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TORQUE - BASED CATHETER information ; a control system operatively connected to the 
ARTICULATION input device and configured to receive the positioning infor 

mation from the input device and to translate the positioning 
CROSS - REFERENCE TO RELATED information into at least one output motor torque command ; APPLICATIONS 5 at least one instrument driver operatively connected to the 

control system and responsive to the output motor torque This application is a divisional of U.S. patent application command to articulate the distal portion of a catheter instru Ser . No. 15 / 467,451 , filed Mar. 23 , 2017 , issued as U.S. Pat . ment , No. 10,493,239 on Dec. 3 , 2019 , which is a continuation of The control system of the robotic surgical system may U.S. patent application Ser . No. 14 / 867,980 , filed Sep. 28 , 
2015 , issued as U.S. Pat . No. 9,636,483 on May 5 , 2017 , 10 include an algorithm in which at least one set of instructions 
which is continuation of U.S. patent application Ser . No. defines a catheter movement profile using motor torque as an 
13 / 828,342 , filed Mar. 14 , 2013 , issued as U.S. Pat . No. output to the instrument driver . The instrument driver of the 
9,173,713 on Nov. 3 , 2015. The disclosure of each of the robotic surgical system may also include at least one torque 
above - referenced patent applications is hereby incorporated measuring device . The robotic surgical system may use 
by reference in its entirety herein . 15 closed loop feedback to sense any difference between actual 

motor torque and the output motor torque so as to adapt the 
FIELD OF THE PRESENT DISCLOSURE electrical current to correct for any difference with the output 

motor torque and / or adapt kinematic parameters to deter 
The present disclosure generally relates to robotic surgical mine adjustments to the output motor torque . A motor servo 

systems for performing minimally invasive diagnostic thera- 20 may use torque data from the torque measuring device to 
peutic procedures and particularly to robotic catheter sys- adjust the electrical current supplied to a motor . The control 
tems for steerable catheters . system may also use the torque data to adjust the operation 

parameters . 
BACKGROUND A method of articulating a catheter instrument in a robotic 

25 surgical device , comprising the steps of inserting a catheter 
Robotic surgical systems and devices are well suited for instrument into an anatomical lumen of a patient ; manipu 

use in performing minimally invasive medical procedures , lating an input device to generate positioning information 
as opposed to conventional techniques that may require for a desired position for a distal portion of the catheter 
large incisions to open the patient's body cavity to provide instrument which is steerable ; communicated to a control 
the surgeon with access to internal organs . For example , a 30 system ; converting the positioning information from the 
robotic surgical system to be utilized to facilitate imaging , input device into at least one output motor torque ; and 
diagnosis , and treatment of tissues which may lie deep communicating the output motor torque to an instrument 
within a patient , and which may be preferably accessed only driver thereby causing the instrument drive to articulate the 
via naturally - occurring pathways such as blood vessels or distal end portion of the catheter instrument . The method 
the gastrointestinal tract . may further include the step of measuring current motor 
One such robotic surgical system that may be utilized in torque . The method may further include the step of adjusting 

a minimally invasive procedure is a robotic catheter system . the electrical current of at least one motor in response to an 
A robotic catheter system utilizes a robot , external to the error signal that current motor torque is different from the 
patient's body cavity , to insert a catheter through a small output motor torque . 
incision in a patient's body cavity and guide the catheter to 40 
a location of interest . Catheters may be steerable for move BRIEF DESCRIPTION OF THE DRAWINGS 
ment in multiple axes including axial insertion / retraction , 
axial rotation , and deflection / articulation , which encom- FIG . 1 illustrates an exemplary robotic surgical system . 
passes radial bending in multiple directions . To accomplish FIG . 2 is an illustration of an exemplary catheter assembly 
steering , one or more pull - wires are attached to the distal end 45 of the surgical system of FIG . 1 . 
of an articulating section of a catheter and extend the length FIG . 3 is a schematic showing a kinematic relationship 
of the catheter . The distal tip of a catheter may then be between pull - wire displacement and catheter tip articulation . 
controlled via the pull - wires , i.e. , by selectively operating FIGS . 4 and 5 are partially exploded views of the catheter 
tensioning control elements within the catheter instrument . assembly of FIG . 2 . 

Kinematic modeling is utilized to predict catheter tip 50 FIG . 6 illustrates an exemplary steerable catheter with 
movement within the patient anatomy . The amount of dis- pull - wires . 
placement of a pull - wire is generally proportional to the FIG . 7 is a model of a catheter assembly as a system of 
amount of articulation . At times , the calculated motion of the springs . 
catheter does not precisely match the actual motion within FIG . 8 is a flow diagram for catheter steering using 
the patient's anatomy . Various elements can affect the 55 desired motor position as an output to motor position servo 
amount of articulation for a given pull - wire actuation , control of the instrument driver . 
including the presence of unanticipated or un - modeled con- FIG . 9 is a flow diagram for catheter steering using 
straints imposed by the patient's anatomy , particularly given desired motor torque as the output to the instrument driver . 
the tortuous path that the catheter must traverse . Minimiza- FIG . 10 is a model - based force control block diagram , 
tion of differences between actual and predicted kinematic 60 which is one implementation of the embodiment shown in 
functions is desirable to achieve a highly controllable the flow diagram of FIG . 9 . 
robotic surgical system . FIGS . 11A and 11B illustrate an exemplary torque sensor . 

FIGS . 12A and 12B and 13A and 13B illustrate an 
SUMMARY exemplary benefit of the present disclosure in the articula 

65 tion of a steerable catheter . 
A robotic surgical system may include at least one input FIGS . 14 and 15 illustrate an exemplary benefit of the 

device configured to output desired catheter positioning present disclosure in the articulation of a steerable catheter . 

35 
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FIG . 16 is a flow diagram illustrating the use of tension of a catheter . In order to articulate the catheter , the pull - wire 
information to equalize or eliminate tension in pull - wires . is displaced at the proximal end to articulate the distal end 

of the catheter . Typically , the amount that an articulating 
DETAILED DESCRIPTION section of a catheter articulates is determined by calculating 

5 the change in path length that an actuating pull - wire takes . 
Referring now to the discussion that follows and also to For a straight catheter , that length is equal to the articulating 

the drawings , illustrative approaches to the disclosed assem- section , L. As the catheter bends ( where a is the angle from 
blies are shown in detail . Although the drawings represent the neutral axis , r , is the radius of the catheter , and t is the 
some possible approaches , the drawings are not necessarily articulation angle ) , the path length is equal to Lo - cos ( t / 90 ) 
to scale and certain features may be exaggerated , removed , 10 * r * t . The difference— ( a / 90 ) * r * T — is the distance the 
or partially sectioned to better illustrate and explain the pull - wire must be actuated to make a catheter articulate to an 
present disclosure . Further , the descriptions set forth herein angle t , as illustrated in FIG . 3. From this concept , further 
are not intended to be exhaustive or otherwise limit or solid mechanic and kinematic modeling is used via algo 
restrict the claims to the precise forms and configurations rithms in the control computer to convert a desired catheter 
shown in the drawings and disclosed in the following 15 position or orientation as provided by the user into com 
detailed description . mands to the instrument driver to rotate motors designated 

Referring to FIG . 1 , a robotic surgical system 100 is for each pull - wire . 
illustrated in which an apparatus , a system , and / or method When a catheter is prepared for use with an instrument , its 
may be implemented according to various exemplary illus- splayer is mounted onto its appropriate interface plate . In 
trations . System 100 may include a robotic catheter assem- 20 this case , as shown in FIG . 4 , sheath splayer 308 is placed 
bly 102 having a sheath instrument 104 and / or a catheter onto sheath interface plate 206 and a guide splayer 306 is 
instrument 106. Catheter assembly 102 is controllable using placed onto guide interface plate 204. In the illustrated 
a robotic instrument driver 108 ( generally referred to as example , each interface plate 204 , 206 has respectively four 
“ instrument driver ” ) . During use , a patient is positioned on openings 310 , 312 that are designed to receive correspond 
an operating table or surgical bed 110 to which robotic 25 ing drive shafts 314 , 316 ( FIG . 5 illustrates an underside 
instrument driver 108 is coupled or mounted . In the illus- perspective view of shafts 314 , 316 ) attached to and extend 
trated example , system 100 includes an operator workstation ing from the pulley assemblies of the splayers 308 , 306 ) . 
112 , an electronics rack 114 including a control computer Drive shafts 314 , 316 are each coupled to a respective motor 
( not shown ) , a setup joint mounting brace 116 , and instru- within instrument driver 108 . 
ment driver 108. A surgeon is seated at operator workstation 30 Embodiments with less or more than four pull - wires are 
112 and can monitor the surgical procedure , patient vitals , contemplated by the present disclosure . When , e.g. , a four 
and control one or more catheter devices . wire catheter 304 is coupled to instrument driver 108 , each 

Operator workstation 112 may include a computer moni- drive shaft 316 thereof is thereby coupled a respective 
tor to display a three dimensional object , such as a catheter wire 504-510 ( see FIG . 6 ) . As such , a distal end 512 of 
displayed within or relative to a three dimensional space , 35 catheter 304 can be articulated and steered by selectively 
such as a body cavity or organ , e.g. , a chamber of a patient's tightening and loosening pull - wires 504-510 . Typically , the 
heart . In one example , an operator uses one or more input amount of loosening and tightening is slight , relative to the 
devices 120 to control the position of a catheter or other overall length of catheter 304. That is , each wire 504-510 
elongate instrument . In response to actuation of the input typically need not be tightened or loosened more than 
device by a user , the input device can output positioning 40 perhaps a few centimeters . As such , the motors that tighten / 
information for the desired position of the catheter instru- loosen each wire typically do not rotate more than , for 
ment , including the three - dimensional spatial position of the example , 3/4 of a rotation . Thus , given the solid mechanics 
distal end of a steerable catheter . System components , and kinematics of directing the instrument driver , a catheter 
including the operator workstation , electronics rack and the ( or other shapeable instrument ) may be controlled in an 
instrument driver , may be coupled together via a plurality of 45 open - loop manner , in which the shape configuration com 
cables or other suitable connectors 118 to provide for data mand comes in to the beam mechanics and is translated to 
communication , or one or more components may be beam moments and forces , then translated into pull - wire 
equipped with wireless communication components to tensions as an intermediate value before finally translated 
reduce or eliminate cables 118. Communication between into pull - wire displacement given the entire deformed geom 
components may also be implemented over a network or 50 etry . Based on the pull - wire displacement command , a motor 
over the internet . In this manner , a surgeon or other operator servo can apply the appropriate electrical current to produce 
may control a surgical instrument while located away from the amount of rotation required to displace the pull - wire . 
or remotely from radiation sources . Because of the option Robotic systems use algorithms to determine the displace 
for wireless or networked operation , the surgeon may even ment of the pull - wires to achieve the desired articulation of 
be located remotely from the patient in a different room or 55 a catheter . However , differences between predicted and 
building . actual catheter position can result from the reliance by the 

Referring now to FIG . 2 , motors within instrument driver kinematic model on certain assumptions and the lack of 
108 are controlled such that carriages coupled to mounting certain information . With rigid kinematics , simple geometry 
plates 204 , 206 are driven forwards and backwards on can be used to predict the location of any point along the 
bearings . As a result , a catheter can be controllably manipu- 60 rigid object given the following information : ( 1 ) a reference 
lated while inserted into the patient . Instrument driver 108 coordinate system ; ( 2 ) an origin , or point in any coordinate 
contains motors that may be activated to control bending of system attached to the object ; and ( 3 ) an orientation in any 
the catheter as well as the orientation of the distal tips coordinate system attached to the object . Even with rigid 
thereof , including tools mounted at the distal tip . structures , external forces , even gravity , may disrupt the 

The articulation of catheters is normally performed by 65 ability to solve the location equation given the information 
actuating pull - wires that extend the length of the catheter above . If the above information is not sufficient to accurately 
and are attached to the distal end of an articulating section describe the position of one point of an object from another 
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point on the same object , then additional information must the output parameter eliminates the need to make such 
be provided , like the weight of the object , the forces acting assumptions . That is , the displacement at the tip can be 
on the object , the strength of the object , etc. calculated by solving the force equations instead of solving 

Standard equations and constants , like Poisons ratio , the displacement equation . The transfer function from input 
Hertzian stresses , Modulus of Elasticity , and linear stress / 5 to output can thus be improved by commanding the instru 
strain equations can improve on the kinematic model but ment driver 108 with torque commands correlated to the 
these methods break down once the strains exceed the desired output tensions for the one or more pull - wires in the 
standard elastic range ( usually about 3 % ) . For example , a catheter . 
slim bar may be straight under no distal loading and the Further , in an exemplary variation of that embodiment of 
equations to predict the location of the distal end are fairly 10 the present disclosure , the high - level catheter control algo 
effective . However , when a load is placed on the beam , the rithm can be combined with a lower level motor torque 
distal end will deflect , or strain under the load . Even in a control algorithm to accurately drive a catheter in response 
purely elastic response to the load , the location or orientation to a user's commands . Control algorithms may be split into 
of the distal end of the beam is impossible to predict without several parts . One aspect of catheter control , as shown in 
knowing the magnitude , the direction , and the location of the 15 FIGS . 8 and 9 in block A , may be a high - level open - loop 
external load . Similarly , flexible instruments such as cath- algorithm combining catheter solid mechanics and kinemat 
eters with low strength can be deflected by unknown loads ics to convert a desired catheter position or orientation as 
at unknown locations and in unknown directions . Yet , pre- provided by the user into motor commands . Another aspect 
diction of the location and orientation of the distal end of a of catheter control , shown in FIGS . 8 and 9 in block B , may 
catheter is an important aspect of a robotic catheter system . 20 be a lower - level closed - loop motor servo controller that a 
The orientation of the distal end of the catheter based on takes the motor commands produced by the catheter control 
information measured at the proximal end can better be algorithms and converts them to the motor current needed at 
determined through embodiments of the present disclosure . every time step to achieve the desired catheter motion . FIG . 

To enhance the transfer function between inputs and 9 is an exemplary embodiment of the present disclosure 
outputs , an embodiment of the present disclosure determines 25 illustrating the flow diagram for catheter steering using 
the output motor torque ( s ) corresponding to the desired desired motor torque as the output to the instrument driver . 
tension in the pull - wires and the instrument driver 108 acts Though a surgical system may control the catheter through 
on the output motor torque command to articulate the the use of motor commands to the motor servos in the form 
catheter . A kinematic model for catheter articulation can of position commands , increased driving performance can 
translate positional data from the input device 120 at the 30 be achieved by altering the architecture such that the motor 
workstation 112 into pull - wire displacement commands command transferred to the motor servo controller is a 
whereby the motor ( s ) of the instrument driver 108 are desired motor torque . 
rotated in accord with that amount of displacement . In Desired motor torques can be determined based on cath 
contrast , in an exemplary embodiment of the present dis- eter solid mechanics and kinematics control algorithms . For 
closure , the positional data from input device 120 is trans- 35 example , the value of the desired tension of the catheter 
lated into pull - wire tension values tied to motor torque , pull - wires can be used to determine the desired motor 
whereby the motors are rotated in accord with the value of position . The desired pull - wire tension can be translated to 
the motor torque . a desired motor torque by multiplying the pull - wire tension 

From a user standpoint , the system behaves much the by the radius of the pulleys in the splayers . 
same way in that the user provides desired catheter motions 40 
and the catheter follows . The difference is that by using MotorTorqueDesired = PullWire Tension Desired * Pulley Radius 
desired pull - wire tension instead of desired pull - wire dis- Once the desired motor torque is determined , the instrument 
placement , a number of advantages can be achieved . One driver 108 can apply the desired torques to the motors which 
advantage is the reduction in the number of assumptions in in turn applies the desired tension to the pull - wires . 
the kinematic model to increase accuracy . For example , with 45 A model - based force control algorithm is an exemplary 
pull - wire displacement calculations , various non - rigid ele- variation of an embodiment , having the advantages of 
ments affect the amount of articulation for a given pull - wire extreme robustness and stable interaction with the possible 
actuation , including ( 1 ) pull - wire stiffness ; ( 2 ) axial catheter passive environments seen at the output shaft of the motor . 
stiffness and ( 3 ) actual catheter geometry , including the In the case of the articulation axes , each articulation motor 
resultant stiffness of the bending or twisted section . The 50 may be treated as a single degree of freedom torque source , 
displacement of the pull - wire at the actuated or proximal end in which case for this embodiment , the model - based force 
of the catheter is thus not equal to the displacement at the tip control algorithm collapses into an integral controller on 
of the catheter , but rather a function of the various spring force error combined with direct feed - forward of the desired 
rates . For instance , a small pull - wire will stretch more per force and a viscous damping term . 
unit force and transmit less displacement to the distal tip 55 FIG . 10 is a control block diagram modeling aspects of 
than a stiffer one though both will transmit the same force . the flow diagram of FIG . 9 using model - based force control . 

Catheter movement may be predicted by modeling the Since the motor velocity and output torque are a function of 
catheter assembly as a system of springs . For example , if the both motor dynamics as well as the load produced by the 
following parameters are known : pull - wire , the motor is not modeled as a simple transfer 
Kg : Spring rate of catheter shaft ( lbs / in ) 60 function given the inherently non - linear and time dependent 
Ky : Torsional Spring rate of bending section ( in * lbs / pull - wire dynamics that are constantly changing depending 

radian ) on what the catheter is touching , what shape the catheter has , 
Ky Spring rate of pull - wires ( lbs / in ) and how the catheter is being driven . Instead , the combined 

Further , K , is directly proportional to the Bending Stiffness motor / catheter pull - wire system is modeled as a motor block 
( lb * in ) , where K7 * L = K8 where L = Length of bending sec- 65 which takes as an input the net torques applied to the motor 
tion . Then the entire catheter can be modeled as a spring ( Telec - Twire ) where Telec is the electrical torque provided by 
system , as shown in FIG . 7. The use of pull - wire tension as the amplifiers and calculated by the control algorithm and 
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Twire is the reaction torque provided by the pull - wire . These close loop controlled of the catheter movement . Further , 
torques combine with the motor dynamics to produce a with the tension information available , control algorithms 
motor velocity do / dt which is then fed into the pull - wire can improve the performance and control of the catheter . In 
dynamics to produce the torque applied to the pull - wire . some instances , the tension information can provide infor 

The benefits of the model - based force control algorithm 5 mation about forces being applied to the catheter and can be 
arise in part from its stability for any passive pull - wire load fed back to the user haptically . 
dynamics regardless of non - linearity or complicated geom- Indeed , using tension as a predictor of catheter angula 
etry . In this variation of one embodiment of the present tions has numerous advantages beyond those discussed 
disclosure , the model - based control algorithm does not above . For example , when the shape of the catheter shaft is 
allow the force controller to attempt to reject any of the 10 unknown as a result of anatomical constraints when inserted 
motor's inertial forces as a disturbance in order to achieve a into vasculature , un - modeled shaft dynamics may result in 
high level of stability . That is , the force control algorithm unintended articulation . FIG . 12A shows a catheter with a 
does not attempt to make the motor feel like it has less mass straight shaft and control wires in positions X¡ and y? ; FIG . 
than it actually has . For this algorithm , the ratio KJK must 12B shows the same catheter with the shaft bent — with the 
be greater than the inertia of the motor . Once implemented , 15 tip of the catheter bending to the right when the shaft bends 
the model - based control algorithm essentially works by to the right . Even though the pull - wires wires are held in 
rejecting any friction in the motor ( or gearing ) such that the their original positions for both conditions , namely x , and 
resulting closed - loop system feels like an ideal frictionless y1 , the tip of the catheter is bent to a new position . Because 
motor with inertia KJK ) . At steady - state and with no the shaft is no longer straight , the distal tip of the catheter is 
acceleration , the integral term in the controller ensures 20 forced to bend in order to keep the total length between the 
complete friction rejection such that Twire = tdes . At all other proximal points x , and y , and the distal points X , and y2 
times , the difference between Twire and tdes is mostly the identical . 
inertial force of the motor . The use of a desired motor torque as the output instead of 

a desired motor position improves this issue . Turning to 
Tdes -Twire - Ja where a is the motor acceleration . 25 FIGS . 13A and 13B , the initial conditions are shown to be 

The above approximation becomes more exact as control the same but the pull - wires are held under a constant tension . 
terms K ) and Ky become larger . Nevertheless , like any Viewing the kinematic model as weights hung from each 
control algorithm , limitations exist on the size of the control wire , FIG . 13B illustrates the shaft bent in a similar manner 
gains without exciting other unmodeled dynamics in the as FIG . 12B , but the distal section remains straight as the 
system and driving the system to instability . The model- 30 path lengths of the pull wires need not be made identical as 
based force control strategy provides increased performance the constant tension in the control wires kept the distal 
while still meeting robustness requirements and without section articulated to the same angle . The position of the 
reducing safety . pull - wire has changed to xz and yz to accommodate the bend 

The model - based force control strategy is one exemplary in the shaft . 
implementation of the present disclosure . The torque - based 35 The present disclosure can also enable distal disturbance 
strategy of the pull - wire tension control paradigm can be detection , i.e. , when the distal tip of the catheter has been 
implemented with numerous possible force control algo- subjected to an unknown force in an unknown direction , 
rithms could be used to get the motors to behave as desired . often from tissue contact . Without the distal disturbance , a 
Further , multiple modifications can be added to the catheter repeatable relationship exists between catheter pull - wire 
control kinematics and solid mechanics to fine tune catheter 40 tension and position , but the disturbance changes the dis 
driving performance . Exemplary modifications to the motor placement and / or orientation of the tip . Because a difference 
torque control servo algorithm include : ( 1 ) using additional between commanded and actual positions of the catheter 
control strategies to modify Tdes before sending to the motor will exist as a result of the disturbance , the length of the path 
servo controller ; such as , adding additional damping for of the control wires will be different than expected . These 
enhanced stability or simply for achieving more desirable 45 changes cause a difference in the tension of the wires , 
dynamics ; and ( 2 ) replacing the integral controller with a provided they are moved away from the commanded loca 
high gain , low pass filter to avoid problems ( such as integral tion . For instance , if the catheter is commanded to articulate 
drift ) that typically arise when using integral controllers . to 180 ° but a distal disturbance prevents the catheter from 

In order to sense the tension in the catheter control wires , bending past 90 ° , then the tension in the inner wires will be 
a torque measuring device can be utilized . One exemplary 50 higher than expected and the tension in the outer fibers will 
embodiment of the present disclosure , shown in FIGS . 11A be lower due to the difference in path lengths . 
and 11B , incorporates torque sensors 601 installed on the FIGS . 14 and 15 illustrate a distal disturbance . The 
drive shafts 314 , 316 that transmit motion from the motors amount of pull - wire motion can be correlated to motion 
to the pull - wires . A torque sensor 601 could be alternatively expected at the distal section by using a spring model . Using 
located in other areas of the system . An alternative method 55 motor torque to steer a catheter , the change in spring rate 
to measure torque may include a direct measurement of caused by a disturbance at the distal end of the catheter can 
force on the pull - wires . An exemplary variation of that be observed . When a disturbance at distal end prevents the 
alternative method may involve using the pull - wire as a catheter tip from achieving the commanded angulation , that 

resistance of motion at the distal section will effectively 
In one embodiment , the tension in the pull - wire can be 60 change the spring rate of the catheter shaft and the equations 

calculated simply by dividing the torque by the effective will fail to predict the motion . In this example , the angula 
radius ( rdrum + r wire ) of the catheter control wire . Any tion is commanded by moving the control wire from position 
difference between the actual and commanded motor torque x , to Xz . As governed by the equation , this change in spring 
value ( an " error signal ” ) can be used to make electrical rate can be determined via knowledge of the tension in the 
current adjustments by a motor servo or the control com- 65 control wires . Thus , tension or motor torque data can be used 
puter to reduce or eliminate the error . Thus , knowledge of to determine adjustments to the motor commands to achieve 
the tension ( or force ) being applied to the pull - wires permits the desired tension and adjusting motor commands based on 
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real time tension data . This information can also be fed back when tension sensing indicates a distal disturbance from 
into the controls software and can be presented to the user potential tissue contact ( as discussed further above ) and / or 
as haptic , visual or other feedback to relay the effect of the limiting the combined loading on the catheter shaft to 
disturbance . prevent buckling . Specifically , the direct measurement of 

The distal disturbance shown in FIG . 15 is caused by the 5 torque can signal if the tension in the pull - wire is approach 
catheter coming in contact with an external surface . An ing maximum limits . The catheter controls wires are made of 
alternative distal disturbance may occur when a therapeutic steel and inherently have a breaking strength . One failure 
device such as a stent , an atherectomy device or a balloon is mode of catheters is when the pull wires break . This can be 
being advanced through the catheter . The stiffness of this prevented by monitoring the tension in the cables and 
device cannot be previously modeled because the doctor can 10 preventing them from being overstressed . 
choose from a large variety and size range of devices . But a Further , the tension sensors can be monitored by com 
system with tension control can be used to ensure the angle paring the motor current at any given moment with the 
of the tip of the catheter does not change . The increased tension measurements . Since the current is related to the 
spring rate of the catheter as the therapeutic device is being torque applied by the motors , a discontinuity between the 
advanced can be detected by the tension sensors . Then , this 15 sensor readings and the current could indicate a potentially 
tension or motor torque data can be used to determine faulty tension sensor . Similarly , the present disclosure assists 
adjustments to the motor commands to maintain the catheter in shaft buckling prevention . The tensile loads in the catheter 
tip position . This information can also be fed back into the control wires are reacted by a compressive load in the 
controls software and can be presented to the user as haptic , catheter shaft . Like the wires in tension , the shaft has a 
visual or other feedback to relay the effect of the increased 20 loading limit in compression . This limit can be avoided by 
stiffness . summing the tension in all the control wires and checking to 
Embodiments of the present disclosure also have the see that they do not exceed the compressive strength of the 

advantage of enabling compensation for time dependent shaft . 
variables in like plastic creep , which changes the operational Another exemplary aspect of the present disclosure is that 
working length of the catheter but not the wires , causing 25 non - idealities such as signal saturation may be addressed . 
tension to reduce over time . Creep compensation can also be For example , an anti - windup algorithm may be included on 
compensated for if the tension in the control wires is known . the integral control term such that the commanded electrical 
Catheters are generally made from plastic laminates ; plastics torque , Telec , will never actually exceed what the electronics 
are known to change dimensions when subjected to external are capable of producing . Similarly , all control terms are 
forces over time . This change over time is known as creep . 30 pre - saturated before adding them together to calculate Telec 
However , with the present disclosure , if the tension in all the such that any one term cannot over - power the others when 
wires is less than expected , a catheter shaft length can be acting at the maximum of the available range . 
compensated for by returning the tensions to their expected Furt if a fault condition was detected when driving in 
values . tension control mode relating to the tension sensor or 

Further , good control of a catheter can be obtained only if 35 another aspect of the tension control mode , the system could 
the motion expected to be transmitted to the controls wires be shut down the system or , in the alternative , an automatic 
are indeed transmitted . For a variety of reasons , motion switch to position control could be implemented . The ten 
intended to be transmitted to the articulating section may sion control mode has the advantage of compatibility with 
fail . Friction in the gearing or other mechanical aspects of the position control mode , enabling the two modes to back 
the instrument driver may be problematic . Backlash in the 40 up the other . The catheter kinematics and solid mechanics 
drive transmission can be seen as slack or non - taut pull- for the modes enable smooth transition from tension control 
wires . The control of the catheter can be improved if the mode into position control mode . This would allow us to 
scenario is detected and compensated for adequately , as keep the doctor in control of the catheter in the case of a fault 
shown in the flow chart of FIG . 16 , through general re- that only affects the tension sensing system without abruptly 
zeroing of the pull - wire tension . The process of FIG . 16 may 45 ending the procedure . Naturally , some care would have to be 
also be used to accommodate shaft shape compensation taken to avoid the potential for unintentional motion as the 
when the shaft has been subjected to new unknown forces . algorithms transition . 
The tension on the control wires will be equal and near or Another embodiment of the present disclosure would 
equal to zero when the catheter articulating section is include the ability of a surgeon or other user to switch 
straight . However , if the shaft of the catheter has been 50 between the torque - based paradigm and the position - based 
deflected , and the catheter has been commanded to be paradigm , with one or the other serving as a default mode . 
straight , the tension in the catheter control wires will be For example , the position - based paradigm could be utilized 
non - equal . Thus , the equalization and reduction of tension to as the default mode with the ability for a surgeon to switch 
or near zero is contemplated by the present disclosure . Using to the torque - based mode for certain procedures . The control 
tension sensing to take up wire slack may also be performed 55 computer could automatically switch between the modes 
when the path length for an inside wire is shorter after a bend based on parameters that are input into the system or 
in the catheter , such as when the catheter is going contral- feedback during the procedure . Alternatively , the instrument 
ateral over the iliac bifurcation . Further , another use of driver may incorporate the desired motor torque value in a 
tension sensing to take up wire slack may occur for a closed loop system . A variation of the present disclosure 
catheter that has spiraled . Steerable catheters often spiral 60 contemplates using both the position - based and torque 
when pushed through the anatomy , resulting in a shorter path based paradigms during a surgical procedure , where , e.g. , 
for one wire . the system implements catheter articulation in the first 
A pull - wire tension control paradigm can also inherently instance through motor displacement commands but the 

implement a safety check to ensure safe and reliable behav- associated desired motor torque is used to ensure that the 
ior . Exemplary variations of the present disclosure may 65 desired deflection angle is achieved and / or maintained . 
include enabling tension limits on the control wires to Further , in another embodiment of the present disclosure , 
prevent breakage , preventing articulation of the catheter other modes of operation could be enabled , such as the 
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ability of a constant force mode , in which the articulation processor of a computer ) . Such a medium may take many 
force is maintained , creating a force against the tissue that is forms , including , but not limited to , non - volatile media and 
more uniform while crossing trabeculated tissue . volatile media . Non - volatile media may include , for 

Another aspect of the current disclosure is to use the example , optical or magnetic disks and other persistent 
torque sensing capability on the pull - wires to pull all wires 5 memory . Volatile media may include , for example , dynamic 
at the same time and stiffen the catheter . For typical articu random access memory ( DRAM ) , which typically consti lation of a catheter as shown in FIG . 12A , one wire is pulled tutes a main memory . Such instructions may be transmitted by a distance X , and the opposing wire is typically released by one or more transmission media , including coaxial by a distance yl . This delta wire displacement causes the tip cables , copper wire and fiber optics , including the wires that of the catheter to deflect as described above . However , if 10 comprise a system bus coupled to a processor of a computer . both wires are pulled equal amounts , then the tip will not 
deflect . Instead , the tensioned wires inside the wall of the Common forms of computer - readable media include , for 
catheter serve to stiffen the catheter . One of catheter design example , a floppy disk , a flexible disk , hard disk , magnetic 
challenge is that there are times when a catheter needs to be tape , any other magnetic medium , a CD - ROM , DVD , any 
stiff to provide stability for delivering therapeutic devices 15 other optical medium , punch cards , paper tape , any other 
through it and there are times when it needs to be flexible to physical medium with patterns of holes , a RAM , a PROM , 
navigate through tortuous vessels . Many conventional cath an EPROM , a FLASH - EEPROM , any other memory chip or 
eters attempt to overcome this issue by designing catheters cartridge , or any other medium from which a computer can 
with variable stiffness that is to say the distal end is read . 
manufactured with less stiff materials than the proximal end . 20 Databases , data repositories or other data stores described 
Tension sensing on the catheter pull wires allows dynamic herein may include various kinds of mechanisms for storing , 
variable stiffness . In other words , the catheter can be manu- accessing , and retrieving various kinds of data , including a 
factured with less stiff materials and the doctor has the hierarchical database , a set of files in a file system , an 
ability to increase tension on all wires and stiffen the catheter application database in a proprietary format , a relational 
when required . It should be understood that this dynamic 25 database management system ( RDBMS ) , etc. Each such 
variable stiffness can be applied in any catheter configura- data store is generally included within a computing device 
tion and with any given catheter tip articulation . For employing a computer operating system such as one of those 
example , if one pull - wire is pulled by 1N more than another , mentioned above , and are accessed via a network in any one 
then the catheter tip may be deflected 30 ° . The dynamic or more of a variety of manners . A file system may be 
variable stiffness algorithm would now apply an additional 30 accessible from a computer operating system , and may 
2N to each of the 2 wires to increase the stiffness . The delta include files stored in various formats . An RDBMS gener 
between the two wires is still in so the tip does not change ally employs the Structured Query Language ( SQL ) in 
angle . addition to a language for creating , storing , editing , and 

Operator workstation 112 may include a computer or a executing stored procedures , such as the PL / SQL language 
computer readable storage medium implementing the opera- 35 mentioned above . 
tion of instrument driver 108. In general , computing systems In some examples , system elements may be implemented 
and / or devices , such as the processor and the user input as computer - readable instructions ( e.g. , software ) on one or 
device , may employ any of a number of computer operating more computing devices ( e.g. , servers , personal computers , 
systems , including , but by no means limited to , versions etc. ) , stored on computer readable media associated there 
and / or varieties of the Microsoft Windows® operating sys- 40 with ( e.g. , disks , memories , etc. ) . A computer program 
tem , the Unix operating system ( e.g. , the Solaris operating product may comprise such instructions stored on computer 
system distributed by Oracle Corporation of Redwood readable media for carrying out the functions described 
Shores , Calif . ) , the AIX UNIX operating system distributed herein . 
by International Business Machines of Armonk , N.Y. , the With regard to the processes , systems , methods , heuris 
Linux operating system , the Mac OS X and iOS operating 45 tics , etc. described herein , it should be understood that , 
systems distributed by Apple Inc. of Cupertino , Calif . , and although the steps of such processes , etc. have been 
the Android operating system developed by the Open Hand- described as occurring according to a certain ordered 
set Alliance . sequence , such processes could be practiced with the 

Computing devices generally include computer - execut- described steps performed in an order other than the order 
able instructions , where the instructions may be executable 50 described herein . It further should be understood that certain 
by one or more computing devices such as those listed steps could be performed simultaneously , that other steps 
above . Computer - executable instructions may be compiled could be added , or that certain steps described herein could 
or interpreted from computer programs created using a be omitted . In other words , the descriptions of processes 
variety of programming languages and / or technologies , herein are provided for the purpose of illustrating certain 
including , without limitation , and either alone or in combi- 55 embodiments , and should in no way be construed so as to 
nation , JavaTM , C , C ++ , Visual Basic , Java Script , Perl , etc. limit the claims . 
In general , a processor ( e.g. , a microprocessor ) receives Accordingly , it is to be understood that the above descrip 
instructions , e.g. , from a memory , a computer - readable tion is intended to be illustrative and not restrictive . Many 
medium , etc. , and executes these instructions , thereby per- embodiments and applications other than the examples 
forming one or more processes , including one or more of the 60 provided would be apparent upon reading the above descrip 
processes described herein . Such instructions and other data tion . The scope should be determined , not with reference to 
may be stored and transmitted using a variety of computer- the above description , but should instead be determined with 
readable media . reference to the appended claims , along with the full scope 
A computer - readable medium ( also referred to as a pro- of equivalents to which such claims are entitled . It is 

cessor - readable medium ) includes any non - transitory ( e.g. , 65 anticipated and intended that future developments will occur 
tangible ) medium that participates in providing data ( e.g. , in the technologies discussed herein , and that the disclosed 
instructions ) that may be read by computer ( e.g. , by a systems and methods will be incorporated into such future 
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embodiments . In sum , it should be understood that the detecting an actual torque by the rotatable body ; 
application is capable of modification and variation . generating an actual torque signal in response to the actual 

All terms used in the claims are intended to be given their torque detected by a torque sensor ; and 
broadest reasonable constructions and their ordinary mean adjusting the command torque signal in response to the ings as understood by those knowledgeable in the technolo actual torque signal ; gies described herein unless an explicit indication to the 
contrary in made herein . In particular , use of the singular wherein the detecting of the actual torque is performed by 
articles such as “ a , ” “ the , " " said , ” etc. should be read to the torque sensor installed on the rotatable body ; 
recite one or more of the indicated elements unless a claim wherein the rotatable body is a drive shaft . 
recites an explicit limitation to the contrary . 2. The method of claim 1 , wherein the rotatable body is 
What is claimed is : integrated into an instrument driver , the instrument driver 
1. A method comprising : comprising a motor , the motor configured to rotate the 
receiving a user command signal from a user input device ; rotatable body in response to the command torque signal . 
generating a command torque signal in response to the 3. The method of claim 2 , wherein the rotatable body user command signal ; rotating a rotatable body in response to the command 15 protrudes from a face of the instrument driver . 4. The method of claim 1 , wherein the elongate member torque signal , the rotatable body coupled to an elongate is a pull wire . member , the elongate member coupled to a medical 

instrument and configured to articulate the medical 5. The method of claim 1 , wherein the medical instrument 
instrument in response to rotation by the rotatable comprises at least one of a catheter and an endoscope . 
body ; 
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