Office de la Propriéte Canadian CA 2598616 A1 2006/10/26
Intellectuelle Intellectual Property

du Canada Office (21) 2 598 61 6
v organisme An agency of 12y DEMANDE DE BREVET CANADIEN
d'Industrie Canada Industry Canada

CANADIAN PATENT APPLICATION

13) A1
(86) Date de depot PCT/PCT Filing Date: 2006/04/06 (51) Cl.Int./Int.Cl. GO6F 72/74 (2006.01)
(87) Date publication PCT/PCT Publication Date: 2006/10/26 | (71) Demandeur/Applicant:
(85) Entree phase nationale/National Entry: 200/7/08/21 MICROSOFT CORPORATION, US
o ST . (72) Inventeurs/Inventors:
(86) N° demande PCT/PCT Application No.: US 2006/013007 FIELD. SCOTT A. US
(87) N° publication PCT/PCT Publication No.: 2006/113167 SCHWARTZ, JONATHAN DAVID, US
(30) Priorte/Priority: 2005/04/15 (US11/106,756) (74) Agent: SMART & BIGGAR
(54) Titre : DEMARRAGE SECURISE
(54) Title: SECURE BOOT
EXECUTABLE
FILE
: 240
' LOADER
| BOOT EXECUTABLE
O . 220),
S10s ™ BLOCK = KERNEL FILE
LOCALLY
SYNTHESIZED 240
SIGNING KEY
133 210 225 230
EXECUTABLE
FILE
240
(57) Abrégée/Abstract:

Systems and methods for performing integrity verifications for computer programs to run on computing systems are provided. An
Integrity check is completed before passing execution control to the next level of an operating system or before allowing a program
to run. The integrity check involves the use of a locally stored key to determine If a program has been modified or tampered with
prior to execution. If the check shows that the program has not been altered, the program will execute and, during the boot
process, allow execution control to be transferred to the next level. If, however, the check confirms that the program has been
modified, the computing system does not allow the program to run.

,
L
X
e
e . ViNENEE
L S S \
ity K
.' : - h.l‘s_‘.}:{\: .&. - A L~
.
A

A7 /7]
o~

C an a dg http:vopic.ge.ca - Ottawa-Hull K1A 0C9 - atp.//cipo.ge.ca OPIC

OPIC - CIPO 191

13167 A2 A0 V10 P 0 01 R0 0 0 00

Y

/

\4:; dIc provi

CA 02598616 2007-08-21

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization [4

International Bureau

(43) International Publication Date
26 October 2006 (26.10.2006)

(51) International Patent Classification:
GOOF 12/14 (2006.01)

(21) International Application Number:
PCT/US2006/013007

(22) International Filing Date: 6 April 2006 (06.04.2006)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

11/106,756 15 April 2005 (15.04.2005) US

(71) Applicant (for all designated States except US): MI-
CROSOFT CORPORATION [US/US]; One Microsoft
Way, Redmond, Washington 98052-6399 (US).

(72) Inventors: FIELD, Scott A.; One Microsoft Way, Red-

mond, Washington 98052-6399 (US). SCHWARTZ,

Jonathan David; One Microsoft Way, Redmond, Wash-

ington 98052-6399 (US).

(81) Designated States (unless otherwise indicated, for every

kind of national protection available): AE, AG, AL, AM,

AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,

CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,

(54) Title: SECURE BOOT

(10) International Publication Number

WO 2006/113167 A2

GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KL,
KG, KM, KN, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV,
LY, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI,
NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG,
SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US,
UZ, VC, VN, YU, ZA, ZM, ZW.
(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
/W), BEurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EL, ES, I,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT,
RO, SE, SI, SK, TR), OAPI (BE, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant’s entitlement to apply for and be granted a
patent (Rule 4.17(ii))

as to the applicant’s entitlement to claim the priority of the
earlier application (Rule 4.17(iii))

Published:
without international search report and to be republished

upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

EXECUTABLE
FILE

240

BIOS BOOT

L OADER

220

EXECUTABLE

BLOCK

133 210

LOCALLY
SYNTHESIZED
SIGNING KEY

225

KERNEL FILE

240

230

EXECUTABLE
FILE

240

(57) Abstract: Systems and methods for performing integrity verifications for computer programs to run on computing systems

ded. An integrity check is completed before passing execution control to the next level of an operating system or before

& allowing a program to run. The integrity check involves the use of a locally stored key to determine if a program has been modified
& or tampered with prior to execution. If the check shows that the program has not been altered, the program will execute and, during
e\ the boot process, allow execution control to be transferred to the next level. If, however, the check confirms that the program has

=

o been modified, the computing system does not allow the program to run.

CA 02598616 2007-08-21

WO 2006/113167 PCT/US2006/013007

SECURE BOOT

FIELD OF THE INVENTION
[0001] The present invention is directed to operating system and computing system
security. More particularly, the invention is directed to a plurality of integrity checks at

various transfer points of a computing system with the use of a locally stored key.

BACKGROUND

[0002] Security is a major concern for any user of a computing device, which may
be any device that includes a processor that executes program code stored in memory to
perform some function. The vulnerable aspects of a computing system include, but are not
limited to, the transfer points of the boot process (e.g., points where the BIOS transfers
control of the system to the boot code) and the subsequent operation of programs that have
been previously loaded onto a computing system.

[0003] The transfer points are the points in time where control of the system 1is
transferred from one module or set of instructions of the computing device to another module
or set of instructions of the computing device. Transfer during the boot process occurs when
one module (e.g., the BIOS) has finished its tasks, at which point it passes control to the next
module, so that the next phase of the computer start-up can be initiated. Another transfer
occurs when a selected program has been given permission by the system to run.

[0004] At transfer points, a computing device is particularly vulnerable to a security
breach from a virus or other malicious code that takes control of the system by disguising
itself as reputable code. For example, a malicious program that disguises itself as the boot
program, would be given control of the entire system, prior to the operating system’s internal
safeguards having a chance to take control. Malicious code could also disguise itself by
hiding inside an otherwise reputable program. Often, the viruses are harmful and can damage
files and otherwise corrupt the computing device. Systems and methods that can determine 1f
a program is what it purports to be would go a long way toward making a computing device
more secure against viruses and other malicious code.

[0005] As one type of security against unauthorized modification of programs,
digital signatures are employed in computing systems. Well-known schemes to detect if a
program has been altered, tampered with, or modified include the use of digital signatures. A
unique representation of the program is created, through, for example, a hashing algorithm

such as the Secure Hash Algorithm (SHA 1) or MDS5, prior to execution of the program. The

_1-

CA 02598616 2007-08-21

WO 2006/113167 PCT/US2006/013007

unique representation is then signed or encrypted with a private key, which 1s provided to the
author from a trusted authority and which can verity the authenticity of the author through a
separate registration and verification process. The encrypted representation is stored with the
program as a form of a digital signature associated with the program. When the program is {0
be executed, the signature is decrypted or verified with the public key that corresponds to the
private key that was used to sign the representation of the program. A unique representation
of the program to be executed i1s formed using the same algorithm that was used for the
original program. This representation can be thought of as a confirmation. If the
confirmation matches the decrypted signature, then the program has not been tampered with
or altered and can be executed as it has been successfully verified. If, however, the
confirmation and decrypted signature do not match, the program should not be executed as
this shows it has been modified.

[0006] Of course, malicious code authors could include a signature as well. Then the
verification process would indeed verify that the code is what it purports to be. However,
malicious code authors would be loath to take such steps because most signature processes
rely on a trusted key issuing authority and introduce a sort of paper trail that can lead to the
identity of the author. In addition, this also requires paying the key issuing authority money.
So a system that requires all code that runs on it to be signed would go a long way toward
eradicating malicious code, as well as providing users visibility into who authored the code
that is present on their machine. Unfortunately, many programs currently available are not
signed for a variety of reasons such as added complexity and cost. Consequently, when a
user of a computing device receives some Sort of program, for example, the user will not be
able to verify the code and that one unverified program could be malicious and compromise
the entire computing device.

[0007] Furthermore, aside from programs selected by a user to run, the boot
programs can also be maliciously modified, resulting in problems by simply turning on or

starting a computing device.

[0008] It is not a practical option to fail to load and run programs that are not signed,
as too many existing programs would fall imnto such a classification. Hence, requiring all
programs to be signed would significantly reduce the availability of programs and would
break many legacy applications. |

[0009] It would thus be desirable to have a model that works around the above-

mentioned limitations and performs an integrity check on modules of a computing device.

29 .

CA 02598616 2007-08-21

WO 2006/113167 PCT/US2006/013007

SUMMARY OF THE INVENTION

[0010] In consideration of the above-identified and other shortcomings of the art, the
present invention provides a system and method for verifying the integrity of a module by
performing checks before transferring execution control.

[0011] A system and method for applying a locally stored signing key to an unsigned
program to ensure, on a subsequent operation, that the code has not been altered are also
provided with the present invention. The present invention provides for a local signature
being applied to programs. The signature is used to later determine if the program has been
altered between load operations. To that end, the system and method perform a function on a
program to generate a first representation of the program. The first representation is then
encrypted with the locally stored key. Preferably the first representation is generated using a
hashing function. Preferably, the locally stored key a private key from a private key/public
key pair. Before executing the program, the function is performed on the program to
oenerate a second representation. The encrypted first representation is also decrypted to
senerate a decrypted first representation. The two representations are compared to verify that

the program has not changed.

[0012] Other advantages and features of the invention are described below.

BRIEF DESCRIPTION OF THE DRAWINGS

[0013] The systems and methods for performing integrity checks throughout the
operation of a computing device, including the boot process and execution of loaded
executables, with the use of a locally stored signing key, in accordance with the present
invention are further described with reference to the accompanying drawings in which:

FIG. 1 is a block diagram of an exemplary computing environment in which the
present invention may be embodied;

FIG. 2 is a block diagram illustrating the chain of transfer control during the boot
cycle in an operating system;

FIGs. 3a-3b are flow charts illustrating an implementation of an integrity check

according to the present invention;

FIG. 4 is a block diagram representation of a program and its components used to
determine if the program has been modified; and
FIG. 5 is a flow chart depicting the use of the locally stored signing key to verify a

program.

CA 02598616 2007-08-21

WO 2006/113167 PCT/US2006/013007

DETAILED DESCRIPTION OF THE INVENTION

[0014] FIG. 1 and the following discussion provide a brief, general description of a
suitable computing environment in connection with which the present invention may be
implemented. The invention is operatioﬂal with numerous other general-purpose or special-
purpose computing system environments or configurations. Examples of well-known
computing systems, environments, and/or configurations that may be suitable for use with the
invention include, but are not limited to, personal computers, server computers, hand-held or
laptop devices, multiprocessor systems, microprocessor-based systems, set top boxes,
programmable consumer electronics, network PCs, minicomputers, mainframe computers,
distributed computing environments that include any of the above systems or devices, and the
like.

[0015] With reference to Fig. 1, an exemplary system for implementing the
invention includes a general purpose computing device in the form of a computer 110.
Components of computer 110 may include, but are not limited to, a processing unit 120, a
system memory 130, and a system bus 121 that couples various system components including
the system memory 130 to the processing unit 120. The system bus 121 may be any of
several types of bus structures including a memory bus or memory controller, a peripheral
bus, and a local bus using any of a varjety of bus architectures. By way of example, and not
limitation, such architectures include Industry Standard Architecture (ISA) bus, Micro
Channel Architecture (MCA) bus, Enhanced ISA (EISA) bus, Video Electronics Standards
Association (VESA) local bus, Peripheral Component Interconnect (PCI) bus (also known as
Mezzanine bus), and PCI Express (PCle). |

[0016] Computer 110 typically includes a variety of computer readable media.
Computer readable media can be any available media that can be accessed by computer 110
and includes both volatile and nonvolatile media, removable and non-removable media. By
way of example, and not limitation, computer readable media may comprise computer
storage media and communication media. Computer storage media includes both volatile and
nonvolatile, removable and non-removable media implemented 1n any method or technology
for storage of information such as computer readable instructions, data structures, program
modules or other data. Computer storage media includes, but is not limited to, RAM, ROM,
EEPROM, flash memory or other memory technology, CDROM, digital versatile disks
(DVD) or other optical disk storage, magnetic cassettes, magnetic tape, magnetic disk storage

or other magnetic storage devices, or any other medium which can be used to store the

-4 -

CA 02598616 2007-08-21

WO 2006/113167 PCT/US2006/013007

desired information and which can be accessed by computer 110. Communication media
typically embodies computer readable instructions, data structures, program modules or other
data in a modulated data signal such as a carrier wave or other transport mechanism and
includes any information delivery media. The term “modulated data signal” means a signal
that has one or more of its characteristics set or changed in such a manner as to encode
information in the signal. By way of example, and not limitation, communication media
‘weludes wired media such as a wired network or direct-wired connection, and wireless media
such as acoustic, RF, infrared and other wireless media. Combinations of any of the above
should also be included within the scope of computer readable media.

[0017] The system memory 130 includes computer storage media in the form of
volatile and/or nonvolatile memory such as read only memory (ROM) 131 and random
access memory (RAM) 132. A basic input/output system 133 (BIOS), containing the basic
routines that help to transfer information between elements within computer 110, such as
during start-up, is typically stored in ROM 131. RAM 132 typically contains data and/or
program modules that are immediately accessible to and/or presently being operated on by
processing unit 120. By way of example, and not limitation, Fig. 1 illustrates operating
system 134, application programs 135, other program modules 136, and program data 137.

[0018] The computer 110 may also include other removable/non-removable,
volatile/nonvolatile computer storage media. By way of example only, Fig. 1 illustrates a
hard disk drive 141 that reads from or writes to non-removable, nonvolatile magnetic media;
a magnetic disk drive 151 that reads from or writes to a removable, nonvolatile magnetic disk
152: and an optical disk drive 155 that reads from or writes to a removable, nonvolatile
optical disk 156, such as a CD-ROM or other optical media. Other removable/non-
removable, volatile/nonvolatile computer storage media that can be used in the exemplary
operating environment include, but are not limited to, magnetic tape cassettes, flash memory
cards, digital versatile disks, digital video tape, solid state RAM, solid state ROM and the
like. The hard disk drive 141 is typically connected to the system bus 121 through a non-
removable memory interface such as interface 140, and magnetic disk drive 151 and optical
disk drive 155 are typically connected to the system bus 121 by a removable memory
interface, such as interface 150.

[0019] The drives and their associated computer storage media discussed above and
illustrated in Fig. 1 provide storage of computer readable instructions, data structures,

program modules and other data for the computer 110. In Fig. 1, for example, hard disk drive

-5 -

CA 02598616 2007-08-21

WO 2006/113167 PCT/US2006/013007

141 is illustrated as storing operating system 144, application programs 145, other program
modules 146, and program data 147. Note that these components can either be the same as or
different from operating system 34, application programs 135, other program modules 136,
and program data 137. Operating system 144, application programs 145, other program
modules 146, and program data 147 are given different numbers here to illustrate that, at a
minimum, they are different copies.

[0020] A user may enter commands and information into the computer 110 through
input devices such as a keyboard 162 and pointing device 161, commonly referred to as a
mouse, trackball or touch pad. Other input devices (not shown) may include a microphone,
joystick, game pad, satellite dish, scanner, or the like. These and other input devices are
often connected to the processing unit 120 through a user input interface 160 that is coupled
to the system bus 121, but may be connected by other interface and bus structures, such as a
parallel port, game port or a universal serial bus (USB). A monitor 191 or other type of
display device is also connected to the systém bus 121 via an interface, such as a video
interface 190, which may in turn communicate with video memory 186. In addition to
monitor 191, computers may also include other peripheral output devices, such as speakers
197 and printer 196, which may be connected through an output peripheral interface 195.

[0021] The computer 110 may operate in a networked or distributed environment
using logical connections to one or more remote computers, such as a remote computer 180.
The remote computer 180 may be a personal computer, a server, a router, a network PC, a
peer device, or other common network node, and typically includes many or all of the
elements described above relative to the computer 110, although only a memory storage
device 181 has been illustrated in Fig. 1. The logical connections depicted in Fig. 1 include a
local area network (LAN) 171 and a wide area network (WAN) 173, but may also include
other networks/buses. Such networking environments are commonplace in homes, offices,
enterprise-wide computer networks, mntranets and the Internet.

[0022] When used in a LAN networking environment, the computer 110 is
connected to the LAN 171 through a network interface or adapter 170. When used in a WAN

which may be internal or external, may be connected to the system bus 121 via the user mput
interface 160, or other appropriate mechanism. In a networked environment, program

modules depicted relative to the computer 110, or portions thereof, may be stored in the

_6 -

CA 02598616 2007-08-21

WO 2006/113167 PCT/US2006/013007

remote memory storage device. By way of example, and not limitation, Fig. 1 illustrates
remote application programs 185 as residing on memory device 181. It will be appreciated
that the network connections shown are exemplary and other means of establishing a
communications link between the computers may be used.

[0023] The various techniques described herein may be implemented in connection
with hardware or software or, where appropriate, with a combination of both. Thus, the
methods and apparatus of the present invention, or certain aspects or portions thereof, may
take the form of program code (i.e., instructions) embodied in tangible media, such as tloppy
diskettes, CD-ROMs, hard drives, or any other machine-readable storage medium, wherein,
when the program code is loaded into and executed by a machine, such as a computer, the
machine becomes an apparatus for practicing the invention. In the case of program code
execution on programmable computers, the computing device generally includes a processor,
a storage medium readable by the processor (including volatile and non-volatile memory
and/or storage elements), at least one input device, and at least one output device. One or
more programs that may implement or utilize the process described in connection with the
present invention, e.g., through the use of an API, reusable controls, or the like, are preferably
implemented in a high level procedural or object oriented programming language to
communicate with a computer system. However, the program(s) can be implemented in
assembly or machine language, if desired. In any case, the language may be a compiled or
interpreted language, and combined with hardware implementations.

[0024] Although exemplary embodiments refer to utilizing the present invention in
the context of one or more stand-alone computer systems, the invention is not so limited, but
rather may be implemented in connection with any computing environment, such as a
network or distributed computing environment. Still further, the present invention may be
implemented in or across a plurality of processing chips or devices, and storage may similarly
be effected across a plurality of devices. Such devices might include personal computers,
network servers, handheld devices, supercomputers, or computers integrated into other
systems such as automobiles and airplanes.

[0025] FIG. 2 is a block diagram illustration of the transfer control during the boot
process of a computing system, according to an aspect of the present invention. The integrity
of each level is verified before transferring control to that particular level.

[0026] BIOS 133 contains the basic routines that help to transfer information
between elements within the computer 110 during start-up. As stated above, BIOS 133 1s

-7 -

CA 02598616 2007-08-21

W
O 2006/113167 PCT/US2006/013007

typically contained in the read only memory (ROM) 131 of a computer system, ensuring that
it is always available. When the computer 110 is turned on, control of the start-up process 1s
passed to BIOS 133, which controls the interaction between the operating system 134 and
various devices, such as the mouse 161, the keyboard 162, and the monitor 191. When BIOS
133 starts up the computer 110, it confirms that all of the attachments are operational before
locating the boot program that will actually load the operating system 134 into the random
access memory (RAM) 132 of the computer 110.

[0027] Boot block 210 is the sector of the disk drive 141 where the actual boot
program is located. BIOS 133 loads the boot block 210 into the RAM 132 of the computer
110. Then, after performing an integrity check (described in detail below) of the boot block
210, BIOS 133 passes control of the system to the boot block 210. The boot program in the
hoot block 210 has very limited functionality. Its task is simply to load enough of the
operating system 134 1mto the RAM 132 so that the operating system 134 can start
functioning at some rudimentary level and begin loading itself into the computing device.

[0028] To that end, the boot program loads loader 220, which is the part of the
operating system 134 that loads the rest of the operating system 134. After the operating
system 134 is fully functional, it too may locate and load various programs, such as an
application programs 135 that may be located on hard disk 141, CD ROM 156, or even on the
network 171 or 173. After locating the program, the operating system subsequently Joads the
selected program into the RAM 132, so that the program instructions can execute. A loaded
program may have its own components that also need to be loaded, and the loader 220 is also
responsible for this operation.

[0029] As noted above, the computing device verifies the integrity of various
modules that will run on the system. It does this through the use of a key. The key is stored
‘1 a secure location that could be in an encrypted portion of disk drive 141 or embedded in a
secure memory location or the like. In an embodiment of the invention, the key is assigned
and managed centrally within an enterprise by a domain controller.

[0030] In an embodiment of the invention, a locally stored key 225 is retrieved by
the loader 220. The locally stored key 225 may be unique to the computing system and may
be changed over time to further secure the system by making 1t more difficult to determine
the key value. The locally stored key 225 may be synthesized by the computing device or
placed inside the computing device, e.g., during manufacture of the computing device.

Hence, before the loader loads any portion of the operating system and passes control to it, it

-8 -

CA 02598616 2007-08-21

WO 2006/113167 PCT/US2006/013007

must first verify the operating system code. According to an aspect of the invention, each
portion of the boot sequence is signed with the locally stored key 225. Then before each
portion of the operating system is loaded, a verification is performed to ensure that the code
has been signed by at least the locally stored key 225 and that the code portion has not been
modified.

[0031] The kernel 230 is the central part of the operating system 134 and may be
thought of as the management module of the computer 110. Therefore, it is very important
that the kernel 230 not be infected with any malicious code. To allow malicious code to run
in the kernel could be disastrous. The liefnel is generally the first part of the operating system
to Toad and must also undergo verification by the local key before gaining control of the
system. The basic but essential services of the operating system are provided and managed
by the kernel 230. It is responsible for memory management, process and task management,
and disk management. Application programs 135 request various services of the kernel 230.
Typically, the kernel 230 includes an interrupt handler for handling all requests that compete
for the its services, a scheduler for determining the order of processing, and a supervisor for
allowing use of the computer 110 to complete each scheduled process. The kernel 230 is
constantly used and remains in main memory of the computer liO, and is therefore typically
loaded in a protected computer storage area. The kernel 230 performs an integrity check of
any executable files 240 before allowing the executable files 240 to run.

[0032] Executable files 240 are files that contain programs and are capable of being
executed or run as a program in the computer 110. When the executable file 240 is selected
to run, the operating system 134 executes the program. Executable files 240 may also be
referred to as binaries since the files are sequences of binary values. Nevertheless, some
other programs may be though of as executables even though they are not, strictly speaking,
binary files. For example, byte code programs could be considered executable because they
are intended to run on a computing system. Executable files 240 that are otherwise reputable
programs can be altered to contain malicious code, thus illustrating the importance of running
only those files received from a trusted source and confirming that the files have not been
modified between operations.

[0033] FIG. 2 further demonstrates the process of integrity checking the various
components during system start up. Initially, BIOS 133 checks the integrity of the boot block
910 before transferring execution control to the boot block 210. Of course, BIOS 133 is

stored in non-volatile memory and therefore cannot be modified. Therefore, integrity

-9 -

CA 02598616 2007-08-21

WO 2006/113167 PCT/US2006/013007

checking isn’t necessarily required. After control passes to boot block 210, it performs its
portion of the boot up process, namely loading loader 220, which loads the rest of the
operating system 134. Before passing control, the boot block 210 verifies the integrity of the
loader 220. Similarly, the loader loads the operating system kernel 230. But before loading
kernel 230, loader 220 verifies the integrity of the kernel 230. Thereatter, during the normal
course of operation of computing device 110, a user will execute various programs and
applications on computing device 110. Those programs and application also need to be
verified. Hence, execution control is then passed to the executable files 240 from the kernel
130 after the kernel 230 has confirmed the integrity of the executable files 240.

[0034] An aspect of the present invention provides for the loader 220 to be a
read-only copy of code available on computer readable media, such as removable, nonvolatile
optical disk 156, such as a CDROM or DVD; or removable, nonvolatile magnetic disk 152,
such as a magnetic tape cassette. The loader 220, in this embodiment, validates the integrity
of the kernel 230 from the computer readable media before transferring execution control to
the kernel 230, which is writable media. This embodiment introduces an additional safeguard
as the read-only media cannot be altered by outside virus authors.

[0035] The present invention is not limited to integrity checks of only boot programs
and executable files. Instead, the integrity checks can be performed on any program,
including, but not limited to, byte-code files, executable files, and start-up programs.

[0036] Furthermore, the present invention Is not limited to the implementation of
integrity checks before the execution of all programs on the computing system. The checks,
in accordance with the present invention, may be performed for one program or a plurality of
selected programs.

[0037] FIGs. 3a and 3b expand upon the steps shown in FIG. 2. Here, the various
steps are shown in the integrity checks being conducted before execution control 1s
transferred. Again, integrity checks are not limited to each level and are not limited to only
boot programs but can be performed on any type of program. In accordance with the
invention, examples of programs include, but are not limited to, executable files, boot and
start-up files, batch programs, and scripts. Some examples are the boot block, loader code,
kernel, and executable files or loaded images.

[0038] BIOS 133 initially has control of the start-up process and begins the process
of loading the operating system 134 into the RAM 132 after confirming the operability of
various attachments in step 300 of FIG. 3a. BIOS 133 is typically stored in non-volatile

- 10 -

CA 02598616 2007-08-21

WO 2006/113167 PCT/US2006/013007

memory and moved into volatile memory (i.e., RAM 132) during boot up of a computing
device. For that reason, BIOS 133 may not itself be verified because it is not easily altered.
Nevertheless, a pre-BIOS verification step could be performed that would subject the BIOS
to the same verification process as the other program modules that operate on computing
device 110. This would be particularly true in the case where the BIOS were stored in flash
memory or it was desirable to ensure that the BIOS itself was not replaced. In step 310, the
integrity of the boot block 210 is checked by BIOS 133. If the integrity is satisfactorily
verified in step 320, BIOS 133 loads the boot block 210 into the RAM 132 and passes
execution control of the system to the boot block 210 in step 330. If the integrity is not
confirmed, the boot cycle is stopped in step 340.

[0039] If the boot block 210 receives execution control, the boot block 210 loads the
remainder of the operating system 134 into the RAM 132 at step 350. The boot block 210
also checks the integrity of the loader 220 before passing execution control to the loader 220.
The loader 220 integrity check is performed at step 360. If loader 220 integrity 1S not
confirmed, the cycle is stopped at step 340. If the boot block 210 finds the integrity of the
loader 220 to be satisfactory, the boot block 210 transfers execution control to the loader 220
at step 370. The loader 220 is then responsible for locating and loading, nto the RAM 132, a
program which has been selected by a user to be executed. This location and load operation
occurs at step 380.

[0040] At step 390 of FIG. 3b, the loader 220 verifies the integrity of the kernel 230.
Similar to the previous integrity check, if the check confirms integrity in 400, transfer control
'« sent to the kernel 230 from the loader 220 at step 410. If the integrity is not confirmed, the
process continues to step 420, where the cycle is stopped.

[0041] At step 430, the kernel 230, now possessing execution control, determines the
integrity of the selected program. If the integrity of the program, such as a loaded 1mage or
executable file, is confirmed at step 440, then execution control of the computing system 1s
transferred to the program at step 450 so that the selected program can be executed. If the
integrity of the program is not confirmed, then the cycle is stopped at step 420 and the
program does not receive execution control.

10042] The previous flow charts illustrate how integrity checking is performed at
various transfer control points. FIG. 4 expands upon that and provides a block diagram
representation of the integrity verification process itself. A program, for example, but not

limited to, a portion of the modules involved in the boot process, the operating system or an

-11 -

CA 02598616 2007-08-21

WO 2006/113167 PCT/US2006/013007

application program, is represented by program 500. One of the objectives of the present
nvention is to determine if, on a subsequent operation, the program 500 has been altered. If
some sort of modification has occurred, the system determines that it is not safe to re-execute
the program 500. Although the process described indicates that a check is performed to
determine that a program has not changed, it may be the case that only a portion of a program
is so verified and that the system may allow for other portions of the program to change over
the course of time. This is particularly the case where the portion of the program that 1s
allowed to change contains data used by the program and not code. In such a case, it may be
determined that a portion of program 500 may legitimately change without introducing
malicious code.

[0043] Initially, a unique representation A 510 of the program 500 is created. The
unique representation may be created by any one of various functions, wherein the function
generates a compressed representation of the program 500. The representation is formed
such that it possesses a reasonable uniqueness.

[0044] One example of a function used to create the representation 510 is a hashing
algorithm. Well-known hashing algorithms include the Secure Hash Algorithm (SHA 1) and
MD5. However, other algorithms or functions for generating the representation may be
employed, and the present invention is by no means limited to any particular algorithm or
function.

[0045] The representation A 510 is then encrypted to form a digital signature 520.
The digital signature 520 represents a unique and secure representation of the program 500.
There are many well-known encryption processes. The present invention may employ, but 1s
by no means limited to, public key/private key encryption, symmetric encryption, and
asymmetric encryption.

[0046] When the digital signature 520 is decrypted, the result is the unique
representation A 510. The decryption function used corresponds to the particular encryption
function employed. For example, if the representation A 510 is encrypted using a private
key, the decryption will be generated with a public key that corresponds to the private key.

[0047] Thereafter and for subsequent load operations of the program 500, a
verification is required to determine if the program 500 has been altered. The program for
subsequent operations is denoted as confirmation 530 in FIG. 4. A unique representation of

the confirmation 530 is formed, resulting in unique representation B 540. The creation of

_12 -

CA 02598616 2007-08-21

WO 2006/113167 PCT/US2006/013007

unique representation B 540 must be analogous 10 the creation of unique representation A
510.

[0048] If unique representation B 540 matches unique representation A 510, which
is the decryption of the digital signature 520, then the confirmation 530 is the same as the
program 500. Thus, the program 500 has not been altered, and it is safe for the computing
system to load and run the program 500 If, however, unique representation B 540 does not
match unique representation A 510, then the program 500 has been altered in some way and
loading should not occur.

[0049] FIG. 5 is a flow chart demonstrating a method of using the locally stored
signing key 225 to confirm that a program 500 has not been altered and is thus permitted to
be re-executed for a subsequent operation. The method shown in FIG. 5 uses public
key/private key encryption, but other encryption methods may be employed.

[0050] When the program 500, such as the kernel 230, has been received, a unique
representation A 510 of the program 500 is created in step 600 of the method. A hashing
algorithm, or any other function that creates a compressed representation of the program 500,
may be used to create the unique representation A 510. The representation is formed such
that it possesses a reasonable uniqueness. The unique representation A 510, at step 610, 1s
then encrypted with the locally stored key 225. This key, as described in more detail above,
is unique to the machine so that the program 500 cannot be determined. The encryption
represents the digital signature 520 and 1s associated with program 500 at step 620. To that
end, the digital signature may be directly appended to program 500 or stored separately from
program 500 and the association between the program and digital signature then tracked by
other processes.

[0051] The signed program 500 is then stored until the system attempts to reload or
re-execute the program 500. When the system attempts 10 subsequently load the program
500, the encrypted digital signature 520 1s decrypted with a public key at step 630. The
public key is part of a private key/public key pair, and, in an embodiment of the present
invention, the locally stored key is the private key. As noted earlier, other encryption
schemes are contemplated such as symmetric encryption techniques.

[0052] A unique representation B 540 of the confirmation 530 is created at step 640.
This unique representation B 540 must be formed in the same manner that the representation
of the program 500 was formed at step 600. For example, the same hashing algorithm needs

to be used for both operations. The representation of the confirmation 530 is compared, at

_13 -

CA 02598616 2007-08-21
WO 2006/113167 PCT/US2006/013007

step 650, with the decryption of the digital signature 520. At step 660, the comparison 1s
checked to see if a match results. If a match does result, then at step 670, the program 500
can be loaded for a subsequent operation as a match indicates that the program 500 was not
modified and that the confirmation file 530 is actually the program 500. If the decryption,
unique representation A 510, does not match the new representation, unique representation B
540, then the operation is stopped at step 680. The mismatch shows that the program 500 has
been modified and may be corrupt.

[0053] Thus, the method ensures that only programs that have not been moditied
prior to execution will be loaded and executed on the system.

[0054] In an embodiment of the preseﬁt invention, when a user first downloads
and/or otherwise installs an application, program, or code module, the system tries to ensure
the integrity of the overall system. To that end, a program may be independently verified
using a third party signature system and trusted authority. However, 1f no such trusted
signature is available for a particular program, a user may still desire to use the particular
program code. Moreover, the user may have sufficient reason to believe the source of the
program code is a legitimate entity (or be inclined to decide to make such a judgment call).
Since the program code has no third party signature, the system will cause the code to be
signed by with the local signing key 225 so that the program code cannot be changed after it
is loaded onto computing device 110. To that end, a user of the computing system is
preferably prompted as to whether or not a program 500, such as an executable file 240, is
from a trusted source. If the user believes that the source is trustworthy, then the process
continues by the user indicating accordingly. However, if the user does not believe the
source to be trustworthy, the process will end without the program 500 being loaded or
installed on the system.

[0055] As is apparent from the gbove description, all or portions of the system and
method of the present invention may be embodied in hardware, software, or a combination
of both. When embodied in software, the methods and apparatus of the present invention, or
certain aspects or portions thereof, may be embodied in the form of program code (i.e.,
instructions). This program code may be stored on a computer-readable medium, wherein
when the program code is loaded into and executed by a machine, such as a computer 110,
the machine becomes an apparatus for practicing the invention. Computer readable media
include, but are not limited to, RAM, ROM, EEPROM, flash memory or other memory
technology, CDROM, digital versatile disks (DVD) or other optical disk storage, memory

- 14 -

CA 02598616 2007-08-21

WO 2006/113167 PCT/US2006/013007

cards, memory sticks, magnetic cassettes, magnetic tape, magnetic disk storage or other
magnetic storage devices, or any other medium which can be used to store the information
and which can be accessed by the computer 110. The program code may be implemented 1n
a high level procedural or object oriented programming language. Alternatively, the program
code can be implemented in an assembly or machine language. In any case, the program
code may be executed in compiled form or via interpretation.

[0056] As the foregoing illustrafes, the present invention is directed to systems and
methods for ensuring that only verified programs are executed on the system and that the
program code has not been modified or altered prior to execution. It is understood that
changes may be made to the embodiments described above without departing from the broad
inventive concepts thereof. For example, while the invention has been described above as
embodied in a computer 110, it is understood that the present invention may be embodied in
many other types of computing devices including, by way of example and without any
intended limitation, satellite receivers, set top boxes, arcade games, personal computers
- (PCs), portable telephones, personal digital assistants (PDAs), and other hand-held devices.
As such, the invention can be applied to a variety of forms of digital data and program code
such as simulations, images, video, audio, text, games, operating systems, application
programs or any other forms of software. Moreover, the method and system of the present
invention can easily be applied to or modified for use in controlling access to digital data and
program code over almost any type of network, distributed on almost any type of media or
via almost any type of propagation medium, including, for example, radio frequency
transmissions and optical signals, without limitation. Accordingly, it is understood that the
present invention is not limited to the particular embodiments disclosed, but 1s intended to
cover all modifications that are within the spirit and scope of the invention as defined by the

appended claims.

- 15 -

CA 02598616 2007-08-21
WO 2006/113167 PCT/US2006/013007

What is claimed i1s:

1. A method for verifying a program, comprising:
performing a function on the program to generate a first representation of the
program;
encrypting the first representation with a locally stored key;

before executing said program, performing said function on the program to

generate a second representation;

decrypting the encrypted first representation to generate a decrypted first

representation; and

comparing said second representation with said decrypted first representation;

wherein the program can be a portion of said program.
9 The method of claim 1, wherein the locally stored key is a private key.

3 The method of claim 2, wherein the decrypting step employs the use of a public key

that is associated with the private key.
4. The method of claim 1, wherein the program is a BIOS.
5 The method of claim 1, wherein the program is a loader program.
6. The method of claim 1, wherein the program is a kernel.
7 The method of claim 1, wherein the program is an executable file.

8 The method of claim 1, wherein the function is a hashing algorithm.

9. The method of claim 1, further comprising:

allowing the program to execute if the comparison of said second

representation with said decrypted first representation results in a match.

-16 -

WO 2006/113167

CA 02598616 2007-08-21

PCT/US2006/013007

10. A computer readable medium having program code stored therein for use in a system

11.

12.

13.

14.

15.

comprising a processor and a memory, the program code causing the processor 10

perform the following steps:

performing a function on a program to generate a first representation of the

program,
encrypting the first representation with a locally stored key;

before executing said program, performing said function on the program to

generate a second representation;

decrypting the encrypted first representation to gencrate a decrypted first

representation; and
comparing said second representation with said decrypted first representation;

wherein the program can be a portion of said program.

The computer readable medium of claim 10, wherein the decrypting step employs the

use of a public key that is associated with the locally stored key.
The computer readable medium of claim 10, wherein the program is a BIOS.

The computer readable medium of claim 10, wherein the program is a loader

program.
The computer readable medium of claim 10, wherein the program is a kernel.

The computer readable medium of claim 10, the program code causing the processor

to further perform the following step:

allowing the program to execute if the comparison of said second

representation with said decrypted first representation results in a match.

-17 -

CA 02598616 2007-08-21
WO 2006/113167 PCT/US2006/013007

16. A computer system comprising:
a memory;

a processor;

control code stored in a first portion of said memory comprising computer

readable instructions capable of performing the following steps:

performing a function on a program to generate a first representation of the
program,;

encrypting the first representation with a locally stored key;

before executing said program, performing said function on the program to

generate a second representation; -

decrypting the encrypted first representation to generate a decrypted first

representation; and

comparing said second representation with said decrypted first representation;

wherein the program can be a portion of the program.

17. The computer system of claim 16, wherein the decrypting step employs the use of a

public key that is associated with the locally stored key.
18. The computer system of claim 16, wherein the program is a BIOS.
19. The computer system of claim 16, wherein the program is a loader program.

20. The computer system of claim 16, wherein the program is a kernel.

_18 -

PCT/US2006/013007

6

/

CA 02598616 2007-08-21

WO 2006/113167

58T SINVHOO0Ud
NOILVYOI1ddY
3 LONTY Lol

991A9(]
291 pieoqAs) Bupulod

Gl 144
SINVYO0dd INFLSAS

NOILYOINddY | ONILLVE3dO

el

eLl

_
|
|
|
:
_
|

|
|
|
|
|
. —— - |
L/l _llalu - 091 051 aoeyiajul — - _
aoealu| | ooemoup | ArowsN OCl sa|npoN :
HOAON - OA-UO |
paly €207 {1 WIOMION nduj 19sn | aji3e|OA-UON | a|1I3e]OA-UON wesboid 19410 _
| _ _ ajqeAoclioy 9]|eAOWdY-UON _
| m A = } |
| |
———— |
S " - 17| sng waisAs uogedlddy |
L6lgioneads _ _
| =T o6t Z8r - [oer |
| 196k aoepieyu aoBHAU| mo&.n__oE_ | |
) I _m._@_._n__._mn_ _ 09PIA solyaeuio) |
: | indingo ~ - |IH! Bu1SS9201d __
| — — _
161 JOJIUON oLl o8l 3l l
AlowaN NdD | __
09pIA] 0¢ |
. _

1 h—
aa s

CA 02598616 2007-08-21

PCT/US2006/013007

WO 2006/113167

2/6

Ovc

A71aVv.LNOdX

1=

Ovc

114

=RISMANRE) &

0c¢

TANE=EA

¢ Ola

Géc

AT DONINDIS
A3ZISTHLNAS
ATIVOO

< 0cc

d434dvo |

Olc

AN00'1d
10048

ecl

Ovce

37114

F1dv.LNOdX3

SOld

WO 2006/113167

BIOS BEGINS START-UP
PROCESS

l

BIOS CHECKS
INTEGRITY OF BOOT
BLOCK

300

310

YES
h 4

LOAD BOOT BLOCK
AND TRANSFER
CONTROL TO BOOT
BLOCK 4q0

l

BOOT BLOCK LOADS
REMAINDER OF OS
AND CHECKS

INTEGRITY OF LOADER
350

YES
h 4

BOOT BLOCK

TO LOADER

TRANSFERS CONTROL

370

l

CA 02598616 2007-08-21

3/6

NO

STOP CYCLE
340

LOADS SELECTED
PROGRAM

LOADER LOCATES AND

380

NS

PCT/US2006/013007

WO 2006/113167

CA 02598616 2007-08-21

4/6

LOADER CHECKS
INTEGRITY OF KERNEL

390

PCT/US2006/013007

YES

v

LOADER TRANSFERS
EXECUTION CONTROL

TO KERNEL
410

l

KERNEL CHECKS
INTEGRITY OF

SELECTED PROGRAM
430

ANTEGRITY
OK?

440"

YES

'

RUN SELECTED
PROGRAM

450

NO

NO—————p STOP CYCLE
420

FIG. 3b

CA 02598616 2007-08-21

WO 2006/113167 PCT/US2006/013007
PROGRAM CONFIRMATION
500] 530
FUNCTION FUNClTION
UNIQUE
UE
REPREUSNEII(\?TATION A REPRESENTATION B
510 540
ENCRYPT

l

DIGITAL SIGNATURE

520
DECEYPT
UNIQUE
REPRESENTATION A
510

CA 02598616 2007-08-21
WO 2006/113167 PCT/US2006/013007

6/6

PROGRAM
500

CREATE UNIQUE

REPRESENTATION OF
PROGRAM FlG B

ENCRYPT WITH
LOCALLY STORED KEY
610

ASSOCIATE WITH CONFIRMATION
PROGRAM AND STORE
620 | 530
DR T o CREATE UNIQUE
SUBSEQUENT LOADING R AT ION
OPERATION 630 640

COMPARE
650

DO NOT RUN
PROGRAM

680

RUN
PROGRAM
670

BIOS

133

BOOT

BLOCK

210

LOADER

220 -

LOCALLY
SYNTHESIZED
SIGNING KEY

225

KERNEL

230

EXECUTABLE

FILE

240

EXECUTABLE

FILE

240

EXECUTABLE

FILE

240

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - claims
	Page 19 - claims
	Page 20 - claims
	Page 21 - drawings
	Page 22 - drawings
	Page 23 - drawings
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - abstract drawing

