Title: PYRROLIDINE-2-CARBOXYLIC ACID HYDRAZIDE DERIVATIVES FOR USE AS METALLOPROTEASE INHIBITORS

Abstract: The present invention relates to compounds of formula (I) wherein R^1, R^2, R^3, R^4, R^5 and X are as defined in the description and the claims and pharmaceutically acceptable esters and/or salts thereof. The compounds are useful as inhibitors of metalloproteases, e.g. zinc proteases, particularly zinc hydrolases, and which are effective in treating disease states are associated with vasoconstriction of increasing occurrences.
The present invention is directed to compounds which are useful as inhibitors of metalloproteases, e.g. zinc proteases, particularly zinc hydrolases, and which are effective in the prophylaxis and treatment of disease states which are associated with vasoconstriction of increasing occurrences. Examples of such disorders are high blood pressure, coronary disorders, cardiac insufficiency, renal and myocardial ischaemia, renal insufficiency, dialysis, cerebral ischaemia, cardiac infarct, migraine, subarachnoid haemorrhage, Raynaud syndrome and pulmonary high pressure. In addition the compounds are useful as cytostatic and cerebroprotective agents for inhibition of graft rejection, for organ protection and for treatment of ophthalmological diseases.

Endothelins are peptides, that exist in three isoforms ET-1, ET-2, and ET-3, each encoded by a distinct gene. They have been originally discovered in the conditioned medium of porcine endothelial cells in 1988 by Yanagisawa (Yanagisawa M; Kurihara H; Kimura S; Tomobe Y; Kobayashi M; Mitsui Y; Yazaki Y; Goto K; Masaki T: A novel potent vasoconstrictor peptide produced by vascular endothelial cells [see comments]. NATURE (1988 Mar 31), 332(6163), 411-5.). The active ETs are peptides of 21 amino acids with two intramolecular disulfide bridges. They are produced from preproproteins of 203 to 212 amino acids which are processed by furin like endopeptidases to the biologically inactive big-endothelin (big-ET). The big-ETs are specifically processed to mature ETs by a hydrolytic cleavage between amino acids 21 and 22 that are Trp^{21}-Val^{22} (big-ET-1, big ET-2) and Trp^{21}-Ile^{22} in big-ET-3 respectively. Already in 1988 a
specific metalloprotease was postulated to be responsible for this specific cleavage. In 1994 ECE-1 (endothelin converting enzyme-1) was purified and cloned from bovine adrenal (Xu D, Emoto N, Giaid A, Slaughter C, Kaw S, de Witt D, Yanagisawa M: ECE-1: a membrane-bound metalloprotease that catalyzes the proteolytic activation of big endothelin-1. Cell (1994) 78: 473 – 485.).

ECE-1 is a membrane bound type II zinc-endopeptidase with a neutral pH optimum and a zinc binding motif HExxHx(>20)E. It belongs to subfamily M13 and has a large 681 amino acid ectodomain that comprises the active site. Other members of the M13 family are NEP24.11 (neutral endopeptidase), PEX, a phosphate regulating neutral endopeptidase, and Kell blood group protein that has recently been described as a big-ET-3 processing enzyme. Members of the M13 family of human origin are characterized by a high molecular weight (> 80 kDa) a number of conserved disulfide bridges and a complex glycosylation pattern. The strucutre of NEP has recently been solved. (Oefner et al, J. Mol. Biol. 2000, 296, 341-349). The catalytic domain of ECE and related human M13 proteinases are significantly larger (>650 amino acids) than members of matrix metalloproteases (MMPs). Unlike the family of the MMPs which belong to the metzincins and display a typical HExxHxGxxH pattern members of the M13 family are gluzincins comprising a HExxHx(>20)E pattern. These two families are clearly different in size of catalytic domains, structure and zinc coordinating pattern of ligands. Active sites of the two families show clear differences which has clear impact on type of inhibitors and the potential selectivity.

Therefore one aspect of the present invention is to provide compounds useful for the selective inhibition of ECE-1, especially compounds of formula (I):

![Chemical Structure](image)

wherein

- \(R^1 \) is hydrogen, alkylcarbonyl, or arylcarbonyl;
- \(R^2 \) is alkyl, alkylcycloalkyl, alkylcycloalkylalkyl, cycloalkyl, halogenalkyl, carboxyalkyl, aminoalkyl, dialkylaminoalkyl, alkoxyalkyl, alkoxyalkylalkyl, alkinyl, aryl, arylalkyl, arylalkyl(alkoxycarbonyl)alkyl, arylcarbonylalkyl,
aryloxyalkyl, arylalkenyl, aryl(alkoxycarbonyl)alkyl, heteroaryl, heteroarylamyl, heterocycyl or heterocyclylalkyl;

R^2 is hydrogen, aryl, alkyl, or arylalkyl, arylsulfonyl, heteroarylsulfonyl;

R^4 is hydrogen, arylalkyl, alkyl, aryl, cycloalkyl, cycloalkylalkyl, alkylsulfonyl,
arylsulfonyl, arylalkylsulfonyl, heteroarylsulfonyl, carboxyalkyl,
carboxyalkysulfonyl, or alkoxycarbonylalkyl; or the groups $-NR^2R^4$ or
$R^5-[N-N(R^4)]-$. R^3 form a saturated or unsaturated 5- or 6-membered aliphatic
ring;

R^3 is hydrogen, alkylsulfonyl, arylsulfonyl, heteroarylsulfonyl, alkoxycarbonyl,
aryloxycarbonyl, heteroaryloxycarbonyl, alkylcarbonyl, aroylcarbonyl,
heteroarylcarbonyl, heteroarylylalkylcarbonyl, heterocyclyl, (mono- or di-
alkylamino)-alkylcarbonyl, (mono- and dialkyl)aminosulfonyl,
arylaminocarbonyl, alkyl, alkylcarbonyl, alkoxycarbonyl, aryl, arylalkyl,
arlylalkoxycarbonyl, or heteroaryl;

R^6 is hydrogen, alkyl, aryl, or carboxyalkyl;

X is $-S(O)_2$-, $-S(O)_2-NH_2$, $-C(O)$-, $-C(O)NR^6$ or $C(O)\cdot O$
and pharmaceutically acceptable esters, and/or pharmaceutically acceptable salts
thereof.

The term “alkyl” as used herein, alone or in combination, means a straight-chain
or branched-chain alkyl group containing a maximum of 7, preferably a maximum of 4,
carbon atoms, e.g., methyl, ethyl, n-propyl, 2-methylpropyl (iso-butyl), 1-methylethyl
(iso-propyl), n-butyl, and 1,1-dimethylethyl (t-butyl).

The term “carboxy” refers to the group $-C(O)OH$.

The term “carbamoyl” refers to the group $-C(O)NH_2$.

The term “carbonyl” refers to the group $-C(O)$-.

The term “halogen” refers to the group “fluoro, bromo, chloro and iodo,
preferably fluoro and/or chloro, most preferably fluoro.

The term “sulfonyl” refers to the group $-S(O)_2$-

The term “alkenyl” refers to a hydrocarbon chain as defined for alkyl having at
least one olefinic double bond (including for example, vinyl, allyl and butenyl).
The term “alkinyl” refers to a hydrocarbon chain as defined for alkyl having at least one olefinic triple bond (including for example propinyl, butin-(1)-yl, etc.

The term “alkoxy”, alone or in combination, means an alkyl ether group in which the term ‘alkyl’ has the significance given earlier, such as methoxy, ethoxy, n-propoxy, isoproxy, n-butoxy, isobutoxy, sec.butoxy, tert.butoxy and the like.

The term “alkoxycarbonyl” refers to refers to a group of the formula -C(O)Rc wherein Rc is alkoxy as defined above.

The term "hydroxy" refers to the group -OH, the term "cyano" to the group -CN.

The term “hydroxyalkyl” means an alkyl group as defined earlier which is substituted by a hydroxy group.

The term “thioalkyl” refers to an alkyl group as defined above which is substituted by a -SH group.

The term "halogenalkyl" refers to an alkyl group as defined earlier which is substituted by one to three halogen atoms, preferably fluoro, e.g. trifluoromethyl, 2,2,2-trifluoroethyl, etc.

“Carboxyalkyl” means a lower-alkyl as defined above which is substituted by a HOOC- group.

The term “alkylcarbonyl”, alone or in combination, means an acyl group derived from an alkanecarboxylic acid, i.e. alkyl-C(O)-, such as acetyl, propionyl, butyryl, valeryl, 4-methylvaleryl etc.

The term “cycloalkyl”, alone or in combination, signifies a saturated, cyclic hydrocarbon group with 3-8, preferably 3-6 carbon atoms, i.e. cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl and the like.

The term "amino" refers to the group -NH2.

The term “aryl” for R2 – alone or in combination-, refers to an aromatic carbocyclic radical, i.e. a 6 or 10 membered aromatic or partially aromatic ring, e.g. phenyl, naphthyl or tetrahydrondaphthyl, preferably phenyl or naphthyl, and most preferably phenyl. The aryl moiety is optionally substituted with one or more groups, preferably 1 - 5, more preferably 1 - 3, independently selected from halogen, preferably fluor, alkoxy carbonyl, e.g. methylcarbonyl, carboxy, cyano, alkyl, alkoxy, phenyl,
phenoxy, trifluormethyl, trifluormethoxy, more preferably fluor, alkoxy carbonyl, alkyl, trifluoromethyl and trifluoromethoxy and most preferably fluor. The most preferred aromatic groups are naphthyl or phenyl substituted with one or more fluor atoms, e.g. naphthyl, 2,3,4,5,6-pentafluorophenyl or biphenyl.

The term "aryl" for R³ and R⁶ - alone or in combination- refers to an aromatic carbocyclic radical, i.e. a 6 or 10 membered aromatic or partially aromatic ring, e.g. phenyl, naphthyl or tetrahydronaphthyl, preferably phenyl or naphthyl, and most preferably phenyl. The aryl moiety is optionally substituted with one or more groups, preferably 1 - 5, more preferably 1 - 3, independently selected from halogen, preferably fluor, alkoxy carbonyl, e.g. methylcarbonyl, carboxy, cyano, alkyl, alkoxy, phenyl, phenoxy, trifluoromethyl, trifluormethoxy, hydroxy, alkylamido, e.g. acetamido, nitro, alkylsulfonyle, e.g. methylsulfonyle, more preferably alkyl or alkoxy.

The term "aryl" for R⁴ – alone or in combination- , refers to an aromatic carbocyclic radical, i.e. a 6 or 10 membered aromatic or partially aromatic ring, e.g. phenyl, naphthyl or tetrahydronaphthyl, preferably phenyl or naphthyl, and most preferably phenyl. The aryl moiety is optionally substituted with one or more groups, preferably 1 to 3, independently selected from halogen, preferably fluor, alkoxy carbonyl, e.g. methylcarbonyl, carboxy, cyano, alkyl, alkoxy, phenyl, phenoxy, trifluoromethyl, trifluormethoxy, cyclohexyl, hydroxy, alkylamido, e.g. acetamido, nitro, alkylsulfonyle, e.g. methylsulfonyle, more preferably fluor, chlor, brom, alkoxy, carboxy, alkoxy carbonyl, and most preferably fluor. Examples for aromatic groups are phenyl, 2,4,5-trifluorophenyl, and 2,4 difluorophenyl.

The term "aryl" for R⁵ - alone or in combination-, refers to an aromatic carbocyclic radical, i.e. a 6 or 10 membered aromatic or partially aromatic ring, e.g. phenyl, naphthyl or tetrahydronaphthyl, preferably phenyl or naphthyl, and most preferably or phenyl. The aryl moiety is optionally substituted with one or more groups, preferably 1 - 5, more preferably 1 - 3, independently selected from halogen, preferably fluor, alkoxy carbonyl, e.g. methylcarbonyl, carboxy, cyano, alkyl, alkoxy, phenyl, phenoxy, trifluoromethyl, trifluormethoxy, more preferably alkyl or alkoxy, e.g. methyl or methoxy. Examples for these aryl groups are 4-methyl-phenyl and 4-methoxy-phenyl.

The term “aryloxy” refers to an aryl group as defined above attached to a parent structure via an oxy radical, i.e., aryl-O-.
The term “heteroaryl” for R⁴ – alone or in combination - refers to an aromatic monovalent mono- or bicyclic radical having 5 to 10, preferably 5 to 6 ring atoms, containing one to three heteroatoms, preferably one heteroatom, e.g. independently selected from nitrogen, oxygen or sulfur. Examples of heteroaryl groups are thiophenyl, isoxazolyl, thiazolyl, pyridinyl, pyrrolyl, imidazolyl, tetrazolyl, preferably pyridinyl, isoxazolyl and thiazolyl. Optionally, the heteroaryl group can be mono-, di- or tri-substituted, independently, with phenyl, alkyl, alkylcarbonyl, alkoxy carbonyl, hydroxy, amino, alkylamino, dialkylamino, carboxy, alkoxy carbonyl alkyl, preferably alkyl.

The term “heteroaryl” for R³ or R⁵ – alone or in combination - refers to an aromatic monovalent mono- or bicyclic radical having 5 to 10, preferably 5 to 6 ring atoms, containing one to three heteroatoms, preferably one heteroatom, e.g. independently selected from nitrogen, oxygen or sulfur. Examples of heteroaryl groups are pyridinyl, thiophenyl, isoxazolyl, isoquinolyl, quinolyl, indolyl, pyrimidine, pyridazine, and pyrazine, preferably thiophenyl, furanyl, pyrrolidinyl, indolyl and isoxazolyl. Optionally, the heteroaryl group can be mono-, di- or tri-substituted, independently, with phenyl, alkyl, alkylcarbonyl, alkoxy carbonyl, hydroxy, amino, alkylamino, dialkylamino, carboxy, o xo, alkoxy carbonyl alkyl, preferably alkyl.

The term "heterocyclic" - alone or in combination - refers to a non-aromatic monovalent mono- or bicyclic radical having 5 to 10, preferably 5 to 6 ring atoms, containing one to three heteroatoms, preferably one heteroatom, e.g. independently selected from nitrogen, oxygen or sulfur. Optionally the heterocyclic ring can be substituted by a group independently selected from halogen, alkyl, alkoxy, oxo carboxy, alkoxy carbonyl, etc. and/or on a secondary nitrogen atom (i.e. -NH-) by alkyl, aryalkoxy carbonyl, alkyl carbonyl or on a tertiary nitrogen atom (i.e. -N-) by oxido. Examples for heterocyclic groups are morpholinyl, pyrrolidinyl, piperidyl, etc.

The term "dimeric form" means a compound wherein the two R¹ groups of two identical compounds of formula I have been replaced by a common single bond or wherein R¹ is glutathione-S- or cysteine-S- or ester and/or alkylcarbonyl or arylcarbonyl derivatives thereof, e.g. acetyl cysteine-S- or benzoylcysteine-S-, preferably glutathione-S-, cysteine-S-, acetyl cysteine-S- or benzoylcysteine-S-.

The term "pharmacologically acceptable salt" refers to those salts which retain the biological effectiveness and properties of the free bases or free acids, which are not biologically or otherwise undesirable. The salts are formed with inorganic acids such as
hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid and the like, and organic acids such as acetic acid, propionic acid, glycolic acid, pyruvic acid, oxalic acid, maleic acid, malonic acid, succinic acid, fumaric acid, tartaric acid, citric acid, benzoic acid, cinnamic acid, mandelic acid, methanesulfonic acid, ethanesulfonic acid, p-toluenesulfonic acid, salicylic acid, and the like. In addition these salts may be prepared form addition of an inorganic base or an organic base to the free acid. Salts derived from an inorganic base include, but are not limited to, the sodium, potassium, lithium, ammonium, calcium, magnesium salts and the like. Salts derived from organic bases include, but are not limited to salts of primary, secondary, and tertiary amines, substituted amines including naturally occurring substituted amines, cyclic amines and basic ion exchange resins, such as isopropylamine, trimethylamine, diethylamine, triethylamine, tripropylamine, ethanolamine, lysine, arginine, N-ethylpiperidine, piperidine, polyamine resins and the like.

"Pharmaceutically acceptable esters" means that compounds of general formula (I) may be derivatised at functional groups to provide derivatives which are capable of conversion back to the parent compounds in vivo. Examples of such compounds include physiologically acceptable and metabolically labile ester derivatives, such as methoxymethyl esters, methylthiomethyl esters and pivaloyloxymethyl esters. Additionally, any physiologically acceptable equivalents of the compounds of general formula (I), similar to the metabolically labile esters, which are capable of producing the parent compounds of general formula (I) in vivo, are within the scope of this invention.

The compounds of formula (I) are useful in inhibiting mammalian metalloprotease activity, particularly zinc hydrolase activity. More specifically, the compounds of formula (I) are useful as medicaments for the treatment and prophylaxis of disorders which are associated with diseases caused by endothelin-converting enzyme (ECE) activity. Inhibiting of this enzyme would be useful for treating myocardial ischaemia, congestive heart failure, arrhythmia, hypertension, pulmonary hypertension, asthma, cerebral vasospasm, subarachnoid haemorrhage, pre-eclampsia, kidney diseases, atherosclerosis, Buerger's disease, Takayasu's arthritis, diabetic complications, lung cancer, prostatic cancer, gastrointestinal disorders, endotoxic shock and septicemia, and for wound healing and control of menstruation, glaucoma. In addition the compounds are useful as cytostatic and cerebroprotective agents, for inhibition of graft rejection, for organ protection and for treatment of ophthalmological diseases.
In more detail, the present invention relates to compounds of formula (I)

\[
\begin{align*}
R^1 & \text{ is hydrogen, alkylcarbonyl, or arylcarbonyl;} \\
R^2 & \text{ is alkyl, alkycycloalkyl, alkylcycloalkylalkyl, cycloalkyl, halogenalkyl,} \\
& \text{ carboxyalkyl, aminoalkyl, dialkylaminoalkyl, alkoxyalkyl, alkoxyalkylalkyl,} \\
& \text{ alkinyl, aryl, arylalkyl, arylalkyl(alkoxycarbonyl)alkyl, arylcarbonylalkyl,} \\
& \text{ aryloxyalkyl, arylalkenyl, aryl(alkoxycarbonyl)alkyl, heteroaryl, heteroaryalkyl,} \\
& \text{ heterocyclyl or heterocyclalkyl;} \\
R^3 & \text{ is hydrogen, aryl, alkyl, or arylalkyl, arylsulfonyl, heteroarylsulfonyl;} \\
R^4 & \text{ is hydrogen, arylalkyl, alkyl, aryl, cycloalkyl, cycloalkylalkyl, alkylsulfonyl,} \\
& \text{ arylsulfonyl, arylalkylsulfonyl, heteroarylsulfonyl, carboxyalkyl,} \\
& \text{ carboxyalkylsulfonyl, or alkoxyalkylalkyl; or the groups } -\text{NR}^3\text{R}^4 \text{ or} \\
& \text{ R}^5-[\text{N}-\text{N(R}^4)]- \text{ or} \\
R^5 & \text{ form a saturated or unsaturated 5- or 6-membered aliphatic ring;} \\
R^5 & \text{ is hydrogen, alkylsulfonyl, arylsulfonyl, heteroarylsulfonyl, alkoxyalkyl,} \\
& \text{ aryloxyalkyl, heteroaryloxyalkyl, alkyloxycarbonyl, arylalkoxycarbonyl,} \\
& \text{ heteroaryloxyalkyl, heteroarylalkyloxyalkyl, heterocyclyl, (mono- or} \\
& \text{ di-alkylamino)-alkylcarbonyl, (mono- and dialkyl)aminosulfonyl,} \\
& \text{ arylaminocarbonyl, alkyl, alkyloxycarbonyl, aryl, arylalkyl,} \\
& \text{ arylaloxyalkylcarbonyl, or heteroaryl;} \\
R^6 & \text{ is hydrogen, alkyl, aryl, or carboxyalkyl;} \\
X & \text{ is } -\text{S(O)}_2-, -\text{S(O)}_2\text{-NH-}, -\text{C(O)}-, -\text{C(O)NR}^6 \text{ or } \text{C(O)O-} \text{ and} \\
& \text{ dimeric forms, and/or pharmaceutically acceptable esters, and/or pharmaceutically} \\
& \text{ acceptable salts thereof, preferably pharmaceutically acceptable esters, and/or} \\
& \text{ pharmaceutically acceptable salts thereof, and most preferably pharmaceutically} \\
& \text{ acceptable salts thereof.}
\end{align*}
\]

In a preferred embodiment, the invention refers to compounds wherein R^1 is hydrogen.
In a further preferred embodiment of the present invention R² is alkyl, halogenalkyl, alkylamino, alkoxy, cycloalkyl, cycloalkylamino, aryl, aryalkyl, aryloxy, arylalkylamino, aryalkoxy, heteroaryl, amino, or (mono- and dialkyl)amino; more preferably alkyl, halogenalkyl, alkylamino, alkoxy, cycloalkyl, cycloalkylamino, aryl, aryalkyl, or heteroaryl and even more preferably is aryl or heteroaryl and most preferably aryl. The term aryl in the definition for R² especially means naphthyl or phenyl, wherein phenyl is optionally substituted by one or more fluor or by one phenyl group, e.g. R² is naphthyl, 2,3,4,5,6-pentafluorophenyl or biphenyl.

According to the present invention R³ is preferably hydrogen or alkyl, most preferably hydrogen.

In the above compounds R⁴ is preferably hydrogen, arylalkyl, alkyl, arylsulfonyl, heteroaryl sulfonyl, cycloalkylalkyl, or carboxyalkyl, more preferably hydrogen, alkyl, arylalkyl, cycloalkyl, arylsulfonyl, or carboxyalkyl, most preferably hydrogen, alkyl, cycloalkyl, carboxyalkyl or arylalkyl, even more preferably hydrogen, alkyl or arylalkyl, e.g. hydrogen, 2,4,5-trifluorobenzyl, 2,4-difluorobenzyl, benzyl, methyl, ethyl, isopropyl, isobutyl, benzyl or HO₂C-CH₂-, or cycloalkylpropylmethyl.

In a preferred embodiment of the present invention R⁵ is hydrogen, alkylcarbonyl, alkoxy carbonyl, alkylsulfonyl, ary1, ary1alkyl, ary1carbonyl, (mono- and dialkylamino)alkylcarbonyl, (mono- and dialkyl)aminosulfonyl, ary1alkoxy carbonyl, ary1aminocarbonyl, ary1sulfonyl, heteroaryl carbonyl, heteroarylalkylcarbonyl, heteroaryl sulfonyl, ary1aminocarbonyl, heteroaryl, or heterocycyl, more preferably ary1, ary1alkyl, ary1carbonyl, ary1alkoxy, ary1aminocarbonyl, ary1sulfonyl, heteroaryl carbonyl, heteroarylalkylcarbonyl, heteroaryl sulfonyl, ary1aminocarbonyl, heteroaryl, or heterocycyl, more preferably ary1sulfonyl, ary1alkyl, heteroarylalkylcarbonyl, heteroaryl sulfonyl and most preferably 4-methyl-benzenesulfonyl, benzyl, 4-methoxybenzenesulfonyl, (1H-indol-3-yl)acetyl, thiophene-2-yl, or 3,5-dimethylisoxazol-4-sulfonyl.

In the above described compounds X is preferably -SO₂-, -C(O)-, and most preferably -SO₂-.

In the most preferred embodiment of the present invention, the compounds may be described by the formula (II)
wherein R^1, R^2, R^3, R^4, R^5 and X are as defined above and pharmaceutically acceptable esters and/or salts thereof.

In a further preferred embodiment of the present invention R^1 is hydrogen, R^2 is naphthyl or phenyl, wherein phenyl is optionally substituted by one or more fluor or by one phenyl group, R^3 is hydrogen or alkyl, R^4 is hydrogen, alkyl or arylalkyl, R^5 is arylsulfonyl, arylalkyl, heteroarylalkylcarbonyl, heteroarylalkylsulfonyl; and X is $\text{-SO}_2\text{-}$.

Preferred embodiments of the present invention are the compounds exemplified in the examples. Especially the present invention comprises compounds according to formula (I) or (II) selected from the group consisting of

a) (2S,4R)-4-Mercapto-1-(naphthalene-2-sulfonyl)-pyrrolidine-2-carboxylic acid N'-isobutyl-N'-(4-methyl-benzenesulfonyl)-hydrazide;

b) (2S,4R)-4-Mercapto-1-(naphthalene-2-sulfonyl)-pyrrolidine-2-carboxylic acid N'-(4-methyl-benzenesulfonyl)-hydrazide;

c) (2S,4R)/4-Mercapto-1-(naphthalene-2-sulfonyl)-pyrrolidine-2-carboxylic acid N'-benzyl-hydrazide;

d) (2S,4R)-4-Mercapto-1-(naphthalene-2-sulfonyl)-pyrrolidine-2-carboxylic acid N'-benzyl-N'-(4-methyl-phenylsulfonyl)-hydrazide;

e) (2S,4R)-4-Mercapto-1-(naphthalene-2-sulfonyl)-pyrrolidine-2-carboxylic acid N'-methyl-N'-(4-methyl-benzenesulfonyl)-hydrazide;

f) (2S,4R)-4-Mercapto-1-(naphthalene-2-sulfonyl)-pyrrolidine-2-carboxylic acid N'-benzenesulfonyl-hydrazide;

g) (2S,4R)-4-Mercapto-1-(naphthalene-2-sulfonyl)-pyrrolidine-2-carboxylic acid N'-(4-methoxy-benzenesulfonyl)-hydrazide;

h) (2S,4R)-4-Mercapto-1-(naphthalene-2-sulfonyl)-pyrrolidine-2-carboxylic acid N'-(1H-indol-3-yl)-acetyl-hydrazide;

i) (2S,4R)-4-Mercapto-1-(naphthalene-2-sulfonyl)-pyrrolidine-2-carboxylic acid N'-thiophene-2-sulfonyl-hydrazide;

j) (2S,4R)-4-Mercapto-1-(naphthalene-2-sulfonyl)-pyrrolidine-2-carboxylic acid N'-(3,5-dimethyl isoxazole-4-sulfonyl)-hydrazide;
k) \((2S,4R)-4\text{-Mercapto-1-(naphthalene-2-sulfonyl)-pyrrolidine-2-carboxylic acid N'}\text{-cyclopropylmethyl-N'}\text{-}(4\text{-methyl-benza}\text{nesulfonyl})\text{-hydrazide;}\\
l) \((2S,4R)-4\text{-Mercapto-1-(naphthalene-2-sulfonyl)-pyrrolidine-2-carboxylic acid N'}\text{-}(4\text{-methyl-benza}\text{nesulfonyl})\text{-N'}\text{-}(2,4,5\text{-trifluoro-benzyl})\text{-hydrazide;}\\
m) \((2S,4R)-4\text{-Mercapto-1-(naphthalene-2-sulfonyl)-pyrrolidine-2-carboxylic acid N'}\text{-}(2,5\text{-difluoro-benzyl})\text{-N'}\text{-}(4\text{-methyl-benza}\text{nesulfonyl})\text{-hydrazide}\\
n) \((2S,4R)-4\text{-Mercapto-1-(naphthalene-2-sulfonyl)-pyrrolidine-2-carboxylic acid N'}\text{-isopropyl-N'}\text{-}(4\text{-methyl-benza}\text{nesulfonyl})\text{-hydrazide;}\\
o) \((2S,4R)\text{-[N'}\text{-}[4\text{-Mercapto-1-(naphthalene-2-sulfonyl)-pyrrolidine-2-carboxyl}]\text{-N'}\text{-}(4\text{-methyl-benza}\text{nesulfonyl})\text{-hydrazino}]\text{-acetic acid;}\\
p) \((2S,4R)\text{-1-(Biphenyl-4-sulfonyl)-4-mercapto-pyrrolidine-2-carboxylic acid N'}\text{-methyl-N'}\text{-}(4\text{-methyl-benza}\text{nesulfonyl})\text{-hydrazide;}\\
q) \((2S,4R)\text{-4-Mercapto-1-(2,3,4,5,6-pentafluoro-benza}\text{nesulfonyl})\text{-pyrrolidine-2-carboxylic acid N'}\text{-}(4\text{-methyl-benza}\text{nesulfonyl})\text{-hydrazide;}\\
r) \((2S,4R)\text{-4-Mercapto-1-(naphthalene-2-sulfonyl)-pyrrolidine-2-carboxylic acid N'}\text{-benzyl-N'}\text{-}(4\text{-methoxy-benza}\text{nesulfonyl})\text{-hydrazide;}\\
s) \((2S,4R)\text{-4-Mercapto-1-(naphthalene-2-sulfonyl)-pyrrolidine-2-carboxylic acid N'}\text{-methyl-N'}\text{-}(4\text{-methyl-benza}\text{nesulfonyl})\text{-hydrazide; and}\\
t) \((2S,4R)-4\text{-Mercapto-1-(naphthalene-2-sulfonyl)-pyrrolidine-2-carboxylic acid N'}\text{-methyl-N'}\text{-benzyl- N'}\text{-}(4\text{-methyl-benza}\text{nesulfonyl})\text{-hydrazide.}\\

These compounds show IC_{50} values in the radioimmunoassay (E on ECE-inhibition, see below) of about 50 nM to 1 μM.

The invention also refers to pharmaceutical compositions containing a compound as defined above and a pharmaceutically acceptable excipient.

A further embodiment of the present invention refers to the use of compounds as defined above as active ingredients in the manufacture of medicaments comprising a compound as defined above for the prophylaxis and treatment of disorders which are caused by endothelin-converting enzyme (ECE) activity especially myocardial ischaemia, congestive heart failure, arrhythmia, hypertension, pulmonary hypertension, asthma, cerebral vasospasm, subarachnoid haemorrhage, pre-eclampsia, kidney diseases, atherosclerosis, Buerger's disease, Takayasu's arthritis, diabetic complications, lung cancer, prostatic cancer, gastrointestinal disorders, endotoxic shock and septicaemia, and for wound healing and control of menstruation, glaucoma, diseases
associated with cytostatic, ophthalmological, and cerebroprotective indications, and organ protection.

Further the invention refers to the use of compounds as described above for the treatment or prophylaxis of diseases which are associated with myocardial ischaemia, congestive heart failure, arrhythmia, hypertension, pulmonary hypertension, asthma, cerebral vasospasm, subarachnoid haemorrhage, pre-eclampsia, kidney diseases, atherosclerosis, Buerger's disease, Takayasu's arthritis, diabetic complications, lung cancer, prostatic cancer, gastrointestinal disorders, endotoxic shock and septicaemia, and for wound healing and control of menstruation, glaucoma, diseases associated with cytostatic, ophthalmological, and cerebroprotective indications, and organ protection.

In addition the invention comprises compounds as described above for use as therapeutic active substances, in particular in context with diseases which are associated with zinc hydrolase activity such as myocardial ischaemia, congestive heart failure, arrhythmia, hypertension, pulmonary hypertension, asthma, cerebral vasospasm, subarachnoid haemorrhage, pre-eclampsia, kidney diseases, atherosclerosis, Buerger's disease, Takayasu's arthritis, diabetic complications, lung cancer, prostatic cancer, gastrointestinal disorders, endotoxic shock and septicaemia, and for wound healing and control of menstruation, glaucoma, diseases associated with cytostatic, ophthalmological, and cerebroprotective indications, and organ protection.

The invention also comprises a method for the therapeutic and/or prophylactic treatment of myocardial ischaemia, congestive heart failure, arrhythmia, hypertension, pulmonary hypertension, asthma, cerebral vasospasm, subarachnoid haemorrhage, pre-eclampsia, kidney diseases, atherosclerosis, Buerger's disease, Takayasu's arthritis, diabetic complications, lung cancer, prostatic cancer, gastrointestinal disorders, endotoxic shock and septicaemia, and for wound healing and control of menstruation, glaucoma, diseases associated with cytostatic, ophthalmological, and cerebroprotective indications, and organ protection, which method comprises administering a compound as defined above to a human being or animal.

The invention also relates to the use of compounds as defined above for the inhibition of zinc hydrolase activity.

The invention relates also to a process for the preparation of a compound as defined above comprising reaction of a compound of formula III
wherein R^1, R^2, and X are as defined above and A is a HS-protecting group
a) with $HNRR^3NR^4R^5$ for introduction of a hydrazide; or
b) $HNRR^3NR^4R^5$ with R^5 as protecting group followed by conversion or
introduction of R^3 and R^4;
optionally followed by conversion of a R^5 and/or R^2-X group into a different R^5 and/or
R^2-X group and/or deprotection and or thiol liberation and wherein R^3, R^4 and R^5 are as
defined above.

The invention also refers to the above compounds whenever manufactured by a
process as described.

The compounds of formula (I) can be prepared by methods known in the art or
as described below.

Unless otherwise indicated, the substituents R^1, R^2, R^3, R^4, R^5, R^6, and X are as
defined above.
Scheme 1:

Step a) of scheme 1 describes the persilylation of hydroxy- and amino groups, e.g. by reaction of compound 1 with hexamethyldisilazan/140 °C followed by reaction with R₂SO₂Cl in THF or conversion to all other R₂X described later or di-t-butyldicarbonate/NaHCO₃ in dioxane/H₂O (BOC protection). For inversion of the configuration (via mesylate) the resulting alcohol 2 is treated with MeSO₃H/Ph₃P/DIAD in toluene (room temperature to 80 °C) or (via bromide) with LiBr/DEAD/Ph₃P in THF (4 °C to room temperature) or (via chloride) with Ph₃P/CCl₄ in CH₂Cl₂ (3 °C to room temperature). In case of retention of the configuration (via mesylate) alcohol 2 can be transformed to a compound of formula 3 by reaction with MeSO₃Cl/pyridine/DMAP (0 °C to room temperature).

For the introduction of a protected thiol moiety, compounds of formula 3 are treated with e.g. triphenylmethanethiol or 4-methoxybenzylmercaptane and K-Ot-Bu in
DMF (for Br: 0 °C to room temperature; for Cl: 0 °C; for Mesylate: room temperature to 100°C). Hydrolysis of ester 4 with aqueous LiOH in THF (0°C to RT) gives acid 5.

The synthesis of final compounds are shown in scheme 2:

The synthesis starts with a preactivation of acid 1a (N-hydroxy-2-pyridone, N,N-dicyclohexylcarbodiimide, 4-Ethylmorpholine in CH₂Cl₂ at RT) followed by reaction with an alkyl-hydrazine (NHR³NHR⁴) (step a) or for carboxylic acid hydrazide 2 (R³, R⁴, R⁵ = H), ester 1b is directly treated with hydrazine (NH₂NH₂.H₂O) in EtOH (at RT). Conversion to the free thiol 3 is done in the following way: in case PG (protecting group) is Tr by reaction with e.g. TFA/Et₃SiH at 0 °C to room temperature or, in case PG is PMB, by reaction with e.g. TFA/Et₃SiH, at 0 to 80 °C (step b).

In the case of carboxylic acid hydrazide 2 (R³, R⁴, R⁵ = H), R⁴ is introduced by reductive amination: Imine formation with an aldehyde in EtOH followed by reduction with NaBH₃CN in THF gives compound 4 (step c). For the introduction of a new R⁵ in case R⁴ is an alkyl (R⁵=H), reaction with CICOR⁵, CICO₂R⁵, ClSO₂R⁵ or ClSO₂NR⁵, iPr₂NEt or Huenig’s base CH₂Cl₂ in the presence of a catalytic amount of DMAP or DMAP-poly or R⁵NCO in THF at room temperature gives compound 4 which is deprotected to the final thiol 5 as described above (step c and b).

Selective BOC deprotection of compound 2 or 4 (TFA, CH₂Cl₂ at 0 °C), followed by reaction with CICO₂R², NEM or iPr₂NEt, CH₂Cl₂ or R²NCO in THF at 0 °C to room temperature (or conversion to all other R²X described for R²- introduction above) gives compound 7 (step e). Thiol deprotection as described above gives the final thiol 8 (step b).
Scheme 3 shows a different way for the synthesis of hydrazides.

Preactivation of acid 1 (N-hydroxy-2-pyridone, N,N-dicyclohexylcarbodiimide, 4-Ethylmorpholine in CH₂Cl₂ at RT) followed by reaction with an alkyl- hydrazinecarboxylic acid benzyl ester (NHR₃NHR₄) (step a) gives hydrazide 2 which is converted with HBr in AcOH at 0 °C to 3 (step b). A direct conversion from 1 to 3 with preactivation and reaction with NHR₃NHR₄ R₅ is possible too (step c). Introduction of a new R₃ is done with an R₃-halogenide/ NaH in DMF (at 0 °C to RT; -> 4, step e). Deprotection to the thiol 5 is done in the following way: in case PG is Trby reaction with e.g. TFA/Et₃SiH at 0 °C to room temperature or, in case PG is PMB, by reaction with e.g. TFA/Et₃SiH, at 0 to 80 °C (step d).
Scheme 4 shows an other way for the synthesis of hydrazides.

Preactivation of acid 1 (N-hydroxy-2-pyridone, N,N-dicyclohexylcarbodiimide, 4-Ethylmorpholine in CH$_2$Cl$_2$ at RT) followed by reaction with a tert-butyl 2-alkyl-hydrazinecarboxylate (NHR$_3^+$NHBOC) (step a) gives hydrazide 2 which by treatment with triethylsilane in TFA at 0 to 80 °C gives thiol 3 (step b). Alkylation with alkylhalogenide (R$_5^-$halogenide) and DMF with NaH as base (at 0 °C to RT) results in compound 4 which gives after Et$_3$SiH/TFA deprotection (as described in scheme 1) thiol 5 (step c, d).

Selective BOC-deprotection (TFA in CH$_2$Cl$_2$ -> 6) followed by reaction with ClCO$_2$R4, ClSO$_2$R4, iPr$_2$NET or NEM in CH$_2$Cl$_2$ in the presence of a catalytic amount of DMAP or DMAP-poly at room temperature gives compounds 7 (R4=R5) and 8 which are separated and deprotected (Et$_3$SiH/TFA as described in scheme 1) to thiol 5 (step e, f and g). The not fully substituted hydrazide 8 can be further alkylated (R$_5^-$halogenide and DMF/NaH, 0 °C to RT) and deprotected (Et$_3$SiH/TFA as described in scheme 1) to the thiol 5 (step g and d).
Scheme 4:

Scheme 5 shows further transformation of hydrazide 1. Acylation with γ-Bromomalonyl chloride in the presence of iPr₂EtN in THF (0 °C to RT) gives compound 2 which is cyclised (NaH in DMF at RT). Separation of the two isomers and deprotection of the thiol (Et₃SiH/TFA as described in scheme 1) gives hydrazides 3 and 4.
Scheme 5:

For the preparation of compounds of formula 5 the reaction pathway of scheme 6 can be followed: the synthesis of the starting material 1 from hydroxyproline is described in scheme 1. TFA/triisopropyl deprotection at reflux for 30 minutes gives thiol 2 that is attached to the resin. The final R²X is introduced either at the beginning or after manipulations at NR³NR⁴R⁵ (scheme 9). In the second case, R²X (=BOC) of starting acid 1 is transformed by methods known in the art and described for example in “The Practice of Peptide Synthesis”, M. Bodanszky and A. Bodanszky, Springer Verlag, Berlin, 1984 to a nonacid labile protecting group (e.g. R²X = FMOC, step a: first selective BOC-deprotection with 40% TFA in CH₂Cl₂ at RT folowed by reaction with Fmoc-OSu in dioxane/water and NaHCO₃ as base).
The resin is prepared as follows (step b): The linker 4-(α,α-
diphenylhydroxymethyl)benzoic acid is activated using TPTU, DIEA in DMF and added
to benzhydrylamine resin 3. The resin is then treated with thiol 2 in CH₂Cl₂ / TFA to give
the resin loaded starting material 5.
The synthesis of final compounds on resin 1 is shown in scheme 7: The synthesis starts with a preactivation of acid 1 (TPTU, Huenig’s base in DMF at RT) followed by reaction with an alkyl-hydrazine (NH₂NHR) (step a) to give intermediates 2a, 2b or 4 (R³, R⁴, R⁵ = H, step c). Detachment of the resin to the free thiol 3 is done with TFA/iPr₃SiH in CH₂Cl₂ at RT (step b). In the case of carboxylic acid hydrazide 4, the introduction of a new R³ is done by reaction with ClCOR³, ClCO₂R³, ClSO₂R³ or ClSO₂NR³, in DMF to give compound 2 which is optionally alkylated (alkyl halogenide/DBU in DMF) to the dissubstituted hydrazide 6 (step d and f). Detachment of the resin as described above gives the final thiol 3. In the case of reaction of hydrazide 4 with ClSO₂R³, double sulfonylation to compound 2a and 2b takes place (step d), these compounds can be separated after detachment from the resin as the corresponding thiol.

If R²X is FMOC: Deprotection of compound 2 (20% piperidine/DMF then reaction with ClCO₂R², pyridine, DMF or R²NCO in DMF at RT or conversion to all other R²X described for R³-introduction above) gives compound 5 (step e). Alkylation (alkyl halogenide/DBU in DMF) and resin deprotection as described above gives the final thiol 3 (step f and b).

The ability of the compounds of formula (I) to inhibit metalloprotease activity, particularly zinc hydrolase activity, may be demonstrated by a variety of in vitro and in vivo assays known to those of ordinary skill in the art.

A) Cell Culture

A stable human umbilical vein endothelial cell line (ECV304) was cultured in “cell factories” as described until confluence (Schweizer et al. 1997, Biochem. J. 328: 871-878). At confluency cells were detached with a trypsin / EDTA solution and collected by low speed centrifugation. The cell pellet was washed once with phosphate buffered saline pH 7.0 and stored at -80 °C until use.

B) Solubilization of ECE from ECV304 cells

All procedures were performed at 0-4°C if not stated otherwise. The cell pellet of 1x10⁹ cells was suspended in 50 ml of buffer A (20 mM Tris/HCl, pH 7.5 containing 5 mM
MgCl₂, 100 µM PMSF, 20 µM E64, 20 µM leupeptin) and sonicated. The resulting cell homogenate was centrifuged at 100,000 g_{av} for 60 minutes. The supernatant was discarded and the resulting membrane pellet was homogenized in 50 ml buffer A and centrifuged as described. The washing of the membrane fraction in buffer A was repeated twice. The final membrane preparation was homogenized in 50 ml of buffer B (buffer A + 0.5% Tween 20 (v/v), 0.5% CHAPS (w/v), 0.5% Digitonin (w/v)) and stirred at 4\(^\circ\)C for 2 hours. Thereafter the remaining membrane fragments were sedimented as described. The resulting clear supernatant containing the solubilized ECE was stored in 1.0 ml aliquots at −120\(^\circ\)C until use.

C) ECE Assay

The assay measured the production of ET-1 from human big ET-1. To measure high numbers of samples an assay performed in 96 well plates was invented. The enzyme reaction and the radioimmunological detection of the produced ET-1 was performed in the same well, using a specifically developed and optimized coating technique.

D) Coating of Plates

Fluoronunc Maxisorp White (code 437796) 96 well plates were irradiated with 1 joule for 30 minutes in a UV Stratalinker 2400 (Stratagene). The 96 well plates were then filled with 300 µl protein A solution (2 µg/ml in 0.1 M Na₂CO₃ pH 9.5) per well and incubated for 48 hours at 4\(^\circ\)C. Coated plates can be stored for up to 3 weeks at 4\(^\circ\)C until use.

Before use the protein A solution is discarded and the plates are blocked for 2 hours at 4\(^\circ\)C with 0.5% BSA in 0.1M Na₂CO₃, pH 9.5.

Plates were washed with bidestilled water and were ready to perform the ECE assay.

E) Screening assay

Test compounds are solved and diluted in DMSO. 10 µl of DMSO was placed in the wells, followed by 125 µl of assay buffer (50 mM Tris/HCl, pH 7.0, 1 µM Thiorphan, 0.1% NaN₃, 0.1% BSA) containing 200 ng big ET-1. The enzyme reaction was started by the addition of 50 µl of solubilized ECE (diluted in assay buffer 1:30 to 1:60 fold (v/v)). The
enzyme reaction was carried out for 30 minutes at 37°C. The enzyme reaction was stopped by addition of 10 μl 150 mM EDTA, pH 7.0.

Radioimmunoassay:

The ET-1 RIA was performed principally as described earlier (Löfler, B.-M. and Maire, J.-P. 1994, Endothelium 1: 273-286). To plates containing the EDTA stopped enzyme reaction mixture 25 μl of assay buffer containing 20000 cpm (3-^{125}I)Tyr)-endothelin-1 and 25 μl of the ET specific antiserum AS-3 (dilution in assay buffer 1:1000) was added. Plates were incubated under mixing at 4°C over night. Thereafter, the liquid phase was sucked with a plate washer and plates were washed once with bidestilled water. To the washed plates 200 μl scintillation cocktail (Microscint 40 LSC-Cocktail, Packard, code 6013641) was added and plates were counted for 2 minutes per well in a Topcount.

Standard curves were prepared in plates with synthetic ET-1 with final concentrations of 0 to 3000 pg ET-1 per well. In all plates controls for maximal ECE activity (in the presence of 10 μl DMSO) and for background production of ET-1 immunoreactivity (in the presence of 10 mM EDTA or 100 μM phosphoramidon) were performed. Assays were run in triplicate.

F) Kinetic Assay

The described assay format could be used to determine the kinetic characteristics of the used ECE preparation as well as different ECE inhibitors (i.e. Km, Ki) by variation of the substrate concentration used in the assay.

G) Cell based ECE Assay

Human ECE-1c was stable expressed in MDCK cells as described (Schweizer et al. 1997, Biochem. J. 328: 871-878). Cells were cultured in 24 well plates to confluency in Dulbecco's modified Eagles's medium (DMEM) supplemented with 10 % (v/v) fetal bovine serum (FBS), 0.8 mg/ml genetinic, 100 i.u./ml penicillin and 100 μg/ml streptomycin in a humidified air/CO₂ (19:1) atmosphere. Before ECE assay the medium was replaced by 0.5 ml DMEM-HBSS 1:1, 10 mM HEPES pH 7.0 supplemented with 0.1% (w/v) BSA. The
inhibitors were added in DMSO at a final concentration of 1%. The enzyme reaction was started by the addition of 0.42 μM human big ET-1 and performed for 1.5 hours at 37°C in an incubator. At the end of incubation, the incubation medium was quickly removed and aliquots were analysed by radioimmunoassay for produced ET-1 as described above.

The ECE screening assay was validated by the measurement of the characteristic inhibitor constants of phosphoramidon (IC₅₀ 0.8±0.2 μM) and CGS 314447 (IC₅₀ 20±4 nM) [De Lombaert, Stephane; Stamford, Lisa B.; Blanchard, Louis; Tan, Jenny; Hoyer, Denton; Diefenbacher, Clive G.; Wei, Dongchu; Wallace, Eli M.; Moskal, Michael A.; et al. Potent non-peptidic dual inhibitors of endothelin-converting enzyme and neutral endopeptidase 24.11. Bioorg. Med. Chem. Lett. (1997), 7(8), 1059-1064]. The two inhibitors were measured with IC₅₀ values not significantly different from those described in the literature but measured with different assay protocols. In the cell based assay phosphoramidon showed an IC₅₀ of 4 μM. This assay gave additional information about the inhibitory potency of inhibitors under much more physiologic conditions, as e.g. the ECE was embedded in a normal plasma membrane environment. It is important to state, that the screening assay was performed in the presence of 1 μM Thiorphan to block any potential big ET-1 degradation due to the action of NEP24.11. No NEP activity was present in MDCK-ECE-1c transfected cells in preliminary experiments when ET-1 production was measured in presence or absence of thiorphan. In subsequent experiments no thiorphan was added in the incubation medium.

According to the above methods, the compounds of the present invention show IC₅₀ values in the radioimmunoassay (E on ECE-inhibition) of about 50 nM to about 1000 μM. The preferred compounds show values of 50 nM to 1 μM.

As mentioned earlier, medicaments containing a compound of formula I are also an object of the present invention as is a process for the manufacture of such medicaments, which process comprises bringing one or more compounds of formula I and, if desired, one or more other therapeutically valuable substances into a galenical administration form.

The pharmaceutical compositions may be administered orally, for example in the form of tablets, coated tablets, dragees, hard or soft gelatin capsules, solutions, emulsions or suspensions. Administration can also be carried out rectally, for example using suppositories; locally or percutaneously, for example using ointments, creams, gels or solutions; or parenterally, for example using injectable solutions.
For the preparation of tablets, coated tablets, dragees or hard gelatin capsules the compounds of the present invention may be admixed with pharmaceutically inert, inorganic or organic excipients. Examples of suitable excipients for tablets, dragees or hard gelatin capsules include lactose, maize starch or derivatives thereof, talc or stearic acid or salts thereof.

Suitable excipients for use with soft gelatin capsules include for example vegetable oils, waxes, fats, semi-solid or liquid polyols etc.; according to the nature of the active ingredients it may however be the case that no excipient is needed at all for soft gelatin capsules.

For the preparation of solutions and syrups, excipients which may be used include for example water, polyols, saccharose, invert sugar and glucose.

For injectable solutions, excipients which may be used include for example water, alcohols, polyols, glycerin, and vegetable oils.

For suppositories, and local or percutaneous application, excipients which may be used include for example natural or hardened oils, waxes, fats and semi-solid or liquid polyols.

The pharmaceutical compositions may also contain preserving agents antioxidants, solubilising agents, stabilizing agents, wetting agents, emulsifiers, sweeteners, colorants, odorants, salts for the variation of osmotic pressure, buffers, coating agents or antioxidants. They may also contain other therapeutically valuable agents.

The dosages in which the compounds of formula I are administered in effective amounts depend on the nature of the specific active ingredient, the age and the requirements of the patient and the mode of application. In general, dosages of 0.1-100 mg/kg body weight per day come into consideration, although the upper limit quoted can be exceeded when this is shown to be indicated.

The following specific examples are provided as a guide to assist in the practice of the invention, and are not intended as a limitation on the scope of the invention.
EXAMPLES

General remarks
All reactions were done under argon.

Abbreviations: EtOH Ethanol, THF Tetrahydrofuran, Et₂O Diethylether, MeOH Methanol, CH₂Cl₂, EDCI N-(3-Dimethylaminopropyl)-N’-ethylcarbodiimide hydrochloride, HOBT 1-Hydroxybenzotriazole, DBU 1,8-Diazabicyclo[5.4.0]undec-7-ene(1,5-5), LAH Lithium aluminium hydride, LDA lithium diisopropylamide, DEAD Diethyl azodicarboxylate, DIAD Diisopropyl azodicarboxylate, DMAP 4-Dimethylaminopyridine, DMAP-poly 4-(N-Benzyl-N-methylamino)pyridine, polymer-supported (polystyrol based 2%DVB, ca 1,6 mmol "DMAP"/g resin), NEM N-ethylmorpholine, NMM N-methylmorpholine, TBAF tetrabutylammonium fluoride, DIEA diethylamine, DMF dimethylformamide, TFA trifluoroacetic acid, TPTU 2-(2-pyridon-1-yl)-1,1,3,3-tetramethyl uronium tetrafluoroborate, iPr₂NEt Huenigs base or N-ethyldiisopropylamine, FMOC-OSu 9-Fluorenylmethyloxycarbonyl-N-hydroxysuccinimide ester.

Example 1: Starting materials (Esters - Scheme 1)

40 g (220 mmol) of L-hydroxyproline methylester-hydrochloride (twice suspended in toluene and evaporated under reduced pressure to remove water) was suspended in 600 ml hexamethyldisilazane and refluxed for 2 h. The solution was evaporated under reduced pressure and dissolved in 100 ml THF. 49.9 g (220 mmol) of 2-naphthalene-sulfonyl chloride in 200 ml of THF were added slowly and stirred for 16 h at RT. 150 ml H₂O were added and after 1 h the solvents were evaporated. The residue was partitioned between water/ethyl acetate (3x), the organic phases were washed with 10% NaCl and dried over Na₂SO₄ to give 60.4 g (82%) of (2S,4R)-4-Hydroxy-1-(naphthalene-2-sulfonyl)pyrrolidine-2-carboxylic acid methyl ester, MS: 335 (M⁺).
Scheme 1:

In analogy

L-hydroxyproline benzylester-hydrochloride and 1-naphthalenesulfonyl chloride gave (2S,4R)-4-Hydroxy-1-(naphthalene-2-sulfonyl)-pyrrolidine-2-carboxylic acid benzyl ester, MS: 411 (MH⁺);

L-hydroxyproline benzylester-hydrochloride and methanesulfonyl chloride gave (2S,4R)-4-Hydroxy-1-methanesulfonyl-pyrrolidine-2-carboxylic acid benzyl ester, mp 132-133°C, MS: 300 (MH⁺);

L-hydroxyproline methylester-hydrochloride and methanesulfonyl chloride gave after extraction with CH₂Cl₂ (2S,4R)-4-Hydroxy-1-methanesulfonyl-pyrrolidine-2-carboxylic acid methyl ester, mp 115.5-117°C, MS: 164 (M-COOME⁻).

Via Mesylate: A biphasic solution of 13.9 ml (215 mmol) methanesulfonic acid, 29.8 ml (215 mmol) triethylamine and 58.7 g (224 mmol) triphenylphosphine in 150 ml toluene was added to a suspension of 60 g (179 mmol) (2S,4R)-4-Hydroxy-1-(naphthalene-2-
sulfonyl)-pyrrolidine-2-carboxylic acid methyl ester in 300 ml toluene which was stirred mechanically. After adding 44.9 ml (233 mmol) of diisopropyl azodicarboxylate (exothermic!) the solution was heated for 2.5 h at 80°C. 300 ml water was added at RT and extracted with ethylacetate (3x300 ml). The organic phase was washed with aqueous 10% KHSO₄ (2x100 ml), 10% NaCl (2x150 ml), dried over Na₂SO₄ and evaporated to give 180 g of crude product. Flash chromatography (ethyl acetate/hexane 1:1) gave 63.7 g (86 %) of (4S, 2S)-4-Methanesulfonyloxy-1-(naphthalene-2-sulfonyl)-pyrrolidine-2-carboxylic acid methylester.

64.2 g (167 mmol) of triphenylmethanethiol was slowly added at RT to a solution of 17.9 g (160 mmol) of potassium tert-butyllate in 300 ml DMF and stirred mechanically for 30 min. Then 63 g (152 mmol) of (4S, 2S)-4-Methanesulfonyloxy-1-(naphthalene-2-sulfonyl)-pyrrolidine-2-carboxylic acid methylester in 300 ml DMF were added at 20°C by cooling at the end with an ice bath. The reaction was heated for 1.3 h at 100°C, cooled, evaporated to 400 ml and extracted with 250 ml aqueous saturated NH₄Cl/ethyl acetate (3x300). The organic phases were washed with aq. 10% NaCl, dried (Na₂SO₄) and evaporated. Flash chromatography (CH₂Cl₂/ MeOH 99:1) gave 58.6 g (65 %, (2S,4R)/(2R,4R)-isomer ca 4:1, ¹H-NMR) and 9.2 g (10%, (2S,4R)/(2R,4R)-isomer ca 1:1, ¹H-NMR) of (2S,4R)-1-(Naphthalene-2-sulfonyl)-4-tritylsulfanyl-pyrrolidine-2-carboxylic acid methyl ester, MS: 594 (MH⁺).

In analogy:

(2S,4R)-4-Hydroxy-1-methanesulfonyl-pyrrolidine-2-carboxylic acid methyl ester gave after 3.75 h at 80°C (4S, 2S)-4-Methanesulfonyloxy-1-(methylsulfonyl)-pyrrolidine-2-carboxylic acid methylester which was heated for 45 min at 100°C with triphenylmethanethiolate to give (2S,4R)-1-Methanesulfonyl-4-tritylsulfanyl-pyrrolidine-2-carboxylic acid methyl ester ((2S,4R)/(2R,4R)-isomer ca 9:1, ¹H-NMR), MS: 482 (MH⁺);

(2S,4R)-4-Hydroxy-1-methanesulfonyl-pyrrolidine-2-carboxylic acid benzyl ester gave after 5 h at 80°C (2S,4S)-1-Methanesulfonyl-4-methanesulfonyloxy-pyrrolidine-2-carboxylic acid benzyl ester which was heated for 30 min with 4-methoxybenzylthiol/potassium tert-butyllate to give (2S,4S)-1-Methanesulfonyl-4-methanesulfonyloxy-pyrrolidine-2-carboxylic acid benzyl ester, mp 91-92°C, MS: 453 (M+NH₄⁺).

Via bromide: To a solution of 76.5 g (291.6 mmol, 6 eq) triphenylphosphine in 650 ml THF were added 44.6 ml (286.8 mmol, 5.9 eq) DEAD in 70 ml THF at a temperature
between 1.5-4.5°C over a period of 0.5 h. The solution was stirred for 0.5 h before 42.2 g (486.1 mmol, 10 eq) LiBr were added, and the reaction mixture was recooled to 4°C for the addition of 20 g (48.6 mmol) (2S,4R)-4-Hydroxy-1-(naphthalene-2-sulfonyl)-pyrrolidine-2-carboxylic acid benzyl ester in 75 ml THF. After stirring at RT for 3 h, water was added and the suspension concentrated and redissolved in 700 ml ethyl acetate and water. The layers were separated, the inorganic ole was extracted with 100 ml of ethyl acetate (3x), and the combined organic layers were washed with brine, dried over MgSO₄ and evaporated. Triphenylphosphine oxide was removed by crystallization from ethyl acetate /hexane and the mother liquid was purified by column chromatography on silica gel with hexane/ethyl acetate 3:1 yielding 13.4 g (62 %) of (2S,4S)-4-Bromo-1-(naphthalene-2-sulfonyl)-pyrrolidine-2-carboxylic acid benzyl ester as colorless solid, mp 97-98°C, MS: 473 (MH⁺).

3.38 g (30.1 mmol, 1.1 eq) potassium tert. butylate in 150 ml DMF were treated with 4.4 ml (31.5 mmol, 1.15 eq) 4-methoxybenzyl mercaptane at 0°C. The solution was stirred at RT for 1h before 12.99 g (27.4 mmol) (2S,4S)-4-Bromo-1-(naphthalene-2-sulfonyl)-pyrrolidine-2-carboxylic acid benzyl ester in 100 ml DMF were added. The reaction was stirred at RT overnight, DMF was removed under vacuum, and the residue redissolved in ethyl acetate and 1M aq. KHSO₄. The layers were separated, and the organic one washed with brine, dried over Na₂SO₄ and evaporated. The crude oil was purified by flash chromatography on silica gel with hexane/ethyl acetate (3:1 – 2:1) as eluent yielding 7.23 g (48%) (2S,4R)-4-(4-Methoxy-benzylsulfanyl)-1-(naphthalene-2-sulfonyl)-pyrrolidine-2-carboxylic acid benzyl ester as light yellow solid, mp 90-91°C, MS: 547 (M⁺).

In analogy:

(2S,4R)-4-Hydroxy-pyrrolidine-1,2-dicarboxylic acid 1-tert-butyl ester 2-methyl ester with 4-methoxybenzylthiol / potassium tert-butylate gave (2S,4R)-4-(4-Methoxy-benzylsulfanyl)-pyrrolidine-1,2-dicarboxylic acid 1-tert-butyl ester 2-methyl ester, MS: 382 (MH⁺).

(2S,4R)-4-Hydroxy-1-(naphthalene-2-sulfonyl)-pyrrolidine-2-carboxylic acid methyl ester with 4-methoxybenzylthiol / potassium tert-butylate gave (2S,4R)-4-(4-Methoxy-benzylsulfanyl)-1-(naphthalene-2-sulfonyl)-pyrrolidine-2-carboxylic acid methyl ester as colorless oil, MS: 472 (MH⁺);
Via chloride: (2S,4R)-4-Tritylsulfanyl-pyrrolidine-1,2-dicarboxylic acid 1-tert-butyl ester 2-methyl ester: the synthesis of the intermediate of the present invention is known in the art and described for example in International Patent Application WO 9820001 and European Patent Application Publication No. EP-A-696593.

A solution of 374 g (1.48 mol) (2S,4R)-4-Hydroxy-pyrrolidine-1,2-dicarboxylic acid 1-tert-butyl ester 2-methyl ester in 1.6 l CH₂Cl₂ was treated with 680 g (2.6 mol) triphenylphosphine, cooled to 3-5°C and treated in 10 min with 1.24 l (12.8 mol) CCl₄, after 2h at this temperature cooling was stopped, the reaction temperature raised during 2h to 35°C. It was cooled down to 20°C and stirred for further 45 min. After addition of 4 l of n-heptane, the reaction was evaporated to 2.9 l, cooled to 0°C, filtered, the residue was treated twice the same way, the third time by dissolving the residue again in 2 l of CH₂Cl₂. The solvents were evaporated and filtered through silica gel with hexane/tert.-butyl-methylether 9:1 as eluent. Evaporation of the solvents gave 347 g (89%) of (2S,4S)-4-Chloro-pyrrolidine-1,2-dicarboxylic acid 1-tert-butyl ester 2-methyl ester, MS: 246 (MH⁺).

A solution of 76 g (0.68 mol) potassium-tert.-butylate in 1.5 l DMF was cooled (-3°C) and treated slowly (1.5 h) with 202 g (0.73 mol) triphenylmethanethiol in 0.8 l DMF (at max 1°C). After 2.5 h at 0°C, a solution of 161 g (0.61 mol) of (2S,4S)-4-Chloropyrrolidine-1,2-dicarboxylic acid 1-tert-butyl ester 2-methyl ester in 0.35 l DMF was added. The reaction was stirred over night at 2°C, evaporated, dissolved in 1.5 l ethyl acetate, poured into 2.7 l aqueous saturated NH₄Cl solution and extracted with ethyl acetate (2x). The organic phase was washed with aqueous saturated NaHCO₃, dried over Na₂SO₄ and evaporated. HPLC on silica gel with hexane/ethyl acetate (95:5 to 7:3) gave 268 g (87%) (2S,4R)-4-Tritylsulfanyl-pyrrolidine-1,2-dicarboxylic acid 1-tert-butyl ester 2-methyl ester, MS: 504 (MH⁺).

Example 2: Hydrolysis (Scheme1)

To a solution of 14.8 g (31.6 mmol) (2S,4R)-4-(4-Methoxy-benzylsulfanyl)-1-(naphthalene-2-sulfonyl)-pyrrolidine-2-carboxylic acid methyl ester in 950 ml THF were added 950 ml 0.1M LiOH (95 mmol) at 0°C. The solution was stirred at RT for 2h, diluted with ice water, acidified by the addition of 1M KH₂SO₄ (pH 2), and extracted with ethyl acetate. The combined organic phases were washed with brine, dried over Na₂SO₄ and were evaporated. The product was crystallized from ethyl acetate/hexane yielding 13.15 g.
(90%) (2S,4R)-4-(4-Methoxy-benzylsulfanyl)-1-(naphthalene-2-sulfonyl)-pyrrolidine-2-carboxylic acid as colorless solid, MS: 456 (MH⁺).

Analogously the following compounds were prepared:

(2S,4R)-1-Methanesulfonyl-4-tritylsulfanyl-pyrrolidine-2-carboxylic acid as light brown foam, MS: 466 (M-H⁻);

(2S,4R)-4-(4-Methoxy-benzylsulfanyl)-pyrrolidine-1,2-dicarboxylic acid 1-tert-butyl ester MS: 366 (M-H⁻);

Additional compounds were prepared according to the following references:

tert-Butyl 2-(isobutyl)hydrazinecarboxylate (Faessler, Alexander; Bold, Guido; Capraro, Hans-Georg; Cozens, Robert; Mestan, Juergen; Poncioni, Bernard; Roesel, Johannes; Tintelnott-Blomley, Marina; Lang, Marc. Aza-Peptide Analogs as Potent Human Immunodeficiency Virus Type-1 Protease Inhibitors with Oral Bioavailability. J. Med. Chem. (1996), 39(16), 3203-3216).

Example 3: Synthesis of Hydrazides

Example 3a: Sequence A (Scheme 2)

(step1) To a solution of 4.4 g (9.6 mmol) (2S,4R)-4-(4-Methoxy-benzylsulfanyl)-1-(naphthalene-2-sulfonyl)-pyrrolidine-2-carboxylic acid in 200 ml CH₂Cl₂ were added 1.2 g (10.8 mmol, 1.1 eq) N-hydroxy-2-pyridone, followed by 2.2 g (10.7 mmol, 1.1 eq) N,N-dicyclohexylcarbodiimide in 25 ml CH₂Cl₂ at 0°C over a period of 30 min. The suspension was stirred for additional 4h at that temperature before 4.2 ml (33.0 mmol, 3.4 eq) NEM
and 1.9 g (mmol, 1.05 eq) isobutylhydrazine•sulfate were added. The reaction mixture was stirred at RT overnight. The suspension was treated with 0.55 ml (9.6 mmol, 1.0 eq) glacial acetic acid in 10 ml water and stirred for 1.5 h, diluted with aq. NaHCO₃ (5%) and extracted with CH₂Cl₂. The combined organic phases were washed with 1M KHSO₄ solution, water and brine, dried over Na₂SO₄ and evaporated. Titration with hexane yields 5.02 g (quant) (2S,4R)-4-(4-Methoxy-benzylsulfanyl)-1-(naphthalene-2-sulfonyl)-pyrrolidine-2-carboxylic acid N'-isobutyl-hydrazide, which was directly subjected to the following reaction.
(step 2) 222 mg (0.42 mmol) (2S,4R)-4-(4-Methoxy-benzylsulfanyl)-1-(naphthalene-2-sulfonyl)-pyrrolidine-2-carboxylic acid N'-isobutyl-hydrazide in 10 ml TFA were treated with 0.68 ml (4.2 mmol, 10 eq) triethylsilane at 80°C for 90 min. The solvent was evaporated in vacuo and the crude product was purified by flash chromatography yielding 148 mg (86%) (2S,4R)-4-Mercapto-1-(naphthalene-2-sulfonyl)-pyrrolidine-2-carboxylic acid N'-isobutyl-hydrazide as light yellow crystalline, MS: 408 (MH⁺).

Analogously the following compounds were prepared:

From (2S,4R)-4-(4-Methoxy-benzylsulfanyl)-1-(naphthalene-2-sulfonyl)-pyrrolidine-2-carboxylic acid and

b) benzylhydrazine followed by deprotection: (2S,4R)-4-Mercapto-1-(naphthalene-2-sulfonyl)-pyrrolidine-2-carboxylic acid N'-benzyl-hydrazide as white solid, MS: 442 (MH⁺);

c) p-toluenesulfonylhydrazine followed by deprotection: (2S,4R)-4-Mercapto-1-(naphthalene-2-sulfonyl)-pyrrolidine-2-carboxylic acid N'-(4-methyl-benzenesulfonyl)-hydrazide as white solid, MS: 506 (MH⁺);

d) methylhydrazine followed by deprotection: (2S,4R)-4-Mercapto-1-(naphthalene-2-sulfonyl)-pyrrolidine-2-carboxylic acid N'-methyl-hydrazide as white crystalline, MS: 366 (MH⁺);

From (2S,4R)-1-Methanesulfonyl-4-tritylsulfanyl-pyrrolidine-2-carboxylic acid and p-toluenesulfonylhydrazine followed by deprotection: (2S,4R)-4-Mercapto-1-methanesulfonyl-pyrrolidine-2-carboxylic acid N'-(4-methyl-benzenesulfonyl)-hydrazide as white crystalline, MS: 394 (MH⁺);

**Example 3b: Sequence B (Step1 from Sequence A followed by step 3.4 – Scheme2)

(step 3) 4.3 g (3.15 mmol) (2S,4R)-4-(4-Methoxy-benzylsulfanyl)-1-(naphthalene-2-sulfonyl)-pyrrolidine-2-carboxylic acid N'-isobutyl-hydrazide in 450 ml CH₂Cl₂ were treated with 5.6 ml (32.6 mmol, 4 eq) N-ethyl-diisopropylamine, 3.1 g (16.3 mmol, 2 eq) p-toluene sulfonyl chloride and 100 mg (0.8 mmol, 0.1 eq) DMAP at 0°C and was stirred at RT over night. 2.05 g (16.1 mmol, 2 eq) MeNHCH₂CO₂K were added and, the solution was stirred at RT for 1h, 1M KH₂SO₄ solution was added and, the phases were separated. The organic layer was extracted with sat. NaHCO₃ and, the inorganic layers were washed with CH₂Cl₂. The combined organic phases were washed with brine, dried over Na₂SO₄ and evaporated. Purification of the crude residue by flash chromatography with hexane:ethyl
acetate 2:1 as eluent yields 2.68 g (48%) (2S,4R)-4-(4-Methoxy-benzylsulfanyl)-1-
(naphthalene-2-sulfonyl)-pyrrolidine-2-carboxylic acid N'-isobutyl-N'-(4-methyl-
benzenesulfonyl)-hydrazide, which was directly subjected to the following reaction.

(step 4) To 2.68 g (3.9 mmol, 1 eq) (2S,4R)-4-(4-Methoxy-benzylsulfanyl)-1-
(naphthalene-2-sulfonyl)-pyrrolidine-2-carboxylic acid N'-isobutyl-N'-(4-methyl-
benzenesulfonyl)-hydrazide in 100 ml TFA were added 6.2 ml (39 mmol, 10 eq)
triethylsilane and the mixture was heated to 80°C for 1.5h, concentrated in vacuo and
redissolved in toluene and evaporated. Tituration with hexane yields the crude product
which was further purified by flash chromatography with hexane:ethyl acetate 1:1 yielding
1.65 g (74%)(2S,4R)-4-Mercapto-1-(naphthalene-2-sulfonyl)-pyrrolidine-2-carboxylic
acid N'-isobutyl-N'-(4-methyl-benzenesulfonyl)-hydrazide as white crystalline, MS: 562
(MH⁺).

Analogously, the following compounds were prepared (steps 1,3,4):

From (2S,4R)-4-(4-Methoxy-benzylsulfanyl)-1-(naphthalene-2-sulfonyl)-
pyrrolidine-2-carboxylic acid

b) and methylhydrazine, followed by reaction with p-toluenesulfonyl chloride and
deprotection: (2S,4R)-4-Mercapto-1-(naphthalene-2-sulfonyl)-pyrrolidine-2-carboxylic
acid N'-methyl-N'-(4-methyl-phenylsulfonyl)-hydrazide as white crystalline, MS: 520
(MH⁺);

c) and isobutylhydrazine-sulfate, followed by reaction with 4-t-butyl-phenylsulfonyl
chloride and deprotection: (2S,4R)-4-Mercapto-1-(naphthalene-2-sulfonyl)-pyrrolidine-2-
carboxylic acid N'-(4-tert-butyl-benzenesulfonyl)-N'-isobutyl-hydrazide as white
crystalline, MS: 604 (MH⁺);

d) and methylhydrazine, followed by reaction with methanesulfonyl chloride and
deprotection: (2S,4R)-4-Mercapto-1-(naphthalene-2-sulfonyl)-pyrrolidine-2-carboxylic
acid N'-methanesulfonyl-N'-methyl-hydrazide as white solid, MS: 444 (MH⁺);

e) and isobutylhydrazine-sulfate, followed by reaction with methanesulfonyl
chloride and deprotection: (2S,4R)-4-Mercapto-1-(naphthalene-2-sulfonyl)-pyrrolidine-2-
carboxylic acid N'-isobutyl-N'-methanesulfonyl-hydrazide as white crystalline, MS: 486
(MH⁺);

f) and benzylhydrazine, followed by reaction with methanesulfonyl chloride and
deprotection: (2S,4R)-4-Mercapto-1-(naphthalene-2-sulfonyl)-pyrrolidine-2-carboxylic
acid N'-benzyl-N'-methanesulfonyl-hydrazide as white crystalline, MS: 520 (MH⁺);
g) and benzylhydrazine, followed by reaction with p-toluenesulfonyl chloride and deprotection: (2S,4R)-4-Mercapto-1-(naphthalene-2-sulfonfonyl)-pyrrolidine-2-carboxylic acid N'-benzyl-N'-(4-methyl-phenylsulfonyl)-hydrazide as white crystalline, MS: 596 (MH⁺);

From (2S,4R)-1-Methanesulfonyl-4-tritylsulfanyl-pyrrolidine-2-carboxylic acid a2) and benzylhydrazine, followed by reaction with methanesulfonyl chloride and deprotection: (2S,4R)-4-Mercapto-1-methanesulfonyl-pyrrolidine-2-carboxylic acid N'-benzyl-N'-methanesulfonyl-hydrazide as white solid, MS: 408 (MH⁺);

b2) and isobutylhydrazine-sulfate, followed by reaction with methanesulfonyl chloride and deprotection: (2S,4R)-4-Mercapto-1-methanesulfonyl-pyrrolidine-2-carboxylic acid N'-isobutyl-N'-methanesulfonyl-hydrazide as colorless solid, MS: 450 (MH⁺);

c2) and isobutylhydrazine-sulfate, followed by reaction with p-toluenesulfonyl chloride and deprotection: (2S,4R)-4-Mercapto-1-methanesulfonyl-pyrrolidine-2-carboxylic acid N'-isobutyl-N'-(4-methyl-benzenesulfonyl)-hydrazide as colorless solid, MS: 374 (MH⁺);

d2) and isobutylhydrazine-sulfate, followed by reaction with 4-tert-butylbenzenesulfonyl chloride and deprotection: (2S,4R)-4-Mercapto-1-methanesulfonyl-pyrrolidine-2-carboxylic acid N'-(4-tert-butyl-benzenesulfonyl)-N'-isobutyl-hydrazide as white crystalline, MS: 492 (MH⁺);

Example 3c: Sequence C (Scheme 2)

Analogously to sequence A,B (steps 1,3), from (2S,4R)-4-(4-Methoxybenzylsulfonyl)-pyrrolidine-1,2-dicarboxylic acid 1-tert-butyl ester and methylhydrazine, followed by treatment with p-toluenesulfonyl chloride (2S,4R)-2-[N'-Methyl-N'-(4-methyl-phenylsulfonyl)-hydrazinocarbonyl]-4-(4-methoxy-benzylsulfonyl)-pyrrolidine-1-carboxylic acid 1-tert-butyl ester, which was directly subjected to the following reaction.

(step 5) 2.37 g (4.3 mmol) (2S,4R)-2-[N'-Methyl-N'-(4-methyl-phenylsulfonyl)-hydrazinocarbonyl]-4-(4-methoxy-benzylsulfonyl)-pyrrolidine-1-carboxylic acid 1-tert-butyl ester in 10 ml CH₂Cl₂ were treated with 4 ml TFA at 0°C and kept in the freezer over night. The solvent was evaporated, the crude material was dissolved and evaporated with toluene (2x) and hexane (3x) yielding (2S,4R)-2-[N'-Methyl-N'-(4-methyl-phenylsulfonyl)-hydrazinocarbonyl]-4-(4-methoxy-benzylsulfonyl)-pyrrolidine as TFA
salt as crude product, which was subjected to the following reaction without further purification.

(step 6) To 250 mg (0.44 mmmol, 1.0 eq) (2S,4R)-2-[(N'-Methyl-N'-[(4-methyl-phenylsulfonyl)-hydrazinocarbonyl]-4-(4-methoxy-benzylsulfanyl) -pyrrolidine-TFA in 5 ml CH₂Cl₂ were added 360 µl (2.1 mmol, 4.8 eq) N-ethyldiisopropylamine and 70 µl (0.56 mmol, 1.2 eq) phenyl chloroformate at 0°C. The solution was stirred at RT over night, 1N KHSO₄ was added, the phases were separated and the inorganic one was extracted with CH₂Cl₂. The organic layer was washed with 1M KHSO₄ and brine, dried over Na₂SO₄ and evaporated.

(step 7) The crude material was redissolved in 10 ml TFA and, 700 µl (4.4 mmol, 10 eq) triethylsilane were added at RT and the solution was stirred at 80°C for 70 min. Evaporation and flash chromatography with hexane:ethyl acetate 1:1 followed by lyophilisation yields 149.2 mg (75%) (2S,4R)-2-[(N'-Methyl-N'-[(4-methyl-phenylsulfonyl)-hydrazinocarbonyl]-4-mercapto-pyrrolidine-1-carboxylic acid phenyl ester as white solid, MS: 450 (MH⁺).

In a similar manner (step 6,7) the following compounds were prepared:

from (2S,4R)-2-[(N'-Methyl-N'-[(4-methyl-phenylsulfonyl)-hydrazinocarbonyl]-4-(4-methoxy-benzylsulfanyl) -pyrrolidine-TFA with n-butyl chloroformate, i-propyl chloroformate, butylsulfamoyl chloride, cyclopropylsulfamoyl chloride, benzylsulfamoylchloride:

(2S,4R)-2-[(N'-Methyl-N'-[(4-methyl-phenylsulfonyl)-hydrazinocarbonyl]-4-mercapto-pyrrolidine-1-carboxylic acid butyl ester as colorless gum, MS: 430 (MH⁺);

(2S,4R)-2-[(N'-Methyl-N'-[(4-methyl-phenylsulfonyl)-hydrazinocarbonyl]-4-mercapto-pyrrolidine-1-carboxylic acid isopropyl ester as white solid, MS: 416 (MH⁺);

(2S,4R)-2-[(N'-Methyl-N'-[(4-methyl-phenylsulfonyl)-hydrazinocarbonyl]-4-mercapto-pyrrolidine-1-sulfonic acid butylamide as white lyophil solid, MS: 463 (M-H⁻);

(2S,4R)-2-[(N'-Methyl-N'-[(4-methyl-phenylsulfonyl)-hydrazinocarbonyl]-4-mercapto-pyrrolidine-1-sulfonic acid cyclopropylamide as white lyophil solid, MS: 447 (M-H⁻);

(2S,4R)-2-[(N'-Methyl-N'-[(4-methyl-phenylsulfonyl)-hydrazinocarbonyl]-4-mercapto-pyrrolidine-1-sulfonic acid benzylamide as white lyophil solid, MS: 497 (M-H⁻);
From (2S,4R)-2-[N'-Isobutyl-N'-(4-methyl-phenylsulfonyl)-hydrazinocarbonyl]-4-(4-methoxy-benzylsulfanyl)-pyrrolidine-1-carboxylic acid 1-tert-butyl ester was treated with i-propyl chloroformate, n-butyl chloroformate, benzyl chloroformate, phenyl chloroformate, quinoline-8-sulfonyl chloride, thiophene-2-sulfonyl chloride, benzylsulfamoylchloride, butylsulfamoyl chloride or cyclopropylsulfamoyl chloride according to protocols (steps 5-7) to give the following compounds:

(2S,4R)-2-[N'-Isobutyl-N'-(4-methyl-phenylsulfonyl)-hydrazinocarbonyl]-4-mercaptop-pyrrolidine-1-carboxylic acid isopropyl ester as white solid, MS: 458 (M+H);

(2S,4R)-2-[N'-Isobutyl-N'-(4-methyl-phenylsulfonyl)-hydrazinocarbonyl]-4-mercaptop-pyrrolidine-1-carboxylic acid butyl ester as white solid, MS: 472 (M+H);

(2S,4R)-2-[N'-Isobutyl-N'-(4-methyl-phenylsulfonyl)-hydrazinocarbonyl]-4-mercaptop-pyrrolidine-1-carboxylic acid benzyl ester as white solid, MS: 506 (M+H);

(2S,4R)-2-[N'-Isobutyl-N'-(4-methyl-phenylsulfonyl)-hydrazinocarbonyl]-4-mercaptop-pyrrolidine-1-carboxylic acid phenyl ester as white solid, MS: 492 (M+H);

(2S,4R)-4-Mercapto-1-(quinoline-8-sulfonyl)-pyrrolidine-2-carboxylic acid N'-isobutyl-N'-(4-methyl-benzyl)-hydrazone as white solid, MS: 563 (M+H);

(2S,4R)-4-Mercapto-1-(thiophen-2-sulfonyl)-pyrrolidine-2-carboxylic acid N'-isobutyl-N'-(4-methyl-benzyl)-hydrazone as white solid, MS: 518 (M+H);

(2S,4R)-2-[N'-Isobutyl-N'-(4-methyl-phenylsulfonyl)-hydrazinocarbonyl]-4-mercaptop-pyrrolidine-1-sulfonic acid benzylamide as white lyoph solid; mp 67°C MS: 539 (M-H);

(2S,4R)-2-[N'-Isobutyl-N'-(4-methyl-phenylsulfonyl)-hydrazinocarbonyl]-4-mercaptop-pyrrolidine-1-sulfonic acid butylamide as white lyoph solid; MS: 467 (M-H);

(2S,4R)-2-[N'-Isobutyl-N'-(4-methyl-phenylsulfonyl)-hydrazinocarbonyl]-4-mercaptop-pyrrolidine-1-sulfonic acid cyclopropylamide as white lyoph solid; MS: 489 (M-H).

Example 3d: Sequence D - Direct formation from the ester (Scheme 3)

Analogously to Ruye Xing and Robert P. Hanzlik, *J. Med. Chem.* 1998, 41, 1344-1351 the following reactions were carried out:
(step 8) To a solution of 5 g (10.6 mmol, 1 eq) (2S,4R)-4-(4-Methoxy-benzylsulfanyl)-1-(naphthalene-2-sulfonfyl)-pyrrolidine-2-carboxylic acid methyl ester in 20 ml methanol were added 6.45 ml (110 mmol, 10 eq) hydrazine-hydrate and the solution was stirred at RT for 3 days. The solvent was evaporated, followed by solving and evaporating with EtOH, ether and hexane. The light yellow solid was dried in vacuo giving (2S,4R)-4-(4-Methoxy-benzylsulfanyl)-1-(naphthalene-2-sulfonfyl)-pyrrolidine-2-carboxylic acid hydrazide, mp 130°C, MS: 472 (MH+).

(step 9) 150 mg (0.3 mmol, 1.0 eq) (2S,4R)-4-(4-Methoxy-benzylsulfanyl)-1-(naphthalene-2-sulfonfyl)-pyrrolidine-2-carboxylic acid hydrazide in 5 ml TFA and 0.65 ml triisopropylsilane were stirred for 3 d at RT. The solvent was evaporated and the residue redissolved in sat. NaHCO₃ solution;ethyl acetate, the phases were separated and the inorganic one was extracted with ethyl acetate. The combined organic phases were washed with water and brine. Column chromatography yields 68 mg (61%) (2S,4R)-4-Mercapto-1-(naphthalene-2-sulfonfyl)-pyrrolidine-2-carboxylic acid hydrazide as white foam, MS: 352 (MH+).
Example 3e: Sequence F – intermediates (Scheme 3)

Analogously to Sequence D step 8, the following compound was prepared from (2S,4R)-1-(Naphthalene-2-sulfonyl)-4-tritylsulfanyl-pyrrolidine-2-carboxylic acid methyl ester and hydrazine hydrate:

\[(2S,4R)-1-(Naphthalene-2-sulfonyl)-4-tritylsulfanyl-pyrrolidine-2-carboxylic acid hydrazide as off-white solid, mp 172°C, MS: 594 (MH⁺).\]

(step 10) To a suspension of 3.0 g (5.05 mmol) (2S,4R)-1-(Naphthalene-2-sulfonyl)-4-tritylsulfanyl-pyrrolidine-2-carboxylic acid hydrazide in ethanol were added 0.56 ml (5.6 mmol, 1.1 eq) benzaldehyde at RT, and the reaction mixture was heated to 80°C for 3 h. The solvent was evaporated and the residue was purified by flash chromatography on silica gel with ethyl acetate:hexane 1:1 as eluent yielding 2.75 g (80%) (2S,4R)-1-(Naphthalene-2-sulfonyl)-4-tritylsulfanyl-pyrrolidine-2-carboxylic acid benzylidene-hydrazide as white foam, MS: 682 (MH⁺).

(step 11) To 2.48 g (3.64 mmol) (2S,4R)-1-(Naphthalene-2-sulfonyl)-4-tritylsulfanyl-pyrrolidine-2-carboxylic acid benzylidene-hydrazide were added 228.6 mg (3.64 mmol, 1.0 eq) NaBH₃CN in 12.4 ml THF, followed by 691.8 mg (3.64 mmol, 1.0 eq) toluene-4-sulfonic acid in 8.7 ml THF. The solution was stirred at RT for 2 h, additional mmol,0.3 eq NaBH₃CN were added, and the reaction was stirred overnight at RT. The mixture was diluted with ethyl acetate and washed with brine, sat. NaHCO₃ solution and brine, dried over Na₂SO₄ and the solvent was evaporated.

The residue was dissolved in 11 ml 1M NaOH and 15 ml THF and stirred for 1h, diluted with ethyl acetate and 9 ml 1M KHSO₄ were added, followed by 5% NaHCO₃ solution. The slightly basic solution was extracted with ethyl acetate. The organic phase was washed with water and brine, dried over Na₂SO₄ and evaporated yielding 2.45 g (98%)

Analogously, the following compound was prepared from (2S,4R)-1-(Naphthalene-2-sulfonyl)-4-tritylsulfanyl-pyrrolidine-2-carboxylic acid hydrazide and 2,5-difluorobenzaldehyde:

(2S,4R)-1-(Naphthalene-2-sulfonyl)-4-tritylsulfanyl-pyrrolidine-2-carboxylic acid N'-(2,5-difluoro-benzyl)-hydrazide as white foam, MS: 720 (MH⁺).
Example 3e: Sequence E-final products (Scheme 3)

(step 12) To 200 mg (0.3 mmol) (2S,4R)-1-(Naphthalene-2-sulfonyl)-4-tritylsulfanyl-pyrrolidine-2-carboxylic acid N'-benzyl-hydrazide in 3 ml CH₂Cl₂ were added 60 µl (0.35 mmol, 1.2 eq) N,N-diisopropylethylamine, 72.5 mg (0.35 mmol, 1.2 eq) 4-methoxybenzene sulfonylchloride and 22.5 mg (0.12 eq) DMAP-poly at 0°C. The suspension was shaken at RT for 3 days, additional 25 µl (0.15 mmol, 0.5 eq) N,N-diisopropylethylamine, 31 mg (0.15 mmol, 0.5 eq) 4-methoxybenzene sulfonylchloride and 22.5 mg (0.12 eq) DMAP-poly were added and the reaction was continued for a day. After filtration and washing of the resin with CH₂Cl₂, the organic phase was concentrated and the crude material purified by flash chromatography yielding 152 mg (61%) (2S,4R)-1-(Naphthalene-2-sulfonyl)-4-tritylsulfanyl-pyrrolidine-2-carboxylic acid N'-benzyl-N'-(4-methoxy-benzenesulfonyl)-hydrazide which was directly subjected to the following reaction.

(step 13) To 148 mg (0.17 mmol) (2S,4R)-1-(Naphthalene-2-sulfonyl)-4-tritylsulfanyl-pyrrolidine-2-carboxylic acid N'-benzyl-N'-(4-methoxy-benzenesulfonyl)-hydrazide in 3.0 ml TFA were added 276 µl (1.73 mmol, 10 eq) triethylsilane at 0°C. The mixture was stirred at RT for 30 min, the solvent was evaporated and the residue was redissolved in ethyl acetate, sat. aq. NaHCO₃ solution, the layers were separated and the inorganic one extracted with ethyl acetate. The combined organic layers were washed with brine, dried over Na₂SO₄ and evaporated. The residue was purified by flash chromatography with a gradient of ethyl acetate:hexane (1:1.5 to 1:1) yielding 76 mg (72%) (2S,4R)-4-Mercapto-1-(naphthalene-2-sulfonyl)-pyrrolidine-2-carboxylic acid N'-benzyl-N'-(4-methoxy-benzenesulfonyl)-hydrazide as white foam, MS: 612 (MH⁺).

Analogously, the following compounds were prepared from (2S,4R)-1-(Naphthalene-2-sulfonyl)-4-tritylsulfanyl-pyrrolidine-2-carboxylic acid N'-benzyl-hydrazide and p-toluoyl chloride, acetyl chloride, p-anisoyl chloride followed by deprotection:

(b) (2S,4R)-4-Methyl-benzoic acid N-benzyl-N'-[4-mercapto-1-(naphthalene-2-sulfonyl)-pyrrolidine-2-carboxyl]-hydrazide as white foam, MS: 560 (MH⁺).

(c) (2S,4R)-4-Mercapto-1-(naphthalene-2-sulfonyl)-pyrrolidine-2-carboxylic acid N'-acetyl-N'-benzyl-hydrazide as white solid, mp 64°C, MS: 484 (MH⁺).
(d) (2S,4R)-4-Methoxy-benzoic acid N-benzyl-N’-[4-mercapto-1-(naphthalene-2-sulfonyle]-pyrrolidine-2-carboxyl]-hydrazide as white foam, MS: 576 (MH⁺).

From (2S,4R)-1-(Naphthalene-2-sulfonyle]-4-tritylsulfanyl-pyrrolidine-2-carboxylic acid N’-(2,5-difluoro-benzyl)-hydrazide and 2,4-difluorobenzoyl chloride, 2-thiophene carbonyl chloride, methanesulfonyl chloride, methoxybenzenesulfonyl chloride, 2-thiophenesulfonyl chloride, benzenesulfonyl chloride, 4-fluorobenzenesulfonyl chloride:

(e) (2S,4R)-2,4-Difluoro-benzoic acid N-(2,5-difluoro-benzyl)-N’-[4-mercapto-1-(naphthalene-2-sulfonyle]-pyrrolidine-2-carboxyl]-hydrazide as white foam, MS: 618 (MH⁺).

(f) (2S,4R)-Thiophene-2-carboxylic acid N-(2,5-difluoro-benzyl)-N’-[4-mercapto-1-(naphthalene-2-sulfonyle]-pyrrolidine-2-carboxyl]-hydrazide as white foam, MS: 588 (MH⁺).

(g) (2S,4R)-1-(Naphthalene-2-sulfonyle]-4-tritylsulfanyl-pyrrolidine-2-carboxylic acid N’-(2,5-difluoro-benzyl)-N’-methanesulfonyl-hydrazide as white foam, MS: 556 (MH⁺).

(h) (2S,4R)-1-(Naphthalene-2-sulfonyle]-4-tritylsulfanyl-pyrrolidine-2-carboxylic acid N’-(2,5-difluoro-benzyl)-N’-(4-methoxy-benzenesulfonyl)-hydrazide as white foam, MS: 648 (MH⁺).

(i) (2S,4R)-1-(Naphthalene-2-sulfonyle]-4-tritylsulfanyl-pyrrolidine-2-carboxylic acid N’-(2,5-difluoro-benzyl)-N’-(thiophene-2-sulfonyle]-hydrazide as white foam, MS: 624 (MH⁺).

(j) (2S,4R)-1-(Naphthalene-2-sulfonyle]-4-tritylsulfanyl-pyrrolidine-2-carboxylic acid N’-(2,5-difluoro-benzyl)-N’-benzenesulfonyl-hydrazide as white foam, MS: 618 (MH⁺).

(k) (2S,4R)-1-(Naphthalene-2-sulfonyle]-4-tritylsulfanyl-pyrrolidine-2-carboxylic acid N’-(2,5-difluoro-benzyl)-N’-(4-fluoro-benzenesulfonyl)-hydrazide as white foam, MS: 636 (MH⁺).
Example 3f: Synthesis according to Scheme 4

Analogously to Sequence A – step 1, from (2S,4R)-4-(4-Methoxy-benzylsulfanyl)-1-(naphthalene-2-sulfonyl)-pyrrolidine-2-carboxylic acid and N-Methyl-hydrazinocarboxylic acid benzyl ester was prepared intermediate

(2S,4R)-N’-[4-(4-Methoxy-benzylsulfanyl)-1-(naphthalene-2-sulfonyl)-pyrrolidine-2-carbonyl]-N-methyl-hydrazinecarboxylic acid benzyl ester as off-white crystalline, MS: 620 (MH+).

(step 14) 2.45 g (1.52 mmol) (2S,4R)-N’-[4-(4-Methoxy-benzylsulfanyl)-1-(naphthalene-2-sulfonyl)-pyrrolidine-2-carbonyl]-N-methyl-hydrazinecarboxylic acid benzyl ester were dissolved in 9 ml acetic acid and 9 ml HBr (33% in acetic acid) were added at 0°C stirred for 4h at 0°C. The solution was concentrated and the residue was dissolved in CH₂Cl₂ and sat. aq NaHCO₃ solution, the layers were separated and the inorganic one was extracted with CH₂Cl₂ and the combined organic phases were washed with brine and dried over Na₂SO₄. The crude product was purified by flash chromatography with ethyl acetate:hexane 1:1 yielding 380 mg (44%) (2S,4R)-4-(4-Methoxy-benzylsulfanyl)-1-(naphthalene-2-sulfonyl)-pyrrolidine-2-carboxylic acid N-benzyl-N-methyl-hydrazide as white solid, mp 83.2°C, MS: 576 (MH+).

Deprotection according to Scheme 2 (step 4) gave:

(2S,4R)-4-Mercapto-1-(naphthalene-2-sulfonyl)-pyrrolidine-2-carboxylic acid N-benzyl-N-methyl-hydrazide as white solid, mp 69°C, MS: 456 (MH+).

(step 16) 180 mg (0.31 mmol) (2S,4R)-4-(4-Methoxy-benzylsulfanyl)-1-(naphthalene-2-sulfonyl)-pyrrolidine-2-carboxylic acid N-benzyl-N-methyl-hydrazide in 7.5 ml DMF were treated with 16.5 mg (0.34 mmol, 1.1eq) NaH and 21 µl (0.34 mmol, 1.1 eq) methyl iodide at 0°C and, the solution was stirred for 3 h at RT. The solution was diluted with water and CH₂Cl₂. The phases were separated and the inorganic layer was extracted with CH₂Cl₂, the combined organic layers were washed with brine, dried over Na₂SO₄ and were evaporated. The crude material was purified by flash chromatography with a gradient of ethyl acetate:hexane 2:1 to ethyl acetate yielding 110 mg (60%) (2S,4R)-4-(4-Methoxy-benzylsulfanyl)-1-(naphthalene-2-sulfonyl)-pyrrolidine-2-carboxylic acid N’-benzyl-N,N-dimethyl-hydrazide which was deprotected using the protocol described
Scheme 4:

13) N-Methyl-hydrazinecarboxylic acid benzyl ester, N-Hydroxy-2-pyridone, DDC,NEM, CH₂Cl₂
14) HBr, AcOH
15) TFA, Et₂SiH
16) NaH, RBr, DMF
17) TFA, Et₂SiH

for Scheme2 (step 4) to give (2S,4R)-4-Mercapto-1-(naphthalene-2-sulfonyl)-pyrrolidine-2-carboxylic acid N'-benzyl-N,N-dimethyl-hydrazide as white solid, mp 133.2°C, MS: 470 (MH⁺).
Example 3g: Synthesis according to Scheme 5

Analogously to Sequence A – step 1, from (2S,4R)-4-(4-Methoxy-benzylsulfanyl)-1-(naphthalene-2-sulfonyle)-pyrrolidine-2-carboxylic acid and tert-Butyl 2-(methyl)hydrazinocarboxylate was prepared intermediate (2S,4R)-N'-[4-(4-Methoxy-benzylsulfanyl)-1-(naphthalene-2-sulfonyle)-pyrrolidine-2-carbonyl]-N'-methyl-hydrazinocarboxylic acid tert-butyl ester as white crystalline, MS: 586 (MH^+).

(step 19) To 200 mg (0.34 mmol) (2S,4R)-N'-[4-(4-Methoxy-benzylsulfanyl)-1-(naphthalene-2-sulfonyle)-pyrrolidine-2-carbonyl]-N'-methyl-hydrazinocarboxylic acid tert-butyl ester in 10 ml TFA were added 0.54 ml (3.4 mmol, 10 eq) triethylsilane at RT and the solution was stirred at 80°C for 1h. The solvent was evaporated in vacuo and the crude material was purified by flash chromatography with ethyl acetate/hexane yielding 61.6 mg (40 %) (2S,4R)-4-Mercapto-1-(naphthalene-2-sulfonyle)-pyrrolidine-2-carboxylic acid N-methyl-N'-trifluoroacetyl-hydrazide as white solid, MS: 461 (MH^+).

(step 20,21) According to the procedure (Scheme 4, step 16) was prepared from (2S,4R)-N'-[4-(4-Methoxy-benzylsulfanyl)-1-(naphthalene-2-sulfonyle)-pyrrolidine-2-carbonyl]-N'-methyl-hydrazinocarboxylic acid tert-butyl ester and benzyl bromide (2S,4R)-N'-[4-(4-Methoxy-benzylsulfanyl)-1-(naphthalene-2-sulfonyle)-pyrrolidine-2-carbonyl]-N'-methyl-N-benzyl-hydrazinocarboxylic acid tert-butyl ester which was directly BOC and PMB-deprotected according to Scheme 2 (step 4) to give (2S,4R)-4-Mercapto-1-(naphthalene-2-sulfonyle)-pyrrolidine-2-carboxylic acid N-benzyl-N'-methyl-hydrazide as colorless oil, mp , MS: 456 (MH^+).

(Step 22) 2 g (3.4 mmol) (2S,4R)-N'-[4-(4-Methoxy-benzylsulfanyl)-1-(naphthalene-2-sulfonyle)-pyrrolidine-2-carbonyl]-N'-methyl-hydrazinocarboxylic acid tert-butyl ester in 9 ml CH3Cl were treated with 3.4 ml TFA for 2h. The solution was concentrated, redissolved in toluene and evaporated. The residue was dissolved in ethyl acetate and sat. aq. NaHCO3, the layers were separated and the inorganic one was extracted with ethyl acetate, the combined organic ones were washed wit brine, dried over Na2SO4 and concentrated yielding 1.67 g (quant) (2S,4R)-4-(4-Methoxy-benzylsulfanyl)-1-(naphthalene-2-sulfonyle)-pyrrolidine-2-carboxylic acid N-methyl-hydrazide as white solid, MS: 486 (MH^+).

(Step 23) To 1.67 g (3.4 mmol) (2S,4R)-4-(4-Methoxy-benzylsulfanyl)-1-(naphthalene-2-sulfonyle)-pyrrolidine-2-carboxylic acid N-methyl-hydrazide were added 0.78 g (4.08 mmol, 1.2 eq) toluenesulfonyl chloride, 0.7 ml (4.08 mmol, 1.2 eq) N-ethyl diisopropylamine and 106 mg (0.17 mmol, 0.05 eq) DMAP-resin, followed by additional
324 mg (1.7 mmol, 0.5 eq) toluenesulfonyl chloride after 3d. The reaction was filtered, 1M HCl was added and the inorganic phase was extracted with CH₂Cl₂. The combined organic phases were washed with brine, dried over Na₂SO₄ and were concentrated. The crude product was purified by flash chromatography using ethyl acetate:hexane 1:2 yielding 350 mg (13%) (2S,4R)-4-(4-Methoxy-benzylsulfanyl)-1-(naphthalene-2-sulfonyl)-pyrrolidine-2-carboxylic acid N-methyl-N’N’-bis-(4-methyl-benzenesulfonyl)-hydrazide as white solid, MS: 794 (MH⁺) and 630 mg (29%) (2S,4R)-4-(4-Methoxy-benzylsulfanyl)-1-(naphthalene-2-sulfonyl)-pyrrolidine-2-carboxylic acid N-methyl-N’-(4-methyl-benzenesulfonyl)-hydrazide as white solid, MS: 640 (MH⁺).

These compounds were deprotected according to Scheme 2 (step 4) giving:

(2S,4R)-4-Mercapto-1-(naphthalene-2-sulfonyl)-pyrrolidine-2-carboxylic acid N-methyl-N’N’-bis-(4-methyl-benzenesulfonyl)-hydrazide as white crystalline, mp 110°C, MS: 674(MH⁺).

(2S,4R)-4-Mercapto-1-(naphthalene-2-sulfonyl)-pyrrolidine-2-carboxylic acid N-methyl-N’-(4-methyl-benzenesulfonyl)-hydrazide as white crystalline, mp 103.5°C, MS: 520 (MH⁺).

(step 25,26) According to procedure (Scheme 4, step 16) was prepared from (2S,4R)-4-(4-Methoxy-benzylsulfanyl)-1-(naphthalene-2-sulfonl)-pyrrolidine-2-carboxylic acid N-methyl-N’-(4-methyl-benzenesulfonyl)-hydrazide and benzyl bromide (2S,4R)-4-(4-Methoxy-benzylsulfanyl)-1-(naphthalene-2-sulfonyl)-pyrrolidine-2-carboxylic acid N-methyl-N’-benzyl-N’-(4-methyl-benzenesulfonyl)-hydrazide which was directly deprotected according to Scheme 2 (step 4) to give (2S,4R)-4-Mercapto-1-(naphthalene-2-sulfonyl)-pyrrolidine-2-carboxylic acid N-methyl-N’-benzyl-N’-(4-methyl-benzenesulfonyl)-hydrazide as white solid, mp 82.5°C, MS: 610 (MH⁺).
Example 3h: Synthesis of cyclic compounds (Schema 6)

(step 27) To 150 mg (0.25 mmol) (2S,4R)-1-(Naphthalene-2-sulfonil)-4-tritylsulfanylpyrrolidine-2-carboxylic acid hydrazide in 65 ml THF were added 52 µl (0.3 mmol, 1.2 eq) iPr₂EtN and 29 µl (0.25 mmol) 4-bromobutyryl chloride at 0°C. The solution was stirred at RT for 2h, the solution was concentrated and redissolved in ethyl acetate/H₂O. The inorganic phase was extracted with ethyl acetate and, the organic phase was washed with brine and dried over Na₂SO₄. Column chromatography with ethyl acetate:hexane 1:1 yields 170 mg (92%) (2S,4R)-1-(Naphthalene-2-sulfonil)-4-tritylsulfanylpyrrolidine-2-carboxylic acid N'-(4-bromo-butyryl)-hydrazide which was dissolved in 120 ml DMF and treated with 17 mg (0.38 mmol, 55% in mineral oil) NaH and the solution stirred for 2h, was concentrated and dissolved in ethyl acetate/H₂O. The inorganic phase was extracted with ethyl acetate, the organic phase was washed with brine and dried over Na₂SO₄. The crude product was purified by column chromatography yielding 75 mg (45%) (2S,4R)-4-tritylsulfanyl-1-(naphthalene-2-sulfonil)-pyrrolidine-2-carboxylic acid (2-oxo-pyrrolidin-1-yl)-amide as white foam and 40 mg (25%) (2S,4R)-1-[4-tritylsulfanyl-1-(naphthalene-2-sulfonil)-pyrrolidine-2-carbonyl]-tetrahydro-pyridazin-3-one as white foam. The two compounds were treated separately in TFA (2 ml/mmol tritylsulfanyl) with 10 eq triethylsilane at 0°C to RT, until no educt could be detected, to yield (2S,4R)-4-Mercapto-1-(naphthalene-2-sulfonil)-pyrrolidine-2-carboxylic acid (2-oxo-pyrrolidin-1-yl)-amide as white foam, MS: 420 (MH⁺) and (2S,4R)-1-[4-Mercapto-1-(naphthalene-2-sulfonil)-pyrrolidine-2-carbonyl]-tetrahydro-pyridazin-3-one as white foam, MS: 420 (MH⁺), respectively.
Example 4: Solid Phase Synthesis of Hydrazide Derivatives

Building block synthesis (Scheme 7):

(2S,4R)-4-(4-Methoxy-benzylsulfanyl)-pyrrolidine-1,2-dicarboxylic acid 1-tert-butyl ester (19.48 g, 53 mmol) was treated with TFA (80 ml) in CH$_2$Cl$_2$ (120 ml) for 15 min. The reaction mixture was concentrated under reduced pressure and the resultant dark red oil was triturated in diethyl ether/n-hexane (1:4 v/v, 860 ml). The precipitated salt was collected and dried under reduced pressure (18.9 g) and directly used in the next step.

The TFA salt (18.9 g, 53 mmol) of (2S, 4R)-4-(4-methoxy-benzylsulfanyl)-pyrrolidine-2-carboxylic acid in 1,4-dioxane/H$_2$O (300 ml) containing NaHCO$_3$ (17.8 g, 212 mmol) was treated with Fmoc-OSu (19.7 g, 58.3 mmol) and magnetically stirred for 16 h. The reaction mixture was diluted with water (400 ml) and washed with diethyl ether (2x). Ethyl acetate (400 ml) and HCl (25%, 50 ml) were added. The organic phase was extracted and washed H$_2$O, NaCl sat. and dried MgSO$_4$. Filtration and concentration under reduced pressure yielded a foam (22.5 g).
Scheme 7

1. 40% TFA/CH₂Cl₂
2. Fmoc-OSu, NaHCO₃, H₂O, 1,4-dioxan
3. TFA, triisopropylsilane

The above foam (20.7 g, 42.3 mmol) was dissolved in TFA (350 ml) and triisopropylsilane (43.5 ml) was added. The mixture was refluxed for 0.5 h and concentrated under reduced pressure. Diethyl ether (100 ml) and n-hexanes (300 ml) were added yielding a precipitate. The supernatant was decanted and the precipitate was dried under reduced pressure and high vacuum to yield a white foam (2S, 4R)-4-sulfanyl-1-(fluorenylmethoxy carbonyl)-pyrrolidine-2-carboxylic acid (9.6 g, MS: 370 MH⁺)

Resin Derivatization (Scheme 8)

10 The linker 4-(α,α-diphenylhydroxymethyl)benzoic acid (18.3 g, 60 mmol) was activated using TPTU (17.8 g, 60 mmol), DIEA (30.8 ml, 180 mmol) in DMF (abs., 250 ml) for 3 min. The mixture was added to a flask containing benzhydrylamine resin (loading-NH₂ 0.9 mmol/g, 44.4 g) and the flask was shaken for 1 h. The resin was collected on a filter and washed (3 x alternating DMF/isopropanol), CH₂Cl₂, ether and dried: 54.65 g, 0.65 mmol/g (loading based on mass increase).

To the CH₂Cl₂ washed resin above (46.9 g, 30 mmol), was added a mixture of (2S, 4R)-4-sulfanyl-1-(naphthalene-2-sulfonyl)-pyrrolidine-2-carboxylic acid (12.2 g, 36 mmol) in CH₂Cl₂ (abs. 550 ml), TFA (80 ml). The red colored mixture was shaken for 1.5
h and the resin was then filtered, washed (3 x alternating CH₂Cl₂/isopropanol), CH₂Cl₂, ether and dried: 42 g, 0.65 mmol/g (loading based on mass increase).

To the CH₂Cl₂ washed resin above (33.5 g, 22 mmol), was added a mixture of (2S, 4R)-4-sulfanyl-1-((fluorenylmethoxycarbonyl)-pyrrolidine-2-carboxylic acid (9.7 g, 26 mmol) in CH₂Cl₂ (abs. 450 ml), TFA (67 ml). The red colored mixture was shaken for 1.5 h and the resin was then filtered, washed (3 x alternating CH₂Cl₂/isopropanol), CH₂Cl₂, ether and dried: 42 g, 0.59 mmol/g (loading based on mass increase).

Scheme 8:

1. 4-(α,α-diphenylhydroxymethyl)benzoic acid, O-(1, 2-dihydro-2-oxopyrid-1-yl)-N,N,N',N'-tetramethyluronium tetrafluoroborate (TPTU), Huenig's Base
2. (2S, 4R)-4-sulfanyl-1-(naphthalene-2-sulfonyl)-pyrrolidine-2-carboxylic acid or (2S, 4R)-4-sulfanyl-1-(fluorenylmethoxycarbonyl)-pyrrolidine-2-carboxylic acid, TFA, CH₂Cl₂

Example 5: Parallel Chemistry on Solid Phase (Scheme 9)

Typical Procedure: steps 1,2

Resin derivatized with (2S, 4R)-4-sulfanyl-1-(naphthalene-2-sulfonyl)-pyrrolidine-2-carboxylic acid (0.4 g, 0.26 mmol) above, was treated with DMF (abs. 5 ml), TPTU (0.18 g, 0.61 mmol), DIEA (0.21 ml, 1.21 mmol) for 10 min. The DMF solution was removed under vacuum and the reaction flask was charged with benzyloxycarbonyl hydrazide (0.13 g, 0.77 mmol) in DMF (abs. 3 ml). The reaction mixture was shaken for 0.5 h and the resin
was collected at the filter, washed (3 x alternating DMF/isopropanol), CH₂Cl₂, ether and
dried.

The resin (440 mg) was treated with 40% TFA/CH₂Cl₂ (10 ml), triisopropylsilane
(0.5 ml) for 10 min and the filtrate was collected and concentrated under reduced pressure
and the residue was freeze-dried from acetic acid (10 ml) yielding 41 mg (2S, 4R)-N'-(4-
mercapto-1-(naphthalene-2-sulfonyl)-pyrrolidine-2-carbonyl)-hydrazinecarboxylic acid
benzyl ester as a white lyophilisate, MS: 508.3 (MNa⁺).

Other compounds prepared in parallel, via the above procedure, were indicated in
Table 1.
Typical Procedure: steps 3,2

Resin derivatized with (2S, 4R)-4-sulfanyl-1-(naphthalene-2-sulfonyl)-pyrrolidine-2-carboxylic acid (0.5 g, 0.33 mmol) above, was treated with DMF (abs. 5 ml), TPTU (0.19 g, 0.65 mmol), DIEA (0.22 ml, 1.3 mmol) for 10 min. The DMF solution was removed under vacuum and the reaction flask was charged with 4-methoxybenzenesulfonyl hydrazide (0.20 g, 1.00 mmol) in DMF (abs. 5 ml). The reaction mixture was shaken for 1 h and the resin was collected at the filter, washed (3 x alternating DMF/isopropanol), CH₂Cl₂, ether and dried.

The resin (540 mg) was treated with 40% TFA/CH₂Cl₂, triisopropylsilane (0.5 ml) for 15 min and the filtrate was collected and concentrated under reduced pressure and the residue was purified by prep.RP-HPLC and the desired fractions were pooled and freeze-dried from acetic acid (10 ml) yielding (2S, 4R)-4-mercaptopo-1-(naphthalene-2-sulfonyl)-pyrrolidine-2-carboxylic acid N’-(4-methoxy-benzenesulfonyl)-hydrazide as a white lyophilisate, MS: 520.1 (MH⁺)

Other compounds prepared in parallel, via the above procedure, were indicated in Table 1.

Typical Procedure: steps 3,6,2

Resin derivatized with (2S, 4R)-4-sulfanyl-1-(naphthalene-2-sulfonyl)-pyrrolidine-2-carboxylic acid (4.3 g, 2.75 mmol) above, was treated with DMF (abs. 30 ml), TPTU (1.63 g, 5.50 mmol), DIEA (1.41 ml, 8.25 mmol) for 15 min. The DMF solution was removed under vacuum and the reaction flask was charged with toluene-4-sulfonyldiazide (1.54 g, 8.25 mmol) in DMF (abs. 30 ml). The reaction mixture was shaken for 16 h and the resin was collected at the filter, washed (3 x alternating DMF/isopropanol), CH₂Cl₂, ether and dried.

A typical alkylation step e.g.,

To the resin (0.8 g, 0.45 mmol) was added DMF (abs. 10 ml), diazabicyclo[5.4.0]undec-7-ene (0.08 ml, 0.54 mmol), 2,5-difluorobenzylbromide (0.11 g, 0.54 mmol) and the mixture shaken for 16 h and the resin was collected at the filter, washed (3 x alternating DMF/isopropanol), CH₂Cl₂, ether and dried.
The resin (0.16 g) was treated with 40% TFA/CH₂Cl₂ (10 ml), triisopropylsilane (0.5 ml) for 15 min and the filtrate was collected and concentrated under reduced pressure and the residue was purified by prep. RP-HPLC and the desired fractions were pooled and freeze-dried from acetic acid yielding (2S, 4R)-4-mercapto-1-(naphthalene-2-sulfonyl)-pyrrolidine-2-carboxylic acid N’-(2,5-difluorobenzyl)-N’-(4-methyl-benzenesulfonyl)-hydrazide as a white lyophilisate, MS: 532.0 (MH⁺)

Other compounds prepared in parallel, via the above procedure, were indicated in Table 1. Disubstituted products were also obtained.

Typical Procedure: steps 4, 5, 2

Resin derivatized with (2S, 4R)-4-sulfonyl-1-(naphthalene-2-sulfonyl)-pyrrolidine-2-carboxylic acid (1.0 g, 0.65 mmol) above, was treated with DMF (abs. 10 ml), TPTU (0.39 g, 1.3 mmol), DIEA (0.45 ml, 2.6 mmol) for 10 min. The DMF solution was removed under vacuum and the reaction flask was charged with hydrazine hydrate (25%, 0.42 ml, 3.25 mmol) in DMF (abs. 8 ml). The reaction mixture was shaken for 1 h and the resin was collected at the filter, washed (3 x alternating DMF/isopropanol), CH₂Cl₂, ether and dried.

To this resin (0.22 g, 0.14 mmol) was added DMF (abs. 3 ml), DIEA (0.10 ml, 0.60 mmol), 4-fluorobenzenesulfonyl chloride (0.11 g, 0.56 mmol) and the mixture shaken for 3.5 h and the resin was collected at the filter, washed (3 x alternating DMF/isopropanol), CH₂Cl₂, ether and dried.

The resin (0.25 mg) was treated with 40% TFA/CH₂Cl₂ (10 ml), triisopropylsilane (0.5 ml) for 15 min and the filtrate was collected and concentrated under reduced pressure and the residue was purified by prep. RP-HPLC and the desired fractions were pooled and freeze-dried from acetic acid (10 ml) yielding (2S, 4R)-4-mercapto-1-(naphthalene-2-sulfonyl)-pyrrolidine-2-carboxylic acid N’-(4-fluoro-benzenesulfonyl)-hydrazide as a white lyophilisate, MS: 510.2 (MH⁺)

Other compounds prepared in parallel, via the above procedure, were indicated in Table 1.
Typical Procedure: steps 3.7.2

Resin derivatized with ((2S, 4R)-4-sulfanyl-1-(fluorenylmethoxycarbonyl)-pyrrolidine-2-carboxylic acid (20.1 g, 11.9 mmol) above, was treated with DMF (abs. 150 ml), TPTU (7.1 g, 23.8 mmol), DIEA (6.1 ml, 35.7 mmol) for 10 min. The DMF solution was removed under vacuum and the reaction flask was charged with toluene-4-sulfonhydrazide (6.65 g, 35.7 mmol) in DMF (abs. 100 ml). The reaction mixture was shaken for 16 h and the resin was collected at the filter, washed (3 x alternating DMF/isopropanol), DMF.

Fmoc group removal was achieved with 20% piperidine/DMF (2 x 5 min).

Pyrrolidine substitution reactions followed e.g.,

To this resin (0.60 g, 0.30 mmol) was added DMF (abs. 6 ml), pyridine (0.12 ml, 1.50 mmol), 8-quinolinesulfonyl chloride (0.08 g, 0.36 mmol) and the mixture shaken for 16 h and the resin was collected at the filter, washed (3 x alternating DMF/isopropanol), CH₂Cl₂, ether and dried.

The resin (0.25 mg) was treated with 40% TFA/CH₂Cl₂ (10 ml), triisopropysilane (0.5 ml) for 15 min and the filtrate was collected and concentrated under reduced pressure and the residue was purified by prep.RP-HPLC and the desired fractions were pooled and freeze-dried from acetic acid (10 ml) yielding (2S, 4R)-4-mercapto-1-(naphthalene-2-sulfonyl)-pyrrolidine-2-carboxylic acid N’-(4-fluoro-benzenesulfonyl)-hydrazide as a white lyophilisate, MS: 505.3(MH⁺)

Other compounds prepared in parallel, via the above procedure, were indicated in Table 1.
<table>
<thead>
<tr>
<th>Name</th>
<th>Ion Spray MS</th>
<th>Educt</th>
<th>Steps: Scheme 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2S,4R)-4-Mercapto-1-(naphthalene-2-sulfonyl)-pyrrolidine-2-carboxylic acid N'-phenyl-hydrazide</td>
<td>M+H 428.4</td>
<td>phenylhydrazide</td>
<td>3,2</td>
</tr>
<tr>
<td>Benzoic acid (2S,4R)-N'-[4-mercapto-1-(naphthalene-2-sulfonyl)-pyrrolidine-2-carbonyl]-hydrazide</td>
<td>M+H 456.3</td>
<td>Benzoic acid hydrazide</td>
<td>1,2</td>
</tr>
<tr>
<td>(2S,4R)-N'-[4-Mercapto-1-(naphthalene-2-sulfonyl)-pyrrolidine-2-carbonyl]-hydrazinecarboxylic acid methyl ester</td>
<td>M+H 410.3</td>
<td>carboxylic acid methylester hydrazide</td>
<td>1,2</td>
</tr>
<tr>
<td>(2S,4R)-N'-[4-Mercapto-1-(naphthalene-2-sulfonyl)-pyrrolidine-2-carbonyl]-hydrazinecarboxylic acid benzyl ester</td>
<td>M+Na 508.3</td>
<td>benzylxocarbonyl hydrazide</td>
<td>1,2</td>
</tr>
<tr>
<td>Furan-2-carboxylic acid (2S,4R)-N'-[4-mercapto-1-(naphthalene-2-sulfonyl)-pyrrolidine-2-carbonyl]-hydrazide</td>
<td>M+H 446.3</td>
<td>2-furoic acid hydrazide</td>
<td>1,2</td>
</tr>
<tr>
<td>Nicotinic acid (2S,4R)-N'-[4-mercapto-1-(naphthalene-2-sulfonyl)-pyrrolidine-2-carbonyl]-hydrazide trifluoroacetate (1:1)</td>
<td>M+H 457.3</td>
<td>Nicotinic acid hydrazide</td>
<td>1,2</td>
</tr>
<tr>
<td>(2S,4R)-4-Mercapto-1-(naphthalene-2-sulfonyl)-pyrrolidine-2-carboxylic acid N'-[4-methyl-benzenesulfonyl]-hydrazide</td>
<td>M+NH4 523.2</td>
<td>toluene-4-sulfon hydrazide</td>
<td>3,2</td>
</tr>
<tr>
<td>(2S,4R)-4-Mercapto-1-(naphthalene-2-sulfonyl)-pyrrolidine-2-carboxylic acid hydrazide trifluoroacetate (1:1)</td>
<td>M+H 352.2</td>
<td>hydrazine hydrazide</td>
<td>4,2</td>
</tr>
<tr>
<td>(2S,4R)-4-Mercapto-1-(naphthalene-2-sulfonyl)-pyrrolidine-2-carboxylic acid N'-[4-methoxy-benzenesulfonyl]-hydrazide</td>
<td>M-H 520.1</td>
<td>4-methoxybenzenesulfonyl hydrazide</td>
<td>3,2</td>
</tr>
<tr>
<td>(2S,4R)-4-Mercapto-1-(naphthalene-2-sulfonyl)-pyrrolidine-2-carboxylic acid N'-[4-methyl-benzyloxy]-hydrazide</td>
<td>M+H 470.2</td>
<td>4-methyl-benzyloxy-hydrazide</td>
<td>1,2</td>
</tr>
<tr>
<td>(2S,4R)-4-Mercapto-1-(naphthalene-2-sulfonyl)-pyrrolidine-2-carboxylic acid N'-[3-thiophen-3-yl-acetyl]-hydrazide</td>
<td>M+H 476.1</td>
<td>thiophen-3-yl-acetyl-hydrazide</td>
<td>1,2</td>
</tr>
<tr>
<td>(2S,4R)-4-Mercapto-1-(naphthalene-2-sulfonyl)-pyrrolidine-2-carboxylic acid N'-[(1H-indol-3-yl-acetyl)]-hydrazide</td>
<td>M+H 509.3</td>
<td>1H-indol-3-yl-acetyl-hydrazide</td>
<td>1,2</td>
</tr>
<tr>
<td>(2S,4R)-4-Mercapto-1-(naphthalene-2-sulfonyl)-pyrrolidine-2-carboxylic acid N'-[thiophene-2-carbonyl]-hydrazide</td>
<td>M+H 462.2</td>
<td>thiophene-2-carbonyl-hydrazide</td>
<td>1,2</td>
</tr>
<tr>
<td>(2S,4R)-N'-[4-Mercapto-1-(naphthalene-2-sulfonyl)-pyrrolidine-2-carbonyl]-hydrazinecarboxylic acid (3-fluoro-phenyl) amide</td>
<td>M+H 489.2</td>
<td>3-fluoro-phenylamide hydrazide</td>
<td>1,2</td>
</tr>
<tr>
<td>(2S,4R)-4-Mercapto-1-(naphthalene-2-sulfonyl)-pyrrolidine-2-carboxylic acid N'-benzenesulfonyl-hydrazide</td>
<td>M+H 490.2</td>
<td>benzenesulfonyl hydrazide</td>
<td>3,2</td>
</tr>
<tr>
<td>Chemical Structure</td>
<td>Formula M+H</td>
<td>Property</td>
<td>Ref.</td>
</tr>
<tr>
<td>---</td>
<td>-------------</td>
<td>---------------------------</td>
<td>------</td>
</tr>
<tr>
<td>(2S,4R)-4-Mercapto-1-(naphthalene-2-sulfanyl)-pyrrolidine-2-carboxylic acid N'-acetyl-hydrazide</td>
<td>M+H 394.3</td>
<td>acetyl hydrazide</td>
<td>1,2</td>
</tr>
<tr>
<td>Isonicotinic acid (2S,4R)-N'-[4-mercapto-1-(naphthalene-2-sulfanyl)-pyrrolidine-2-carboxyl]-hydrazide trifluoro-acetate (1:1)</td>
<td>M+H 457.3</td>
<td>Isonicotinic acid hydrazide</td>
<td>1,2</td>
</tr>
<tr>
<td>(2S,4R)-N'-[4-Mercapto-1-(naphthalene-2-sulfanyl)-pyrrolidine-2-carboxyl]-hydrazinecarboxylic acid phenylamide</td>
<td>M+H 471.2</td>
<td>phenylamide carboxylic acid</td>
<td>1,2</td>
</tr>
<tr>
<td>(2S,4R)-4-Mercapto-1-(naphthalene-2-sulfanyl)-pyrrolidine-2-carboxylic acid N'-dimethylaminocarboxyl-hydrazide trifluoro-acetate (1:1)</td>
<td>M+H 437.3</td>
<td>dimethylaminocarboxyl hydrazide</td>
<td>1,2</td>
</tr>
<tr>
<td>(2S,4R)-4-Mercapto-1-(naphthalene-2-sulfanyl)-pyrrolidine-2-carboxylic acid N',N'-bis-(4-methyl-benzenesulfonyl)-hydrazide</td>
<td>M+NH 4 677.3</td>
<td>toluene-4-sulfon hydrazide</td>
<td>3,2</td>
</tr>
<tr>
<td>(2S,4R)-4-Mercapto-1-(naphthalene-2-sulfanyl)-pyrrolidine-2-carboxylic acid N-methyl-N'-[4-methyl-benzenesulfonyl]-hydrazide</td>
<td>M+NH 4 537.2</td>
<td>1. toluene-4-sulfon hydrazide; 2. iodomethane</td>
<td>3,6,2</td>
</tr>
<tr>
<td>(2S,4R)-4-Mercapto-1-(naphthalene-2-sulfanyl)-pyrrolidine-2-carboxylic acid N,N'-dimethyl-N'[4-methyl-benzenesulfonyl]-hydrazide</td>
<td>M+H 334.2</td>
<td>1. toluene-4-sulfon hydrazide; 2. iodomethane</td>
<td>3,6,2</td>
</tr>
<tr>
<td>(2S,4R)-4-Mercapto-1-(naphthalene-2-sulfanyl)-pyrrolidine-2-carboxylic acid N',(2,4-difluoro-benzenesulfonyl)-hydrazide</td>
<td>M+NH 4 545.1</td>
<td>2,4-difluorosulfonyl chloride</td>
<td>4,5,2</td>
</tr>
<tr>
<td>(2S,4R)-4-Mercapto-1-(naphthalene-2-sulfanyl)-pyrrolidine-2-carboxylic acid N'(2-fluoro-benzenesulfonyl)-hydrazide</td>
<td>M+H 510.2</td>
<td>2-fluoro-benzenesulfonyl chloride</td>
<td>4,5,2</td>
</tr>
<tr>
<td>(2S,4R)-4-Mercapto-1-(naphthalene-2-sulfanyl)-pyrrolidine-2-carboxylic acid N'(4-fluoro-benzenesulfonyl)-hydrazide</td>
<td>M+H 510.2</td>
<td>4-fluoro-benzenesulfonyl chloride</td>
<td>4,5,2</td>
</tr>
<tr>
<td>(2S,4R)-4-Mercapto-1-(naphthalene-2-sulfanyl)-pyrrolidine-2-carboxylic acid N,N'-bis-(4-fluoro-benzenesulfonyl)-hydrazide</td>
<td>M+NH 4 685.2</td>
<td>4-fluoro-benzenesulfonyl chloride</td>
<td>4,5,2</td>
</tr>
<tr>
<td>(2S,4R)-4-Mercapto-1-(naphthalene-2-sulfanyl)-pyrrolidine-2-carboxylic acid N'-methanesulfonyl-hydrazide</td>
<td>M+NH 4 447.2</td>
<td>methanesulfonyl chloride</td>
<td>4,5,2</td>
</tr>
<tr>
<td>(2S,4R)-4-Mercapto-1-(naphthalene-2-sulfanyl)-pyrrolidine-2-carboxylic acid N'-thiophene-2-sulfonyl-hydrazide</td>
<td>M+H 498.0</td>
<td>2-thiophenesulfonyl chloride</td>
<td>4,5,2</td>
</tr>
<tr>
<td>(2S,4R)-N'-[4-[N-[4-Mercapto-1-(naphthalene-2-sulfanyl)-pyrrolidine-2-carboxyl]-hydrazinosulfonyl]-phenyl]-acetamide</td>
<td>M+NH 4 566.1</td>
<td>N-acetylsulfanilyl chloride</td>
<td>4,5,2</td>
</tr>
<tr>
<td>(2S,4R)-N'-[4-Mercapto-1-(naphthalene-2-sulfanyl)-pyrrolidine-2-carboxyl]-hydrazinecarboxylic acid dimethylamide</td>
<td>M+H 459.3</td>
<td>N,N-dimethylsulfamoyl chloride</td>
<td>4,5,2</td>
</tr>
<tr>
<td>(2S,4R)-4-Mercapto-1-(naphthalene-2-sulfanyl)-pyrrolidine-2-carboxylic acid N'-[4-methanesulfonyl-benzenesulfonyl]-hydrazide</td>
<td>M+NH 4 569.7</td>
<td>4-methanesulfonylbenzenesulfonyl chloride</td>
<td>4,5,2</td>
</tr>
<tr>
<td>(2S,4R)-4-Mercapto-1-(naphthalene-2-sulfanyl)-pyrrolidine-2-carboxylic acid N'(3,5-dimethyl-isoxazole-4-sulfonyl)-hydrazide</td>
<td>M+H 511.2</td>
<td>3,5-dimethylisoxazole-4-sulfonyl chloride</td>
<td>4,5,2</td>
</tr>
<tr>
<td>(2S,4R)-4-Mercapto-1-(naphthalene-2-sulfanyl)-pyrrolidine-2-carboxylic acid N,N'-bis-(3,5-dimethyl-isoxazole-4-sulfonyl)-hydrazide</td>
<td>M+H 670.1</td>
<td>3,5-dimethylisoxazole-4-sulfonyl chloride</td>
<td>4,5,2</td>
</tr>
<tr>
<td>Formula</td>
<td>M+NH₄, M+H</td>
<td>Product Name</td>
<td>Amount</td>
</tr>
<tr>
<td>--</td>
<td>------------</td>
<td>--</td>
<td>--------</td>
</tr>
<tr>
<td>(2S,4R)-4-Mercapto-1-(naphthalene-2-sulfonyl)-pyrrolidine-2-carboxylic acid N'-isopropanesulfonyl-hydrazide</td>
<td>M+NH₄ 475.2</td>
<td>isopropylsulfonyl chloride</td>
<td>4,5,2</td>
</tr>
<tr>
<td>(2S,4R)-4-Mercapto-1-(naphthalene-2-sulfonyl)-pyrrolidine-2-carboxylic acid N'-(3-fluoro-benzensulfonyl)-hydrazide</td>
<td>M+H 510.3</td>
<td>3-fluoro-benzensulfonyl chloride</td>
<td>4,5,2</td>
</tr>
<tr>
<td>(2S,4R)-4-Mercapto-1-(naphthalene-2-sulfonyl)-pyrrolidine-2-carboxylic acid N'N'-bis-(3-fluoro-benzensulfonyl)-hydrazide</td>
<td>M+NH₄ 684.9</td>
<td>3-fluoro-benzensulfonyl chloride</td>
<td>4,5,2</td>
</tr>
<tr>
<td>(2S,4R)-4-Mercapto-1-(naphthalene-2-sulfonyl)-pyrrolidine-2-carboxylic acid N'-cyclopropylmethyl-N'-(4-methyl-benzensulfonyl)-hydrazide</td>
<td>M-H 558.1</td>
<td>1. Toluene-4-sulfon hydrazide 2. Bromomethyl cyclopropane</td>
<td>3,6,2</td>
</tr>
<tr>
<td>(2S,4R)-4-Mercapto-1-(naphthalene-2-sulfonyl)-pyrrolidine-2-carboxylic acid N'-(2,5-difluoro-benzyl)-hydrazide</td>
<td>M+H 478.2</td>
<td>alpha-bromo-2,5-difluorotoluene</td>
<td>4,5,2</td>
</tr>
<tr>
<td>(2S,4R)-4-Mercapto-1-(naphthalene-2-sulfonyl)-pyrrolidine-2-carboxylic acid N'-(4-methyl-benzensulfonyl)-N'-(2,4,5-trifluorobenzyl)-hydrazide</td>
<td>M+NH₄ 667.1</td>
<td>1. Toluene-4-sulfon hydrazide 2.4,5-trifluorobenzyl bromide</td>
<td>3,6,2</td>
</tr>
<tr>
<td>(2S,4R)-4-Mercapto-1-(naphthalene-2-sulfonyl)-pyrrolidine-2-carboxylic acid N'-(2,5-difluoro-benzyl)-N'-(4-methyl-benzensulfonyl)-hydrazide</td>
<td>M+H 632.0</td>
<td>1. Toluene-4-sulfon chloride 2.5-trifluorobenzyl bromide</td>
<td>3,6,2</td>
</tr>
<tr>
<td>(2S,4R)-4-Mercapto-1-(naphthalene-2-sulfonyl)-pyrrolidine-2-carboxylic acid N'-isopropyl-N'-(4-methyl-benzensulfonyl)-hydrazide</td>
<td>M+H 548.1</td>
<td>1. Toluene-4-sulfon hydrazide 2. Isopropyl iodide</td>
<td>3,6,2</td>
</tr>
<tr>
<td>(2S,4R)-4-Mercapto-1-(naphthalene-2-sulfonyl)-pyrrolidine-2-carboxylic acid N'-(4-methyl-benzensulfonyl)-hydrazino)-acetic acid</td>
<td>M+H 564.1</td>
<td>1. Toluene-4-sulfon hydrazide 2. Tert.-butyl bromoacetate</td>
<td>3,6,2</td>
</tr>
<tr>
<td>(2S,4R)-4-Mercapto-2-[N'-(4-methyl-benzensulfonyl)-pyrrolidine-1-carboxylic acid benzyl ester</td>
<td>M-H 448.2</td>
<td>1. Toluene-4-sulfon hydrazide 2. Benzylxoycarbonyl chloride</td>
<td>3,7,2</td>
</tr>
<tr>
<td>(2S,4R)-1-(2,6-Difluoro-benzoyl)-4-mercapto-pyrrolidine-2-carboxylic acid N'-(4-methyl-benzensulfonyl)-hydrazide</td>
<td>M-H 454.3</td>
<td>1. Toluene-4-sulfon hydrazide 2.6,6-Difluoro-benzoyl chloride</td>
<td>3,7,2</td>
</tr>
<tr>
<td>(2S,4R)-4-Mercapto-1-(quinoline-8-sulfonyl)-pyrrolidine-2-carboxylic acid N'-(4-methyl-benzensulfonyl)-hydrazide</td>
<td>M-H 505.3</td>
<td>1. Toluene-4-sulfon hydrazide 2. 8-quinolinesulfonyl chloride</td>
<td>3,7,2</td>
</tr>
<tr>
<td>(2S,4R)-4-Mercapto-2-[N'-(4-methyl-benzensulfonyl)-hydrazinocarbonyl]-pyrrolidine-1-carboxylic acid butyl ester</td>
<td>M-H 414.3</td>
<td>1. Toluene-4-sulfon hydrazide 2. Butyl chloroformate</td>
<td>3,7,2</td>
</tr>
<tr>
<td>(2S,4R)-4-Mercapto-2-[N'-(4-methyl-benzensulfonyl)-hydrazinocarbonyl]-pyrrolidine-1-sulfonic acid amide</td>
<td>M-H 393.0</td>
<td>1. Toluene-4-sulfon hydrazide 2. Chloro-sulfonic acid amide</td>
<td>3,7,2</td>
</tr>
<tr>
<td>(2S,4R)-1-(Biphenyl-4-sulfonyl)-4-mercapto-pyrrolidine-2-carboxylic acid N'-(4-methyl-benzensulfonyl)-hydrazide</td>
<td>M+NH₄ 549.4</td>
<td>1. Toluene-4-sulfon hydrazide 2. Biphenyl-4-sulfon chloride</td>
<td>3,7,2</td>
</tr>
<tr>
<td>(2S,4R)-1-(3-Fluoro-benzensulfonyl)-4-mercapto-pyrrolidine-2-carboxylic acid N'-(4-methyl-benzensulfonyl)-hydrazide</td>
<td>M+NH₄ 491.4</td>
<td>1. Toluene-4-sulfon hydrazide 2.3-Fluoro-benzensulfonyl chloride</td>
<td>3,7,2</td>
</tr>
<tr>
<td>(2S,4R)-1-(2-Fluoro-benzenesulfonyl)-4-mercapto-pyrrolidine-2-carboxylic acid N'-(4-methyl-benzenesulfonyl)-hydrazide</td>
<td>M+NH4 491.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Toluene-4-sulfon hydrazide</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. 2-Fluoro-benzenesulfonyl chloride</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3,7,2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(2S,4R)-4-Mercapto-1-(2,4,5-trifluoro-benzenesulfonyl)-pyrrolidine-2-carboxylic acid N'-(4-methyl-benzenesulfonyl)-hydrazide</th>
<th>M+NH4 527.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Toluene-4-sulfon hydrazide</td>
<td></td>
</tr>
<tr>
<td>2. 2,4,5-Fluoro-benzenesulfonyl chloride</td>
<td></td>
</tr>
<tr>
<td>3,7,2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(2S,4R)-4-Mercapto-1-(4-phenoxy-benzenesulfonyl)-pyrrolidine-2-carboxylic acid N'-(4-methyl-benzenesulfonyl)-hydrazide</th>
<th>M+NH4 565.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Toluene-4-sulfon hydrazide</td>
<td></td>
</tr>
<tr>
<td>2. 4-phenoxy-benzenesulfonyl chloride</td>
<td></td>
</tr>
<tr>
<td>3,7,2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(2S,4R)-1-(Biphenyl-4-sulfonyl)-4-mercapto-pyrrolidine-2-carboxylic acid N'-methyl-N'-(4-methyl-benzenesulfonyl)-hydrazide</th>
<th>M+H 546.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Toluene-4-sulfon hydrazide</td>
<td></td>
</tr>
<tr>
<td>2. Biphenyl-4-sulfonyl chloride</td>
<td></td>
</tr>
<tr>
<td>3. Iodomethane</td>
<td></td>
</tr>
<tr>
<td>3,7,6,2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(2S,4R)-1-(3-Fluoro-benzenesulfonyl)-4-mercapto-pyrrolidine-2-carboxylic acid N'-methyl-N'-(4-methyl-benzenesulfonyl)-hydrazide</th>
<th>M+H 488.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Toluene-4-sulfon hydrazide</td>
<td></td>
</tr>
<tr>
<td>2. 3-Fluoro-benzenesulfonyl chloride</td>
<td></td>
</tr>
<tr>
<td>3. Iodomethane</td>
<td></td>
</tr>
<tr>
<td>3,7,6,2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(2S,4R)-1-(2-Fluoro-benzenesulfonyl)-4-mercapto-pyrrolidine-2-carboxylic acid N'-methyl-N'-(4-methyl-benzenesulfonyl)-hydrazide</th>
<th>M+H 488</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Toluene-4-sulfon hydrazide</td>
<td></td>
</tr>
<tr>
<td>2. 2-Fluoro-benzenesulfonyl chloride</td>
<td></td>
</tr>
<tr>
<td>3. Iodomethane</td>
<td></td>
</tr>
<tr>
<td>3,7,6,2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(2S,4R)-4-Mercapto-1-(2,4,5-trifluoro-benzenesulfonyl)-pyrrolidine-2-carboxylic acid N'-methyl-N'-(4-methyl-benzenesulfonyl)-hydrazide</th>
<th>M+NH4 541.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Toluene-4-sulfon hydrazide</td>
<td></td>
</tr>
<tr>
<td>2. 2-Fluoro-benzenesulfonyl chloride</td>
<td></td>
</tr>
<tr>
<td>3. Iodomethane</td>
<td></td>
</tr>
<tr>
<td>3,7,6,2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(2S,4R)-4-Mercapto-1-(4-phenoxy-benzenesulfonyl)-pyrrolidine-2-carboxylic acid N'-methyl-N'-(4-methyl-benzenesulfonyl)-hydrazide</th>
<th>M+H 562</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Toluene-4-sulfon hydrazide</td>
<td></td>
</tr>
<tr>
<td>2. 4-phenoxy-benzenesulfonyl chloride</td>
<td></td>
</tr>
<tr>
<td>3. Iodomethane</td>
<td></td>
</tr>
<tr>
<td>3,7,6,2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(2S,4R)-4-Mercapto-1-(4-propyl-benzenesulfonyl)-pyrrolidine-2-carboxylic acid N'-(4-methyl-benzenesulfonyl)-hydrazide</th>
<th>M-H 496.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Toluene-4-sulfon hydrazide</td>
<td></td>
</tr>
<tr>
<td>2. 4-propyl-benzenesulfonyl chloride</td>
<td></td>
</tr>
<tr>
<td>3,7,2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(2S,4R)-1-(3,5-Dimethyl-isoxazole-4-sulfonyl)-4-mercapto-pyrrolidine-2-carboxylic acid N'-(4-methyl-benzenesulfonyl)-hydrazide</th>
<th>M-H 473.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Toluene-4-sulfon hydrazide</td>
<td></td>
</tr>
<tr>
<td>2. 3,5-Dimethyl-isoxazole-4-sulfonyl chloride</td>
<td></td>
</tr>
<tr>
<td>3,7,2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(2S,4R)-4-Mercapto-1-(4-methanesulfonyl-benzenesulfonyl)-pyrrolidine-2-carboxylic acid N'-(4-methyl-benzenesulfonyl)-hydrazide</th>
<th>M-H 532.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Toluene-4-sulfon hydrazide</td>
<td></td>
</tr>
<tr>
<td>2. 4-methanesulfonyl-benzenesulfonyl chloride</td>
<td></td>
</tr>
<tr>
<td>3,7,2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(2S,4R)-4-Mercapto-1-thiophene-2-sulfonyl-pyrrolidine-2-carboxylic acid N'-(4-methyl-benzenesulfonyl)-hydrazide</th>
<th>M-H 460.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Toluene-4-sulfon hydrazide</td>
<td></td>
</tr>
<tr>
<td>2. Thiophene-2-sulfonyl chloride</td>
<td></td>
</tr>
<tr>
<td>3,7,2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(2S,4R)-4-Mercapto-2-[N'-(4-methyl-benzenesulfonyl)-hydrazinocarbonyl]-pyrrolidine-1-sulfonic acid dimethylamide</th>
<th>M-H 421.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Toluene-4-sulfon hydrazide</td>
<td></td>
</tr>
<tr>
<td>2. Chloro sulfonic acid dimethylamide</td>
<td></td>
</tr>
<tr>
<td>3,7,2</td>
<td></td>
</tr>
<tr>
<td>Compound</td>
<td>Metno.</td>
</tr>
<tr>
<td>----------</td>
<td>-------</td>
</tr>
<tr>
<td>(2S,4R)-1-(4-Fluoro-benzenesulfonyl)-4-mercaptopyrrolidine-2-carboxylic acid N’-(4-methyl-benzenesulfonyl)-hydrazide</td>
<td>M-H 472.1</td>
</tr>
<tr>
<td>(2S,4R)-1-Isopropanesulfonyl-4-mercaptopyrrolidine-2-carboxylic acid N’-(4-methyl-benzenesulfonyl)-hydrazide</td>
<td>M-H 420.3</td>
</tr>
<tr>
<td>(2S,4R)-1-(2,4-Difluoro-benzenesulfonyl)-4-mercaptopyrrolidine-2-carboxylic acid N’-(4-methyl-benzenesulfonyl)-hydrazide</td>
<td>M-H 490.2</td>
</tr>
<tr>
<td>(2S,4R)-4-Mercapto-1-(2,3,4,5,6-pentafluorobenzenesulfonyl)-pyrrolidine-2-carboxylic acid N’-(4-methyl-benzenesulfonyl)-hydrazide</td>
<td>M-H 544.0</td>
</tr>
<tr>
<td>(2S,4R)-4-Mercapto-1-methanesulfonylpyrrolidine-2-carboxylic acid N’-(4-methyl-benzenesulfonyl)-hydrazide</td>
<td>M-H 392.1</td>
</tr>
<tr>
<td>(2S,4R)-1-(2,5-Difluoro-benzenesulfonyl)-4-mercaptopyrrolidine-2-carboxylic acid N’-(4-methyl-benzenesulfonyl)-hydrazide</td>
<td>M-H 490.2</td>
</tr>
<tr>
<td>(2S,4R)-4-Mercapto-1-(4-methyl-benzenesulfonyl)-pyrrolidine-2-carboxylic acid N’-(4-methyl-benzenesulfonyl)-hydrazide</td>
<td>M-H 468.1</td>
</tr>
<tr>
<td>(2S,4R)-N-[4-[4-Mercapto-2-[N’-(4-methyl-benzenesulfonyl)-hydrazinocarboxyl]-pyrrolidine-1-sulfonyl]-phenyl]-acetamide</td>
<td>M-H 511.2</td>
</tr>
<tr>
<td>(2S,4R)-1-(4-Butoxy-benzenesulfonyl)-4-mercaptopyrrolidine-2-carboxylic acid N’-(4-methyl-benzenesulfonyl)-hydrazide</td>
<td>M-H 526.0</td>
</tr>
<tr>
<td>(2S,4R)-4-Mercapto-1-(2-naphthalen-1-yl-ethylsulfonyl)-pyrrolidine-2-carboxylic acid N’-(4-methyl-benzenesulfonyl)-hydrazide</td>
<td>M-H 526.0</td>
</tr>
<tr>
<td>(2S,4R)-1-(4-Chloro-benzenesulfonyl)-4-mercaptopyrrolidine-2-carboxylic acid N’-(4-methyl-benzenesulfonyl)-hydrazide</td>
<td>M+NH4 507.3</td>
</tr>
<tr>
<td>(2S,4R)-4-Mercapto-1-(4-trifluoromethyl-benzenesulfonyl)-pyrrolidine-2-carboxylic acid N’-(4-methyl-benzenesulfonyl)-hydrazide</td>
<td>M+NH4 541.4</td>
</tr>
<tr>
<td>(2S,4R)-1-(2-Methyl-benzenesulfonyl)-4-mercaptopyrrolidine-2-carboxylic acid N’-(4-methyl-benzenesulfonyl)-hydrazide</td>
<td>M+NH4 487.4</td>
</tr>
<tr>
<td>(2S,4R)-1-(Naphthalene-1-sulfonyl)-4-mercaptopyrrolidine-2-carboxylic acid N’-(4-methyl-benzenesulfonyl)-hydrazide</td>
<td>M+H 506.3</td>
</tr>
<tr>
<td>(2S,4R)-4-Mercapto-1-phenylmethanesulfonylpyrrolidine-2-carboxylic acid N’-(4-methyl-benzenesulfonyl)-hydrazide</td>
<td>M+NH4 487.4</td>
</tr>
</tbody>
</table>
| (2S,4R)-1-(2,6-Dichloro-benzencesulfonyl)-4-mercaptop-pyrrolidine-2-carboxylic acid N'-(4-methyl-benzencesulfonyl)-hydrazide | M+NH4 541.3 | 1. Toluene-4-sulfon hydrazide
2. 2,6-Dichloro-benzencesulfonyl chloride | 3,7,2 |
| (2S,4R)-4-Mercapto-1-(2-trifluoromethyl-benzencesulfonyl)-pyrrolidine-2-carboxylic acid N'-(4-methyl-benzencesulfonyl)-hydrazide | M+NH4 541.4 | 1. Toluene-4-sulfon hydrazide
2. 2-Trifluoromethyl-benzencesulfonyl chloride | 3,7,2 |
| (2S,4R)-1-(3-Methyl-benzencesulfonyl)-4-mercaptop-pyrrolidine-2-carboxylic acid N'-(4-methyl-benzencesulfonyl)-hydrazide | M+NH4 487.4 | 1. Toluene-4-sulfon hydrazide
2. 3-Methyl-benzencesulfonyl chloride | 3,7,2 |
| (2S,4R)-1-(3-Chloro-benzencesulfonyl)-4-mercaptop-pyrrolidine-2-carboxylic acid N'-(4-methyl-benzencesulfonyl)-hydrazide | M+NH4 507.3 | 1. Toluene-4-sulfon hydrazide
2. 3-Chloro-benzencesulfonyl chloride | 3,7,2 |
| (2S,4R)-1-(2-Chloro-benzencesulfonyl)-4-mercaptop-pyrrolidine-2-carboxylic acid N'-(4-methyl-benzencesulfonyl)-hydrazide | M+NH4 507.3 | 1. Toluene-4-sulfon hydrazide
2. 2-Chloro-benzencesulfonyl chloride | 3,7,2 |
| (2S,4R)-1-(3,4-Dichloro-benzencesulfonyl)-4-mercaptop-pyrrolidine-2-carboxylic acid N'-(4-methyl-benzencesulfonyl)-hydrazide | M+NH4 541.3 | 1. Toluene-4-sulfon hydrazide
2. 3,4-Dichloro-benzencesulfonyl chloride | 3,7,2 |
| (2S,4R)-4-Mercapto-1-(4-methoxy-benzencesulfonyl)-pyrrolidine-2-carboxylic acid N'-(4-methyl-benzencesulfonyl)-hydrazide | M+NH4 503.4 | 1. Toluene-4-sulfon hydrazide
2. 4-Methoxy-benzencesulfonyl chloride | 3,7,2 |
| (2S,4R)-4-Mercapto-1-(3-trifluoromethyl-benzencesulfonyl)-pyrrolidine-2-carboxylic acid N'-(4-methyl-benzencesulfonyl)-hydrazide | M+NH4 541.3 | 1. Toluene-4-sulfon hydrazide
2. 3-Trifluoromethyl-benzencesulfonyl chloride | 3,7,2 |
| (2S,4R)-1-Benzencesulfonyl-4-mercaptop-pyrrolidine-2-carboxylic acid N'-(4-methyl-benzencesulfonyl)-hydrazide | M+NH4 473.4 | 1. Toluene-4-sulfon hydrazide
2. Benzencesulfonyl chloride | 3,7,2 |
| (2S,4R)-1-(3,4-Difluoro-benzencesulfonyl)-4-mercaptop-pyrrolidine-2-carboxylic acid N'-(4-methyl-benzencesulfonyl)-hydrazide | M+NH4 509.3 | 1. Toluene-4-sulfon hydrazide
2. 3,4-Difluoro-benzencesulfonyl chloride | 3,7,2 |
| (2S,4R)-1-(2,6-Difluoro-benzencesulfonyl)-4-mercaptop-pyrrolidine-2-carboxylic acid N'-(4-methyl-benzencesulfonyl)-hydrazide | M+NH4 509.3 | 1. Toluene-4-sulfon hydrazide
2. 2,6-Difluoro-benzencesulfonyl chloride | 3,7,2 |
| (2S,4R)-4-Mercapto-1-(2,3,4-trifluoro-benzencesulfonyl)-pyrrolidine-2-carboxylic acid N'-(4-methyl-benzencesulfonyl)-hydrazide | M+NH4 527.3 | 1. Toluene-4-sulfon hydrazide
2. 2,3,4-Trifluoro-benzencesulfonyl chloride | 3,7,2 |
EXAMPLE A

Tablets containing the following ingredients can be manufactured in a conventional manner:

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>Per tablet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compound of formula I</td>
<td>10.0 - 100.0 mg</td>
</tr>
<tr>
<td>Lactose</td>
<td>125.0 mg</td>
</tr>
<tr>
<td>Maize starch</td>
<td>75.0 mg</td>
</tr>
<tr>
<td>Talc</td>
<td>4.0 mg</td>
</tr>
<tr>
<td>Magnesium stearate</td>
<td>1.0 mg</td>
</tr>
</tbody>
</table>

EXAMPLE B

Capsules containing the following ingredients can be manufactured in a conventional manner:

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>Per capsule</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compound of formula I</td>
<td>25.0 mg</td>
</tr>
<tr>
<td>Lactose</td>
<td>150.0 mg</td>
</tr>
<tr>
<td>Maize starch</td>
<td>20.0 mg</td>
</tr>
<tr>
<td>Talc</td>
<td>5.0 mg</td>
</tr>
</tbody>
</table>

EXAMPLE C

Injection solutions can have the following composition:

<table>
<thead>
<tr>
<th>Compound of formula I</th>
<th>3.0 mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gelatine</td>
<td>150.0 mg</td>
</tr>
<tr>
<td>Phenol</td>
<td>4.7 mg</td>
</tr>
<tr>
<td>Water for injection solutions</td>
<td>ad 1.0 ml</td>
</tr>
</tbody>
</table>
EXAMPLE D

500 mg of compound of formula I are suspended in 3.5 ml of Myglyol 812 and 0.08 g of benzyl alcohol. This suspension is filled into a container having a dosage valve. 5.0 g of Freon 12 under pressure are filled into the container through the valve. The Freon is dissolved in the Myglyol-benzyl alcohol mixture by shaking. This spray container contains about 100 single dosages which can be applied individually.
1. Compounds of general formula (I)

![Chemical Structure](image)

wherein

- R^1 is hydrogen, alkylcarbonyl, or arylcarbonyl;
- R^2 is alkyl, alkycycloalkyl, alkylcycloalkylalkyl, cycloalkyl, halogenalkyl, carboxyalkyl,
 aminoalkyl, (mono- and dialkyl)aminoalkyl, alkoxyalkyl, alkoxy carbonyl alkylalkyl,
 alkiny1, aryl, arylalkyl, arylalkyl(alkoxy carbonyl)alkyl, arylcarbonylalkyl,
 aryloxyalkyl, arylalkenyl, aryl(alkoxy carbonyl)alkyl, heteroaryl, heteroarylalkyl,
 heterocycly1 or heterocy1alkyl;
- R^3 is hydrogen, aryl, alkyl, or arylalkyl, arylsulfonyl, heteroaryl sulfonyl;
- R^4 is hydrogen, arylalkyl, alkyl, aryl, cycloalkyl, cycloalkylalkyl, alkylsulfonyl,
 arylsulfonyl, arylalkylsulfonyl, heteroaryl sulfonyl, carboxyalkyl,
 carboxyalkyl sulfonyl, or alkoxy carbonyl alkyl; or the groups $-NR^3R^4$ or
 $R^5-[N-N(R^4)]-R^3$ form a saturated or unsaturated 5- or 6-membered aliphatic
 ring;
- R^5 is hydrogen, alkylsulfonyl, arylsulfonyl, heteroaryl sulfonyl, alkoxy carbonyl,
 aryloxycarbonyl, heteroaryl oxycarbonyl, alkylcarbonyl, arylcarbonyl,
 heteroarylcarbonyl, heteroaryl alkyl carbonyl, heterocycly1, (mono- or
dialkylamino)-alkylcarbonyl, (mono- and dialkyl) aminosulfonyl,
 arylaminocarbonyl, alkyl, alkylcarbonyl, alkoxy carbonyl, aryl, arylalkyl,
 arylalkoxy carbonyl, or heteroaryl;
- R^6 is hydrogen, alkyl, aryl, or carboxy alkyl;
- X is $-S(O)_2-$, $-S(O)_2-NH-$, $-C(O)-$, $-C(O)NR^6$ or $C(O)-O-$
 and pharmaceutically acceptable esters, and/or pharmaceutically acceptable salts
 thereof.

2. Compounds of formula (I) according to claim 1, wherein R^1 is hydrogen.
3. Compounds according to any of claims 1 - 2, wherein R² is alkyl, halogenalkyl, alkylamino, alkoxy, cycloalkyl, cycloalkylaminoo, aryl, arylalkyl, aryloxy, arylalkylaminoo, arylalkoxy, heteroarylo, amino, or (mono- and dialkyl)amino;

4. Compounds according to any of claims 1 - 3, wherein R² is alkyl, halogenalkyl, alkylamino, alkoxy, cycloalkyl, cycloalkylaminoo, aryl, arylalkyl, or heteroaryl.

5. Compounds according to any of claims 1 - 4, wherein R² is aryl or heteroaryl.

6. Compounds according to any of claims 1 - 5, wherein R² is aryl.

7. Compounds according to any of claims 1 - 6, wherein R² is naphthyl or phenyl, wherein phenyl is optionally substituted by one or more fluor or by one phenyl group.

8. Compounds according to any of claims 1 - 7, wherein R² is naphthyl, 2,3,4,5,6-pentafluorobenzene or biphenyl.

9. Compounds according to any of claims 1 - 8, wherein R³ is hydrogen or alkyl;

10. Compounds according to any of claims 1 - 9, wherein R³ is hydrogen.

11. Compounds according to any of claims 1 - 10, wherein R⁴ is hydrogen, arylalkyl, alkyl, arylsulfonyl, heteroarylsulfonyl, cycloalkylalkyl, or carboxyalkyl.

12. Compounds according to any of claims 1 - 11, wherein R⁴ is hydrogen, alkyl, arylalkyl, cycloalkyl, arylsulfonyl, or carboxyalkyl.

13. Compounds according to any of claims 1 - 12, wherein R⁴ is hydrogen, alkyl, cycloalkyl, carboxyalkyl or arylalkyl.

14. Compounds according to any of claims 1 - 13, wherein R⁴ is hydrogen, alkyl or arylalkyl.

15. Compounds according to any of claims 1 - 14, wherein R⁴ is hydrogen, 2,4,5-trifluorobenzyl, 2,4-difluorobenzyl, benzyl, methyl, ethyl, isopropyl, isobutyl, benzyl or HO₂C-CH₂-, or cycloalkylpropylmethyl.

16. Compounds according to any of claims 1 - 15, wherein R⁵ is hydrogen, alkylcarbonyl, alkoxy carbonyl, alkylsulfonyl, aryl, arylalkyl, arylcarbonyl, (mono- and dialkylamino)alkylcarbonyl, (mono- and dialkyl)aminosulfonyl, arylalkoxycarbonyl,
arylaminocarbonyl, arylsulfanyl, heteroarylcarbonyl, heteroarylalkylcarbonyl, heteroarylsulfanyl, arylaminocarbonyl, heteroaryl, or heterocyclyl;

17. Compounds according to any of claims 1 - 16, wherein R⁵ is aryl, arylalkyl, arylcarbonyl, arylalkoxy, arylaminocarbonyl, arylsulfonyl, heteroarylcarbonyl, heteroarylalkylcarbonyl, heteroarylsulfanyl, arylaminocarbonyl, heteroaryl, or heterocyclyl.

18. Compounds according to any of claims 1 - 17, wherein R⁵ is arylsulfanyl, arylalkyl, heteroarylalkylcarbonyl, heteroarylsulfanyl.

19. Compounds according to any of claims 1 - 18, wherein R⁵ is 4-methylbenzenesulfoyl, benzyl, 4-methoxybenzenesulfonyl, (1H-indol-3-yl)acetyl, thophene-2-yl, or 3,5-dimethyl-isoxyzol-4-sulfonyl.

20. Compounds according to any of claims 1 - 19, wherein X is -SO₂⁻, -C(O)⁻,

21. Compounds according to any of claims 1 - 20, wherein X is -SO₂⁻.

22. Compounds according to any of claims 1 - 21 having the formula

\[
\text{(II)}
\]

23. Compounds according to any of claims 1 - 22, wherein
R¹ is hydrogen
R² is naphthyl or phenyl, wherein phenyl is optionally substituted by one or more fluor or by one phenyl group;
R³ is hydrogen or alkyl
R⁴ is hydrogen, alkyl or arylalkyl;
R⁵ is arylsulfanyl, arylalkyl, heteroarylalkylcarbonyl, heteroarylsulfanyl; and
X is -SO₂⁻.

24. Compounds according to any of claims 1 - 23 selected from the group consisting of
a) (2S,4R)-4-Mercapto-1-(naphthalene-2-sulfonyl)-pyrrolidine-2-carboxylic acid N’-isobutyl-N’-(4-methyl-benzenesulfonyl)-hydrazide;

b) (2S,4R)-4-Mercapto-1-(naphthalene-2-sulfonyl)-pyrrolidine-2-carboxylic acid N’-(4-methyl-benzenesulfonyl)-hydrazide;
c) (2S,4R)-4-Mercapto-1-(naphthalene-2-sulfonyl)-pyrrolidine-2-carboxylic acid N'-benzyl-hydrazide;
d) (2S,4R)-4-Mercapto-1-(naphthalene-2-sulfonyl)-pyrrolidine-2-carboxylic acid N'-benzyl-N'-(4-methyl-phenylsulfonyl)-hydrazide;
e) (2S,4R)-4-Mercapto-1-(naphthalene-2-sulfonyl)-pyrrolidine-2-carboxylic acid N'-methyl-N'-(4-methyl-benzenesulfonyl)-hydrazide;
f) (2S,4R)-4-Mercapto-1-(naphthalene-2-sulfonyl)-pyrrolidine-2-carboxylic acid N'-benzenesulfonyl-hydrazide;
g) (2S,4R)-4-Mercapto-1-(naphthalene-2-sulfonyl)-pyrrolidine-2-carboxylic acid N'-(4-methoxy-benzenesulfonyl)-hydrazide;
h) (2S,4R)-4-Mercapto-1-(naphthalene-2-sulfonyl)-pyrrolidine-2-carboxylic acid N'-(1H-indol-3-yl)-acetyl-hydrazide;
i) (2S,4R)-4-Mercapto-1-(naphthalene-2-sulfonyl)-pyrrolidine-2-carboxylic acid N'-thiophene-2-sulfonyl-hydrazide;
j) (2S,4R)-4-Mercapto-1-(naphthalene-2-sulfonyl)-pyrrolidine-2-carboxylic acid N'-(3,5-dimethyl isoxazole-4-sulfonyl)-hydrazide;
k) (2S,4R)-4-Mercapto-1-(naphthalene-2-sulfonyl)-pyrrolidine-2-carboxylic acid N'-cyclopropylmethyl-N'-(4-methyl-benzenesulfonyl)-hydrazide;
l) (2S,4R)-4-Mercapto-1-(naphthalene-2-sulfonyl)-pyrrolidine-2-carboxylic acid N'-(2,4,5-trifluoro-benzyl)-hydrazide;
m) (2S,4R)-4-Mercapto-1-(naphthalene-2-sulfonyl)-pyrrolidine-2-carboxylic acid N'-(2,5-difluoro-benzyl)-N'-(4-methyl-benzenesulfonyl)-hydrazide;
n) (2S,4R)-4-Mercapto-1-(naphthalene-2-sulfonyl)-pyrrolidine-2-carboxylic acid N'-isopropyl-N'-(4-methyl-benzenesulfonyl)-hydrazide;
o) (2S,4R)-[N'-[(4-Mercapto-1-(naphthalene-2-sulfonyl)-pyrrolidine-2-carbonyl)]-N-(4-methyl-benzenesulfonyl)-hydrazino]-acetic acid;
p) (2S,4R)-1-(Biphenyl-4-sulfonyl)-4-mercapto-pyrrolidine-2-carboxylic acid N'-methyl-N'-(4-methyl-benzenesulfonyl)-hydrazide;
q) (2S,4R)-4-Mercapto-1-(2,3,4,5,6-pentafluoro-benzenesulfonyl)-pyrrolidine-2-carboxylic acid N'-(4-methyl-benzenesulfonyl)-hydrazide;
r) (2S,4R)-4-Mercapto-1-(naphthalene-2-sulfonyl)-pyrrolidine-2-carboxylic acid N'-benzyl-N'-(4-methoxy-benzenesulfonyl)-hydrazide,
s) (2S,4R)-4-Mercapto-1-(naphthalene-2-sulfonyl)-pyrrolidine-2-carboxylic acid N-methyl-N'-(4-methyl-benzenesulfonyl)-hydrazide; and

t) (2S,4R)-4-Mercapto-1-(naphthalene-2-sulfonyl)-pyrrolidine-2-carboxylic acid N-methyl-N'-benzyl-N'-(4-methyl-benzenesulfonyl)-hydrazide

25. A pharmaceutical composition containing a compound according to any of claims 1 - 24 and one or more pharmaceutically acceptable excipients.
26. The use of compounds of claims 1 - 24 as active ingredients in the manufacture of medicaments for the prophylaxis and treatment of disorders which are caused by endothelin-converting enzyme (ECE) activity especially myocardial ischaemia, congestive heart failure, arrhythmia, hypertension, pulmonary hypertension, asthma, cerebral vasospasm, subarachnoid haemorrhage, pre-eclampsia, kidney diseases, atherosclerosis, Buerger's disease, Takayasu's arteritis, diabetic complications, lung cancer, prostatic cancer, gastrointestinal disorders, endotoxic shock and septicaemia, and for wound healing and control of menstruation, glaucoma, diseases associated with cytostatic, ophthalmological, and cerebroprotective indications, and organ protection.

27. The use of compounds according to any one of claim 1 to 24 for the treatment or prophylaxis of diseases which are associated with myocardial ischaemia, congestive heart failure, arrhythmia, hypertension, pulmonary hypertension, asthma, cerebral vasospasm, subarachnoid haemorrhage, pre-eclampsia, kidney diseases, atherosclerosis, Buerger's disease, Takayasu's arteritis, diabetic complications, lung cancer, prostatic cancer, gastrointestinal disorders, endotoxic shock and septicaemia, and for wound healing and control of menstruation, glaucoma, diseases associated with cytostatic, ophthalmological, and cerebroprotective indications, and organ protection.

28. Compounds according to any one of claims 1 to 24 for use as therapeutic active substances, in particular in context with diseases which are associated with zinc hydrolase activity such as myocardial ischaemia, congestive heart failure, arrhythmia, hypertension, pulmonary hypertension, asthma, cerebral vasospasm, subarachnoid haemorrhage, pre-eclampsia, kidney diseases, atherosclerosis, Buerger's disease, Takayasu's arteritis, diabetic complications, lung cancer, prostatic cancer, gastrointestinal disorders, endotoxic shock and septicaemia, and for wound healing and control of menstruation, glaucoma, diseases associated with cytostatic, ophthalmological, and cerebroprotective indications, and organ protection.

29. A method for the therapeutic and/or prophylactic treatment of myocardial ischaemia, congestive heart failure, arrhythmia, hypertension, pulmonary hypertension, asthma, cerebral vasospasm, subarachnoid haemorrhage, pre-eclampsia, kidney diseases, atherosclerosis, Buerger's disease, Takayasu's arteritis, diabetic complications, lung cancer, prostatic cancer, gastrointestinal disorders, endotoxic shock and septicaemia, and for wound healing and control of menstruation, glaucoma, diseases associated with cytostatic, ophthalmological, and
cerebroprotective indications, and organ protection, which method comprises administering a compound according to any one of claim 1 to 24 to a human being or animal.

30. A process for the preparation of a compound as defined in any of claims 1 – 24 comprising reaction of a compound of formula III

\[
\begin{array}{c}
\text{R}^2 \\
\text{X} \\
\text{N} \\
\text{O} \\
\text{S} \\
\text{A}
\end{array}
\]

wherein \(R^1, R^2, \) and \(X \) are as defined above and \(A \) is a HS-protecting group

a) with \(\text{HNR}^3\text{NR}^4\text{R}^5 \) for introduction of a hydrazide: or

b) \(\text{HNR}^3\text{NR}^4\text{R}^5 \) with \(R^2 \) as protecting group followed by conversion or introduction of \(R^3 \) and \(R^4 \);

optionally followed by conversion of a \(R^5 \) and/or \(R^2 \)-X group into a different \(R^5 \) and/or \(R^2 \)-X group and/or deprotection and or thiol liberation and wherein \(R^3, R^4 \) and \(R^5 \) are as defined in any of claims 1 - 21.

31. A compound prepared according to the process of claim 30.

32. The invention as hereinbefore defined.
INTERNATIONAL SEARCH REPORT

INFORMATION

A. CLASSIFICATION OF SUBJECT MATTER

IPD 7 C07D207/16 C07D405/12 C07D401/12 C07D409/12 A61K31/401 A61P9/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPD 7 C07D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the International search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ, BEILSTEIN Data, CHEM ABS Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>WO 98 08815 A (PROCTER & GAMBLE) 5 March 1998 (1998-03-05) the whole document</td>
<td>1-25</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of box C.

X Patent family members are listed in annex.

* Special categories of cited documents:

 A document defining the general state of the art which is not considered to be of particular relevance

 E earlier document but published on or after the International filing date

 L document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

 O document referring to an oral disclosure, use, exhibition or other means

 P document published prior to the International filing date but later than the priority date claimed

* later document published after the International filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

** document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

** document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

** document member of the same patent family

Date of the actual completion of the international search: 16 October 2001

Date of mailing of the international search report: 12/11/2001

Name and mailing address of the ISA: European Patent Office, P.B. 5816 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax (+31-70) 340-3016

Authorized officer: Johnson, C
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>BR 9713465 A</td>
<td>28-03-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1232451 A</td>
<td>20-10-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CZ 9900631 A3</td>
<td>11-08-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HU 0000478 A2</td>
<td>28-09-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2000516955 T</td>
<td>19-12-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO 990855 A</td>
<td>23-04-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PL 331802 A1</td>
<td>02-08-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SK 25099 A3</td>
<td>14-02-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TR 9900431 T2</td>
<td>21-04-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WD 9808815 A1</td>
<td>05-03-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 1684436 C</td>
<td>31-07-1992</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 3052466 B</td>
<td>12-08-1991</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 59205379 A</td>
<td>20-11-1984</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 6001186 A</td>
<td>07-01-1985</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 1771979 C</td>
<td>14-07-1993</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 4063076 B</td>
<td>08-10-1992</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 60019787 A</td>
<td>31-01-1985</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 1841117 C</td>
<td>25-04-1994</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 5051594 B</td>
<td>03-08-1993</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 60058987 A</td>
<td>05-04-1985</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 1521360 C</td>
<td>12-10-1989</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 60104088 A</td>
<td>08-06-1985</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 6305514 B</td>
<td>02-11-1988</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT 121402 T</td>
<td>15-05-1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 1283906 A1</td>
<td>07-05-1991</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 3486382 D1</td>
<td>24-05-1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 3486382 T2</td>
<td>17-08-1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HK 183095 A</td>
<td>08-12-1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MX 9203063 A1</td>
<td>01-07-1992</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 4943569 A</td>
<td>24-07-1990</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5122604 A</td>
<td>16-06-1992</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 532741 D0</td>
<td>16-10-1985</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 8600305 A1</td>
<td>01-01-1986</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BG 60499 B2</td>
<td>31-05-1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 1079181 A</td>
<td>24-03-1989</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 1841805 C</td>
<td>12-05-1994</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 4066872 B</td>
<td>26-10-1992</td>
</tr>
</tbody>
</table>