wo 2011/035431 A1 1IN OO R

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) Warld ntellecuat roperty Organizaion /€525 | R0 0 U DR
International Bureau Wi 0%
(43) Int tional Publication Dat \,'/_ 2 (10) International Publication Number
nternational Publication Date N
s
31 March 2011 (31.03.2011) PCT WO 2011/035431 Al
(51) International Patent Classification: M. N. [CA/CA]; 8200 Warden Avenue, Markham, On-
GO6F 9/45 (2006.01) tario L6G 1C7 (CA).
(21) International Application Number: (74) Agent: WANG, Peter; Dept B4/U59, 3600 Stecles Av-
PCT/CA2010/001504 enue East, Markham, Ontario L3R 9Z7 (CA).

(22) International Filing Date: (81) Designated States (unless otherwise indicated, for every
22 September 2010 (22.09.2010) kind of national protection available): AE, AG, AL, AM,
25) Filing L . Enelish AOQ, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
(25) Filing Language: EUs CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
(26) Publication Language: English DZ, EC, EE, EG, ES, FIL, GB, GD, GE, GH, GM, GT,
L. HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
(30) Priority Data: KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
2,678,095 25 September 2009 (25.09.2009) CA ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
(71) Applicant (for all designated States except US): INTER- NO, NZ, OM, PE, PG, P, PL, PT, RO, RS, RU, SC, SD,
NATIONAL BUSINESS MACHINES CORPORA- SE, 8G, SK, SL, SM, ST, 8V, SY, TH, TJ, TM, TN, 1R,

TION [US/US]; New Orchard Road, Armonk, New York TT,TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW .
10504 (US). (84) Designated States (unless otherwise indicated, for every
(72) Inventors; and kind of regional protection available): ARIPO (BW, GH,
(75) Inventors/Applicants (for US only): GANDOLFI, Fed- GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG,
erico, Adrian [CA/CA]; 8200 Warden Avenue, ZM, ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,
Markham, Ontario L6G 1C7 (CA). KLARER, Robert, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,

EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, SE, SL SK,

[Continued on next page]

(54) Title: OBJECT LEVEL COMPATIBILITY AND CLASS RESIZING UTILIZING SEMANTIC VALUES

Fic. 3 (57) Abstract: A method of converting software code written in a high
g level language to a binary object on a computing device includes receiving

the software code written in the high level language at the computing de-
vice and translating at the computing device the software code to a binary

object file. Translating includes determining that the software code in-

302 cludes an item of interest that requires a value to be hard coded into the bi-

~ nary object and that the class is resizable and creating a semantic variable

to represent the hard coded value and storing the semantic variable and the
hard coded value in a table in the binary object.

Receive Code

304

S

oy

Translate next section
308

Yes

306

Contain item segments
Of interest?

A

310

Create translation

having a variable

312

Put variable name and ’,\,
Value(s) in table

WO 2011/035431 A1 W00 00O

SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, Published:

GW, ML, MR, NE, SN, TD, TG). — with international search report (Art. 21(3))

WO 2011/035431 PCT/CA2010/001504

OBJECT LEVEL COMPATIBILITY AND CLASS RESIZING
UTILIZING SEMANTIC VALUES

BACKGROUND

[0001] The present invention relates to creating executable programs for a computer

system, and more specifically, to translating software code by employing semantic values.

[0002] Computer programs are typically composed of one or more components called
binary objects. Each binary object represents a portion of the executable code, or module, that
constitutes the program of which it is a component. The binary objects are typically created by a
compiler (also called a translator) that converts software code written in a higher level language

into the binary object.

{0003] The binary objects are then linked together to compose a complete executable

program. The software tool that performs this task is called a linker.

[0004] Before a program can be run, it must be loaded into a computer's memory. The
component of the operating system that performs this task is called the program loader. For a
variety of reasons, some components of the program might not be linked to the program by the
linker. Instead, these components are added to the executable by the loader. Such components

are typically called shared objects, shared libraries, or dynamically loaded libraries.

[0005] One of the benefits of partitioning a program into a multitude of binary objects is
modularity. It is possible that the source code corresponding to one binary object can be altered
without necessitating changes to every other binary object. In particular, only the binary object
whose source code has been altered needs to be translated again, using a compiler. Unaffected

modules, including shared libraries, need not be retranslated.

[0006] The linker/loader technology that is used pervasively in contemporary operating
systems, including but not limited to AIX, Linux, Windows, and Z/OS was devised before the

advent of popular Object Oriented programming languages. As such, these languages introduce

WO 2011/035431 PCT/CA2010/001504

new complexities that are not well served by the sort of modularity that is available today.
Specifically, some activities that commonly arise in the day-to-day work of the Object Oriented
programmer require that an entire program be retranslated, not just the binary objects that are
directly affected. These activities may include but are not limited to: adding virtual functions to a
class interface; removing virtual functions from a class interface; factoring virtual functions into
the interface of a base class; adding data members to a class interface; and adding a new base

class to an existing class.

[0007] The inability to perform these activities without recompiling all of a program's
constituent binary objects, including its shared libraries, is an enormous limitation. A single
shared library may be used by many separate application programs. As a resuit should any of
these changes be made within a shared library every application program of which the shared
library is a component must also be retranslated (recompiled). This is often impossible because
the user of the application is not a skilled programmer, does not possess the appropriate software
tools, or does not have access to the program source code. Further, the user may have no control
over modules to link to in the future, or from past development. As a result, authors of shared
libraries are severely constrained with respect to the kinds of changes they can make to their
software. In some cases, these constraints make it impossible to fix even simple bugs. This is

known in the literature as the Release-to-Release Binary Compatibility (RRBC) Problem.
SUMMARY

[0008] According to one embodiment of the present invention, a method of converting
software code written in a high level language to a binary object on a computing device is
disclosed. This embodiment includes receiving the software code written in the high level
language at the computing device; and translating at the computing device the software code to a
binary object file. Translating includes determining that the software code includes an item of
interest that requires a value to be hard coded into the binary object and that the class is resizable.
Translating in this embodiment also includes creating a semantic variable to represent the hard
coded value and storing the semantic variable and the hard coded value in a table in the binary

object.

WO 2011/035431 PCT/CA2010/001504

[0009] Another embodiment of the present invention is directed to a method for creating an
executable program from a plurality of binary objects. The method of this embodiment includes
receiving a first plurality of binary objects at a computing device, at least one containing a table
of semantic variables that represent hard coded values for at least one value requiring a hard
coded value and linking the first plurality of binary objects together and replacing semantic
variables in at least one binary object with the hard coded values in the at least one table. The
method also includes loading the first plurality of binary objects into the computing device for

operation in combination with one or more additional binary objects.

[0010] Additional features and advantages are realized through the techniques of the
present invention. Other embodiments and aspects of the invention are described in detail herein
and are considered a part of the claimed invention. For a better understanding of the invention

with the advantages and the features, refer to the description and to the drawings.
BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

[0011] The subject matter which is regarded as the invention is particularly pointed out
and distinctly claimed in the claims at the conclusion of the specification. The foregoing and
other features, and advantages of the invention are apparent from the following detailed

description taken in conjunction with the accompanying drawings in which:

[0012] Fig. 1 is system diagram for a computing device according to an embodiment of

the present invention;

[0013] Fig. 2 is data-flow diagram showing an example of the processing performed by

an embodiment of the present invention;

[0014] Fig. 3 shows a method of translating according to an embodiment of the present

invention; and

[0015] Fig. 4 shows a method of linking binary objects according to an embodiment of

the present invention.

WO 2011/035431 PCT/CA2010/001504

DETAILED DESCRIPTION

[0016] Embodiments of the present invention are directed to a compiler-linker-loader
system where certain values typically written into binary objects by the compiler are instead
replaced with a variable and the value written in by either the linker or the loader at a later time.
Such a system may be especially useful for use with programs written in high level programming
languages such as C or C++. Of course the invention is not limited to use with only programs

written in C or C++ and could be used with programs written in other languages.

[0017] A conventional C++ implementation computes the following items during
execution of the translator (i.e. at compile-time): the size of any class types; the offset, within a
class of any data member; and the offset within a class' virtual table (vtable or equivalent) of any
virtual function pointer. These values are written by the translator into the object file. In the
present invention, the translator instead creates a table containing variables that are linked to the
values. The variable, rather than the value, is written in the object and the variable is used by the
linker or loader to access the table to replace the value. Accordingly, only the object files that
change the definitions of the above items need to be recompiled, rather than all parts of the

program.

[0018] Fig. 1 shows an example of a computing system on which embodiments of the
present invention may be implemented. It should be understood that the system may be
distributed and portions of the system described below may exist in different physical locations

from one another.

[0019] In this embodiment, the system 100 has one or more central processing units
(processors) 101a, 101b, 101c, etc. (collectively or generically referred to as processor(s) 101).
In one embodiment, each processor 101 may include a reduced instruction set computer (RISC)
microprocessor. Processors 101 are coupled to system memory 114 and various other
components via a system bus 113. Read only memory (ROM) 102 is coupled to the system bus
113 and may include a basic input/output system (BIOS), which controls certain basic functions

of system 100.

WO 2011/035431 PCT/CA2010/001504

[0020] Fig. | further depicts an input/output (I/O) adapter 107 and a network adapter 106
coupled to the system bus 113. /O adapter 107 may be a small computer system interface
(SCSI) adapter that communicates with a hard disk 103 and/or tape storage drive 105 or any other
similar component. 1/O adapter 107, hard disk 103, and tape storage device 105 are collectively
referred to herein as mass storage 104. A network adapter 106 interconnects bus 113 with an
outside network 116 enabling data processing system 100 to communicate with other such
systems. A screen (e.g., a display monitor) 115 is connected to system bus 113 by display
adaptor 112, which may include a graphics adapter to improve the performance of graphics
intensive applications and a video controller. In one embodiment, adapters 107, 106, and 112
may be connected to one or more I/O busses that are connected to system bus 113 via an
intermediate bus bridge (not shown). Suitable I/O buses for connecting peripheral devices such
as hard disk controllers, network adapters, and graphics adapters typically include common
protocols, such as the Peripheral Components Interface (PCI). Additional input/output devices
are shown as connected to system bus 113 via user interface adapter 108 and display adapter 112.
A keyboard 109, mouse 110, and speaker 111 all interconnected to bus 113 via user interface
adapter 108, which may include, for example, a Super /O chip integrating multiple device

adapters into a single integrated circuit.

[0021] Thus, as configured in Fig. 1, the system 100 includes processing means in the
form of processors 101, storage means including system memory 114 and mass storage 104,
input means such as keyboard 109 and mouse 110, and output means including speaker 111 and
display 115. In one embodiment, a portion of system memory 114 and mass storage 104
collectively store an operating system such as the AIX® operating system from IBM®

Corporation to coordinate the functions of the various components shown in Fig 1.

[0022] It will be appreciated that the system 100 can be any suitable computer or
computing platform, and may include a terminal, wireless device, information appliance, device,
workstation, mini-computer, mainframe computer, personal digital assistant (PDA) or other
computing device. It shall be understood that the system 100 may include multiple computing
devices linked together by a communication network. For example, there may exist a client-

server relationship between two systems and processing may be split between the two.

5

WO 2011/035431 PCT/CA2010/001504

[0023] Examples of operating systems that may be supported by the system 100 include
Windows® 95, Windows® 98, Windows NT® 4.0, Windows XP®, Windows® 2000,
Windows® CE, Windows Vista®, Mac OS, Java®, AIX®, LINUX, and UNIX®, or any other
suitable operating system. The system 100 also includes a network interface 106 for
communicating over a network 116. The network 116 can be a local-area network (LAN), a
metro-area network (MAN), or wide-area network (WAN), such as the Internet or World Wide

Web.

[0024] Users of the system 100 can connect to the network through any suitable network
interface 116 connection, such as standard telephone lines, digital subscriber line, LAN or WAN

links (e.g., T1, T3), broadband connections (Frame Relay, ATM), and wireless connections (e.g.,

802.11(a), 802.11(b), 802.11(g)).

[0025] As disclosed herein, the system 100 includes machine-readable instructions stored
on machine readable media (for example, the hard disk 104) for capture and interactive display of
information shown on the screen 115 of a user. As discussed herein, the instructions are referred
to as “software” 120. The software 120 may be produced using software development tools as
are known in the art. The software 120 may include various tools and features for providing user

interaction capabilities as are known in the art.

[0026] In some embodiments, the software 120 is provided as an overlay to another
program. For example, the software 120 may be provided as an “add-in” to an application (or
operating system). Note that the term “add-in” generally refers to supplemental program code as
1s known in the art. In such embodiments, the software 120 may replace structures or objects of

the application or operating system with which it cooperates.

{0027} Fig. 2 is a data-flow diagram showing data movement in a system according to
one embodiment. The system includes a translator 202. The translator 202 may be based on any
know compiler. The translator 202 receives one or more source code files 104 and converts each
source code file into an object file 206. Of course, the exact number of source code files may
vary and may include, for example, a shared library or other source code file used by many

applications.

WO 2011/035431 PCT/CA2010/001504

[0028] The translator 202, however, may differ from typical translator in how it creates an
object file from source code. In particular, the translator 202 may create a table 208 in each
object file containing variables that are linked to particular values that were typically hard coded
into the object file by conventional compilers. The variable, rather than the value, is written in
the object and the variable is used by the linker 210 or loader 212 to access the table at which

time the variable is replaced with the value.

[0029] The system also includes a linker 210. The linker 210 may be similar to a
conventional linker. A linker or link editor is a program that takes one or more objects 206
generated by the compiler 202 and combines them into a single executable program 212.
However, the linker 210 according to one embodiment of the present invention may be
configured such that it consults the table 208 of each object file 206 to fill in variables with static
values typically written to the object files 206 by a prior art compiler. These values are hard
coded in the executable. A hard coded value is a value that does not change. An example of
hard coded value is when a variable is assigned to specific integer. Of course, not all values that
were contained in the tables may be converted into a hard value and the executable may include

an executable variable table 214.

[0030] The system may also include a loader 216. A loader is the part of an operating
system that is responsible for loading programs from executables (i.e., executable files) into
memory, preparing them for execution and then executing them. In the prior art, a loader is
usually a part of the operating system's kernel and usually loaded at system boot time and stays in
memory until the system is rebooted, shut down, or powered off. Some operating systems that
have a pageable kernel may have the loader in the pageable part of memory and thus the loader
sometimes may be swapped out of memory. All operating systems that support program loading

have loaders.

[0031] The loader 216 according to an embodiment of the present invention operates
similar to a prior art loader. The linker 216, however, also consults the executable variable table
214 of each executable 212 to fill in variable with a hard values typically written to the object

files 206 by a prior art compiler.

WO 2011/035431 PCT/CA2010/001504

[0032] Fig. 3 shows a method of operation of the translator 202 (Fig. 2) according to one
embodiment of the present invention. At a block 302 a portion or all of the portions to be
translated are received at a translator. A translator (or compiler) is a computer program (or set of
programs) that transforms source code written in a computer language (the source language) into
another computer language (the target language, often having a binary form known as object
code). The most common reason for wanting to transform source code is to create an executable

program.

[0033] At a block 304 it is determined if there are more sections (either an entire source
code file or a section thereof) to be translated. If not, the method ends and translation is

complete.

[0034] If there is more translation to be done, the next section or file is translated at a
block 306. As part of block 306 (translation) at a block 308 it is determined if the segment
contains an item of interest. An “item of interest™ as the term is used herein shall refer to a code
segment that a prior art translator may have created a static value for during translation.
Examples of items of interest may include, but are not limited to, sizes of class types, offsets used
to access non-static data members within class objects, and virtual function table offsets. It will
be understood that a conventional C++ implementation computes the following items during
execution of the translator (i.e. at compile-time): the size of any class types; the offset, within a
class, of any data member; and the offset within a class' vtable (virtual table or equivalent) of any
virtual function pointer. These computed values are the “static” or hard coded values described

above that previously were are written by the translator into the object file.

[0035] By way of explanation, the C++ programming language allows programmers to
define program-specific datatypes through the use of classes. Instances of these datatypes are
known as objects and can contain member variables, constants, member functions, and
overloaded operators defined by the programmer. Syntactically, classes are extensions of the C
struct, which cannot contain functions or overloaded operators. The following description will
describe examples for the C-++ language but it shall be underétood that other languages are

contemplated and are within the scope of the present invention.

WO 2011/035431 PCT/CA2010/001504

[0036] At a block 310 a translation having a variable name is created. This is different

than the prior art as shown by the non-limiting following examples.

[0037] The value of a “sizeof” expression is computed by the C++ language translator at
compile time. The sizeof operator yields the size of its operand with respect to the size of type
char. A conventional C++ implementation replaces a sizeof expression with a constant value that

is equivalent to the size of its operand, counted in octets. For example, the statement:

struct S {
int datum;

}s

const size_t char_size = sizeof(S);

would have been translated into the following:

const size_t char_size = 4;

where the value “4” will be hard-coded into the binary object.

[0038] Embodiments of the present invention may differ from conventional
implementations in that, when the operand to the sizeof operator is a class type or has a class
type, the transformed expression replaces the sizeof expression with a symbolic constant, rather
than an ordinal value. For example, the translator of the present invention may translate the

above statement into;
const size t char_size =__ SYMBOL_sizeof S.

[0039] At a block 312, the hard value for __ SYMBOL_sizeof_S (4 in this example) is
stored in a table. This table is then used by the linker or loader to later insert the value 4 for the
expression ___SYMBOL_sizeof S. This allows for changes to be made in one section without
having to recompile the entire program, only the section having changes made (e.g., the object
file that was changed) to be recompiled. This alleviates some or all of the problems described

above.

WO 2011/035431 PCT/CA2010/001504

[0040] The following section describes other changes to the compiler that may be made
and how those may be understood. For example, when dynamically allocating memory (e.g., a
“new” expression) in the prior art a statement such as:

struct S {
int datum;

|5

S * sptr = new S;

may have been transformed into the statement:
struct S {
int datum;

és* sptr = ::operator new(4);

[0041] As above, the value “4” will be hard-coded into the binary object, and represents
the amount of storage requested from the memory allocator. This value is passed as an argument
to the function ::operator new, which invokes the memory allocator. Embodiments of the present
invention may differ from this conventional implementation in that, when the operand to the new V
expression is a class type, the transformed new expression passes a symbolic constant, rather than
an ordinal value as an argument to ::operator new. For example, the above statement may be

transformed according to an embodiment of the present invention to:

struct S {
int datum;

é,* sptr = ::operator new(__SYMBOL_sizeof S);

[0042] As another example, allocation of automatically-scoped objects may differ in the
present invention. In the prior art, automatically-scoped objects, including value function
parameters, are allocated on the program stack. The amount of storage reserved on the stack for a
given class object is hard-coded into the binary object. Embodiments of the present invention
may differ from conventional implementations in that, when the object to be allocated has class
type, the amount of storage reserved is determined by a symbolic constant, rather than an ordinal

value in the same manner as described above.

10

WO 2011/035431 PCT/CA2010/001504

[0043] As yet another example, consider the case of the allocation of statically-scoped
objects. Typically, class objects with static allocation are stored in memory that is set aside for
them when the program is loaded. The amount of storage to be reserved for this purpose is
specified in a section of the binary object file that exists for this purpose. For example, in the
Common Object File Format (COFF), the amount of storage to be reserved for each static class
object is specified in a .bss section of the object file. In embodiments of the present invention,
the translator encodes the .bss section (or equivalent) of the object file according to conventional
practice, except that each entry in the .bss section (or equivalent) will contain additional
information that indicates the type of the class object whose static allocation is being represented.

This additional information may be used by the program loader.

[0044] As another example, consider the case of sub-object offsets in the presence of
multiple inheritance. In the presence of multiple inheritance, it is necessary to adjust the “this”
pointer with an offset when converting the type of a class object from the most derived type to a

base type, or between base types. For example, consider the following expression:

struct Left {

int datuml;

1

struct Right {

int datum?2;

15

struct Derived: Left, Right {
int datum3;

15

void fn(Right * arg);
int main() {
Derived doby;
fn(&dobj);

}

[0045] The class object dobj in this example contains a subobject of type Left and another
subobject of type Right. A conventional C++ compiler will locate the subobject of type Left at
offset O within dobj. The subobject of type Right will be located at an offset within dobj that is
calculated as follows: Let _ SYMBOL sizeof Left be a symbolic constant that represents the

size of class type Left. Let DerivedMembers be some symbolic constant that represents the
11

WO 2011/035431 PCT/CA2010/001504

aggregate size of all of the non-static data members of class type Derived, excluding those
members inherited from its base classes. DerivedMembers also includes the size of any
alignment padding that is required. The offset of the subobject of type Right within dobj is the
sum of _SYMBOL_sizeof Left and DerivedMembers. In conventional C++ translators, this
offset is calculated as needed and is encoded directly in the object file. For example, in the call to
the function named fn(), the type of the expression &dobj must be converted from type Derived *
to type Right *. To accomplish this, the pointer represented by the expression &dobj must be
adjusted so that it represents not the address of the object dobj, but of the subobject of type Right
that dobj contains. This adjustment is achieved by adding to the address of dobj the offset of the
Right subobject with dobj. Assuming that the sizeof an int is 4, and the alignment of an int is 4,
the offset of Right within dobj is 8. Thus, a conventional C++ compiler will transform function

main(), above, into the following form:

int main() {

Derived dobj;

fn(static_cast<Right *> (&dobj + 8));
}

[0046] The offset is expressed as a numerical value directly in the generated code. In the

present invention, such offSets are not represented as ordinal values, but as symbolic constants:

int main() {

Derived dobyj;

fn(static_cast<Right *> (&dobj +

_SYMBOL _offsetof_Right_within_Derived));

}

10047) These same offsets are used in when a virtual function is invoked. However, since
the value of the offset depends on the dynamic type of the object used to dispatch the virtual
function, the offset cannot be encoded in the function call site because the dynamic type of the
object cannot be known until the program is executed. For this reason, the offset is encoded as a
“this adjustment” in the vtable. There are two common techniques for accomplishing this: (1)
each entry in the vtable is a pair consisting of a pointer to the virtual function and the appropriate

offset, or (2) the vtable consists only of a pointer to executable code; and the code referenced by

this pointer may either be the virtual function or an “adjustor thunk” in cases where the offset is
12

WO 2011/035431 PCT/CA2010/001504

nonzero - the adjustor thunk adds the correct offset to the calling object’s this pointer and then
branches to the virtual function. In either case, conventional C++ translators represent the offset
using a numeric value. In the present invention the offset is represented using a symbolic

constant, as above.

[0048] Another example may be related to dynamic cast tables. C++ implementations
generate dynamic cast tables to allow the inter-conversion of class types to be computed during
program execution. Dynamic cast tables contain subobject offsets, similar to those described. In

the present invention, these offsets are represented using symbolic constants, as above.

[0049] In addition to class sizes, conventional C++ implementations hard-code the offsets
that are used to access non-static data members within class objects. In the present invention, the
offset is represented using a symbolic constant. This technique is applied both to direct member

access and to pointers to non-static data members.

[0050] In addition, embodiments of the present invention may apply the techniques above
to the case of virtual function table offsets. Individual entries in a class’ vtable are accessed by
means of offSets into the vtable. Conventional C++ implementations hard-code these offsets into

function call sites. For example,

struct Base {

virtual void foo() const {}
virtual void bar() const {}

55

struct Derived : Base {
virtual void bar() const {}

B

int main() {

const Base & ref = Derived();
ref.bar();

}

[0051] If each vtable entry occupies 4 bytes and the pointer to the vtable is located at
offset 0 from the start of an object of class type Base or Derived, then the call to function bar() in

main() will be transformed as follows:

13

WO 2011/035431 PCT/CA2010/001504

(**((void (**)() const) (ref->0 + 4)))(ref).

[0052] The subexpression ref->0 represents the address of start of the vtable, and the
numeral 4 is the offset within the vtable of the entry representing the virtual member function

bar(). In the present invention, this numeral is replaced by a symbolic constant.

[0053] A class’ vtable may also contain Virtual Base Pointers (VBPs). These are
equivalent to the offsets of base class subobjects inside containing class objects, and are handled

as described above.

[0054] The above description details examples of replacements that may be made at block
310. It shall be understood that the values and the symbolic constants that are used to represent

them are stored in a table in the object file at a block 312,

[0055] Each of the symbolic constants identified above may be defined in one of four
tables that are located in an optional header or footer section of the object file format that has
been created at block 312. The program linker and loader may be extended according to the
present invention to allow them to read this section. In one embodiment, the four tables may
include: 1) a table of class types sizes that devotes a single row to each class type. In this table a
given row contains three items of information: the name of the symbolic constant that represents
the class type’s size, the size of the class type as determined by the language translator using the
usual method, and a flag that indicates whether the class type can be resized by the linker/loader;
2) a table of subobject offsets within containing classes, as described above. A given row
contains two items of information: the name of the symbolic constant, and the value of the offset;
3) A table of non-static data member offsets where a given row contains two items of
information: the name of the symbolic constant and the value and the value of the offset; and 4) a

table of vtable offsets.

[0056] In one embodiment, if the target executable links to no dynamic or shared
libraries, all of the symbolic constants described above may be resolved by the linker. Each
symbolic constant that appears in the executable code is replaced by the corresponding value, as
determined by the appropriate table. Since the header or footer section that contains these tables

is optional, a linker that embodies this invention can consume binary objects that contain these
14

WO 2011/035431 PCT/CA2010/001504

files as well as binary objects that do not. For this reason, an existing C++ compiler can be
extended to embody this invention, and binary objects that were created by an earlier version of
the compiler can be linked to binary objects that were created by a new version of the compiler

that generates the tables.

[0057] Fig. 4 shows a flow chart of how a linker or loader may operate according to an
embodiment of the present invention. At a block 402 the binary objects created by the translator
are received at a linker. The receipt may be from a compiler in the same or different location
than the linker. The linker examines the object files to determine if they contain any tables
according to the present invention at a block 404. In the event that tables are present, at a block
406 symbolic constants are replaced with static values by the linker. This process is described in

greater detail below. At a block 408, the linker continues to link objects as in the prior art.

[0058] As discussed above, at a block 406 symbolic constants are replaced. Normally, a
class type is defined in every program module that uses it. If a class type is modified in some
way, then every binary object corresponding to a program module that defines the class type must
be recompiled. In a conventional C++ translator/linker environment, a failure to retranslate every
module that contains a class definition after that class has been modified in some way will result
in a linktime error or program malfunction during execution. A linker according to an
embodiment of the present invention may address this problem. Consider a class definition is
modified in such a way that its size is changed, or the position of any non-static data member or
base class subobject within it is altered. The tables described above contain sufficient information
to allow a linker to detect discrepancies between binary objects with respect to the definition of a
given class type. Reconciliation of these discrepancies can be performed in any of the following
ways: 1) time and date stamp: use the information from the binary object that was most recently
created; 2) class versioning: allow the programmer to associate version numbers with her classes
by means of a pragma directive and use the information associated with the most recent version
of the class; 3) programmer interaction: allow the programmer to directly specify, when invoking
the linker, how discrepancies are to be resolved; 4) cause the version of the class definition that
results in the creation of the largest class; and 5) cause the information from the binary object that

contains the vtable corresponding to the class that is the source of the discrepancy.

15

WO 2011/035431 PCT/CA2010/001504

[0059] It should be noted that the loader may operate in the same manner as described

above for the linker in the event that the one or more shared libraries are utilized.

[0060] Of course, as one of ordinary skill in the art will realize, embodiments of the
present inventions may experience difficulties in some discrete situations. These may include,
for example, adding and removing items from polymorphic classes, function in-lining and
dealing with templates. As such, these types of classes may be marked as non-resizable and the

compiler operates on them as in the prior art.

[0061] The terminology used herein is for the purpose of describing particular
embodiments only and is not intended to be limiting of the invention. As used herein, the
singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the
context clearly indicates otherwise. It will be further understood that the terms “comprises”
and/or “comprising,” when used in this specification, specify the presence of stated features,
integers, steps, operations, elements, and/or components, but do not preclude the presence or
addition of one ore more other features, integers, steps, operations, element components, and/or

groups thereof.

[0062] The corresponding structures, materials, acts, and equivalents of all means or step
plus function elements in the claims below are intended to include any structure, material, or act
for performing the function in combination with other claimed elements as specifically claimed.
The description of the present invention has been presented for purposes of illustration and
description, but is not intended to be exhaustive or limited to the invention in the form disclosed.
Many modifications and variations will be apparent to those of ordinary skill in the art without
departing from the scope and spirit of the invention. The embodiment was chosen and described
in order to best explain the principles of the invention and the practical application, and to enable
others of ordinary skill in the art to understand the invention for various embodiments with

various modifications as are suited to the particular use contemplated

[0063] The flow diagrams depicted herein are just one example. There may be many
variations to this diagram or the steps (or operations) described therein without departing from

the spirit of the invention. For instance, the steps may be performed in a differing order or steps

16

WO 2011/035431 PCT/CA2010/001504

may be added, deleted or modified. All of these variations are considered a part of the claimed

invention.

[0064] While the preferred embodiment to the invention had been described, it will be
understood that those skilled in the art, both now and in the future, may make various
improvements and enhancements which fall within the scope of the claims which follow. These

claims should be construed to maintain the proper protection for the invention first described.

17

WO 2011/035431 PCT/CA2010/001504

CLAIMS

What is claimed is:
1. A method of converting software code written in a high level language to a binary

object on a computing device, the method comprising:

receiving the software code written in the high level language at the computing

device; and

translating at the computing device the software code to a binary object file,

translating including:

determining that the software code includes an item of interest that requires a value to

be hard coded into the binary object and that the class is resizable; and

creating a semantic variable to represent the hard coded value and storing the semantic

variable and the hard coded value in a table in the binary object.
2. The method of claim 1, wherein the high level language is C++.

3. The method of claim 1, wherein the item of interest is one of: size class type,

offsets to non-static data members and virtual function table offsets.

4, The method of claim 1, wherein the table is a table of vtable offsets.
5. The method of claim 1, wherein the table is a table of class types sizes.
6. The method of claim 1, wherein the table is a table of subobject offsets within

containing classes.

7. The method of claim 1, wherein the table is table of non-static data member
offsets.

8. The method of claim 1, wherein the table is stored in a header portion of the
binary object.

18

WO 2011/035431 PCT/CA2010/001504

9. The method of claim 8, further including:
receiving a plurality of binary objects at a linker on the computing device;
linking the plurality of binary objects to one another; and

resolving discrepancies between the table in each object having a table based on

predefined preferences.
10. The method of claim 9, wherein every binary object includes at least one table.

11. The method of claim 10, wherein at least one binary object does not include a

table.

12. The method of claim 9, wherein the predefined preferences cause newer tables to

be selected over older tables.

13. The method of claim 9, wherein the predefined preferences cause tables having

higher version numbers to be selected over tables having lower version numbers.

14, The method of claim 9, wherein the predefined preferences cause objects that
include a virtual table which is the source of discrepancy between the binary objects to be

selected over an object that does not.

15. A method for creating an executable program from a plurality of binary objects,

the method comprising:

receiving a first plurality of binary objects at a computing device, at least one containing a
table of semantic variables that represent hard coded values for at least one value requiring a hard

coded value;

linking the first plurality of binary objects together and replacing semantic variables in

at least one binary object with the hard coded values in the at least one table; and

19

WO 2011/035431 PCT/CA2010/001504

loading the first plurality of binary objects into the computing device for operation in

combination with one or more additional binary objects.

16. The method of claim 15, wherein the value requiring a hard coded value is one of:

size class type, offsets to non-static data members and virtual function table offsets.
17. The method of claim 15, wherein the at least one table is a table of vtable offsets.

18. The method of claim 15, wherein the at least one table is a table of class types

sizes.

19. The method of claim 15, wherein the at least one table is a table of subobject

offsets within containing classes.

20. The method of claim 15, wherein the at least one table is stored in a header portion

of the binary object.

20

WO 2011/035431 PCT/CA2010/001504

1/4
Fig. 1
Software 120 / 104
Tape Unit |1
+ | Hard disk 103 105 ;
CPU 101¢ o~ ;
CPU 101 ROM || RAM || /O Adapter || Communications _/\7ﬂ’9§k
CPU 101a 102 114 107 Adapter 106 116
| System Bus|
| 113!
Display
User Interface Adapter -
Adapter - 108 112
Display
Keyboard Mouse Speaker 115
109 110 1M1
AN -
—
Processing

System - 100

WO 2011/035431 PCT/CA2010/001504

2/4

Fig. 2

204 206
202
Source
Code Translator

208

216

Linker Loader

210 214

WO 2011/035431 PCT/CA2010/001504

3/4

Fig. 3

302

Receive Code [~

More
sections?

Translate next section

308
306

No .
Contain item segments

Of interest?

- 310
Create translation |~ ,

having a variable

'

Put variable name and |~ ,
Value(s) in table

312

WO 2011/035431

4/4

Fig. 4

PCT/CA2010/001504

402

Receive Binary Objects a4
404

Consult Tables /\/

'

If Tables present, replace
symbolic constants

l

Link as normal

406

408

INTERNATIONAL SEARCH REPORT

International application No.

PCT/CA2010/001504

A. CLASSIFICATION OF SUBJECT MATTER
IPC: GO6F 9/45 (2006.01)
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC(7): GOGF (2006.01)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic database(s) consulted during the international search (name of database(s) and, where practicable, search terms used)

TotalPatent™, Canadian Patent Database, IEEEXplore™, Google Scholar™, Google Patents™ and keywords: compile, hard-coded value,
without recompilation, release-to-release binary compatibility, binary component adaptation, member offset, vtable

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US5613120 (PALAY, A. et al.) 18 March 1997(18-03-1997)
*col. B, lines 2-13, 53-60; col. 8, lines 50-66, fig. 5; col. 9, lines 19-22, 47- 1
56; col. 12, lines 6-26, fig. 14, col. 15, lines 56-67*
*col. B, lines 14-21; col. 7, lines 2-7; col. 8, lines §6-66; col. 9, lines 1-11; 15
col. 12, lines 27-31*
col. 7, lines 34-40; col. 9, lines 57-58 2
col. 16, lines 7-39; col. 15, line 55-col. 19, line 30 3-7,16-19
col. 8, lines 51-63 8,20
col. 28, lines 39-50 9, 14
A US5339438 (CONNER, M. et al.) 16 August 1994(16-08-1994)
col. 1, line 58-col. 2, line 49 1,20
col. 27, line 30-co0l.34, line 68 1-20

[X] Further documents are listed in the continuation of Box C.

[X] See patent family annex.

* Special categories of cited documents :
“A” document defining the general state of the art which is not considered
to be of particular relevance
“E” earlier application or patent but published on or after the international
filing date
“L” document which may throw doubts on priorig claim(s) or which is
cited to establish the publication date of another citation or other

special reason (as specified)
document referring to an oral disclosure, use, exhibition or other means

“p” document published prior to the international filing date but later than
the priority date claime

“T” later document published after the international filing date or priority
date and not in conflict with the ap}})llic_ation but citec? to understand
the principle or theory underlying the invention

“X” document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

“Y” document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

“&” document member of the same patent family

Date of the actual completion of the international search

13 December 2010 (13-12-2010)

Date of mailing of the international search report

13 December 2010 (13-12-2010)

Name and mailing address of the ISA/CA
Canadian Intellectual Property Office

Place du Portage I, C114 - 1st Floor, Box PCT
50 Victoria Street

Gatineau, Quebec K1A 0C9

Facsimile No.: 001-819-953-2476

Authorized officer

Dan Marinescu (819) 997-1425

Form PCT/ISA/210 (second sheet) (July 2009)

Page 2 of 4

INTERNATIONAL SEARCH REPORT International application No.
PCT/CA2010/001504

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages |Relevant to claim No.

A FORMAN L. et al., Release-to-Release Binary Compatibility in SOM, 1-20
ACM SIGPLAN Notices, Volume 30 Issue 10, 17 October 1995 (17-10-
1995)

*the parts: Introduction, The SOM Model, Defining Release-to-Release
Binary Compatibility, Object-Oriented Programming, A comparison of
support in several object models*

Form PCT/ISA/210 (continuation of second sheet) (July 2009) Page 3 of 4

INTERNATIONAL SEARCH REPORT International application No.

Information on patent family members PCT/CA2010/001504
Patent Document Publication Patent Family Publication
Cited in Search Report Date Members Date
US5613120 18-03-1997 NONE
US5339438 16-08-1994 EP0546794 16-06-1993
JP5257664 08-10-1993

Form PCT/ISA/210 (patent family annex) (July 2009) Page 4 of 4

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - claims
	Page 21 - claims
	Page 22 - claims
	Page 23 - drawings
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - wo-search-report
	Page 28 - wo-search-report
	Page 29 - wo-search-report

