WO 2008/132006 A 1 |00 00 000 0 O 0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization | ‘1”1‘

International Bureau

(43) International Publication Date
6 November 2008 (06.11.2008)

) IO O OO0 O

(10) International Publication Number

WO 2008/132006 Al

(51) International Patent Classification:
GOGF 9/44 (2006.01) GOG6F 17/30 (2006.01)

(21) International Application Number:
PCT/EP2008/053916

2 April 2008 (02.04.2008)
English
English

(22) International Filing Date:
(25) Filing Language:
(26) Publication Language:

(30) Priority Data:
11/741,644 27 April 2007 (27.04.2007) US

(71) Applicant (for all designated States except US): INTER-
NATIONAL BUSINESS MACHINES CORPORA-
TION [US/US]; New Orchard Road, Armonk, New York
10504 (US).

(71) Applicant (for MG only): IBM UNITED KINGDOM
LIMITED [GB/GB]; PO Box 41, North Harbour,
Portsmouth Hampshire PO6 3AU (GB).

(72) Inventors; and
(75) Inventors/Applicants (for US only): BRODSKY,
Stephen Andrew [US/US]; 108 Mozart Avenue, Los

Gatos, California 95032 (US). SURANGE, Sonali
[IN/US]; 107 Twelveoak Hill Drive, San Rafael, Califor-
nia 94903 (US). NIN, Rebecca [US/US]; 2150 Greenwood
Avenue, Morgan Hill, California 95037 (US). AHADIAN,
Azadeh [IR/US]; 80 Descanso Drive, # 1415, San Jose,
California 95134 (US).

(74) Agent: ROBERTS, Scott; IBM United Kingdom Lim-
ited, Intellectual Property Law, Hursley Park, Winchester

Hampshire SO21 2IN (GB).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AOQ, AT, AU, AZ,BA, BB, BG, BH, BR, BW, BY, BZ, CA,
CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE,
EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID,
1L, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC,
LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN,
MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH,
PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV,
SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN,
ZA, 7M, 7ZW.

[Continued on next page]

(54) Title: RAPID APPLICATION DEVELOPMENT FOR DATABASE-AWARE APPLICATIONS

/.100
122
‘1 PROCESSOR(S) if
| 140
DATABASE DATA MODELS |1 142
i 126
’ DEVELOPMENT PROJECT J/““
STORAGE
| -120
‘ |DE TOOL Lﬂ %
121
~
‘ PROJECT FILE }/1 32
|] | -124
‘ QUERY PARSER }/‘ 34
‘ QUERY TOOL 1/1 36
MEMORY
125
__{ NETWORKING DEVICE }/

DISPLAY DEVICE

FIG. 1

(57) Abstract: Embodiments of the invention provide applica-
tion development tools that allow developers to rapidly build data-
base-aware applications and database unit tests. Embodiments of
the invention support multiple scenarios for database-aware ap-
plication development, including beginning from a database ta-
ble and automatically creating application code to access the ta-
ble, beginning from an existing database query, beginning from
existing application code that accesses a database, and hybrids or
variations of these approaches.

WO 20087132006 A1 |}/ DA 00 000001000000 00

Published:

(84) Designated States (unless otherwise indicated, for every
— with international search report

kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, — before the expiration of the time limit for amending the
7ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), claims and to be republished in the event of receipt of
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, amendments

FR, GB, GR,HR,HU, IE, IS, IT, LT, LU, LV, MC, MT, NL,

NO, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG,

CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

10

15

20

25

30

WO 2008/132006 PCT/EP2008/053916

RAPID APPLICATION DEVELOPMENT FOR DATABASE-AWARE
APPLICATIONS

FIELD OF THE INVENTION

Embodiments of the invention are related to tools used to develop application software.
More specifically, embodiments of the invention provide an intelligent integrated
development environment (IDE) tool used for rapid application development of database-

aware applications.

BACKGROUND OF THE INVENTION

Developing software applications is a complex task, and IDE tools are available to assist
computer programmers with the development process. Currently, IDE tools are available to
assist programmers developing applications in a variety of programming languages (e.g.,
Java® .net, C, C++, C#, etc.). These tools are typically configured with features such as
auto-indenting, syntax highlighting, type checking, and a variety of other features that assist
the development process. An IDE tool usually includes a text editor that visually displays
errors as source code is typed, allowing a developer to correct errors before proceeding with
the next line to code. Typically, IDE tools are optimized for different programming
languages and errors are identified based on the programming language being used by the
developer, often determined a suffix of a project file (e.g., .cpp for a c++ program or .java

for a Java® program).

Although very useful, these IDE tools have a variety of limitations. For example, IDE tools
provide little support for database statements embedded within the source code of an
application. The database statements may retrieve data from, or update/insert data into, the
database. In the program source code, database statements are usually specified as text
strings in a database query language, such as SQL. The following source code fragment

illustrates an embedded SQL query using the Java® programming language:

10

15

20

25

30

WO 2008/132006 2 PCT/EP2008/053916

public interface get data {
// create connection to database
@select sql= (“select column A, column_B from database.table™);
// execute sql statement

// process query results

Because the actual database query is enclosed within double-quotes, conventional IDE’s

treat the database statement as a text string, with no restrictions on string content.

Database-aware software applications are typically built using an application programming
interface (API) that provides a means to use native query languages (e.g., SQL used to
access relational data sources) using API calls included within program source code. For
example, the well known JDBC (Java Database Connectivity) API is a specification for
connecting programs written in the Java® programming language to a variety of

commercially-available databases.

The JDBC API allows developers to embed database statements as text strings that are
passed to a program that manages the database. Although effective, this approach may
require substantial development time, as the developer is required to write all of the
necessary source code to create a connection to a particular database, to pass the text of a
database query to the database, to receive query results, and to store the results in an object
of the application program; none of which is likely to be part of the core functions of an
application. That is, the application program typically retrieves information from the
database to perform some other logic or processing. For example, in the code fragment
listed above, only the final step of “process query results” is likely to be related to the
intended function of the application. The rest is simply overhead the developer must incur
for the database-aware application to access an external database. Similarly, the developer
must write all of the necessary source code to test cach element of the application that
accesses an external data source (i.e., each database-statement embedded within the source

code of the application). Thus, the developer spends significant time performing tasks that,

10

15

20

25

30

WO 2008/132006 3 PCT/EP2008/053916

while necessary, are unrelated to writing the source code that performs the intended

functions of an application being developed.

Moreover, the total development experience for a quality application grows exponentially
difficult as complexity of the database accesses increase. Further, as the IDE environment
does not provide database connectivity or programming assistance for the database
statements embedded within the source code of an application program, developers are
forced to juggle between various tools, spending substantial time to even get a database-
aware application up and running before writing the core of the application, resulting in

added cost to the application development process.

Accordingly, there remains a need for an IDE tool that provides rapid application

development support for database-aware applications.

SUMMARY OF THE INVENTION

Embodiments of the invention provide an intelligent integrated development environment
(IDE) tool for database-aware application development. For example, embodiments of the
invention may be used to generate a software component configured to access a specified
database using an appropriate API. The generated component may include a collection of
database queries and the appropriate API calls to create, retrieve, update, and delete records
from a given database. Once the component is generated, the developer may invoke
methods provided by the component to perform database operations without having to write
the component from scratch. By doing so, the developer may focus on the key task of
application development, instead of writing the incidental (but necessary) code used to
access the database. Additionally, the IDE tool may be configured to generate unit tests used

to evaluate the functioning of the generated component.

One embodiment of the invention includes a method for generating source code for a
database-aware software application. The method generally includes receiving, from a user
interacting with an IDE tool, a selection of a database element and generating at least one

database statements to access the database element. The method also includes encapsulating

10

15

20

25

30

WO 2008/132006 4 PCT/EP2008/053916

the at least one database statements within source code of a programming language in which
the database-aware software application is being written, storing the source code within a
project file associated with the database-aware software application, and displaying the

source code in an editing pane of the IDE tool.

Another embodiment of the invention includes a computer program product comprising a
computer useable storage medium having a computer readable program, where the computer
readable program when executed on a computer causes the computer to perform an
operation. The operation may generally include receiving, from a user interacting with an
integrated development environment (IDE) tool, a selection of a database element and
generating at least one database statements to access the database element. The operation
may also include encapsulating the at least one database statements within source code of a
programming language in which the database-aware software application is being written.
The operation may also include storing the source code within a project file associated with
the database-aware software application and displaying the source code in an editing pane of

the IDE tool.

Another embodiment of the invention includes a system having a processor and a memory
containing an IDE tool configured to generate source code for a database-aware software
application. The operation may generally include receiving, from a user interacting with an
integrated development environment (IDE) tool, a selection of a database element and
generating at least one database statements to access the database element. The operation
may also include encapsulating the at least one database statements within source code of a
programming language, wherein the user is writing the database-aware software application
in the programming language, storing the source code within a project file associated with
the database-aware software application, and displaying the source code in an editing pane

of the IDE tool.

BRIEF DESCRIPTION OF THE DRAWINGS

Preferred embodiments of the present invention will now be described, by way of example

only, with reference to the following drawings in which:

10

15

20

25

30

WO 2008/132006 5 PCT/EP2008/053916

Figure 1 illustrates an exemplary computing system, according to one
embodiment of the invention.

Figure 2 illustrates a method performed by an IDE tool configured to provide
rapid application development for database-aware applications, according to one
embodiment of the invention.

Figure 3 illustrates screenshots of an exemplary IDE tool configured to provide
database connectivity from within a development project, according to one embodiment of
the invention.

Figure 4 illustrates a screenshot of an exemplary IDE tool configured to generate
source code for a database-aware application, according to one embodiment of the invention.

Figure 5 illustrates a screenshot of an exemplary IDE tool configured to allow a
developer to specify a variety of options for generating source code for a database-aware
application, according to one embodiment of the invention.

Figure 6 illustrates a screenshot of an exemplary IDE tool configured to allow a
developer to specify mappings between elements of a database and variables defined within
the source code of a database-aware application, according to one embodiment of the
invention.

Figure 7 illustrates a method performed by an IDE tool configured to provide
rapid application development for database-aware applications, according to one
embodiment of the invention.

Figure 8 illustrates a screenshot from an exemplary IDE tool configured to
generate source code for a database-aware application, according to one embodiment of the

invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Embodiments of the invention provide application development tools that allow developers
to rapidly build database-aware applications and database unit tests. Embodiments of the
invention support multiple scenarios for database-aware application development, including
beginning from a database table and automatically creating application code to access the
table, beginning from an existing database query, beginning from existing application code

that accesses a database, and hybrids or variations of these approaches.

10

15

20

25

30

WO 2008/132006 6 PCT/EP2008/053916

Advantageously, embodiments of the invention provide automatic code generation, query
generation for multiple languages, and unit test automation, leaving the developer to spend
more time focused on designing and writing code to perform the intended functions of a
database-aware application. Further, the developer may make frequent use of unit-test
programs executed during application development, providing seamless integration of
database connectivity with the regular development process. Thus, embodiments of the
invention may significantly reduce application development and testing overhead related

Ccost.

In the following, reference is made to embodiments of the invention. However, it should be
understood that the invention is not limited to specific described embodiments. Instead, any
combination of the following features and elements, whether related to different
embodiments or not, is contemplated to implement and practice the invention. Furthermore,
in various embodiments the invention provides numerous advantages over the prior art.
However, although embodiments of the invention may achieve advantages over other
possible solutions and/or over the prior art, whether or not a particular advantage is achieved
by a given embodiment is not limiting of the invention. Thus, the following aspects,
features, embodiments and advantages are merely illustrative and are not considered
clements or limitations of the appended claims except where explicitly recited in a claim(s).
Likewise, reference to “the invention” shall not be construed as a generalization of any
inventive subject matter disclosed herein and shall not be considered to be an element or

limitation of the appended claims except where explicitly recited in a claim(s).

One embodiment of the invention is implemented as a program product for use with a
computer system. The program(s) of the program product defines functions of the
embodiments (including the methods described herein) and can be contained on a variety of
computer-readable storage media. Illustrative computer-readable storage media include, but
are not limited to: (i) non-writable storage media (e.g., read-only memory devices within a
computer such as CD-ROM disks readable by a CD-ROM drive) on which information is
permanently stored; (ii) writable storage media (e.g., writable DVDs, RW-CDs, and hard-
disk drives) on which alterable information is stored. Such computer-readable storage
media, when carrying computer-readable instructions that direct the functions of the present

invention, are embodiments of the present invention. Other media include

10

15

20

25

30

WO 2008/132006 7 PCT/EP2008/053916

communications media through which information is conveyed to a computer, such as

through a computer or telephone network, including wireless communications networks.

The latter embodiment specifically includes transmitting information to/from the Internet
and other networks. Such communications media, when carrying computer-readable
instructions that direct the functions of the present invention, are embodiments of the present
invention. Broadly, computer-readable storage media and communications media may be

referred to herein as computer-readable media.

In general, the routines executed to implement the embodiments of the invention, may be
part of an operating system or a specific application, component, program, module, object,
or sequence of instructions. The computer program of the present invention typically is
comprised of a multitude of instructions that will be translated by the native computer into a
machine-readable format and hence executable instructions. Also, programs are comprised
of variables and data structures that either reside locally to the program or are found in
memory or on storage devices. In addition, various programs described hereinafter may be
identified based upon the application for which they are implemented in a specific
embodiment of the invention. However, it should be appreciated that any particular program
nomenclature that follows is used merely for convenience, and thus the invention should not
be limited to use solely in any specific application identified and/or implied by such

nomenclature.

Additionally, an embodiment of the invention is described herein relative to an IDE tool
used to develop a database-aware software application using the Java® programming
language that includes embedded SQL statements. One of ordinary skill in the art will
readily recognize, however, that embodiments of the invention may be adapted for use with
a wide variety of programming languages used to develop database-aware applications.
Similarly, embodiments of the invention may be adapted for use with other database query

languages.

Figure 1 is a block diagram that illustrates an example view of a computing environment
100, according to one embodiment of the invention. As shown, computing environment 100

includes computer system 120. Computer system 120 is included to be representative of

10

15

20

25

30

WO 2008/132006 8 PCT/EP2008/053916

existing computer systems, e.g., desktop computers, server computers, laptop computers,
tablet computers and the like. However, embodiments of the invention are not limited to any
particular computing system, application, device, or network architecture and instead, may
be adapted to take advantage of new computing systems and platforms as they become
available. Further, although Figure 1 illustrates a single computer system, those skilled in
the art will recognize that embodiments of the invention may be adapted for use on multiple
systems configured to communicate over a network. Additionally, those skilled in the art
will recognize that the illustration of computer system 120 is simplified to highlight aspects
of the present invention and that computing systems and data communication networks

typically include a variety of additional elements not shown in Figure 1.

As shown, computer system 120 includes a processor (or processors) 122, a storage device
124, a networking device 125, and a memory 126, all connected by a bus 121. CPU 122 is a
programmable logic device that executes user applications (e.g., an IDE tool 130).
Computer system 120 may be connected to a display device 115 and at least one input
devices 117. Typically, user input devices 117 include a mouse pointing device and a
keyboard, and display device 115 is a CRT monitor or LCD display. The processing activity
and hardware resources on computer system 120 may be managed by an operating system
(not shown). Well known examples of operating systems include the Windows® operating
system, distributions of the Linux® operating system, and IBM’s 15/0OS® operating system,
among others. (Linux is a trademark of Linus Torvalds in the US, other countries, or both).
Network device 125 may connect computer system 120 to any kind of data communications

network, including both wired and wireless networks.

Storage device 126 stores application programs and data for use by computer system 120.
Typical storage devices include hard-disk drives, flash memory devices, optical media,
network and virtual storage devices, and the like. As shown, storage device 126 contains a
database 140 and a development project 144. Database 140 may store a collection of data
records organized according to a data model 142. For example, data model 142 may provide
a relational schema of tables, columns, and keys for organizing data records stored in
database 140 and accessed using SQL database statements. Development project 144

represents a collection of information used to build a software application. For example,

10

15

20

25

30

WO 2008/132006 9 PCT/EP2008/053916

development project 144 may include source code files, scripts, etc., along with resources

such as fonts, images, build-instructions, and project documentation, etc.

As shown, memory 124 stores a number of software applications, including an IDE tool 130,
a query parser 134, and a query tool 136. Also, memory 124 includes a project file 132.
Query parser 134 may be a software application configured to evaluate a database statement
for both syntactic and semantic correctness. And query tool 136 may be a software
application configured to execute a valid database statement (e.g., an SQL query). In one
embodiment, IDE tool 130 may be configured to pass database statements to query tool 136

for execution.

IDE tool 130 is a software application used to develop other software applications.
Typically, IDE tool 130 combines an editor, a compiler and other useful tools in the same
software package. In one embodiment, IDE tool 130 is configured to generate elements of
source code for a database-aware software application. For example, in one embodiment,
IDE tool 130 may generate the appropriate source code to connect to a database associated
with development project 144 along with objects that encapsulate database statements used
to create new records and to retrieve, update, and delete existing records from database 140.
Further, IDE tool 130 may generate all of the necessary source code allowing the developer
to invoke these operations from within application source code (e.g., a collection of Java®

methods exposed through an interface provided by a Java® bean object).

Additionally, IDE tool 130 may be configured to generate and execute unit tests to test the
functionality of the database-aware application as it is being developed. Thus, unlike
conventional development methodologies where the database statements are only tested
when the application is built and executed, embodiments of the present invention allow

database testing to become an integrated part of the database software development process.

In another embodiment, IDE tool 130 may also be configured to generate database-aware
application code around an existing query. Building an application for a known, often
highly-customized and complex database query is a common requirement. The query itself
can be a combination of various languages (e.g., SQL, xquery, java host variables). Writing

a database-aware application around such a query requires the developer to have full

10

15

20

25

30

WO 2008/132006 10 PCT/EP2008/053916

knowledge of each language and the metadata and/or data model associated with the syntax
of cach database language (e.g., SQL, xquery, java) and the parser technologies. IDE tool
130 hides this complexity from the developer by generating an application around such an

existing query.

Project file 132 represents a file included in development project 144 that is being edited by
a developer using IDE tool 130, e.g., a source code file of a database aware software
application. IDE tool 130 may display the text of the source code to the developer on
display device 115 and provide an interface that allows the user to edit project file 132. In
one embodiment, database-aware application source code generated by IDE tool 130 may be

stored in project file 132.

Figures 2-6 illustrate an embodiment of IDE tool 130 configured to generate database access
code for an existing database. Figures 7-8 illustrate an embodiment of IDE tool 130

configured to generate database access code around a pre-existing database query.

Figure 2 illustrates a method 200 that may be performed by IDE tool 130 to provide rapid
application development for database-aware applications, according to one embodiment of
the invention. As shown, the method begins at step 205 where IDE tool 130 receives
parameters related to an existing database to associate with a development project (e.g.,
development project 140). For example, Figure 3 illustrates screenshots of an exemplary
IDE tool configured to provide database connectivity from within a development project. In
the example of Figure 3, a developer has created a development project 325 with the name
“MylJavaPrj.” When a developer right-clicks on this project, IDE tool 130 may respond by
displaying a menu like menu 312 Illustratively, menu 213 includes a menu item 320 labeled
“add database connection to current project.” By selecting menu item 320, a user may cause
IDE tool 130 to display a dialog box like dialog box 305. Dialog box 305 includes a list of
available connections 310 and a table 315 a set of properties associated with a currently-

highlighted database connection.

Once the developer specifies the properties of a desired database connection, then at step
210, IDE tool 130 may establish a connection with the database specified at step 205.

Additionally, IDE tool 130 may associate the parameters of the database connection with

10

15

20

25

30

WO 2008/132006 11 PCT/EP2008/053916

development project 144. IDE tool 130 provides ease of use so that information needed for
executing such a test program such as a connection URL, user name and/or password does
not need to be provided manually by the developer. Thus, the developer may save the
development project and resume it at a later time without also having to recreate the database

connection for a given project.

At step 215, IDE tool 130 may obtain a data model (e.g., data model 142) for the database
associated with the database project. For example, a data model for a relational database
includes a collection of tables, columns names, column data types, keys (i.e., table-to-table
relationships) etc. Additionally, in one embodiment, the IDE tool need not maintain an
active connection to a database. Instead, IDE tool 130 may cache the data model obtained at
step 215, and update it either periodically or as specified by the developer. Thus, a
developer may work offline or disconnected when building the database-aware application.
This may be useful where the database-aware application being developed is associated with
a “live” or “production” database and maintaining an open connection would be disruptive

of the “production” use of the database.

At step 220, once the data model for a given database is obtained, IDE tool 130 may be
configured to display elements of the data model as part of the development project. For
example, IDE tool 130 may present a tree-like hierarchy beginning from a database name
which when expanded lists each table present in the data model. In turn, each table may be
expanded to show each of the columns present in a given table. Thus, the database
connection may be used to integrate components of database structure as part of a given

development project.

Further, as described in greater detail below, IDE tool 130 may be configured to generate
application source code to access data records in the database. Returning to method 200 of
Figure 2, at step 225, the IDE tool 130 may receive a selection of a database element. In
response, IDE tool 130 may generate application code to connect with and access the
selected database element. For example, IDE tool may generate a set of database statements
encapsulated within API calls to access records from a relational table. Figure 4 illustrates a
screenshot 400 of an exemplary IDE tool configured to generate source code for a database-

aware application, according to one embodiment of the invention.

10

15

20

25

30

WO 2008/132006 12 PCT/EP2008/053916

Ilustratively, screenshot 400 shows a tree hierarchy 405 that includes elements of a database
associated with a development project. Specifically, a database named “SSURANGE”
includes a number of tables. Tree hierarchy 405 includes a database table 410 named
“MYDEPARTMENT.” Further, information related to the columns, constraints,

dependencies, indexes, and triggers is available for database table 410 in tree hierarchy 405.

In this example, screenshot 400 shows the interface of IDE tool 130 being used to select a
database table and have IDE tool 130 generate application source code used to access the
selected table. Specifically, a user has right-clicked on table 410, and in response, IDE tool
130 has displayed menu 415. By selecting menu item 420, a user may cause IDE tool 130 to
display a dialog box like dialog box 430. In this example, dialog box 430 allows a developer
to specify a name 425 for a project file to be created along with other information related to
the application source code to be generated. Additionally, in one embodiment, a user may
specify additional options or parameters for the application code to be generated. For
example, Figure 5 illustrates a screenshot 500 of an exemplary IDE tool configured allow a
developer to specify a variety of options for generating source code for a database-aware
application. Illustratively, this example is based on an IDE tool configured to generate a
Java® bean object that accesses a relational database table. Of course, embodiments of the

invention may be adapted for use with other programming languages and types of database.

As shown, a developer has used a radio button 505 to specify whether the fields of the Java®
bean to be generated are “public” or “protected” and has used checkboxes 510 to specify
which SQL queries IDE tool 130 should generate and encapsulate within the Java® bean to
be generated. In this case, the developer has selected a global “generate all SQL statements”
option. Thus, queries are created to create, retrieve, update, and delete records from the
database. Further, queries for each of these operations are created at the table, parameter,

and record level of the underlying database.

The example shown in Figures 4 and 5 illustrate a developer selecting a single database
table. However, when more than one table is selected, IDE tool 130 may be configured to
determine relationships that may exist and propose join statements used to combine

information from (or store information in) multiple database tables. IDE tool 130 may use

10

15

20

25

30

WO 2008/132006 13 PCT/EP2008/053916

the SQL model metadata (i.e., data model 142 of Figure 1) for this process. In one
embodiment, default database queries and methods are provided as suggestions and the
developer may chose to generate one of all of the statements and integrated query editing

tools, allowing productive customization of these default queries.

In one embodiment, IDE tool 130 may allow developer customizations to improve code
readability and/or compliance to coding standards where applicable by providing developers
with the ability to specify object names (a label used within application source code) from
schema names (a label used within a relational database). A mapping may be generated to
link two related labels. For example, Figure 6 illustrates a screenshot 600 of an exemplary
IDE tool configured to allow a developer to specify mappings between elements of a
database and program variables defined within the source code of a database-aware
application, according to one embodiment of the invention. As shown, screenshot 600
includes a table 610 listing mapping between a column in a database table and an object filed
name within a Java® bean object. For example, the column 615 named “ADMRDEPT”
maps to the bean field name 620 of “admrdept _change.” In one embodiment, IDE tool may

use the Java® programming language construct of an annotation to manage these links.

Returning to the method 200 of Figure 2, at step 230, once the developer has specified all of
the desired parameters and options, IDE tool 130 may be configured to generate application
source code to access the elements of the database specified at steps 205 and 225. For
example, IDE tool 130 may generate source code to create a database connection, generate
host variables mapping to columns and fields of the database, and methods that pass queries
to the database over the database connection. In one embodiment, IDE tool 130 may be
configured to generate source code based on a particular API, e.g., the JDBC API which
allows an application written in the Java® programming language to establish a connection

with a database and to transmit and receive query results from the database.

Optionally, at step 235, IDE tool 130 may also generate unit test code that the developer may
use to evaluate the application code generated at step 230. That is, developers can chose to
generate sample programs and unit tests that exercise all or some parts of the code generated
at step 230. Thus, developers do not have to write a single line of code to effectively test

portions of a database aware application, and can instead test database access by an

10

15

20

25

30

WO 2008/132006 14 PCT/EP2008/053916

application with one click. The IDE tool 130 may generate unit tests to test each of the
create, retrieve, update, and delete methods generated by the IDE tool 130. In one
embodiment, the sample unit test program achieves this by executing first test query to
retrieve all rows of table from the database. A second test query is then executed to retrieve
first row in order to test a retrieve by parameter/object query. The unit test then updates the
row with sample test values, deletes it and inserts it back, into the database which tests the
application source code generated to perform the update, delete and create operations
respectively in the application. Thus, the status of the underlying database remains intact at
the end of a successful test execution. Further, in one embodiment, a rollback is called at the

end in case of failure.

In one embodiment, IDE tool 130 provides ease of use so that information needed to execute
such a test program (e.g., connection URL, user name, password) need not be provided
manually by the user. IDE tool 130 may use this information from the connection associated
with the project to automatically execute the unit test program. Thus the developer is
provided with a one-click mechanism to run the sample program. Further, the unit test
program may be integrated with a project save mechanism such that when the unit test is
regenerated or manually changed, the save action compiles and runs it. IDE tool 130 may
also provide execution time and other statistical information related to program and/or

database query performance.

As stated, building a database-aware application for a known highly customized and
complex query is a common requirement. Accordingly, in one embodiment, IDE tool 130
may be configured to use an existing database query and generate application source code

around such an existing query.

Figure 7 illustrates a method performed by an IDE tool configured to provide rapid
application development beginning from an existing database query, according to one
embodiment of the invention. As shown, method 700 beings at step 705 where IDE tool 130
is passed a database query. The query may be embedded within the source code of an
application program being edited using IDE tool 130, or may also provided to IDE tool 130
as part of a text file, script, URL, etc. At step 710, the IDE tool may determine whether a

connection to a database referenced by the query has been established.

10

15

20

25

30

WO 2008/132006 15 PCT/EP2008/053916

As described above, the developer may have associated a database with a given development
project. If not, at step 715 the IDE tool may create a connection with the database
referenced by the query received at step 705. For example, Figure 8 illustrates a screenshot
800 from an exemplary IDE tool configured to generate source code for a database-aware
application, according to one embodiment of the invention. As shown, screenshot 800
includes an editing pane 815 of IDE tool 130 displaying a portion of source code from a
database-aware application. In this example, the source code included a text-string 810
representing a database query. Specifically, the SQL query “select * from
SSURANGE.MYDEPARTMENT.” This query retrieves all records from a
“MYDEPARTMENT?” table of a database named “SSURANGE.” Also as shown, the user
has selected a “Database Assist” item from a menu provided by IDE tool 130. Illustratively,
the user has selected to create a Java® bean around query represented by text-string 810.
Accordingly at step 710 of method 700, IDE tool 130 may determine whether a connection
with the “SSURANGE” database has been established as part of a currently active
development project. If not, then at step 715 IDE tool 130 may establish a connection with
this database.

At step 720, the IDE tool may generate database access code for the database elements
referenced in the query selection received at step 705. As described above, this may include
generating application source code and database queries to create, retrieve, update, and
delete records from an underlying database. At step 725, the code generated at step 720 may
be added to the currently active development project. For example, as shown in Figure 8,
menu item 805 is selected and, in response, IDE tool 130 may generate a Java® bean
encapsulating both query 810, as well as other queries (e.g., a create, update, and delete
query) of the database element referenced in query 810 (i.e., the “MYDEPARTMENT” table
of the “SSURANGE?” database).

Advantageously, as described herein, embodiments of the invention provide an integrated
development environment (IDE) tool used for rapid application development of database-
aware applications. Currently, to create database-aware applications, developers are
typically forced to write all of the database access layer code from scratch. That is,
developers have to write application source code to create a connection to a given database,

compose individual queries, and encapsulate the queries within API calls for a given

10

15

WO 2008/132006 16 PCT/EP2008/053916

programming language. Further, because IDE tools lack database integration, developers
have to switch around using multiple, independent tools. Embodiments of the invention
address this by integrating database connectivity within an IDE. Thus, a developer may
select an existing database element (e.g., a table) and the IDE tool may generate all of the
application source code, API calls and database queries needed for a functioning database-
aware application. Alternatively, a developer may generate application source code from an
existing database query, either part of application source code or otherwise. Therefore,
development cycle time may be significantly reduced as the developer. In addition to these
scenarios, one of skill in the art will readily recognize that the rapid application development
tool described herein may be tailored to accommodate a variety of other scenarios. Thus,
embodiments of the invention provide developers with the ability to easily generate source

code for a database-aware application and to casily unit test scenarios.

Still further, by integrating database functionality within an integrated development
environment, embodiments of the invention may be used to test database connectivity and
functionality for a database-aware application using the same IDE interface used to create
the software application. Thus, rather than having to switch between tools when developing

a database-aware application, the development may rely on the single, database-aware IDE.

10

15

20

25

30

WO 2008/132006 17 PCT/EP2008/053916

CLAIMS

1. A method for generating source code for a database-aware software application,
comprising:
receiving, from a user interacting with an integrated development environment (IDE)
tool, a selection of a database clement;
generating at least one database statements to access the database element;
encapsulating the at least one database statements within source code of a
programming language in which the database-aware software application is being written;
storing the source code within a project file associated with the database-aware
software application; and

displaying the source code in an editing pane of the IDE tool.

2. The method of claim 1, wherein the at least one database statements are selected

from statements to create, retrieve, update, and delete records from a database.

3. The method of claim 1, wherein the database element is a database statement
embedded as a text string within the source code of an application being developed using the

IDE tool.

4. The method of claim 1, further comprising:
receiving a set of connection parameters used to create a connection with a database;
establishing a connection with the database, wherein the database contains the
selected database element; and
storing the connection parameters as part of a development project associated with

the database-aware software application being developed.
5. The method of claim 4, further comprising;:
obtaining, over the established connection, a data model of the database; and

displaying the data model in a window of the IDE tool.

6. The method of claim 5, wherein the data model is a relational schema.

10

15

20

25

30

WO 2008/132006 18 PCT/EP2008/053916

7. The method of claim 1, further comprising,

generating a unit-test application for the database aware application, wherein the unit
test executes (1) a first test query to retrieve a set of records from the database, (ii) a second
test query to retrieve a first record of the set of records, a (iii) a third test query to update the
first record with sample test values, and (iv) a fourth test query to delete the first record, and

(v) a fifth test query to insert the first record back into the database.

8. The method of claim 1, wherein the IDE tool provides a programming environment
used to develop a database-aware application, and wherein the IDE tool includes at least a

graphical text editor and a compiler.

9. A computer program product comprising a computer useable storage medium having
a computer readable program, wherein the computer readable program when executed on a
computer causes the computer to perform an operation comprising:

receiving, from a user interacting with an integrated development environment (IDE)
tool, a selection of a database clement;

generating at least one database statements to access the database element;

encapsulating the at least one database statements within source code of a
programming language, wherein the user is writing the database-aware software application
in the programming language;

storing the source code within a project file associated with the database-aware
software application; and

displaying the source code in an editing pane of the IDE tool.

10. The computer useable storage medium of claim 9, wherein the at least one database
statements are selected from statements to create, retrieve, update, and delete records from a

database.

11. The computer useable storage medium of claim 9, wherein the database element is a
database statement embedded as a text string within the source code of an application being

developed using the IDE tool.

10

15

20

25

30

WO 2008/132006 19 PCT/EP2008/053916

12. The computer useable storage medium of claim 9, wherein the operation further
comprises:

receiving a set of connection parameters used to create a connection with a database;

establishing a connection with the database, wherein the database contains the
selected database element; and

storing the connection parameters as part of a development project associated with

the database-aware software application being developed.

13. The computer useable storage medium of claim 12, wherein the operation further
comprises:
obtaining, over the established connection, a data model of the database; and

displaying the data model in a window of the IDE tool.

14. The computer useable storage medium of claim 13, wherein the data model is a

relational schema.

15. The computer useable storage medium of claim 9, wherein the operation further
comprises:

generating a unit-test application for the database aware application, wherein the unit
test executes (1) a first test query to retrieve a set of records from the database, (ii) a second
test query to retrieve a first record of the set of records, a (iii) a third test query to update the
first record with sample test values, and (iv) a fourth test query to delete the first record, and

(v) a fifth test query to insert the first record back into the database.

16. The computer useable storage medium of claim 9, wherein the IDE tool provides a
programming environment used to develop a database-aware application, and wherein the

IDE tool includes at least a graphical text editor and a compiler.

17. A system, comprising:

a proccssor, and

10

15

20

25

30

WO 2008/132006 20 PCT/EP2008/053916

a memory containing an integrated development environment (IDE) tool configured
to generate source code for a database-aware software application by performing an
operation, comprising:

receiving, from a user interacting with the tool, a selection of a database element;

generating at least one database statements to access the database element;

encapsulating the at least one database statements within source code of a
programming language, wherein the user is writing the database-aware software application
in the programming language;

storing the source code within a project file associated with the database-aware
software application; and

displaying the source code in an editing pane of the IDE tool.

18. The system of claim 17, wherein the at least one database statements are selected

from statements to create, retrieve, update, and delete records from a database that contains.

19. The system of claim 17, wherein the database element is a database statement
embedded as a text string within the source code of an application being developed using the

IDE tool.

20. The system of claim 17, wherein the operation further comprises:
receiving a set of connection parameters used to create a connection with a database;
establishing a connection with the database, wherein the database contains the
selected database element; and
storing the connection parameters as part of a development project associated with

the database-aware software application being developed.

21. The system of claim 20, wherein the operation further comprises:
obtaining, over the established connection, a data model of the database; and
displaying the data model in a window of the IDE tool.

22. The system of claim 21, wherein the data model is a relational schema.

23. The system of claim 17, wherein the operation further comprises:

WO 2008/132006 21 PCT/EP2008/053916

generating a unit-test application for the database aware application, wherein the unit
test executes (1) a first test query to retrieve a set of records from the database, (ii) a second
test query to retrieve a first record of the set of records, a (iii) a third test query to update the
first record with sample test values, and (iv) a fourth test query to delete the first record from

the set of records, and (v) a fifth test query to insert the first record back into the database.

24. The system of claim 17, wherein the IDE tool provides a programming environment
used to develop a database-aware application, and wherein the IDE tool includes at least a

graphical text editor and a compiler.

WO 2008/132006 PCT/EP2008/053916

1/8
/100
122
— PROCESSOR(S) L~
| 140
DATABASE | DATA MODELS || 142
H 126
DEVELOPMENT PROJECT ~144
STORAGE
| -120
IDE TOOL ~130
121
~
PROJECT FILE | ~132
| | -124
QUERY PARSER | ~134
QUERY TOOL ~136
MEMORY
125
] NETWORKING DEVICE
DISPLAY DEVICE INPUT DEVICE
_115 117

FIG. 1

WO 2008/132006 PCT/EP2008/053916

2/8

200
/"

RECEIVE PARAMETERS FOR DATABASE ~— 205
CONNECTION TO ASSOCIATE WITH
DEVELOPMENT PROJECT

CREATE CONNECTION TO DATABASE, -~ 210
BASED ON PARAMETERS

OBTAIN DATA MODEL FOR DATABASE b~ 215
ASSOCIATED WITH DEVELOPMENT PROJECT

|

PRESENT ELEMENTS OF DATABASE 220
MODEL IN IDE TOOL

RECEIVE SELECTION OF DATABASE L~ 225
ELEMENTS TO GENERATE DATA
ACCESS LAYER CODE

|

GENERATE DATABASE ACCESS LAYER CODE |~ 230
FOR SELECTED DATABASE ELEMENT

OPTIONALLY, GENERATE UNIT TEST -~ 235
COMPONENTS FOR DATABASE
ACCESS CODE

END

FIG. 2

PCT/EP2008/053916

WO 2008/132006

3/8

€ 'Ol

[1eouey] [uswig | [<poN][woeg > | ©®

Sle ")

ulwpezqgp
I1dNVS/00005-1s0y[esoy/r:-zqp:aqp!

prwqrwodisuibnidyesdippaipoidgmpyLeampy:o

allesn
TJHN uonosuuo)
uoneao ssel)

1eAQZEa0lZqp'wqrwied ssel) JeAug 29ar
L'6A 8QN 290 aseqejeq
anieA | Auedoig

:seipedoid

apx N
ovmd\ L TIdNYS v

\

31dAVS

“ugyosuuo) sjdweg Agieq L1

———

uoyoauuod Bunsixs ue osft @®

SUOII0BUIL0D Buysixg —

uopIBUUod Mau e glealy O

"uoloeuL0a Bugsixs Ue J03|SS JO UONIBULIOD MBU B BSN O} 800D

UoOBUUOY UOKIBIRS

S)

00€ \ G0€

18Ul +iv

sa|pedoig

<4

Sjool 3ad

* KI0}JSIH |20 WOl 810jsaYy

yim asedwo)
wea]

. (poloig Juauny o} UoRIRULY) BSEqElEq)

<

TShjeuy
sjepliep

" yoddng MOS ppy
SY 940.d

sy Bnge(y

sy uny

" S

Sd

sjoafoid pajejaiun ason

afoid asojp
ysayey)

< 1HYSHIvY
<4 SHYUSHIY
<

lojenay
eaInog
yied piing

BU0QIS3L (-

8818
A+IID

I+

gj8jeq X

8)sed

aweN payend Ado)
EooQ

LS8l
=
LoneIs -
ereldwes F-d@
LodF-dh

¥d

Ayoseselq edA) usdp
MOPUIM MBN Ul uadQ

baoneishw cH @
dizfbs @ |

o} 09
MaN

SIUr wd |

0J9Z _ —E

PCT/EP2008/053916

WO 2008/132006

4/8

*** 8p00) uoyel)|ddy Qm_mcwoﬂm“_

AE
0zy

103r0Y¥d -8 | —Gsdg
{ — — =
Lovroud B8 | dougx [WE_] [<weN] [weE>] ©®
o4O mw i ejeq
FIAOTIWIAN B8 | J
s166611] _U -8 " pedw) azAjeuy 28
sexapu| CJ-8
sajouapuadaq OJ- % *7aa QEmcmOﬁ
sjurensuo) OJ- ﬂ
suwnjog CJ-# ysayey)
NN 7o
AVHL NI EB- é N XejuAs jjed poylaw aulju; yum ssejo ajdwes sjesauad []
1OVIONdJNG BB Sy 8|qe) 10} 80BHBIU| BABY 10} SSEID 1S6) 8jeIaudY [
DaNdNg B8 e|qe; Joj edepelu| eARp ejelsuad [
33A0TdIN3 BB- Mm
ms_:mmmum_ﬁw M % [- asmaig : 100lq0"Buey eaef| :ssepaedng
OLOHd ™ dn3 B89 _ Qm%gsj -ouieN
ININLHVYd3Q BB- ﬁm ~
szom._.www M II asmoig (owspwo | Gzy :ebexoeq
saiqe) [J-& _ " asmoig _ _ ohm\.:n_o:_oge_ :19p|o} 80IN0S
$3INP3V0Id palalg _Umm
Sop \u/\ MMMF__M_“%”M m M ﬂ:—L "9jqe) pajoslas ay) Joj 1ake) ssaooe aseqejeq 9)RIoUID)
sLow OJ- ﬁ > uoljelsuag) 8po) ONITP

$8iNP8d0Id PaIoIg pejesspad)-8
sepuapuadaqg 3-8

sasely CJ- %

JONVHNSS g&-8a

oov\\

~ 0¥

8iqe € 10} 3poD DNITF 9jessusn &

PCT/EP2008/053916

WO 2008/132006

5/8

[1eoues]| O |

)

_

Addy | [sunejeq esoisey |

SUWN|OD Jje Juasaidal o} Juswaels 1D3713S U, asn [

1091q0 Aq moi aj8jea [A
sigjewesed Aq M3l ejejed [
108(qo Aq mos a)epdn (A
siajawesed Aq mos ajepdn [
108[qo Aq mos ajeals [
siejewesed Aq mos ejear’y [
109[qo Aq mou pajes [
sigjewesed Aq Mol 103135 [
smo! jje 9jes [A

‘pajessual jou ase sjuawslels TOS (e Ji ‘ejeisusB 0} sjuawelels TOS YJIUM
sjusilioels JOS e sjeisusg [A

0LS <

N
xejuiks Jjeo poyjew aulul yum ssep ojdwes ajessuag) [
91gB) Jo} 8oepa)ul BART 10j §SBID J$8] 8jBIaUID)]
9|qe} Joj BDBHDUI BART B)RIBURS [
‘gjeiauab 0} apoo jo sadA)

ejeq| :eoepejul eAer ioy Xiyng

spoylaw 10ssaooe olgnd YU spialy pajoslold @
505 SPOYaW J0SS903. OU YyIm spiay algnd O
:Spjey ueaq j0 edoog

‘uofiesaualb epod gjewolny Joj seouasasald Ajoedg

<1 1

<l

uonepieA
1591 -8
weq| -8
Juswdogasg oS -B
laneg -8
bngaquny -mv
6uibbo pue Buyyold 8
=| Juslidoprsq ur-bnid -8
Buyjepopy -
UOHEPIIEN 13POWN -
sweibeyg 21607 -
buibbo—
eAgp ﬂ
33Zr—
ETIENT &
ajepdn/eisu) -&
djoH -
BuLOjsUeIL 13 [4NT -
2InNpadcid palo)g -8

nding —
suoneJ0os(q |eqe —

1>

apo) sseqejeq %
eleq-&

Aunosuuod -
Jnaneduwio) premyoeg—;
Juy--&

sishjeuy &

Ja|onue) Juaby &

19} UOEBLI00 m>_~u<.-%

[e18UBS) -8

| e} Jajy odhy |

seoualayeid @!

G Ol

PCT/EP2008/053916

WO 2008/132006

9 'Old

(e |

usiid | [<ol | [Yeg> | 0)

OjE20 NOILYOO1
0L9 \/. L abueyo idapiwpe 1d3qHNaY |
ot ONYOW
029 sweudap INVYNLdIA
o) oujdep ONL1d3a
© SweN pie|4 ueeg | uwnjo) sjgel
:spjay Ueaq ay} o} suwnjod ajqe) ey} depy
009 A spoyjaw Jossaooe dNgnd Yim spisl pejoajoid ®

SPOUIBW JOSS82JE OU Yim spy oilgnd O
‘Spley ueeq ay) Jo 8doas ay) 10ajes

i

“Splol ueaq auy} auysp o} moy Aoads
Sp[ei4 uesg

_— G19

\E4

8|qeL € 10} 8p0oD DN sjessuen @ L

WO 2008/132006 PCT/EP2008/053916

7/8

BEGIN

RECEIVE SELECTION OF DATABASE QUERY L—~_ 705

700
/‘

/— 715 710
ESTABLISH CONNECTION
WITH DATABASE NO .~ CONNECTION
ASSOCIATED WITH ESTABLISHED?
SELECTED QUERY
YES
CREATE DATABASE ACCESS L~ 720
LAYER CODE FOR
DATABASE QUERY

1

ADD DATABASE LAYER CODE L~ 725

TO DEVELOPMENT PROJECT

ASSOCIATED WITH PROGRAM
SOURCE CODE

FIG. 7

PCT/EP2008/053916

WO 2008/132006

8/8

91edeRA ‘. INFNLUVAIAAW FONVANSS Woy , 199j8s,) Jojielfientgp = siedsphpiio

100 9eLuas) £

g

81+ WS ueag JOS oleeus) B

9d +

1d+Hus uoliuyaq uedo EH

8 Ol

0i8

{(uuoo) eleqieb-fiojoegejeq Aiojor) ‘s

‘(asle)
([z]sbse [}]sbie [g]sbse)uondsuuonie

" $90UBI90Id

lasmoig gqam

} sbie [16umg

)sissy aseqejeq I_

508

_ eAgf1sa ejeqedaphyy 1] _ enefe

ﬁ»&ﬂ>_c»_¢m®m-g|m_

Sjog BuPHOM)

A‘AA\J

uonebiaen

saAljoadsiad [y 8so|)
aAloadsiag 9sol)
aAlj0adsia 1359y
** Sy 9Alj0adsiad aneg

** 8ANoadsiad aziwojsn)

A

<

M3IA MoYyg
aaoadsiag usdQ

___a_
) odwe

i
[Jaulul INFWLNVAIQAW 3D M

io§p3 maN

ouupediepAn, (1] ; enelejeqedepAp

MOPUIM MaN

disH mopuip

® B 4020404

gdweg uny pslosd yneag sjebiey

008 I\

INTERNATIONAL SEARCH REPORT

International appiication No

PCT/EP2008/053916

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO06F9/44
ADD. GD6F17/30

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search ferms used)

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X DB SOLO LLC: "DB Solo : 1-24
Documentation"[Online]

5 February 2007 (2007-02-05), XP007905789
Retrieved from the Internet:
URL:http://web.archive.org/web/20070203195
407/dbsolo.com/help/DBSolo.htm1>

page 2 -
page 7 - page 9
page 11 ~ page 14
page 26 ~

[retrieved on 2008-09-26] . '

X J LIBERTY: "Visual C# 2005: A Developer’s ‘ 1-24

Notebook"”

XP002497755
section b.1

April 2005 (2005-04), O’REILLY , '

)

Further documenis are listed in the continuation of Box C.

See patent family annex.

*. 8pecial categories of cited documents :

*A" document defining the general state of the art which is not
considered 1o be of particular relevance

*E" earlier document but published on or after the international
filing date

L document which may fhirow doubls on priority claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

*O" document referring to an oral disclosure, use, exhibition or
other means

P document published prior to the international filing date but
later than the priority date claimed

*T" later document published after the international filing date
or priority date and not in conflict with the application but
icited F) undetstand the ptinciple or theory undetlying the
nvention

X document of particular relevance, the claimed invention
cannot be considered novel or cannot be considered fo
involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu-
W?Rts' ﬁuch combination being obvious to a person skilled
inthe art.

*&" document member of the same patent family

Date of the actual completion of the international search

29 September 2008

Date of mailing of the international search report

14/10/2008

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL — 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340~3016

Authorized officer

Rackl, Ginther

Form PCT/ISA/210 (second sheat) (April 2005)

INTERNATIONAL SEARCH REPORT

International application No

PCT/EP2008/053916

C(Continuation). DOCUMENTS CONSIDERED TO BE-RELEVANT

Category*

Citation of document, with indication, where appropriate, of the relevant passages

" | Relevant to claim No.

X

P,X

US -2003/004979 Al (WOODRING JOHN [USD)

2 January 2003 (2003-01-02)

paragraph [0033] - paragraph [0038]

B KURNIAWAN: "Struts Design and
Programming: A Tutorial"

1 April 2005 (2005-04-01), , XP002497756
chapter 15

AZADEH AHADIAN: "Understanding pureQuery,
Part 1: pureQuery: IBM’s new paradigm for
writing Java database applications. Save
time, write Tittle code, run everywhere"
INTERNET CITATION, [Onlinel

14 December 2007 (2007 12-14), pages 1- 35
XP007905766

Retrieved from the Internet:
URL:http://www.ibm.com/developerworks/db2/
library/techarticle/dm-0708ahadian>
[retrieved on 2005-09-25]

“the whole document

1-24

1,9,17

1-24

Form PCT/ISA/210 {continuation of second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/EP2008/053916
Patent document Publication * Patent family Publication
cited in search report date member(s) date
US 2003004979 Al 02-01-2003 NONE

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - claims
	Page 20 - claims
	Page 21 - claims
	Page 22 - claims
	Page 23 - claims
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - wo-search-report
	Page 33 - wo-search-report
	Page 34 - wo-search-report

