PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶: G11B 19/02, 19/12

(11) International Publication Number:

WO 97/08694

G11B 19/02, 19/12

A1

(43) International Publication Date:

6 March 1997 (06.03.97)

(21) International Application Number:

PCT/IB96/00817

(22) International Filing Date:

16 August 1996 (16.08.96)

(81) Designated States: BR, CZ, HU, JP, KR, MX, PL, RU, TR, VN, European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

(30) Priority Data:

95202278.8

23 August 1995 (23.08.95)

EP

(34) Countries for which the regional or

international application was filed:

NL et al.

(71) Applicant: PHILIPS ELECTRONICS N.V. [NL/NL]; Groenewoudseweg 1, NL-5621 BA Eindhoven (NL).

(71) Applicant (for SE only): PHILIPS NORDEN AB [SE/SE]; Kottbygatan 7, Kista, S-164 85 Stockholm (SE).

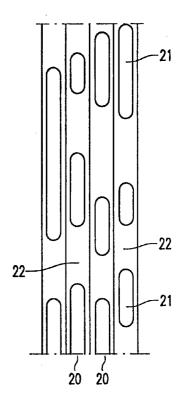
(72) Inventors: SUERMONDT, Rutgerus, Elisabertus, Eduardus, Franciscus; Groenewoudseweg 1, NL-5621 BA Eindhoven

(NL). CLOETENS, Henry; Romeinsesteenweg 520 Bus 14,

B-1853 Grimbergen (BE).

(74) Agent: FAESSEN, Louis, M., H.; Internationaal Octrooibureau B.V., P.O. Box 220, NL-5600 AE Eindhoven (NL).

Published


With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: DEVICE FOR READING AN INFORMATION CARRIER, INCLUDING DISCRIMINATING MEANS FOR DETERMINING A TYPE OF INFORMATION CARRIER

(57) Abstract

A device according to the invention is suitable for playing different types of information carriers, such as a CD and an MMCD, on which the information is recorded in a track pattern that has various physical parameters. The processing of the read signal for information reproduction, and the servo means such as the drive motor and the servotracking, are to be set to the particular type of information carrier. For determining the type of information carrier, the device includes discriminating means. During a discrimination process a read signal is generated without the servo tracking facility being in operation. Signal properties related to the physical parameters are then derived from the read signal, based upon which properties the type of information carrier is determined.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	United Kingdom	MW	Malawi
ΑT	Austria	GE	Georgia	MX	Mexico
AU	Australia	GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway
BF	Burkina Faso	IE	Ireland	NZ	New Zealand
BG	Bulgaria	IT	Italy	PL	Poland
BJ	Benin	.IP	Japan	PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belarus	KG	Kyrgystan	RU	Russian Federation
CA	Canada	KP	Democratic People's Republic	SD	Sudan
CF	Central African Republic		of Korea	SE	Sweden
CG	Congo	KR	Republic of Korea	SG	Singapore
CH	Switzerland	KZ	Kazakhstan	SI	Slovenia
CI	Côte d'Ivoire	LI	Liechtenstein	SK	Slovakia
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CN	China	LR	Liberia	SZ	-
CS	Czechoslovakia	LT	Lithuania	TD	Swaziland Chad
CZ	Czech Republic	LU	Luxembourg	TG	
DE	Germany	LV	Latvia		Togo
DK	Denmark	MC	Monaco	TJ TT	Tajikistan
EE	Estonia	MD	Republic of Moldova		Trinidad and Tobago
ES	Spain	MG	Madagascar	UA	Ukraine
FI	Finland	ML	Mali	UG	Uganda
FR	France	MN	Mongolia	US	United States of America
GA	Gabon	MR	Mauritania	UZ	Uzbekistan
		MIK	waumama	VN	Viet Nam

Device for reading an information carrier, including discriminating means for determining a type of information carrier.

The invention relates to a device for reading an information carrier on which an information pattern is recorded in the form of substantially parallel running tracks of readable effects, the device comprising a read head for generating a read signal by scanning the information carrier at a scanning position, servo tracking means for keeping the scanning position on the track, and discriminating means for determining a type of information carrier, the information pattern having at least one different physical parameter for each type of information carrier.

Such a device is disclosed in US 4,724,492. This device is suitable for playing an audio Compact Disc (CD), a video Laser Disc with an FM-modulated audio signal (LD) and a video Laser Disc with a digital audio signal (LDD). During playback, the recorded information signal is recovered from the information pattern, while the signal processing and the settings of the servo means, among which drive motor control and servo tracking means, are to be adapted to the respective type of information carrier. For this purpose, the device includes discriminating means for determining a type of information carrier. The CD is distinguished on the basis of the diameter which is sensed by a sensor. The LD and LDD differ in recorded information pattern in the presence of the digital audio signal. To distinguish the LD from the LDD, the servo means are set, the disc is brought to speed and the read head is positioned over the track by the servo tracking means. Then, part of the information pattern is scanned during which operation the read signal is demodulated for recovering the information signal. A discrimination circuit finally detects the presence of the digital audio signal in that the frame sync occurs in the information signal.

A problem in prior-art device is that for discriminating the types of information carriers in which only the information pattern is different, said complicated procedure is to be applied, which leads to a time-consuming determination of the type of information carrier.

It is an object of the invention to provide a device that comprises means by which different types of information carriers can be distinguished in a fast and simple manner.

For this purpose, the device according to the invention is characterized in

that the discriminating means are adapted for determining a type of information carrier on the basis of read-signal properties related to the physical parameter while the servo tracking means are out of operation. This is advantageous, for example, in that no time is necessary for locking the servo tracking facility on a track. This is all the more an advantage if not all the possible types of information carriers can be optimally read with one servo means setting. For, in that case a number of attempts should be made in succession to scan a part of the information pattern with different servo settings, until the settings are found that correspond to the type of information carrier present. The invention is also based on the recognition that the read signal of a scanning position which is not kept on the track, does have properties related to physical parameters of the information pattern and that discrimination on the basis thereof renders the reproduction of the information contents of the information pattern unnecessary.

An embodiment of the device according to the invention is characterized in that the discriminating means are adapted for determining the properties of the frequency spectrum of the read signal when the scanning position is moved in a direction substantially parallel with the tracks. In the event of such a movement in the longitudinal direction of the tracks, the scanning position will alternately see parts of parallel tracks or fall between the tracks and then partly cover two adjacent tracks. The read signal is then unfit for demodulation and for the reproduction of the information signal, it is true, but the frequency spectrum of the read signal will, in essence, be determined by the physical parameters of the effects in the longitudinal direction. This is advantageous in that the type of information carrier can be simply derived from the frequency spectrum at a specific longitudinal speed.

20

30

A further embodiment of the device according to the invention is characterized in that the discriminating means are adapted for determining a type of information carrier, while for each type of information carrier only effects of a limited number of lengths occur and the lengths differ by a fixed step size, and for detecting in the read signal one or more frequency components related to the lengths or the step size. This is advantageous in that the related frequency components are dominantly present in the read signal and may be detected in a simple manner. This is all the more advantageous since the detection is usually possible by means already present for the reproduction of the information signal.

A further embodiment of the device according to the invention in which the information carrier is disc-shaped is characterized in that the movement comprises making the information carrier rotate with a predetermined speed of rotation and positioning

the scanning position at a predetermined radial distance from the point of rotation. This is advantageous in that, as a result, a predetermined longitudinal speed is realized and such a movement can be realized in a simple manner by the servo means already present.

A further embodiment of the device according to the invention is

characterized in that the discriminating means are adapted for determining the minimum and maximum level of the read signal. This is advantageous, for example, in that the read signal modulation depth, which may differ per type of information carrier, can be simply determined from the various effects.

A further embodiment of the device according to the invention is

characterized in that the discriminating means are adapted for detecting the number of
crossings of the scanning position with a track when the scanning position is moved in the
direction transverse to the direction of the tracks. This is advantageous in that, with a
transverse movement over a known distance, the track pitch which denotes the mutual
distance between the tracks and which may be different for each type of information carrier,

can be determined in a simple manner.

These and other aspects of the invention will be apparent from and elucidated with reference to the embodiments described hereinafter.

20

In the drawings:

Fig. 1 shows a device for reading an information carrier,

Fig. 2 shows a diagram of a discrimination procedure, and

Fig. 3 shows a part of an information pattern.

Fig. 1 shows a device according to the invention for reading an
25 information carrier 1, comprising discriminating means 9 for determining a type of
information carrier. The information carrier is of an optically readable disc-shaped type such
as, for example, the audio CD or a high-density CD such as a Multi Media CD (MMCD).
However, the invention may likewise be applied in combination with information carriers of
a magnetic type, or tape-like information carriers. An extensive description of reading a CD
30 is to be found in the title 'Principles of optical disc systems' by Bouwhuis et al., ISBN 085274-785-3. The MMCD distinguishes itself from the CD, for example, by a larger
information density, while the information pattern is formed by smaller effects and the
intertrack distance, track pitch, is smaller than with the CD. The device comprises a read
head 3 for scanning the track 2 by an optical beam at a scanning position 13 to read the

information carrier 1. The read signal 10 goes to the demodulation and error correction means 4. The information signal 11 thus recovered comprises not only recorded information, but also all the medium-dependent information such as addresses, control and synchronization information. From there the information signal 11 goes to a deformatter 5 where the medium-dependent information is extracted and applied to the system controller 8. The recovered user information is produced via output 12, for example, in the form of a digital bit stream. In another embodiment the device may further include a decoder (not shown) for decoding the digital user information to an analog signal, such as, for example, an MPEG-2 coded digital video signal to an analog video signal, or a converter for converting a digital audio signal into an analog audio signal. The information carrier 1 is brought to the desired speed of rotation by drive means 6. The read head 3 is positioned over the scanning position of information carrier 1 by a positioning unit, for example, a slide or swivelling arm (not shown) which is driven by the system controller 8. The servo tracking means 7 derive from the read signal 10 servo information which is indicative of the location of the scanning position 13 relative to the centre of the track 2. With the servo tracking means the scanning position 13 is adapted for keeping the scanning position 13 on the track 2.

For an optimum reading of these types of information carriers, it may be desirable for the servo settings and the signal processing to be adapted to the type of information carrier. For an adequate adaptation, the type of information carrier needs to be known. For determining the type of information carrier, the device according to the invention comprises discriminating means 9 which are coupled to the system controller 8 for passing on a discrimination signal that indicates the type of information carrier. The discriminating means 9 are coupled to the read signal 10 and detect its signal properties which are related to one or more physical parameters of the information pattern. The read signal is to this end analyzed in a discrimination procedure after an information carrier has been inserted. For different types of information carriers a single discrimination procedure is used in which a read signal is generated while the servo tracking means 7 are out of operation and the scanning position 13 is not kept on a specific track either. A number of the further servo-control means, more specifically, the focusing controller, are set in a predetermined manner, so that the read signal has signal properties related to physical parameters. Several examples of physical parameters and related signal properties are described with reference to Figs. 2 and 3.

In other embodiments the device is suitable for playing different types of information carriers, such as a magnetic disc or an optical or magnetic tape where an

information pattern of substantially parallel tracks is available on the information carriers. Such a device naturally has drive means, positioning means and servo tracking means suitable for the respective type of information carrier. Distinguishing between types of information carriers is effected in comparable manner based upon signal properties of the read signal while servo tracking means are out of operation.

Fig. 2 gives a diagrammatic representation of a discrimination procedure according to the invention as an example for discrimination between the CD and the MMCD. The procedure is executed by the system controller 8 and the discriminating means 9. In step S1 the device is turned on and an information carrier is inserted into the device. In step S2 all the settings of the device that depend on the type of information carrier are brought to a given value. For this purpose, a suitable value is selected from the range of values customary for types of information carriers, for example, an average or the lowest value for the speed of rotation of the information carrier. In step S3 the drive means are driven for making the information carrier rotate at a fixed predetermined speed of rotation. In step S4 the read head is positioned at a predetermined radial distance from the point of rotation. If the positioning means have a sensor that indicates the radial distance, a random selection of the distance is possible. In a device without such a sensor, a known fixed stop point of the positioning means such as a stop point at the minimum radial distance may be used, for example. Then a small fixed distance to the exterior may be covered, so that the scanning position 13 certainly lies on the information pattern at a known radial distance with a limited tolerance. This may be realized, for example, by applying a small fixed control voltage to the positioning servo. The steps S3 and S4 will cause the information pattern to move along the scanning position at a known longitudinal speed in the direction substantially parallel with the tracks. In step S5 the laser in the read head and the focusing servo are activated. As a result, the read signal 10 is generated. The servo tracking means 7 are not switched on. The type of information carrier is still unknown and an optimum servo tracking generally requires an adaptation of the setting of the servo tracking means 7 to the type of information carrier. In addition, the locking of the servo tracking control requires additional time. In step S6 the signal properties of the read signal 10 are determined, which are related to one or more physical parameters of the information pattern which are characteristic of the types of information carriers to be discriminated. For this purpose, signals indicative of one or more of the properties, for example, the amplitude variation or the frequency contents of the read signal 10, are derived by deriving means which are known to a person skilled in the art. Based on the derived signals, the type of information carrier is then determined and transferred to the system

25

15

25

30

controller 8. Depending on the detected type of information carrier, step S7, S8 or S9 is then proceeded to. In the case of a CD, step S7 is proceeded to, in which the settings of the device are adapted to a CD. In the case of an MMCD, step S8 is proceeded to in which the settings of the device are adapted to an MMCD. Step S9 is proceeded to if the type of information carrier cannot be played and the information carrier is, for example, ejected automatically. After step S7 or step S8 follows step S10 in which the information carrier is played, while naturally the servo tracking means 7 are operative.

In an embodiment of the discrimination procedure, properties of the frequency spectrum, such as comparing the amount of energy in a low-frequency band and in a high-frequency band, which may be obtained by simple filter means, are determined in step S6 while the signal properties are being determined. These energy contents may be different for different types of information carriers which have different densities and different effect dimensions. With a suitable choice of the filter frequencies, the type of information carrier can be determined in a simple manner.

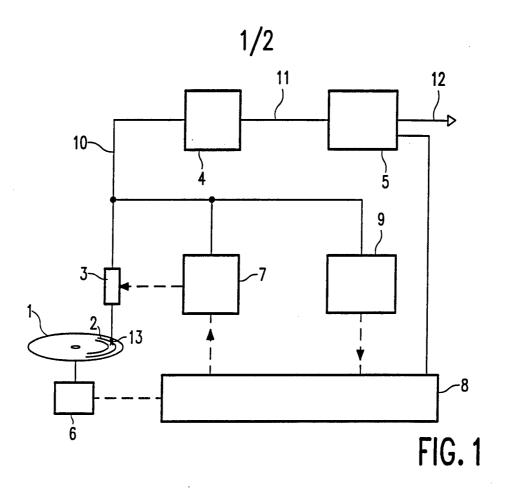
In another embodiment of the discrimination procedure, the scanning position is moved over a predetermined distance in a direction transverse to the tracks in step S6 while the signal properties are being determined. As a result, signal components are formed in known manner in the read signal, which components correlate with the crossing of a track. These signal components are counted and so are the number of crossings. The number of crossings over a known distance or the number of crossings per unit of time at a known transverse speed is then related to the track density and thus to the track pitch. This track pitch is one of the physical parameters which are clearly different for the CD (about $1.6 \mu m$) and the MMCD (about $0.8 \mu m$). It is not necessary in this case to effect in step S3 a precise speed of rotation and a precise radial position in step S4. In the case of too low a speed of rotation, however, there is a risk of a crossing not being detected, because too few detectable effects are present there.

Fig. 3 gives a diagrammatic representation of a part of an information pattern in which four parallel tracks 20 are indicated. The tracks are formed by effects 21 and 22 which can be read out, for example, optically or magnetically. The effects represent a binary signal for which the lands or pits 21 show one polarity and the spacings 22 the other polarity. The effects (thus both the lands 21 and the spacings 22) have only a limited number of lengths and the lengths constantly differ by a fixed step size T. For the CD, for example, the lengths 3T to 11T occur. This causes in the read signal a strong frequency component related to T to occur, which is also referenced the bit clock. For the recovery of the digital

information, the bit clock is to be regenerated. For this purpose, the demodulation means 4 comprise means for regenerating the bit clock, for example, a so-called Phase-Locked Loop (PLL). A PLL may be realized in a known, analog or digital, manner. It is possible to utilize the PLL already present for the detection of the frequency of the bit clock. For this purpose, the PLL is to be arranged for determining the frequency at which the PLL is locked. This information is transferred to the discriminating means 9. The discriminating means 9 then establish whether the detected frequency lies in one of two, non-overlapping, value ranges, so-called windows. As a result, the step size T, which for the CD is about 0.28 μ m and for MMCD about 0.15 μ m, is known in a simple manner.

In another embodiment a signal component corresponding to one of the lengths of the effects is filtered out and detected, for example, by a run length detector in the discriminating means 9. Such a detector determines the time in which the read signal polarity does not change. A suitable choice for detection is the component corresponding to the shortest run length (thus 3T for CD). The mean value of the shortest run lengths is compared by the discriminating means 9 with the values expected for the different types of information carriers.

10


20

In other embodiments there will have to be made a distinction between types of information carriers which differ in other physical parameters. An example of this is the distinction in modulation depth of the read signal between different types of information carriers. For this purpose, the discriminating means may determine the minimum and maximum levels of the read signal 10. The difference is then indicative of the modulation depth.

CLAIMS:

- Device for reading an information carrier on which an information pattern is recorded in the form of substantially parallel running tracks of readable effects, the device comprising a read head for generating a read signal by scanning the information carrier at a scanning position, servo tracking means for keeping the scanning position on the track, and discriminating means for determining a type of information carrier, the information pattern having at least one different physical parameter for each type of information carrier, characterized in that the discriminating means are adapted for determining the type of information carrier on the basis of read-signal properties related to the physical parameter while the servo tracking means are out of operation.
- Device as claimed in Claim 1, characterized in that the discriminating means are adapted for determining the properties of the frequency spectrum of the read signal when the scanning position is moved in a direction substantially parallel with the tracks.
 - 3. Device as claimed in Claim 2, characterized in that the discriminating means are adapted for determining a type of information carrier, while for each type of information carrier only effects of a limited number of lengths occur and the lengths differ by a fixed step size, and for detecting in the read signal one or more frequency components related to the lengths or the step size.
- 4. Device as claimed in Claim 2 or 3, in which the information carrier is disc-shaped, characterized in that the movement comprises making the information carrier rotate with a predetermined speed of rotation and positioning the scanning position at a predetermined radial distance from the point of rotation.
 - 5. Device as claimed in Claim 1, characterized in that the discriminating means are adapted for determining the minimum and maximum level of the read signal.
- Device as claimed in Claim 1, characterized in that the discriminating means are adapted for detecting the number of crossings of the scanning position with a track when the scanning position is moved in the direction transverse to the direction of the tracks.

WO 97/08694 PCT/IB96/00817

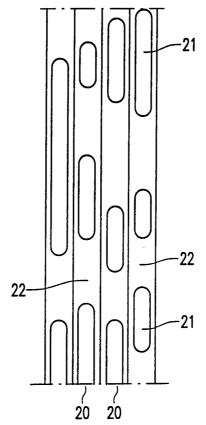
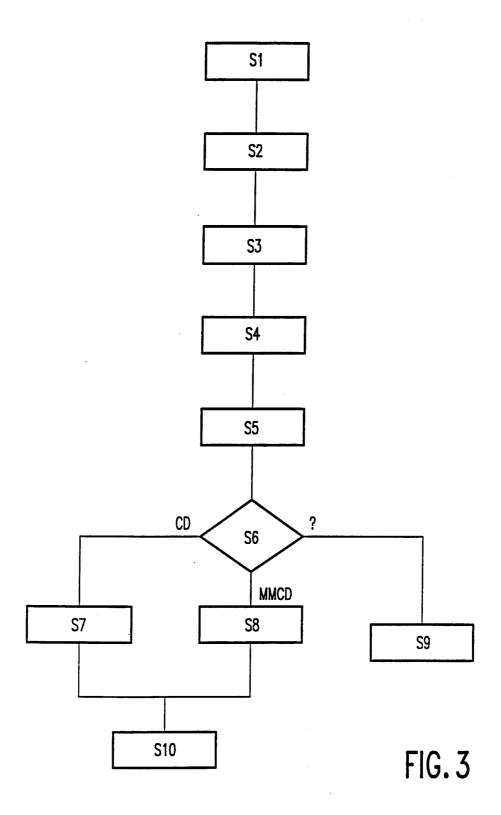



FIG. 2

2/2

†

INTERNATIONAL SEARCH REPORT

International application No. PCT/IB 96/00817

A. CLASSIFICATION OF SUBJECT MATTER

IPC6: G11B 19/02, G11B 19/12
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC6: G11B

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

SE,DK,FI,NO classes as above

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

CLAIMS, WPI

		C.	DOCUMENTS	CONSIDERED TO	D BE RELEVANT
--	--	----	------------------	---------------	---------------

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	US 5202874 A (ZUCKER ET AL), 13 April 1993 (13.04.93), column 2, line 64 - column 4, line 7	1,5
A		2-4
P,X	Patent Abstracts of Japan, Vol 96,No 2, abstract of JP,A,8-36827 (VICTOR CO OF JAPAN LTD), 6 February 1996 (06.02.96)	1,6
X	Patent Abstracts of Japan, Vol 13,No 397, P-928, abstract of JP,A,1-143071 (HITACHI LTD), 5 June 1989 (05.06.89)	1,2,4

X	Further documents are listed in the continuation of Box	C.	X See patent family annex.
*	Special categories of cited documents:	"T"	later document published after the international filing date or priority
"A"	document defining the general state of the art which is not considered to be of particular relevance		date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"E"	erlier document but published on or after the international filing date	"X"	document of particular relevance: the claimed invention cannot be
"L"	document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other		considered novel or cannot be considered to involve an inventive step when the document is taken alone
	special reason (as specified)	"Y"	document of particular relevance: the claimed invention cannot be
″0″	document referring to an oral disclosure, use, exhibition or other means		considered to involve an inventive step when the document is combined with one or more other such documents, such combination
″P″	document published prior to the international filing date but later than		being obvious to a person skilled in the art
	the priority date claimed	"&"	document member of the same patent family
Date	e of the actual completion of the international search	Date	of mailing of the international search report
17	February 1997		1 8 -02- 1997
Nan	ne and mailing address of the ISA/	Autho	rized officer
Swe	edish Patent Office		
Box	5055, S-102 42 STOCKHOLM	Bo G	ustavsson
	simile No. +46 8 666 02 86		none No. +46 8 782 25 00
- 40	5HIME 110. 1 10 0 000 02 00	- Stopi	1010 1101 . 10 0 102 20 00

INTERNATIONAL SEARCH REPORT

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

International application No.
PCT/IB 96/00817

		PCT/IB 96/0	0017
C (Continu	ation). DOCUMENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where appropriate, of the relev	ant passages	Relevant to claim No
X	Patent Abstracts of Japan, Vol 14,No 25, P-991 abstract of JP,A,1-264660 (MATSUSHITA ELEC CO LTD), 20 October 1989 (20.10.89)	1,2,4	
A	US 5177728 A (OTSUBO ET AL), 5 January 1993 (05.01.93)		1-5
·			
,			
	•		

INTERNATIONAL SEARCH REPORT

Information on patent family members

03/02/97

International application No.
PCT/IB 96/00817

Patent document cited in search report		Publication date		family Publication nber(s) date	
US-A-	5202874	13/04/93	AU-A- DE-A- DE-A- DE-A- EP-A,B- SE-T3- HK-A- JP-T- WO-A-	4666889 3838859 3911525 5890190 0444145 0444145 210096 4501780 9005977	12/06/90 23/05/90 11/10/90 27/08/92 04/09/91 06/12/96 26/03/92 31/05/90
US-A-	5177728	05/01/93	CA-A,C- EP-A- JP-A-	2011541 0386913 2232862	07/09/90 12/09/90 14/09/90

Form PCT/ISA/210 (patent family annex) (July 1992)