ROTARY BEADING MACHINE FOR FORMING CIRCUMFERENTIAL BEADS IN CAN BODIES

INVENTOR.

ED LAXO

ATTORNEY
ROTARY BEADING MACHINE FOR FORMING CIRCUMFERENTIAL BEADS IN CAN BODIES

Filed March 8, 1956

INVENTOR.
ED LAXO

BTTERNE

BY

EDWARD D. HUG

ATTORNEY
This invention relates to a beading machine for beading and/or flanging can bodies. The machine is also adapted for use in forming end flanges on can bodies, and will be referred to herein as a "beader." Can bodies are frequently beaded, i.e., they are formed with one or more peripheral grooves to strengthen the metal. By this means it is possible to use a thinner gauge metal in forming can bodies. Beading is especially important as a means of reinforcing large cans.

A beader should be capable of operating at high speeds and it should form the beads accurately and dependably. It should adjust itself automatically for extra metal thickness as at can body side seams, so as to form the beads accurately and properly without exerting excessive pressure and causing rupture of the metal.

In my prior Patent No. 2,686,551, entitled "Beading and Flanging Machine," granted April 17, 1954, a beader is described which, among other things, is capable of automatic adjustment of the beading rolls in response to metal thickness to maintain adequate beading pressure and to avoid excessive pressure.

It is an object of the present invention to provide a beading machine having a more positive and dependable operation and control of the beading rolls with regard to beading pressure.

It is another object of the invention to provide a machine of the character and for the purpose described which is capable of operating at high speed, which forms beads and/or flanges dependably, which exerts the proper amount of pressure, at points of extra metal thickness such as can body side seams, and which has a more positive and dependable means of accomplishing such pressure control than prior machines.

These and other objects of the invention will be apparent from the ensuing description and the appended claims.

One form of the invention is illustrated by way of example in the following drawings in which,

Figure 1 is a vertical transverse section taken along the line 1—1 of Figure 2.

Figure 2 is a vertical longitudinal midsection through the machine taken along the line 2—2 of Figure 1.

Figure 3 is a sectional view taken through one of the beading heads showing a pair of beading rolls inside a can body and in the act of forming beads on a can body.

Figure 4 is a fragmentary, cross sectional view taken along the line 4—4 of Figure 2, showing the means employed to bring the beading rolls into contact with can bodies.

Figure 5 is a fragmentary sectional view taken along the line 5—5 of Figure 2, showing certain other features of the beading roll operating mechanism.

Figure 6 is a view in elevation of one of the two cams employed to shift the beading rolls into and out of can bodies.

Figure 7 is a diagrammatic view of one of the two beading cams employed to swing the beading rolls into and out of engagement with can bodies.

In accordance with the present invention a beader is provided which is preferably, although not necessarily of the rotary, turret type; which has a stationary beading member; and which also has at least one, preferably a plurality of movable beading members which move along the stationary member with a rolling motion, apply pressure to can bodies clamped between the two beading members, and cooperate with the stationary member to form beads and/or end flanges on the bodies. The movable beading members are preferably arranged in pairs which are axially aligned and movable into and out of can bodies, and they are resiliently urged toward the stationary beading member. To effect a precise control thereof, each movable beading member has a lever which opposes the resilient means, and which is cam operated to determine the position of the respective movable beading member, yet permits oscillatory movement of such beading member, i.e., permits yielding in response to metal thickness.

Referring now to Figure 1, a can beader is therein shown which is generally designated by the reference numeral 10 and which includes a frame 11 within which is journaled a main shaft 12, as is best shown in Figure 2.

Can bodies 13 (see Figure 1) are supplied by an indexing and feed screw 14 which is driven, in timed relation to the shaft 12, by means including sprockets 15 and 16, a chain 17 and helical gears 18 and 18a. The can body feed assembly also includes a guide rails, one of which is shown at 19, such rail being adjustable for cans of different height, and an adjustable side rail 20 which can be moved closer to or further from the feed screw according to the diameter of can bodies. By removing set screws such as shown at 25 the feed screw can be removed and a feed screw of different pitch can be substituted for cans bodies of different diameter. Can bodies are guided by plates 27 and 28 to the entrance station A, as best shown in Figure 2, and are held between rollers 28a best shown in Figure 1.

As shown in Figure 2 the beader 10 has identical left and right hand halves 10a and 10b, respectively, the shaft 12 and certain other parts being common to both halves.

The shaft 12 is driven by a gear 29 which is shown at the right of Figure 2 and it is journaled in end members 11a shown at the left of Figure 2 and 11b shown at the right of Figure 2.

Mounted on the center of the shaft 12 is a drum 30, the shaft 12 being rotatable in the drum 30, the latter being a fixed element of the machine. Clamped to the periphery of the drum 30 by gib 31 is a cylindrical beading ring 32 having projecting ribs or beads 33. The drum 30 and beading ring 32 are shown in Figure 2 and, on a larger scale, in Figure 3. The beading ring 32 does not extend all the way around the drum 30. The ribs 33 are the elements which, in cooperation with the beading rolls, form beads in the can body. It will be apparent that the beading ring 32 can be easily removed and replaced by another beading ring having a different number, size and/or shape of beads. To facilitate removal and replacement, the beading ring is made in sections.

The drum 30 also supports left and right-hand beading cams 34a and 34b, respectively, each of which is made in sections for easy removal and replacement and each of which is clamped to the drum 30 by means of cap screws 35, a ring 40 keyed to the drum, a ring 41 and the cap screws 42. The ring 40 has a relatively loose fit so that, when the cap screws 35 are loosened, the cams 34a and 34b can be rotated relatively to the drum 30 for timing adjustment. When the cap screws 35 are tightened, tongues 43 will hold the cams securely in adjusted position.
Referring now to Figure 7, which is a diagrammatic view of the beading cam 34b it will be seen that the contour of this cam is as follows: (The contour of the other beading cam 34a is identical.) There is a low-dwell 44 which spans the entrance point A where cam roller 61a is to engage, and then a high-dwell 48; and at 49 there is a decline from the high dwell 48 to the low dwell 44. It is the purpose of the beading cams 34a and 34b, acting through a mechanism described hereinafter, to control the beading rolls positively and with precision. Such beads are shown in the process of formation in Figures 2 and 3. The relative lengths of the dwell and rise portions of the beading cams 34a and 34b may vary, but are preferably as about shown in Figure 7. The rise portion 46 should be long enough to apply a gradually increasing pressure and the high dwell 48 should be long enough to form the beads.

Referring now to Figure 2, shifting cams 55a and 55b are supported and operated for shifting and pivotal movements will now be described. - - - - ---- A carrier or ... to the shaft 12, at the left-hand and right-hand ends thereof, respectively. Each lifter cam is fixed to the frame of the machine so as to rotate and the shaft 12, as journaled in the cams 55a, and 55b, so as to be free to rotate therein. One of these cams (cam 55b) is shown in Figure 6. A cam track or groove 56 is formed in each of the cams 55a and 55b, the contour of which is best shown in Figure 6. It will be seen that each cam track 56 has a first dwell 57, a connecting portion 58, a second dwell 59 and another connecting portion 60. It is the purpose of the cams 55a and 55b to shift left and right-hand beading rolls 61a and 61b, respectively, through means which will now be described. There are six pairs of beading rolls 61a and 61b, as will be seen from an inspection of Figure 1, although a greater or lesser number may be employed, and the members of each pair are in axial alignment and are parallel to the shaft 12 and beading ring 32 and are arranged uniformly about the shaft 12.

As best shown in Figure 3, the left-hand beading roll 61a has circumferential grooves 62 formed therein, and it is clamped by means of a cap 63 and a projecting cap screw 64 to a spindle 65. The right-hand beading roll 61b is also formed with circumferential grooves 62, and it has a head portion or extension 63. The extension 63 is clamped to the respective spindle 65 by a recessed cap screw 66. It is intended that, when a pair of beading rolls 61a and 61b is located at the "in" position illustrated in Figures 4 and 5, the projecting head of the cap screw 64 of the beading roll 61a will be seated in the socket 67 formed in the beading roll 61b. As shown in Figure 2, the circumferential grooves 62 register with the beading ribs 33 on the beading ring 32.

Each beading spindle 65 is journaled in a spindle sleeve 68 (see Figure 2), which has a purpose described hereinbelow. At their outer ends the spindles 65 are fixed to gears or pinions 69 which mesh with and are driven by large stationary gears 70. It will be apparent that, as the beading spindles 65 revolve about the axis of the main shaft 12, the spindles will spin about their individual axes by reason of the meshing relationship between the pinions 69 and the gears 70. It will also be apparent that the pinions 69 are sufficiently long to allow horizontal shifting of the spindles 65, while maintaining the meshing relationship between the pinions 69 and the gears 70.

Each of the beading rolls 61a and 61b is supported for some types of movement; i.e., for shifting movement to engage and retract from cam bodies located between the plates 27 and 28 (see Figure 2); for spinning motion about its individual axis; and for pivotal, oscillatory movement to and from the beading ring 32. The spinning motion arises from the fact that each spindle is journaled in its sleeve 68 and is driven by its pinion 69 and gear 70. The means whereby the beading rolls are supported and operated for shifting and pivotal movements will now be described. A carrier or spider 75 is provided for each half of the machine which is keyed to and rotates with the main shaft 12. A pivot shaft 76 is provided for each beading roll 61a and 61b, and said shaft, as best shown in Figure 2, is clamped at 77 to the respective carrier 75. Each pivot shaft 76 therefore rotates with the main shaft 12, but it does not rotate relatively thereto, nor does it shift axially. Each spindle sleeve 68 is rotatably and slidably supported on its pivot shaft 76 as follows: Referring to Figures 4 and 5, arms 78 and 79, which are integral with the sleeve 68, terminate in sleeves 80 and 81, respectively. The sleeve 80 is split and its parts are clamped together and to a collar or bushing 82 (see Figure 2), which is rotatable and slidable on the pivot shaft 76. The other sleeve 81 is constructed in one piece; it is slidable and rotatable on the pivot shaft 76; and it is milled out circumferentially to form a slot 83 (see Figure 2) for a purpose hereinafter described. It will, therefore, be apparent that each spindle sleeve 68 and its spindle 65 and beading roll 61a or 61b are able to shift horizontally or axially, or rotate about an angular forked member 85. At its mid portion the forked member 85 is clamped to a shaft 90 which slides in a sleeve 91 formed in the carrier 75. The other end of the forked member 85 is bifurcated at 92 and, as shown in Figures 2 and 5, it fits within the circumferential slot 83 milled out of the sleeve 81. As best shown in Figure 5, there is a small clearance space 93 between the fork 92 and the sleeve 81. It will be apparent that, as each cam follower roller 94 moves in its cam groove 56, its shifting motion will be transmitted to the respective spindle sleeve 68 and beading roll 61a or 61b. Meanwhile, the respective shaft 90 will slide in its sleeve 91 and will maintain the roller 84 in its cam groove 56.

Referring to Fig. 4, the aforesaid pivoting movement of each beading roll 61a or 61b, i.e., its pivotal, oscillatory movement about the axis of its pivot shaft 76, is accomplished as follows: A lever 94 is pivoted which is rotatably mounted on the pivot shaft 76. The lever 94 has an arm 96 on one end of which is a hub 97 which rotatably carries a cam follower roller 98 intended to roll-on one of the cams 34a and 34b. As will be seen, a cap screw 97a secures each cam follower roller 98 to its hub 97 and the mounting of the roller 98 is eccentric. Therefore, by loosening the cap screw, rotating the eccentric mounting and then tightening the cap screw, the normal position of the lever 94 is adjusted. The other arm 99 of the lever 94 has an end portion 100 which abuts a lug 105 integral with and projecting from the respective spindle sleeve 68. A screw 106 extends slidably through the end portion 100 and the forward end 101 and the latter is formed with a socket 107 which receives a collet spring 108 which is compressed by nuts 109, one of which serves as a lock nut.

As the main shaft 12 rotates, each cam follower roller 98 rolls on its cam 34a or 34b and it oscillates in accordance with the contour of such cam. By this means, the respective beading roll 61a or 61b is held clear of the beading ring 32 at the entry portion of the machine (point A in Figure 1). The rise portion 46 moves the beading roll toward the beading ring, and the high dwell 48 holds the beading roll in operative relation to the beading ring while the cam body spins. Beads are thereby formed. The beading pressure is relieved when the rollers 98 roll onto the low dwell 44. The caps 55a and 55b re-tract the beading rolls 61a and 61b to release the beaded.
When an extra metal thickness is encountered, as at a side seam, the extra metal will act against the beading roll and the expansive force of the spring 108. By reason of the clearance space 93 above mentioned (see Figure 5), the beading roll 61a or 61b and its spindle are permitted to pivot outwardly to relieve the excess pressure. Nevertheless, the spring 108 maintains adequate beading pressure, it restores the beading roll to its normal position instantly when the region of extra metal thickness has been passed; and the separation of the beading roll from its normal position occurs only at the precise point and to the precise degree needed.

It will be apparent that when a pair of beading rolls 61a and 61b are in their retracted position, i.e., with their rollers 84 (see Figure 2) are in the dwells 59 (see Figure 6), the corresponding cam follower rollers 98 are off the beading cams 34a and 34b. However, their freedom to swing is restricted by the following construction, which prevents clashing of the rollers 98 and cams 34a and 34b when the beading rolls move in again. Referring to Figure 5, lugs 115 and 116 are formed on each forked member 85 and its spindle sleeve 68, respectively. A rod 117 is pivotally connected at one end to the lug 115 and at its threaded other end it extends slidably through lug 116. Nuts 118 are threaded to the rod 117 and serve to compress a coil spring 119 between the two lugs. It will be apparent that, by appropriate adjustment of the nuts 118, the roller 98 is prevented from clashing with its cam 34a or 34b when the respective beading roll moves in.

Referring now to Figure 1, the drum 30 which carries both of the beading cams 34a and 34b and the beading ring 32 is held stationary and is adjustable by the means now to be described: A block 125 is clamped to a casting 126, which forms a stationary part of the machine by a screw 127. A set screw 128 is threaded through the block 125 and bears against the casting 126. The block 125 is pivoted on the casting 126 and it has a rounded knob 129 seated in a notch 130 formed in a lug 131 projecting from the drum 30. By loosening the screw 127 and turning the set screw 128 one way or the other, the block 125 is rocked and moves the drum 30 one way or the other. When suitably adjusted the drum is clamped in position by tightening the screw 127.

It will, therefore, be apparent that a beading machine is provided which is capable of accomplishing the beading of can bodies at high speed, dependably and effectively. The machine, among other things, is relatively simple from the standpoint of assembly, disassembly, inspection, repair and timing. It is provided with a yieldable feature whereby proper and adequate beading pressure is exerted at all times during the beading part of the cycle of operation regardless of metal thickness interposed between the stationary and moving beading elements. The position of the moving beading element, hence the beading pressure, is under positive control at all times during the beading operation, yet it does not interfere with automatic yielding of the moving element in response to varying metal thickness.

Claim 1: A rotary beader comprising a frame and a main shaft journaled therein, a stationary drum mounted on and concentric to said shaft between its ends, a beading ring clamped to said drum, a pair of circular beading cams also clamped to said drum at opposite ends of said ring, a pair of beading rolls operable with said ring to bead a can body as the latter is clamped between the ring and the rolls and the rolls move along the ring with a rolling movement; said machine also comprising a pivot shaft for each beading roll carried by said carrier outwardly of said beading ring, said shafts being axially aligned and parallel to said main axis; means mounting said rolls on their respective pivot shafts to rotate therewith about said main axis, to shift on the pivot shafts and to pivot on said shafts inwardly to and outwardly from said beading ring; lever and cam means operated by rotation of the carrier to rock said lever means inwardly toward and outwardly from said beading ring, and means interconnecting said lever means and said rolls to transmit motion of the former to the latter thereby oscillating the rolls to clamp, bead and release a can body during each cycle of operation of the machine; said interconnecting means comprising first and second opposing members fixed to the lever means and to the rolls, respectively, and resilient means urging said opposing members into contact with one another but permitting separation thereof when the rolls contact a can body side seam, said resilient means acting during such separation to exert a beading pressure on the beading rolls.

Claim 2: A rotary beader comprising a frame and a main shaft journaled therein, a stationary drum mounted on and concentric to said shaft between its ends, a beading ring clamped to said drum, a pair of circular beading cams also clamped to said drum at opposite ends of said ring, a pair of beading rolls operable with said ring to clamp can bodies to the ring and to bead the can bodies as said rolls revolve about said main axis with a spinning motion, means supporting said rolls outwardly from said main axis with a spinning motion, means supporting said rolls outwardly from said main axis with a spinning motion, means supporting said rolls outwardly from said main axis with a spinning motion, and also for radial, pivoting movement inwardly to and outwardly from the ring and means operatively connecting each cam with one of said supporting means to oscillate the rolls to clamp a can body to the ring, bead the can body and release it during each cycle of operation of the machine.

References Cited in the file of this patent

UNITED STATES PATENTS

<table>
<thead>
<tr>
<th>Patent Number</th>
<th>Inventor(s)</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,609,986</td>
<td>Brenzinger</td>
<td>Dec. 7, 1926</td>
</tr>
<tr>
<td>2,081,042</td>
<td>Krueger</td>
<td>May 18, 1937</td>
</tr>
<tr>
<td>2,686,551</td>
<td>Laxo</td>
<td>Apr. 10, 1956</td>
</tr>
<tr>
<td>2,741,292</td>
<td>Butters</td>
<td></td>
</tr>
</tbody>
</table>