. An advantage of Linda is that communication and synchronization
via the tuple space are anonymous in the sense that processes do not have to
identify each other for interaction. A variant of Linda, known as Persistent
Linda or PLinda, supports fault tolerance and is applicable for using idle
computing units for parallel computation. PLinda adds a set of extensions to
the basic Linda operations that provides fault tolerance by periodically
checkpointing (i.e., saving) the tuple space to non-volatile memory (i.e., disk
storage). This way, the tuple space can be restored in the event of a

catastrophic system failure.

WO 01/80005 PCT/US01/11625

10

15

20

25

30

While such fault-tolerant parallel programming models using virtual
shared memory are advantageous for solving certain types of mathematical
and/or scientific problems, they are impractical for many other real-time
applications. Specifically, certain applications require a high level of
computation accuracy, such as analysis of high energy physics data or
calculation of pricing for financial instruments. For these applications, a lower
level of system availability to accommodate periodic maintenance, upgrades
and/or system failures is an acceptable trade-off as long as the computation
results are accurate. The Linda or PLinda programming model is well suited
for these applications. On the other hand, certain real-time applications
require a high level of system availability and can therefore accept a
somewhat lower level of computation accuracy. For example, it is acceptable
for a telecommunications server to occasionally drop a data packet as long as
the overall system remains available close to 100% of the time. Such highly
demanding availability requirements allow only a very limited amount of
system downtime (e.g., less than three minutes per year). As a result, it is
very difficult to schedule maintenance and/or system upgrades, and any sort
of global system failure would be entirely unacceptable.

Accordingly, a critical need exists for a distributed computing system
having a fault-tolerant parallel-programming model that provides real-time

responsiveness and continuous availability.

SUMMARY OF THE INVENTION

The present invention is directed to a distributed computing system that

provides real-time responsiveness and continuous availability while
overcoming the various deficiencies of the prior art.

An embodiment of the distributed computing system comprises a
primary server having a primary virtual shared memory and a back-up server
having a back-up virtual shared memory. The primary server periodically
provides a state table to the back-up server in order to synchronize the virtual
shared memory and the back-up virtual shared memory. A plurality of client
computer resources are coupled to the primary server and the back-up server
through a network architecture. The client computer resources further .

WO 01/80005 PCT/US01/11625

10

15

20

25

30

comprise plural worker processes each adapted to independently perform an
operation on a data object disposed within the primary virtual shared memory
without a predetermined assignment between the worker process and the
data object. Upon unavailability of the primary server, the worker process
performs the operation on the corresponding data object in the back-up virtual
shared memory within the back-up server. The client computer resources
further comprise plural input/output (I/O) ports adapted to receive incoming
data packets and transmit outgoing data packets.

There are plural types of worker processes, and each worker process
may be adapted to perform a distinct type of function. One type of worker
process further comprises an input worker process adapted to retrieve an
incoming data packet from an /O port and place a corresponding data object
on the primary virtual shared memory. Another type of worker process further
comprises an output worker process adapted to remove a data object from
the primary virtual shared memory and deliver a data packet to an /O port.
The remaining worker processes operate by grabbing a data object having a
predefined pattern from the said primary virtual shared memory, processing
the data object in accordance with a predefined function, and returning a
modified data object to the primary virtual shared memory.

A more complete understanding of the distributed computing system
clustering model will be afforded to those skilled in the art, as well as a
realization of additional advantages and objects thereof, by a consideration of
the following detailed description of the preferred embodiment. Reference will
be made to the appended sheets of drawings which will first be described

briefly.

BRIEF DESCRIPTION OF THE DRAWINGS
Fig. 1 is a block diagram illustrating an embodiment of the distributed

computing system clustering model in accordance with the present invention;
Fig. 2 is a logic diagram illustrating transactions involving data objects
within virtual shared memory;
Fig. 3 is a flow chart illustratihg an exemplary worker process
performed on a data object;

WO 01/80005 PCT/US01/11625

10

15

20

25

30

Fig. 4 is a flow chart illustrating an exemplary input worker process
performed on an incoming data packet; and
Fig. 5 is a flow chart illustrating an exemplary output worker process

performed on an outgoing data packet.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
The present invention satisfies the need for a distributed computing

system having a fault-tolerant, parallel-programming model that provides real-
time responsiveness and continuous availability.

Referring first to Fig. 1, a block diagram is illustrated of a distributed
computing system clustering model in accordance with an embodiment of the
present invention. The distributed computing system comprises plural nodes
including a primary server 22, a back-up server 32, and a plurality of clients (1
through N) 42, 44, 48 that are connected together in a local area network
through hubs 14, 16. The primary and back-up servers 22, 32 communicate
with each other and with the clients 42, 44, 48 using an application-data-
exchange protocol that implements the semantics of tuple space operations
(described below). This tuple space application protocol relies on and is
compatible with an underlying conventional network protocol, such as
Ethernet or Token Ring. The primary server 22, back-up server 32 and clients
42, 44, 48 each represents a communication node of the network.

Each of the communication nodes of the distributed computing system
of Fig. 1 may physically comprise a separate computing unit (e.g., personal
computer, workstation, and the like), or plural communication nodes may be
provided by a separate processes executing within a single computing unit.
For example, the primary server 22 and one or more of the clients 42, 44, 48
may actually be provided within a single computing unit. Each such
computing unit typically comprises a processor and random access memory
(RAM). As used herein, the term “processor’ is intended to broadly
encompass microprocessors, digital signal processors (DSPs), application
specific integrated circuits (ASICs), field programmable gate arrays (FPGASs),
and the like. Each of the clients 42, 44, 48, as well as the primary server 22
and the back-up server 32, further include plural input/output (//O) ports. The

WO 01/80005 PCT/US01/11625

10

15

20

25

30

I/O ports allow data and/or signals to be provided to/from the network through
any node. In turn, the /O ports may then be coupled to other external
systems, such as other computer networks or the Internet. A console 12 is
coupled to the primary and back-up servers 22, 32 through one of the nodes
14, 16, and comprises a process executing on a computing unit similar to the
clients 42, 44, 48. Unlike the clients, the console 12 provides the specific
function of allowing a user to enter management commands and information
into the network, and to monitor the operational status of the network. The
console 12 may be further coupled to an input device (e.g., keyboard, mouse,
scanner, etc.), and a video monitor or other visual display device to provide a
visual output to the user.

The primary server 22 further includes a non-volatile memory, i.e., disk
storage 26, and a random access memory (RAM) that is accessible by each
of the clients 42, 44, 48 as well as the console 12 using the tuple space
application protocol, in order to provide a virtual shared memory (also referred
to herein as tuple space) 24. Similarly, the back-up server 32 further includes
a non-volatile memory, e.g., disk storage 36, and a random access memory
(RAM) that is accessible by each of the clients 42, 44, 48 as well as the
console 12 in order to provide a back-up virtual shared memory (i.e., back-up
tuple space) 34. As will be further described below, the virtual shared
memory 24 and back-up virtual shared memory 34 each provides a space
within which data objects (i.e., tuples) may be placed. The tuples may be
heterogenous, meaning that different types of data objects may share the
virtual shared memory 24. The virtual shared memory 24 of the primary
server 22 and the back-up virtual shared memory 34 of the back-up server 32
are synchronized together by communication of a state table between the
primary server 22 and back-up server 32. The tuple space may be used as a
programming interface for a relational database, cluster database, data object
repository, and the like, and portions of the virtual shared memory 24, 34 may
rely on implementations of those database types. Whenever the state of a
tuple within the tuple space on the primary server 22 is changed, i.e., by
adding, changing or deleting a tuple, the state table is updated so that the

WO 01/80005 PCT/US01/11625

10

15

20

25

30

tuple space on the back-up server 32 reflects the change. The state table
may also be stored in the disk memory 26 to provide a pefmanent archive of
the tuple space to be accessed in the event of failure of one or both of the
primary server 22 and the back-up server 32. ,

The clients 42, 44, 48 each provide processing resources for retrieving,
storing and processing the data objects (i.e., tuples) within the tuple space.
There is no assigned relationship between the clients and the tuples, so that
any client may access any tuple as long as there is a match between the type
of worker process executing on the client and the particular tuple (described in
greater detail below). Additional processing resources may be added to the
network by simply connecting additional clients to one of the hubs 14, 16.
Moreover, the computing units that provide the clients 42, 44, 48 need not be
equal in terms of processing power and/or speed.

Referring now to Fig. 2, a logic diagram illustrates exemplary
operations involving data objects within the virtual shared memory or tuple
space 104. The tuple space 104 contains a plurality of tuples, including a first
type of tuple 122, 124, 126, 128 (represented as circles) all having a common
data format, and a second type of tuple 132, 134, 136 (represented as
squares) all having a common data format distinct from that of the first type of
tuple. Although two types of tuples are illustrated for purposes of simplicity, it
should be appreciated that there is no limit to the number of types of tuples
that may be present in the tuple space. Each type of tuple has a distinctive
data format, and may be utilized to represent a different type of information.
The logic diagram further illustrates plural worker processes 112, 114, 116,
118 that may be executing on one or more of the clients (described above).
Each worker process performs a type of operation on a tuple within the tuple
space 104. For example, worker process 112 retrieves a first type of tuple
122 from the tuple space 104, then performs some processing on the data
contained within the tuple, and then returns a second type of tuple 132 to the
tuple space 104. In the exemplary second type of tuple 132, the data
contained in the tuple has between transformed from a first state to a second

state. As described above, the primary process 106 operating on the primary

WO 01/80005 PCT/US01/11625

10

15

20

25

30

server 22 maintains the state of the tuple space 104, and provides a state
table 110 to the back-up process 108 operating on the back-up server. A
copy of the state table 110 may be transferred every time there is a change in
state of the tuple space 104.

With certain critical types of data objects, such as system configuration
settings or user account and billing information, it may be desirable to store
tuples in such a way that they can be recovered in the event of a failure of
both primary and back-up servers 22, 32. For this purpose, a tuple may be
identified as “persistent” by the worker process that creates it; the primary and
back-up servers 22, 32 store the contents of such persistent tuples in non-
volatile memory, such as disk or flash memory, in addition to the copy in the
virtual shared memory. On recovery from a failure of one or both servers, the
persistent tuples are re-constituted in virtual shared memory from the data
stored in non-volatile memory.

The operations that are performed on the tuples within the tuple space
may be grouped into transactions. More particularly, a transaction comprises
a set of operations having the properties of atomicity, isolation and durability.
Atomicity refers to the characteristic that all operations within a transaction
necessarily take effect (i.e., commit), or none execute (i.e., abort). Thus,
there can be no partial execution of a transaction. Isolation refers to the
characteristic that even if there are multiple, concurrent transactions in
progress, operations within one transaction take effect as if there were no
other transactions running at the same time. Durability refers to the
characteristic that when a transaction commits, its effects are retained in the
face of any failures that may occur later. It should be appreciated that a
transaction is only durable if the tuple is identified as being persistent, i.e., its
contents are stored on disk or other stable media. When applied properly, a
transaction ensures that desired data consistency conditions are maintained
in the tuple space, even in the event of unanticipated hardware or software
failures. This makes recovery from failures more effective (and, in some
cases, possible) than would otherwise be the case, and contributes to the

high availability of the system as will be further described below. Moreover,

WO 01/80005 PCT/US01/11625

10

15

20

25

30

the data transfer protocol between the primary and back-up servers 22, 32,
and between the clients 42, 44, 48 and the back-up server during recovery
from a failure of the primary server, ensures that the transaction properties
hold in the event of a failure of a client or the primary server.

Fig. 3 illustrates an exemplary worker process 300 that comprises a
simplified transaction. At step 302, the worker process grabs an available
tuple from the tuple space 104. This step may execute the Linda “in” or “rd”
operations whereby a typed pattern for a tuple is selected as an argument,
and a tuple is retrieved from the tuple space 104 that matches the typed
pattern in an associative manner. If the “in” operation is performed, the tuple
is destroyed, i.e., permanently removed, from the tuple space. Conversely, if
the “rd” operation is performed, a copy of the tuple remains in the tuple space.
As noted above, there is no assignment or mapping of worker processes to
the tuples, and any worker process may grab any available tuple that matches
the pattern defined by the worker process. At step 304, the data contained
within the tuple is processed in some manner by executing a predetermined
function on the data. Plural worker processes may perform the same
function, or each worker process may perform a unique function. In a
preferred embodiment of the invention, the tuple space permits multi-
threading and a single worker process may thereby perform muitiple
functions. At step 306, the worker process produces a result and returns a
new tuple to the tuple space 104. This step may execute the Linda “out”
operation whereby a sequence of typed expressions is taken as an argument.
A new tuple is constructed from the sequence, and is inserted into the tuple
space. The worker process then returns to the beginning and repeats itself.
In this manner, the worker processes will continually grab available tuples and
process them accordingly. It should be appreciated that more complex
transactions may include multiple “in,” “rd” and “out” operations.

Ordinarily, the worker processes do not maintain any state data
regarding the tuple. In the event of a failure of a worker process, any
intermediate data products formed within the process may be lost. By virtue

of the transaction properties, however, the contents of tuple space will reflect

WO 01/80005 PCT/US01/11625

10

15

20

25

30

10

either the complete intended effect of the worker process, or the conditions
that prevailed just before the worker process began to handle the transaction.
In the latter case, another worker process (of the same type) can handle the
transaction.

Since the distributed computing system is intended to operate in a real-
time processing environment, specific worker processes are provided to
perform input and output functions. Fig. 4 illustrates an exemplary input
worker process 400 with reference to the block diagram of Fig. 1. As known
in the art, an incoming data packet received at one of the 1/O ports of the
primary server 22, back-up server 32 or the clients 42, 44, 48 would be written
to a memory space that provides an input buffer. The operating systems of
the communication nodes typically include Application Program Interfaces
(API) adapted to handle the retrieval of data packets from the input buffer. At
step 402, the input worker process checks the input buffer of the I/O ports for
the presence of a received data packet. Next, at step 404, the input worker
process determines whether a data packet is present. If no data packet is
present, the input worker process will wait until a data packet arrives. When a
data packet arrives at the input buffer, the process passes to step 406 at
which the data packet is retrieved from the input buffer. Then, at step 408,
the data packet is converted into a tuple and is inserted into the tuple space
104 using a Linda “out’ operation. The input worker process then returns to
the beginning and repeats again. By operation of the input worker process,
any incoming data packets received by the distributed computing system from
an external system are moved into the tuple space 104 to enable further
processing.

Fig. 5 illustrates an exemplary output worker process 500 with
reference to the block diagram of Fig. 1. As known in the art, an outgoing
data packet to be transmitted from one of the I/O ports of the primary server
22, back-up server 32 or the clients 42, 44, 48 would be written to a memory
space that provides an output buffer. The operating systems of the
communication nodes typically include device drivers adapted to handle the
loading of outgoing data packets into the output buffer. At step 502, the

WO 01/80005 PCT/US01/11625

10

15

20

25

30

11

output worker process grabs an available tuple from the tuple space 104
using the Linda “in” operation whereby a tuple is retrieved from the tuple
space 104 that matches the typed pattern in an associative manner. Next, at
step 504, the output worker process loads a data packet containing the data
of the retrieved tuple into the output buffer. The output worker process then
returns to the beginning and repeats again. By operation of the output worker
process, any tuples that contain fully processed data are converted into data
packets and transmitted from the distributed computing system to an external
system. .

As described above, communication between any of the nodes and the
tuple space is performed in.accordance with known network protocols. In
accordance with such protocols, data frames communicated between the
nodes specify a destination address in the header of the frame. Referring
again to Fig. 1, when a client transmits a data frame to the primary server 22,
such as to write a tuple to the tuple space, the header will identify the primary
server in the frame header. The sending node starts a timer with the
transmission of the data frame. The primary server 22 will return an
acknowledgment back to the client reflecting the satisfactory receipt of the
data frame. In the event that the primary server 22 fails during the operation
of the distributed computing system, the acknowledgement will not be
returned to the sending node. If an acknowledgement is not received within a
predetermined period of time determined by the timer, the sending node will
resend the data frame specifying the back-up server 32 in the frame header.
Since the back-up tuple space 34 is identical to the primary tuple space 24,
the distributed computing system continues to operate without impact even
though the primary server 22 has failed. When the primary server 22 returns
to operational status, the back-up server 32 passes a copy of the state table
back to the primary server to again synchronize the respective tuple spaces
24, 34.

There are significant advantages to the distributed computing system
described above. Since there is no assignment between worker processes
and tuples, work units are processed as part of a virtual process thread. In

WO 01/80005 PCT/US01/11625

10

15

20

25

30

12

traditional computing architectures, a work unit is processed as part of a
predefined thread of instructions. Traditional muliitasking environments have
multiple threads of execution taking place concurrently within the same
program with each thread processing a different transaction or message. In
contrast, the tuple space of the present distributed computing system provides
a virtual process thread whereby a work unit may be acted upon or processed
by plural worker processes physically executing on different computing units.
This virtual process thread provides distinct advantages over traditional
computing architectures in terms of reliability, scalability and load balancing.

Specifically, the distributed computing system provides high reliability
and continuous availability in view of the redundant tuple spaces 24, 34 on the
primary and back-up servers 22, 32, respectively. If one of the primary and
back-up servers 22, 32 becomes unavailable, such as due to a failure or
routine maintenance, the distributed computing system keeps operating
without a noticeable impact on performance. A failure of any of the clients 42,
44, 48, or the worker processes executing thereon, would only affect the
individual tuples being processed by that client, and would have no effect on
the overall system. In the worst case, an individual incoming data packet
might be lost (e.g., corresponding to a single telephone call), which is
acceptable for many applications.

Moreover, the distributed computing system provides natural load
balancing. Since there is no assignment between worker processes and
tuples, the work available on the tuple space becomes distributed between
the available client computing resources as a natural ouigrowth of the
autonomous character of the worker processes. Similarly, additional worker
processes can be created as needed to accommodate changes in load.
individual worker processes may be adapted to provide a function of
measuring the throughput rate of data through the system, such as by
measuring the amount of time that a tuple remains in the tuple space before
being grabbed by a worker process. If the amount of time exceeds a
predetermined limit (i.e., too much work and not enough workers), the worker

process may launch an additional worker process; conversely, if the amount

WO 01/80005 PCT/US01/11625

10

15

20

25

30

13

of time is below a predetermined limit (i.e., too litle work and too many
workers), the worker process may terminate a worker process. This way, the
throughput rate can be regulated.

The nature of the data transfer protocol between the clients and the
servers, as well as the structure of the server process, permits “soft” real time
processing. Unlike “hard” real time processing in which there are strict time
limits in the processing of work units, the present distributed computing
system attempts to ensure that any delay between the receipt of a request
packet arriving at an /O port and a responsive packet being transmitted from
an 1/O port is kept below a tunable limit for most transactions. This is
accomplished by regulating the number of worker processes that are
operative on the tuple space, wherein additional worker processes are added
if processing delays exceed some predetermined limit. “Soft” real time
processing is acceptable for many types of applications that don’t require
processing within strict time limits, such as telecommunications applications.

The distributed computing system also provides a high degree of
scalability. Client computing resources can be added to the network in order
to increase the capacity of the system, limited primarily by the switching
capacity of the hubs 14, 16. Similarly, new functions can be migrated onto the
network simply by adding new or different worker processes to the client
computing resources.

It should be appreciated that the distributed computing system
described above would be particularly well suited to numerous real-time
applications. By way of example, the distributed computing system could be
adapted to operate as a telecommunications server, switch, or Service
Switching Point (SSP) that handles the switching of telephone calls between
plural trunk lines. As known in the art, narrow band switching signals are
communicated between the SSPs to identify destination and other information
associated with telephone traffic on the trunk lines. The SSPs receive the
switching signal data packets and determine the routing of the telephone
traffic in accordance with various routing algorithms. An SSP constructed in

accordance with an embodiment of the present distributed computing system

WO 01/80005 PCT/US01/11625

10

15

20

14

may include plural worker processes that execute the algorithms in
accordance with a virtual process thread. For example, the SSP may include
an input worker process that receives incoming switching signals and writes a
corresponding tuple to the tuple space. Another worker process may grab the
tuple, perform a first level of processing, and write a modified tuple to the
tuple space. Yet another worker process may grab the modified tuple,
perform a second level of processing, and write a further modified tuple to the
tuple space. Lastly, an output worker process may grab the further modified
tuple and produce an outgoing switching signal that controls the routing of the
associated telephone call. Many other real time applications would equaily
benefit from the present distributed computing system, such as Internet
protocol hubs, routers, switches, Web servers, voice processors, e-mail
servers, and the like. The present distributed computing system is particularly
well suited to high availability telecommunications applications since it allows
committed transactions to be lost occasionally in favor of recovering the
system quickly (i.e., maintaining service availability) in the event of a partial
system failure.

Having thus described a preferred embodiment of a distributed
computing system clustering model, it should be apparent to those skilled in
the art that certain advantages of the invention have been achieved. It should
also be appreciated that various modifications, adaptations, and alternative
embodiments thereof may be made within the scope and spirit of the present

invention. The invention is defined by the following claims.

WO 01/80005 PCT/US01/11625

10

15

20

25

15
CLAIMS
What is Claimed is:
1. A distributed computing system, comprising:

a primary server having a primary virtual shared memory;,

a back-up server having a back-up virtual shared memory, said
primary server periodically providing a state table to said back-up server in
order to synchronize said virtual shared memory and said back-up virtual
shared memory; and

at least one client coupled to said primary server and said back-
up server through a network, said at least one client comprising at least one
worker process adapted to independently perform an operation on at least
one data object disposed within at least one of said primary virtual shared
memory and said back-up virtual shared memory without a predetermined
assignment of said at least one worker process to said at least one data
object;

wherein, upon either of said primary server and said back-up
server being unavailable, said at least one worker process performs said
operation on said at least one data object disposed within a remaining
available one of said primary virtual shared memory and said back-up virtual

shared memory.

2. The distributed computing system of Claim 1, wherein said at
least one client further comprises plural input/output (I/O) ports adapted to
receive incoming data packets and transmit outgoing data packets.

3. The distributed computing system of Claim 2, wherein said at
least one worker process further comprises an input worker process adapted
to retrieve a data packet from at least one of said plural /O ports and place a
corresponding data object on at least one of said primary virtual shared

memory and said back-up virtual shared memory.

WO 01/80005 PCT/US01/11625

10

15

20

25

16

4, The distributed computing system of Claim 2, wherein said at
least one worker process further comprises an output worker process adapted
to remove a data object from at least one of said primary virtual shared
memory and said back-up virtual shared memory and deliver a data packet to

one of said plural I/O ports.

5. The distributed computing system of Claim 1, wherein said at
least one client further comprises software instructions executable to provide
said at least one worker process comprising:

grabbing a data object having a predefined pattern from at least
one of said primary virtual shared memory and said back-up virtual shared
memory;

processing the data object in accordance with a predefined
function; and

returning a modified data object to at least one of said primary

virtual shared memory and said back-up virtual shared memory.

6. The distributed computing system of Claim 1, wherein said
primary server further comprises a persistent storage device, said at least one

data object being selectively stored in said persistent storage device.

7. The distributed computing system of Claim 1, wherein said
primary server provides said state table to said back-up server upon the
change in state of any data object within said virtual shared memory.

8. The distributed computing system of Claim 1, wherein said at

least one data object further comprises plural types of data objects.

9. The distributed computing system of Claim 1, wherein said at

least one worker process further comprises plural types of worker processes.

WO 01/80005 PCT/US01/11625

10

15

20

25

17

10. A method for processing data, comprising:

providing a primary virtual shared memory in which plural data
objects may be placed;

providing a back-up virtual shared memory synchronized with
said virtual shared memory;,

executing a worker process on one of said plural data objects
disposed within said primary virtual shared memory without a predetermined
assignment of said worker process to said data object; and

upon said primary virtual shared memory being unavailable,
executing said worker process automatically on said data object disposed

within said back-up virtual shared memory.

11. The method of Claim 10, further comprising receiving incoming
data packets from an external network and placing a corresponding data
object on said primary virtual shared memory.

12. The method of Claim 10, further comprising removing a data
object: from said primary virtual shared memory and transmitting a

corresponding data packet to an external network.

13. The method of Claim 10, wherein said executing step further

comprises: '

grabbing a data object having a predefined pattern from said
primary virtual shared memory;

processing the data object in accordance with a predefined
function; and ‘

returning a modified data object to said primary virtual shared
memory.

14. The method of Claim 10, further comprising selectively storing at

least one of said plural data objects in a hon-volatile memory.

WO 01/80005 PCT/US01/11625
18

15. The method of Claim 10, further comprising transferring a state
table between said primary virtual shared memory and said back-up virtual

shared memory.

WO 01/80005 PCT/US01/11625

1/3
1/0 1/0
—MNM —
| l [1 ’ 32
22~ I PRIVARY SERVER BACK-UP SERVER
24\ 34\
(D TUPLE TUPLE (D
W SPACE SPACE m
26 | 36
16 ' } 14
N e we 12
‘ /
I consoLe
22~ Jcuent| s« Jeuent] | [ouent] - 48
| 2 SN
1/0 1/0 1/0

SUBSTITUTE SHEET (RULE 26)

WO 01/80005 PCT/US01/11625

2/3
FlG. 2
112 114 116 | 118
/ /
WORKER WORKER WORKER | WORKER

RETURN

RETRIEVE

128 132

134 136

TUPLE SPACE

104

106 |
\ PRIMARY BACK-UP | 108

PROCESS PROCESS

SUBSTITUTE SHEET (RULE 26)

PCT/US01/11625

WO 01/80005

3/3

906
N NMNL3Y v0S

d344nd INdLNO OINI
13A0vd YIva dvOl

NY3LIVd ¥VINOILYvd
Y SIHOLVN LVHL 3JvdS
F1dNL WOd4 F1dNL avdd

S§3004d
dIMIOM 1NdLnO

00s

e
o1y ="

mow.\\\\ OINI F1dNL 1Y3ISNI

43449 INANT WOX4
o0r

y 9l

JIvdS Fidnt

13X0Vd VIVQ 3A3TYIY

2
J18Y1IVAY

13MIVd Zo¥

13A0vd VIVQ ONINOONI
404 d344n8 INdNI MO3HI

ooy \\

SS300dd
dINIOM LNdNI

808
N NaNL3y

30vdS F1dnL 3JHL OL
JF1dnL Q3I4ICON V Nanl3y
ONV 110S3Y ¥V 39nd0dd

*Aaq.\\\\\

J1dnL 3HL 40 103780
viva JHL NO NOILONNA
(ININY31Ad3¥d 31NO3X3

Ncn.\\\\\

NY3LIVd ¥VINJLLYVd
¥ SIHOLYW LVHL 3JvdS
F1dNL WOd4 F1dnL &vdd

00¢ \\\

$S3304d
dIHIOM

SUBSTITUTE SHEET (RULE 26)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

