03/023623 Al

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date

T 0

(10) International Publication Number

20 March 2003 (20.03.2003) PCT WO 03/023623 Al
(51) International Patent Classification’: GO6F 12/02, Street, Sydney, New South Wales 2011 (AU). AFANAS-
17/30 JEV, Alexander [RU/AU]; 7/2 Ormond Street, Sydney,
New South Wales 2026 (AU). DIMITROY, Evgueni,
(21) International Application Number: PCT/AUO1/01134 Stankov [AU/AUJ; 16/75 Wentworth Street, Randwick,

(22) International Filing Date:
10 September 2001 (10.09.2001)

(25) Filing Language: English

(26) Publication Language: English

(71) Applicant (for all designated States except US): UNISYS
CORPORATION [US/US]; Unisys Way, Blue Bell, PA
19424-0001 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): CORNELL, David
[AU/AU]; 89 Kent Street, Epping, New South Wales 2121
(AU). FELDMANN, Lars [DE/AU]; 3/7 MacDonald

New South Wales 2031 (AU).

(74) Agent: GRIFFITH HACK; GPO Box 4164, Sydney, New
South Wales 2001 (AU).

(81) Designated States (national): AU, US.

(84) Designated States (regional): Buropean patent (AT, BE,
CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC,
NL, PT, SE, TR).

Published:
— with international search report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: A METHOD AND APPARATUS FOR FACILITATING DEPLOYMENT OF SOFTWARE APPLICATIONS WITH

MINIMUM SYSTEM DOWNTIME

8
g0
o)
VAN y L —
7\ P

(57) Abstract: The present invention relates to an apparatus and method for facilitating deployment of a software application with
minimum down time, and in particular, to an apparatus and method which enables a deployed software application to operate before
completion of data migration. In response to a date call it is determined whether the data exists in the existing persistence or the
new persistence, and if the data exists in the existing persistence, migrating the data to the new persistence and providing the data

for operation of the application.

10

15

20

25

30

35

WO 03/023623 PCT/AU01/01134

A METHOD AND APPARATUS FOR FACILITATING DEPLOYMENT OF
SOFTWARE APPLICATIONS WITH MINIMUM SYSTEM DOWNTIME

Field of the Invention

The present invention relates to an apparatus and method
for facilitating deployment of a software application with
minimum system downtime, and in particular, to an
apparatus and method which enables a deployed software
application to operate before completion of data

migration.

Background of the Invention

Software applications require data to operate and the data
is often stored in a database. This is particularly the
case for Enterprise-type software applications.
Computerised databases are well known, and many methods of
storing data within databases and retrieving data from
databases are also well known.

However, as the needs of organisations change, so the
software application that the ofganisations use need to be
changed for the purposes of better more efficient
operation or for dealing with further data. Where a
change in an application results in a change in the data
utilised by that application or organisation of the data
utilised by that application, then updating of the
database at least insofar as i1t is affected by the changed
application, needs to take place. Further, an
organisation’s database may require updating to
incorporate new information regquired by the organisation,
and new software applications may need to be written in
order to perform processes on the new data.

When a software application is upgraded resulting in a
change in the database schema, or when a database change
is made (resulting in a software application upgrade in
order to allow an application access to the changed
database) the organisation faces two tasks. The first is
to deploy the new software application onto the relevant

10

15

20

25

30

35

WO 03/023623 PCT/AU01/01134

system the “system” being appropriate hardware and
software utilised by the organisation). The second task
is to migrate the data from the existing persistence to
the new persistence (data migration).

Commonly, a database consists of two parts. One part
comprises the raw data that is stored within the database.
The other part, termed the sschema”, is a framework that
stores relevant information describing the physical
location of the raw data within the database. In other
words, the schema is analogous to a map, directing a
database access application to the correct physical
location of the raw data within the database.

Whenever a new field is added to the database, or the type
of an existing field is changed within the database (at
least insofar as it relates to the updated part), both the
schema and the raw data must be updated to reflect this
change. This data migration process can be very time
consuming. Under existing methodologies, a script (a small
application which maps or converts data from a first
schema to a second schema) is coded and deployed to update
the schema and the physical location of the raw data. If a
database has millions of separate entries, data migration
using this existing methodology may take several hours or
days.

During this time, the database may not be accessed by
users, because at any given time interval during the data
migration process, the relative physical location of a
subset of data is unknown. Hence, the database may only be
accessed when data migration is complete; ie. when both
the second schema and the placement of the raw data in its
new location are complete.

The time consuming aspect of this process poses a dilemma
for organisations. Many organisations rely on the
successful operation of software applications and
databases for their daily transactions. The time and cost
involved in data migration creates an environment where

upgrades to the database and its supporting database

10

15

20

25

30

35

WO 03/023623 PCT/AU01/01134

access applications are avoided. This results in
organisations continuing to use applications and databases
that are slow, cumbersome, and increasingly irrelevant to
their needs.

One reason for the complexity (and associated time
required for data migration) involved in an upgrade of an
application or database, apart from the physical size of
the database, is the complex nature of certain
relationships between different subsets of data within the
database. For example, in relational databases, one subset
of data may include a field that is simply a “pointer” to
another subset of data. This subsequent subset of data is
termed a “relation”. When one set of data is moved, all
the related subsets of data

must also be moved, or the “pointer” in the original set
of data becomes meaningless. This is one reason why it is
difficult to migrate data whilst the database access
application is running.

In view of the problems faced in updating and maintaining
databases and database access applications, many
organisations employ quick fixes, attempting to re-code
database access applications that conform to and work
within an existing database schema. It is apparent that
such a strategy is not optimal.

There is a need for a solution which enables an
application upgrade to be made to a system whilst
facilitating minimum downtime of the system. The less
downtime that an organisation experiences for application
upgrades, the more likely they are to implement upgrades
and therefore maintain their system in an optimal state of

operation.

Summary of the Invention

In accordance with a first aspect, the present invention
provides a method of operating a computing system which
facilitates operation of an application during data
migration from an existing persistence to a new

10

15

20

25

30

35

WO 03/023623 PCT/AU01/01134

persistence, the method comprising the steps of, in
response to a data call required for operation of the
application, determining whether the data exists in the
existing persistence or the new persistence, and, if the
data exists in the existing persistence, migrating the
data to the new persistence and providing the data for
operation of the application.

It will be understood that the data access call may be
performed before, after or during the process of data
migration.

The term “persistence” indicates a particular
implementation of a database schema.

The computing system may include any hardware and software
appropriate for a particular organisation’s needs. The
system may be a networked system, or a stand-alone
computing system or may generally have any system
architecture. 1In a preferred embodiment, the computing
system may include a server computer arranged to serve
applications to client computing systems.

The application may be any application arranged to run on
the computing system and may be a software application.

In a preferred embodiment, the software application is
implemented in object-oriented form.

As discussed above, in the prior art, data migration must
occur before a new application can be utilised. This
leads to significant downtime of a system. Impiémenting
the present method, enables an application to be utilised
without data migration having occurred. Data migration
may occur “piecemeal” as the application (or applications
if more than one application is upgraded at the same time)
requires the data.

Preferably, however, the method comprises the further step
of migrating data independent of any operation of the
application. This “background” migration of data may
occur at convenient times for the system, e.g. in the
evening or at weekends. If the system loading allows the
capacity, however, the background data migration may occur

10

15

20

25

30

35

WO 03/023623 PCT/AU01/01134

at any time.

Preferably, the step of determining whether the data
exists in the existing persistence or the new persistence,
includes the step of identifying a data “label” and
searching for the label in the respective persistences to
determine where the data is.

In some types of component based software, a convenlent
label may be provided by the software specification. In
the present invention, a “label” is defined as a
collection of database fields that may already exist
within the database. For example, the Enterprise Java
Bean (EJB) specification requirements require that each
subset of data associated with a component be assigned a
unique primary key identifier. This may be used as the
label enabling the method to determine whether the data
exists in the existing persistence or the new persistence,
in one embodiment.

Preferably, the present invention has the advantage that
it allows synchronisation between data migration that
occurs as a background activity, and data migration that
occurs in response to a user (application) initiated data
access call.

It would also be advantageous if the method of the present
invention could be utilised with relational databases.

The problem with relational databases is that separate
subsets of data in a relational database may be related to
each other. That is, various subsets of data may be
dependent on each other. 1In the present context, a
wsubset of data” is defined as any discrete unit of data.
Tt may be a single field within a record, a number of
fields within a record, or an entire record. Preferably,
the method of the present invention includes the further
step of allocating object identifier keys to respective
subsets of data. Where an application requires a
dependent subset of data, therefore, the step of
determining whether the relevant data exists in the

existing persistence or in the new persistence can be

10

15

20

25

30

35

WO 03/023623 PCT/AU01/01134

carried out by determining whether the object identifier
key exists in the existing persistence or the new
persistence and then obtaining the appropriate subset of
data. Even if the “pair” set of data has been migrated to
the new persistence, therefore, the dependent set of data
can still be located by way of the object identifier key,
and it 1s not necessary to migrate all dependent sets of
data at the same time.

Preferably, in order to facilitate operation of the
method, the present invention is able to determine whether
the data it requires exists in the existing persistence or
the new persistence. The present invention is preferably
aware of the data label and (in a relational database) of
the unigue object identifier to enable the present
invention to locate the required data. Once the data has
been migrated, the application preferably only operates
with the new persistence. But before the data has been
migrated, the application checks for all the data label
and unique object identifiers. Preferably, the unique
object identifiers are only viewable by an embodiment of
the present invention, and are invisible to the database
access application.

In accordance with a second aspect of the present
invention, there is provided a computing system arranged
to facilitate operation of an application during data
migration from an existing persistence to a new
persistence, the computing system being arranged to
determine, in response to a data call required for
operation of an application, whether the data exists in
the existing persistence or the new persistence and, if
the data exists in the existing persistence, to migrate
the data to the new persistence and provide the data for
operation of the application.

In accordance with a third aspect of the present
invention, there is provided a computer program which when
loaded onto a computer system causes the computer, in
response to a data call required for operation of a

10

15

20

25

30

35

WO 03/023623 PCT/AU01/01134

computer application, determines whether the data required
for operation of an application exists in the existing
persistence or new persistence and, if the data exists in
the existing persistence, to migrate the data to the new
persistence and provide the data for operation of the
application.

In accordance with a fourth aspect of the present
invention, there is provided a computer readable medium
storing instructions for controlling a computing system
to, in response to a data call required for operation of a
computer application, determine whether the data required
for operation of the application exists in an existing
persistence or a new persistence, and, if the data exists
in the existing persistence, to migrate the data to the
new persistence and provide the data for operation of the

application.

Brief Description of the Drawings

Features and advantages of the present invention will
become apparent from the following description of an
embodiment thereof, by way of example only, with reference
to the accompanying drawings, in which;

Figure 1 is a schematic diagram of a system in accordance
with an embodiment of the present invention including
claims in accordance with an embodiment of the present
invention,

Figure 2 is diagram depicting a number of time lines,
which illustrate operation of an embodiment of the present
invention.

Figure 3 is a diagram further illustrating operation of
the embodiment of the present invention.

Figure 4 is a diagram for illustrating operation of the
present invention for a relational database.

Description of Preferred Embodiment

An embodiment of the present invention will now be
described with reference to Figure 1. Referring to Figure
1, there is shown a server computer 1 which may be

10

15

20

25

30

35

WO 03/023623 PCT/AU01/01134

connected to several terminals 8. On the server, there is
run software application 2, which contains a web server 3,
and an EJB container 4, arranged to work in conjunction
with the web server and a database 7. In the EJB
container, there are a number of EJB components 5,
including a data migration EJB component 6, which performs
the data migration functions of the present invention.

The data migration EJB component 6, is comprised of a
determination means 9 which is arranged to determine
whether the data exists in the existing persistence or the
new persistence. In the present invention, the
determination means is implemented as a software module
which resides within the data migration EJB component 6.
The data migration EJB also comprises an allocation means
10 arranged to allocate object identifier keys to subsets
of data which relational dependencies to each other. 1In
the present invention the location means 10 is implemented
as a software module within the data migration EJB
component 6.

This embodiment of the present invention relates broadly
to a deployment process and system for applications
requiring access to data in a database. The deployment
process is in two parts.

In the first part, an updated database access application
is deployed to an application server 1, and the updated
database access application replaces an old database
access application.

It will be understood that an application server is any
type of computer system arranged to allow a user to
interact with the database access application. The
application server could take the form of a stand-alone
computer, or a computer arranged to allow access to the
database access application from a remote terminal or
remote terminals 8, over any type of network, such as an
internal proprietary network, or the Internet. Moreover,
the network may use any protocol or transmission medium,

and could be fixed wire or wireless.

10

15

20

25

30

35

WO 03/023623 PCT/AU01/01134

In addition, it is to be understood that the database 7
could reside on a separate machine, or may reside on the
same machine as the application server. All of these
variations fall within the scope of the invention.

During the time when the old database access application
is unloaded and the new database access application is
loaded, the system is “down” ie. a user cannot access the
database access application or the database.

In the second step, data migration occurs in the
background while runtime access 1s concurrently allowed to
the database access application and the database. In the
present embodiment, the invention is implemented as an
Enterprise Java Bean (EJB) component 6, designed to work
within an EJB container 4 on an application server 1.

In the present invention, the application server may be
understood to mean an EJB container on its own, or an EJB
container associated with a web server 3. That is, a
server capable of serving HTML pages, XML pages, ASP
(Active Server Pages), or any other type of “web” readable
formats which can be understood and interpreted by a
browser such as Netscape Navigator™ or Microsoft Internet
Explorer™ or any other suitable Internet browser
application.

In such an environment, the EJB container will be
understood to be a “middleware” application, providing an
interface and working as a translator between a database
and the web server or any other application that
transforms raw data into a presentable format. The EJB
container, in association with web server technology,
allows a user to interact with a database (eg. view and
change database entries) via the Internet, using only
Internet browser technology.

The EJB component 5 will be understood to be a component
which resides in the EJB container 4. The EJB component
implements certain database access calls or functions.
For example, let us assume that the database in question

is an “ordering” database. It holds, amongst other

10

15

20

25

30

35

WO 03/023623 PCT/AU01/01134
10

information, the past and present orders of every client.
In such an environment, the EJB component may consist of a
series of database calls (including the data structures)
which are necessary to manipulate the data within an
ordering database. Therefore, the EJB component may
include, for example, a routine to create a new order, a
routine to find an order, a routine to delete an order, a
routine to amend an order, etc.

The data migration process is illustrated in Figure 2,
which shows a series of three time lines, labelled 11, 12
and 13. Each time line depicts two states on its vertical
axis, “running” 14 and “stopped” 15. The horizontal axis
depicts the progress of time, in arbitrary units. At time
Ty 16 on all time lines, it is assumed that the database
access application and the database are in the “running”
state. At time Ty 17 a new database access application is
deployed to the application server. At the point Ti, both
the database access application and the database must be
“stopped” ie. access by a user is no longer allowed to the
database access application or the database. From time Ty
17 onwards, the old database access application is
unloaded, and the new database access application loaded
into the application server.

At time T, 18 the new database access application has been
successfully deployed and the database access application
returns to the “running” state as depicted on time line
11. Therefore, the time interval for deploying the new
database access application is the time interval D; 19. In
a conventional database access application/database
arrangement, data migration is also regquired, and usually
takes much longer to complete than the database access
application deployment. This interval is shown on time
line 12 as time interval D, 26. Database migration, as
noted in time line 12, begins at the same time Ty 1). The
database migration process stretches from time T; 17 to
time T3 21. Therefore it is apparent that conventional

technologies require a “down time” equivalent to the

10

15

20

25

30

35

WO 03/023623 PCT/AU01/01134

11

interval D; 20 which is generally much greater than that
required by the present invention.

The present invention allows concurrent data migration, as
shown in time line 13 using the data migration EJB
component referred to in Figure 1. Therefore, the only
“down time” required for the present invention is the down
time in deploying the new database access application,
namely the interval from T; 17 to T; 18. The total down
time for the present invention is given by interval D; (22)
and is equivalent to the down time for deploying the
database access application D; 19.

The programmer creating the EJB component does not need to
be aware of the details or structure of the database, but
rather, uses this embodiment of the present invention as
an intermediate piece of software. The programmer writes.
his database access calls, and deploys them as part of an
EJB component to the EJB container. The data migration
EJBcomponent 6, in accordance with an embodiment of the
present invention, includes a determination means which
comprises instructions that enable the data migration EJB
6 to determine whether data required for operation of the
application is located in an existing persistence or a new
persistence. The instructions may comprise the steps of
applying a data “rule” to the query for data, thus
searching for the data in the existing persistence, , but
satisfying the rule for the new persistence. For example,
if we assume that all data elements “a” were to be
migrated from their value “a” to the value “a + 17, then
when querying for data value “a”, the rule “a + 1” would
be applied, thereby allowing the application to access the
data in the existing persistence, but satisfying the new
query. Relevant subsets of data can therefore be
accessed, regardless of the persistence they are present
in.

The present invention allows concurrent data migration
through two processes as illustrated in Figure 3.

The two clouds 31 in Figure 2 represent the database data

10

15

20

25

30

35

WO 03/023623 PCT/AU01/01134
12

within the existing persistence 32 and the new persistence
33.
For database access applications 34 (“entity beans”) which
are performing data access during data migration indicated
by arrow 35, a check 36 is made of the location of the
data. If the data is still residing in the existing
persistence 32 it is moved to the new persistence 33, and
the data access calls are then made on the data in the new
persistence 33.
For example, if the user of the database wishes to find a
particular customer order (e.g. to find all outstanding
orders), the user interacts with the web server (ie. the
EJB container 4 and any other appropriate applications).
The appropriate EJB component within the EJB container at
first instance accesses the existing persistence to check
for the location of the order data. If it discovers the
relevant data in the existing persistence, the data is
"migrated to the new persistence, and then data is
retrieved and operated on as required.
For example, in the case of an ordering database, the user
may wish to amend a particular customer order, say an
order placed for a client called John Smith. Let us assume
the guantity of an item needs to be changed. Once the user
makes the appropriate data access call, the database
migration and access method searches in the existing
persistence 32 for any records for John Smith. Having
found the appropriate subset of data, the database access
and migration apparatus would move the subset of data from
the existing persistence 32 to the new persistence 33.
Once the subset of data has been moved the new persistence
33, then the subset of data is amended to reflect the new
order quantity.
Independent of data migration 35 (in response to an access
reguest on the data), background data migration occurs, as
indicated by data migration arrow 37 in Figure 3.
Synchronisation is provided between the two data migration
processes 35 and 37 by the process illustrated in Figure

10

15

20

25

30

35

WO 03/023623 PCT/AU01/01134

13

3. Synchronisation will be understood in the context of
the present invention to be a process where background
data migration 37 and data migration 35 are aware of each
other to avoid data which has already been migrated from
being inadvertently re-migrated by either of the
aforementioned data migration processes.

There is provided a mechanism by which data is migrated
independently of any user calls to the database. The
method by which the data is migrated independently of any
user calls may be any appropriate method. It could be a
sequential migration of subsets of data, a random
migration of subsets of data, or any other method.

The preferred mechanism of determining data location is as
follows.

Each subset of data within the set of data that comprises
the database has a label which enables it to be
identified. It will be understood that the label is not
the only method available for searching the subsets of
data. In the preferred embodiment the label is the primary
key provided through the EJB 2.0 Specification
requirements[Enterprise Java Beans™ Specification, Version
2.0 available for download at
http://java.sun.com/products/ejb/docs.html]. The
aforementioned specification requires each subset of data
to have a unique key. The unigueness of the key is
maintained within the database. In accordance with the
present invention, therefore, the EJB component will
“*know” when a subset of data has been migrated from the
existing persistence to the new persistence. In other
words, when a subset of data is migrated the key is
carried with the subset of data. Therefore, the EJB
component can determine whether a subset of data‘ already
resides in the new persistence by checking for a
particular primary key within the new persistence.

If the primary key already exists within the new
persistence, then the EJB component does not need to check
whether the data exists in the existing persistence.

10

15

20

25

30

35

WO 03/023623 PCT/AU01/01134

14

If no matching primary key is found in the new
persistence, the EJB component searches the first
persistence, find the appropriate subset of data, migrates
the data to the second persistence, and then performs the
required access call or calls.

As discussed above, in a relational database, a subset of
data may include pointers (ie. address values) to other
sets of data. In other words, some subsets of data are
related objects, as they are linked to other subsets of
data.

In complex relational databases, it is apparent from the
description above that relations may be multi-layered,
and/or recursive. For example, a single subset of data may
have a number of links to other subsets of data, which in
turn may have a number of links to other subsets of data,
and so on. Thus, a subset of data may potentially have
thousands of relations. If data migration were to occur
concurrently, whilst users were interacting with the
database access application and the database, moving all a
subset of data and all its relations together could cause
an unacceptable degradation in database performance.

In the present invention, this potential problem is
overcome, as there is no need to migrate all relations
with the parent subset of data. This is achieved by making
each related object an independent object. The transition
of related objects to independent objects is achieved by
ascribing an object identifier key to each subset of data.
This object identifier key does not change between
migration, and is completely separate to the primary key
described earlier. The objecﬁ identifier key never
changes, whereas the primary key may change during
migration.

This allows related objects to be moved either when they
are required (due to an access call by a user), or as part
of the background data migration process at a later stage.
This provides the advantage that the waiting time a user

experiences between a request and a response is minimised,

10

15

20

25

30

35

WO 03/023623 PCT/AU01/01134

15

since the EJB component is only required to migrate the
relevant subset of data, and not all of the related
subsets of data.

For example, in the example given so far, it is quite
possible that the ordering database could be ordered as a
series of subsets of data which contain a number of fields
to retain information about a customer or client, and in
addition, a number of pointers or links to completely
independent orders. Therefore, any given subset of data
which holds customer details may also contain many
pointers to subsets of data which contain order details.
In turn, these order details may contain recursive
pointers to the subsets of data which hold customer
details, as well as other pointers to, for example, price
lists, current stock on hand, etc.

Thus, as can be seen in this example, if a user is simply
interested in accessing a list of customers, it would
cause a large time penalty if all the associated subsets
of data were also migrated.

Therefore, in the present invention, the customer subsets
of data would be migrated from the first schema to the
second schema. As each subset of data was migrated, each
dependency originating from the subset of data would be
assigned a unique object identifier key, corresponding to
the subset of data that' was migrated.

If we assume that the database consisted of 2000
customers, each with an average of 1000 orders per
customer. If all dependencies were moved when the customer
subsets of data were moved, then the user would have to
wait for 2,000,000 records to be moved. However, with the
present invention, only 2000 recoxrds would have to be
moved.

The invention is now described by way of specific example
as shown in Figures 4A and 4B.

Figure 4A represents a simple data structure 40 which
comprises a number of records 41. In this example,
customer record 42 contains a list of customer orders. 2

10

15

20

25

30

35

WO 03/023623 PCT/AU01/01134

16

corresponding record 43 contains a relation 44 to an order
record 45. In the present example, a relation will be
understood to mean a link between separate records. This
link may be achieved by any known method. For example,
the link may be established by holding the address wvalue
of the corresponding ordered record 45. Within the order
record 45, are stored values of items purchased for that
particular order.

This simple data structure 40, is implemented as a
persistence. A persistence, in the context of the present
invention, may be understood to be the physical
implementation of the abstract data structure shown in
Figure 4A.

This persistence, as shown in Figure 4B, takes the form of
a table 50. Therefore, the order record shown in Figure
47 finds it practical implementation as a table of
OrderNumbers 51. An individual OrderNumber 52 has a
corresponding object identifier 53, which allows the
OrderNumber to be uniquely identified by the present
invention. In accordance with the abstract data structure
shown in Figure 4A, there is also provided a corresponding
line item table 54, which contains a row of values 55,
being reference value 55 to the table of OrderNumbers 52.
The reference, is the practical implementation of the link
described in the proceeding paragraphs. In other words,
the reference represents the link between the table of
order values and the table of line items. In the present
example, an order is uniguely identified by an OrderNumber
which is a five character string (eg. “123457).

The order is produced and used by the database access
application, for the purpose of keeping track of customer
orders. The object identifier is produced and used by the
persistence layer and is invisible to the application.

The present invention may be termed a persistence layer,
since it is implemented as an EBJ component which sits “on
top” of the persistence as a "“layer”. In other words, the
present invention is a persistence layer which comprises

10

15

20

25

30

35

WO 03/023623 PCT/AU01/01134

17

the determination means and the allocation means and
provides a “buffer” between the database access
application and the persistence (ie. practical
implementation of the data of the database). The
reference value 55 held in one of the rows of the line
item table 54 is used as a link to the table 50. As the
reference value 56 is required to refer back to the
corresponding order values, it may be based on either an
OrderNumber 52 or an object identifier 53. However, using
the address value of the OrderNumber causes complications
- 1if the application wishes to change the OrderNumber 52
this will affect both tables. Therefore, the relation
between the two values is expressed by the object
identifier 53 which is entirely under the control of the
persistence layer and is not effected by application
requirements.

In the present example, after a period of time the number
of orders became so large that it was decided to implement
the value OrderNumber as a seven character string instead
of a five character string. This required a change in the
data access application and a change in the data
structure. In other words, it is necessary to convert old
values into new values by prepending two zeros to them.
For example, “12345” will become “0012345”".

In accordance with an embodiment of the present invention,
this is achieved in the following manner.

Firstly, the persistence layer receives a request from the
program to concatenate “00” with the corresponding strings
in the OrderNumber column.

Secondly, the pergsistence layer begins moving rows from
TableOrder to TableOrderNew (this is the background
migration process) concurrently applying the rule “00” ||
OrderNumber, where || indicates that the string “00~”
should be appended to the string in “OrderNumber” .
Thirdly, when the database access application calls the
persistence layer asking for access to row, the
persistence layer ensures first that this is row in

10

15

20

WO 03/023623 PCT/AU01/01134

18

TableOrder new. For example, if the application asks for
a row with OrderNumber “0012345”, the persistence layer
looks in the TableOrder for:

TableOrderTableOrderSELECT FROM TableOrder WHERE “007” ||
OrderNumber equals “0012345”

If a row is found satisfying a condition, it is moved to
TableOrderNew with “00” added in the beginning of
OrderNumber pre-emptive migration and then made available
to the application.

The behaviour of the persistence layer takes place only
while there exist rows in TableOrder. When TableOrder
becomes empty the persistence layer ceases to apply the
rule.

It would be appreciated by persons skilled in the art that
numerous variations and/or modification may be made to the
invention as shown in the specific embodiments without
departing from the spirit or scope of the invention as
broadly described. The present embodiments, therefore,
are to be considered to in all respects illustrative and

not restrictive.

10

15

20

25

30

35

WO 03/023623 PCT/AU01/01134

19

CLAIMS:

1. A method of operating a computing system which
facilitates operation of an application during data
migration from an existing persistence to a new
persistence, the method comprising the steps of, in
response to a data call required for operation of the
application, determining whether the data exists in the
existing persistence or the new persistence, and, if the
data exists in the existing persistence, migrating the
data to the new persistence and providing the data for
operation of the application.

2. A method in accordance with claim 1, comprising the
further step of migrating data independent of any
operation of the application.

3. A method in accordance with claim 1, wherein the step
of determining whether the data exists in the existing
persistence or the new persistence, includes the step of
identifying a data label and searching for the label in
the respective persistences to determine where the data
is.

4. A method in accordance with claim 3, wherein the
application is in the form of an Enterprise Java Bean
component and the label is the primary key identifier.

5. A method in accordance withclaim 1, comprising the
further step of allocating object identifier keys to
respective subsets of data where the subsets of data have
relational dependencies to each other, whereby dependent
data may be located using the object identifier key
without being required to migrate the data with the parent
data.

6. A computing system arranged to facilitate operation
of an application during data migration from an existing
persistence to a new persistence, the computing system
including determination means arranged to determine, in
response to a data call required for operation of an

10

15

20

25

30

35

WO 03/023623 PCT/AU01/01134

20

application, whether the data exists in the existing
persistence or the new persistence and, if the data exists
in the existing persistence, to migrate the data to the
new persistence and provide the data for operation of the
application.

7. A system in accordance with claim 6, wherein
determination means is arranged to identify a data label
and searching for the label in the respective persistence
to determine where the data is located.

8. A system in accordance with claim 7, wherein the
application is in the form of an Enterprise Java Bean
component and the label is the primary key identifier.

9. A system in accordance with claim 6, further
comprising allocation means arranged to allocate objecﬁ
identifier keys to respective subsets of data where the
subsets of data have relational dependencies to each
other, whereby dependent data may be located using the
object identifier key without being required to migrate
the data with the parent data.

10. A computer program which when loaded onto a computer
system causes the computer to, in response to a data call
required for operation of a computer application,
determine whether the data required for operation of an
application exists in the existing persistence or the new
persistence and, if the data exists in the existing
persistence, to migrate the data to the new persistence
and provide the data for operation of the application.
11. A computer readable medium storing instructions for
controlling a computing system to, in response to a data
call required for operation of a computer application,
determine whether the data required for operation of the
application exists in an existing persistence or a new
persistence, and, if the data exists in the existing
persistence, to migrate the data to the new persistence

and provide the data for operation of the application.

PCT/AU01/01134

WO 03/023623

1/4

~
-~
|
N = —
T -~
s LL
f’l Y N
) DO
) AN So
’ 1 ~ ~
. ? So S
. B ~ -~
~ ~
¢ A . e
4 b s
" l' . ~.
¢ - ~
’ Uy ~ e
. ¢ N RS
¢ ? A
’ L)
Q
pundl
(s2]
-
i > lag
L~ & - »
AN

SUBSTITUTE SHEET (RULE 26)

WO 03/023623

PCT/AU01/01134
2/4
19
State }
14 Running T
D, ;
15——-) Stopped :
R LT
State 4 ; ; 20 S |
14 . . ' :
Running ! .
E / ?
o,
15 Stopped :
T T T T T
0 1 2 .3 "
State 4 b 22 : _
Ve o ; : ;
Running :
~— i 13
D '
3 '
15 Stopped - :
Lot TooT
16 17 18 21
Figure 2

SUBSTITUTE SHEET (RULE 26)

WO 03/023623 PCT/AU01/01134

3/4

34
 Entity —
Bean

| 35

HAS DATA
BEEN MOVED?

32 33

A 36 /

Old
Persistence

New
Persistence

Figure 3

SUBSTITUTE SHEET (RULE 26)

WO 03/023623 PCT/AU01/01134

N 3
[12310) .-~ “dtemn A
40 | ItemB
\ 12345 | |
12376
42 43
Figure 4A
54 &
50 : :
\ . ' 55
12310 N ltem A
52 - ,»“"" o ~itemB |
\ 12345 | 001ACY K
’ ..
' wssn . \\
, 53
12376
/ Flgure 4B
51 ,

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT International application No.

PCT/AU01/01134
A. CLASSIFICATION OF SUBJECT MATTER
Int. CL™ GO6F 12/02, 17/30
According to International Patent Classification (IPC) or to both national classification and IPC
B. FIELDS SEARCHED
Minimum documentation searched (classification system followed by classification symbols)
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
WPAT, USPTO, INSPEC. IPC: GO6F, Example keywords: data, migrat/updat/transfer, persisten, down time,
concurren/simult/transpar, quer/request/call/disrupt:
C. DOCUMENTS CONSIDERED TO BE RELEVANT
Category* | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 6240486 (Ofek et al.) 29 May 2001. 1-11
X US 6108748 (Ofek et a.) 22 August 2000. 1-11
X US 5835954 (Duyanovich et al.) 10 November 1998. 1-11
X US 5680640 (Ofek et al.) 21 October 1997. 1-11
I:I Further documents are listed in the continuation of Box C See patent family annex
Special categories of cited documnents: "T" later document published after the international filing date or
"A" document defining the general state of the art which is priority date and not in conflict with the application but cited to
not considered to be of particular relevance understand the principle or theory underlying the invention
"E" earlier application or patent but published on or after "X" document of particular relevance; the claimed invention cannot
the international filing date be considered novel or cannot be considered to involve an
"L" document which may throw doubts on priority claim(s) inventive step when the document is taken alone
or which is cited to establish the publication date of "Y" document of particular relevance; the claimed invention cannot
another citation or other special reason (as specified) be considered to involve an inventive siep when the document is
"o" document referring to an oral disclosure, use, exhibition combined with one or more other such documents, such
or other means combination being obvious to a person skilled in the art
"pr document published prior to the international filing date "&" document member of the same patent family
but later than the priority date claimed
Date of the actual completion of the international search Date of mailing of the international search report
6 November 2001 - 0 NOV 200
Name and mailing address of the ISA/AU Authorized officer e
AUSTRALIAN PATENT OFFICE { B% g
PO BOX 200, WODEN ACT 2606, AUSTRALIA
E-mail address: pet@ipaustralia.gov.au SEAN A GATE
Facsimile No. (02) 6285 3929 Telephone No : (02) 6283 2207

Form PCT/ISA/210 (second sheet) (July 1998)

INTERNATIONAL SEARCH REPORT
Information on patent family members

International application No.
PCT/AU01/01134

This Annex lists the known "A" publication level patent family members relating to the patent documents cited in the
above-mentioned international search report. The Australian Patent Office is in no way liable for these particulars

which are merely given for the purpose of information.

Patent Document Cited in Patent Family Member
Search Report

uUs 6240486 NONE

US 6108748 NONE

Us 5835954 NONE

US 5680640 EP 789877 WO 9709676

END OF ANNEX

Form PCT/ISA/210 (citation family annex) (July 1998)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

