000 0”0 0

WO 00/72146 Al

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
30 November 2000 (30.11.2000)

D0 0 e

(10) International Publication Number

WO 00/72146 Al

(51) International Patent Classification’: GO6F 11/00

(21) International Application Number: PCT/US00/14291

(22) International Filing Date: 24 May 2000 (24.05.2000)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

09/318,205 25 May 1999 (25.05.1999) US
(71) Applicant: TERADYNE, INC. [US/US]; 321 Harrison

Avenue, Boston, MA 02118 (US).

(72) Inventors: KITA, Ron; 76 Main Street, Hollis, NH 03049
(US). KLEVJER, Kaare; 14 North Hill Road, Westford,
MA 01886 (US).

(74) Agent: WALSH, Edmund, J.; Teradyne, Inc., 321 Harri-
son Avenue, Boston, MA 02118 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE,
DK, DM, DZ, EE, ES, F1, GB, GD, GE, GH, GM, HR, HU,
ID,IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS,
LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ,
PL, PT,RO, RU, SD, SE, SG, SL, SK, SL, TI, TM, TR, TT,
TZ,UA, UG, UZ, VN, YU, ZA, ZW.
(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, F[, FR, GB, GR, IE,
IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG,
CL, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:
With international search report.

[Continued on next page]

(54) Title: ANALYZING AN EXTENDED FINITE STATE MACHINE SYSTEM MODEL

(57) Abstract: A method of
using a computer to analyze an

Receive expressions
describing requirements

extended finite state machine
model of a system includes
receiving at least one expression
and corresponding expression
target, determining paths of
states and transitions through
the model, and selecting paths

200

Rn

A~ 20>

such that the representation of
paths satisfying the at least one

Generate path through
model

A 4

expression in the selected paths
substantially corresponds to the
expression target.

~204

Determine whether path
satisfies requirement
expressions

A0k

j

woO 00772146 A1 N0 O 0 A

— Before the expiration of the time limit for amending the For two-letter codes and other abbreviations, refer to the "Guid-
claims and to be republished in the event of receipt of ance Notes on Codes and Abbreviations" appearing at the begin-
amendmenlts. ning of each regular issue of the PCT Gazette.

10

15

20

25

30

WO 00/72146 PCT/US00/14291

Analyzing an Extended Finite State Machine System Model

Background of the Invention

System testing contributes significantly to system
development and maintenance costs. TestMaster® software
sold by Teradyne® Software and System Test, Inc. of Nashua,
NH can reduce testing costs while increasing testing
quality.

Referring to FIG. 1, TestMaster® software 100
enables a designer to create 102 an extended finite state
machine model of a system. An extended finite state machine
is represented by a directed graph that includes states
interconnected by transitions. The software 100 provides a
graphical user interface that enables the designer to "draw"
the model by defining the states and connecting them
together with directional lines that represent transitions.

The model is independent of the system being modeled and
can be created before or after the system is developed.

After the designer creates 102 the model, the
software 100 detects 104 paths through the model states and
transitions and generates 106 testing programs corresponding
to each of the detected paths. Execution of the generated
testing programs can identify system design flaws and
highlight differences between the model created and the
actual behavior of the underlying system.

Referring to FIG. 2, an extended finite state
machine model 108 of a system includes states 110-116
interconnected by transitions 118-124. For example, as
shown, a model 108 includes states 110-116 and transitions
118-124 representing a bank machine system that dispenses

cash to customers entering an authorized PIN (Personal

10

15

20

25

30

WO 00/72146 PCT/US00/14291

Identification Number) .

The TestMaster® system automatically detects
different paths through the model 108. For example, as
shown in FIG. 3, a path through the model can include model
elements A - Taz - B - Tec - C - Tep - D. This path
corresponds to a customer correctly entering an authorized
PIN and successfully withdrawing cash. As shown in FIG. 4,
a different path through the model can include model
elements A - Tag - B - Tegp - D. This model path corresponds
to a customer who fails to correctly enter an authorized
PIN.

TestMaster® offers many different procedures for
detecting paths through a model. For example, a user can
select from comprehensive, transition-based, N-switch, and
quick-cover path detection. Comprehensive path detection
outputs a test for every possible path through the model.
Transition based path detection outputs tests such that each
transition is included in at least one test. N-switch path
detection outputs tests such that each unique sequence of
N+1 transitions are included in at least one test.
Comprehensive, transition, and N-switch path detection are
currently implemented using a depth-first search. In
contrast, quick-cover uses a "top-down" search and can
output tests such that no transition is used more than a
specified number of times. U.S. Patent Serial No.
08/658,344 entitled "Method and Apparatus for Adaptive
Coverage in Test Generation" describes implementations of
programs for detecting extended finite state machine paths.

Referring again to FIG. 2, in addition to

transitions and states, a model can incorporate variables

10

15

20

25

30

WO 00/72146 PCT/US00/14291

and expressions that further define the model's behavior.
TestMaster® can evaluate the expressions to assign variable
values (e.g., y = mx + b) or to determine whether an
expression is TRUE or FALSE (e.g., A AND (B OR C)). The
expressions can include operators, variables, and other
elements such as the names of states, transitions, and/or
sub-models. When a named state, transition, or sub-model is
in included in an expression, the model element evaluates to
TRUE when included in the path currently being detected.

For example, in FIG. 2, an expression of " (A && B}" would
evaluate to TRUE for path portion "A - Tae - B". As
shown, expressions can use a PFL (Path Flow Language) syntax
that resembles the C programming language. PFL and
functions that can be called from PFL are described in The
TestMaster® Reference Guide published by Teradyne€.

A model designer can associate the expressions with
model elements to further define model behavior. For
example, a designer can associate predicates and/or
constraints with different states, transitions, and/or sub-
modelg. Both predicates and constraints are evaluated
during path detection and determine which transitions can be
included in a path.

When path detection instructions encounter a model
element having an associated predicate, the predicate
expression is evaluated. If the predicate evaluates to
TRUE, the model element associated with the predicate can be
used in the path. For example, as shown in FIG. 2,
transition Tsp 124 has an associated predicate 126
("!OKPin") that determines when a path can include the

transition. As shown, the predicate 126 is a boolean

10

15

20

25

30

WO 00/72146 PCT/US00/14291

expression that permits inclusion of the transition 124 in a
path being detected when the boolean variable OKPin is FALSE
and the path being detected has reached state B.

Similarly, when path detection instructions
encounter a model element having an associated constraint,
the constraint expression is evaluated. If the constraint
evaluates to FALSE, the model element associated with the
constraint cannot be used in the path being detected. For
example, as shown in FIG. 2, a transition 123 can connect a
state 114 to itself. To prevent a path from inciuding a
large or possibly infinite number of the same transition in
a single path, a designer can specify a constraint
expression 125 that limits use of a transition in a path.
The "Iterate(3)" expression associated with the transition
123 limits a path through the model to including transition
123 three timeg. Thus, if evaluated at state C after
looping around transition Tc¢c three times, the constraint
would evaluate to FALSE and prevent further use of the
transition in the current path. The constraint acts as a
filter, eliminating generation of unwanted testing programs.

Referring to FIG. 5, a model can also include one or
more sub-models. For example, the box labeled "EnterPIN" in
FIG. 2 may be a sub-model 112 that includes additional
states 128-136, transitiong 138-150, and expressions. As
shown, the sub-mocdel 112 sets 150 the model variable OKPin
to TRUE when the customer PIN equals 1 148; otherwise, the
sub-model sets the model variable OKPin to FALSE 146.

Sub-models encourage modular system design and
increase comprehension of a model's design. Referring to

FIG. 6, when the software 100 detects different paths

10

15

20

25

30

WO 00/72146 PCT/US00/14291

through the system, the sub-model is essentially replaced
with the states and transitions included in the sub-model.
Referring again to FIG. 5, a designer can define
more than one transition 138-142 between states 128, 130.
The designer can also associate expressions (e.g., PIN = 1)
with each transition 138-142, for example, to set model
variables to different values. For example, as shown, a
designer has defined three transitions between the "Entry"
128 and "PINEntry" 130 states that each set a PIN variable
to different value. Defining multiple transitions between
states increases the number of paths through a model. For
example, paths through the sub-model 112 can include I -
Twgy - J - Togxk - K - Tkem - M, I - Trgzy - J - Tor - L -Tuw - M,
and I - Tig) - J - Toqw - L - Tgw - M. The use of multiple

transitions enables testing of different conditions within

the same model.

Summary of the Invention

In general, in one aspect, a method of using a
computer to analyze an extended finite state machine model
of a system includes receiving at least one expression and
corresponding expression target, determining paths of states
and transitions through the model, and selecting paths such
that the representation of paths satisfying the at least one
expression in the selected paths substantially corresponds
to the expression target.

Embodiments may include one or more of the following
features. The representation may be a quantitative
representation. The expression may include a boolean

expression. The expression may include a variable, an

10

15

20

25

30

WO 00/72146 PCT/US00/14291

operator, a state, a transition, a sub-model, a table-model,
and/or a reguirement. The expression target may be a
percentage. Selecting may be done such that the percentage
of selected paths satisfying the expression substantially
corresponds to the expression target percentage. Selecting
may include determining whether a path would improve the
correspondence of the representation of paths satisfying the
expression to the expression target. Receiving at least one
expression and corresponding expression target can include
receiving more than one expression and corresponding
expression target. Selecting can include determining
whether a path would improve the correspondence of the
representation of paths to more than one expression target.
In general, in another aspect, a computer program
product, disposed on a computer readable medium, for
analyzing an extended finite state machine model of a system
includes instructions for causing a processor to receive at
least one expression and corresponding expression target,
determine paths of states and transitions through the model,
and select paths such that the representation of paths
satisfying the at least one expression in the selected paths

substantially corresponds to the expression target.

Brief Description of the Drawings

These and other features of the invention will
become more readily apparent from the following detailed
description when read together with the accompanying
drawings, 1in which:

FIG. 1 is a flowchart of a process for using an

extended finite state machine model to generate tests for a

10

15

20

25

30

WO 00/72146 PCT/US00/14291

system according to the PRIOR ART;

FIG. 2 1is a diagram of an extended finite state
machine model according to the PRIOR ART;

FIGS. 3 and 4 are diagrams of paths through the
extended finite state machine model of FIG. 2 according to
the PRIOR ART;

FIG. 5 is a diagram of a sub-model according to the
PRIOR ART;

FIG. 6 is a diagram of the extended finite state
machine model that includes the states and transitions of
the sub-model of FIG. 5 according to the PRIOR ART;

FIG. 7 is a flowchart of a process for determining
whether a system model satisfies system requirements;

FIG. 8 is a screenshot of a table of system
requirements used by the process of FIG. 7;

FIG. 9 1is a screenshot of a requirements report
produced by the process of FIG. 7;

FIG. 10 is a flowchart of a process for determining
whether a system model satisfies specified assertions;

FIG. 11 is a diagram of an extended finite state
machine model that includes a table model element;

FIG. 12 is a diagram of a table having rows
incorporated into the model;

FIG. 13 is a flowchart of a process for selecting a
transition based on likelihood values associated with the
transitions;

FIG. 14 is a flowchart of a process for importing
data and other information into an extended finite state

machine model;
FIG. 15 is a listing of a comma separated value file

10

15

20

25

30

WO 00/72146 PCT/US00/14291

having values that can be imported into an extended finite
state machine table model element;

FIG. 16 is a flowchart of a process for detecting
paths through a model that conform to a user specified mix

of paths; and
FIG. 17 is a diagram of a finite state machine model

that includes model elements having target mix values.

Description of the Preferred Embodiments

Introduction

The inventors have invented different mechanisms
that enable testers, developers, and others to detect design
and implementation flaws in a system. These mechanisms can
be included in TestMaster® or other software or hardware

systems.

Reguirements and Assertions:
Referring to FIG. 7, prose descriptions of system

requirements often appear in functional and design
specifications or are included in requirement documents
produced by a customer. Requirements can also be gleaned
from customers, bug-lists, etc. As shown in FIG. 7, a
process 200 enables users to specify 202 reguirements as an
expression of elements (e.g., variables, sub-models, states,
and transitions). For each path 204 through a model, the
process 200 evaluates 206 all requirement expressions to
determine which requirements are satisfied.

For example, referring again to FIG. 2, the bank

machine system functional specification may describe a

10

15

20

25

30

WO 00/72146 PCT/US00/14291

requirement that no withdrawals should occur if a customer's
PIN is not authorized. A user can ensure compliance with
this regquirement by defining a boolean expression of "NOT
(withdrawal AND (NOT OKPin))". After each path is detected
through the model, the requirement expressions defined for
the model are evaluated. The path satisfies any requirement
expression that evaluates to TRUE.

Referring to FIG. 8, a user can specify and view
regquirement expressions via a graphical user interface. The
interface shown enables a user to specify each system
requirement as a row in a table 222. The table 222 includes
columns for a requirement ID 208 and version number 210 for
each requirement. This enables a user to quickly correlate
requirements with their descriptions in written documents
and specify which collections of requirements should be used
during path detection (e.g., only version 2 requirements
need be satisfied). The requirement ID 208 can also be used
as elements in other requirement expressions.

The table also includes columns for a prose
description 212 of each requirement and the boolean
requirement expression 216. The table can also include a
column 214 for specifying a system feature involved in the
requirement. A feature may have more than one associated
requirement. Additionally, a table column may permit a user
to name the row for inclusion in other expressions.

Further, a table can include a "source" column 218 for
Hyperlinks (e.g., Universal Resource Locators) which link to
external documents describing a reguirement.

The information included in the table 222 may be

entered manually or imported, for example, from a database,

10

15

20

25

30

WO 00/72146 PCT/US00/14291

spreadsheet, or a CSV (comma separated value) file.
Similarly, the table 222 information may also be exported.
Additionally, different requirements may be enabled or
disabled by a user.

Referring to FIG. 9, the process can generate a
report 224 that describes tests that can be run to test the
specified requirements. As shown, the report 224 may be a
table that includes a row for each test generated and an
indication of the different requirements satisfied by the
test. For example, row 231 for test path 3 satisfies
requirements 1.0.1 and 1.1.

The report 224 can also summarize test results, for
example, by displaying the number of tests satisfying each
requirement 226 or displaying the number of requirements a
particular path satisfied 232. The report enables a user to
understand the completeness of a set of tests, to understand
how many of the requirements have been included in the
model, to perform optimization, and to detect tests that do
not satisfy defined requirements. Based on the report the
user can see which paths satisfied the requirement and use
the testing programs generated for these paths to test the
system being modeled.

The requirements feature described above can also
limit (i.e., "filter") the test scripts generated. For
example, a user can specify that test scripts should only be
generated for paths satisfying a particular requirement.
Thus, only testing programs directed to testing particular
features are generated.

Referring to FIG. 10, similar to regquirements,

assertions enable a user to specify an expression for

10

15

20

25

30

WO 00/72146 PCT/US00/14291

evaluation. However, while a path through a perfectly
designed model may not satisfy any requirement expressions,
assertions represent expressions that should always be
satisfied (e.g., TRUE) when evaluated. Failure to satisfy
an assertion can represent significant model flaws needing
immediate attention (e.g., when an abnormal or unexpected
condition occurs) .

A process 240 for determining whether a model
complies with a set of assertions includes receiving 242
assertion expressions. A user can specify that an assertion
expression be evaluated at different points in the model,
for example, before or after entering a particular state,
transition, or sub-model. In another embodiment, a designer
can specify that an assertion expression should be
automatically evaluated before and/or after entering every
sub-model element. Additionally, a designer can specify
that an assertion expression should be automatically
evaluated after each path through the model is detected.

When the process 240 determines 246 a path violates
an assertion (i.e., the boolean assertion expression
evaluates to FALSE), the process 240 can immediately alert
248 the user of the particular path and other model
information that caused the assertion violation. For
example, the process 240 can call a model debugger that
enables a user to view model information such as the value
of different variables, the assertion violated, and model
elements in the path that violated an assertion. This
enables a user to examine the model context that caused the
assertion to fail. The process 240 can further provide an

error message and/or provide a display that highlights the

10

15

20

25

30

WO 00/72146 PCT/US00/14291

path the caused the violation.

Transition Tables:

Referring to FIG. 11, a graphical user interface
provides a table 143 model element the user can include in a
model. The table 143 can specify multiple sets of data to
be included in the generated test.

Referring to FIG. 12, each row can include one or
more variable value assignments, for example, each row can
include a different value for the PIN model variable 250 and
a name of the customer assigned that PIN (not shown). Each
row can further include predicate 254 and/or constraint
expressions 256. The path detection instructions can select
one or more of the rows for each path. Thus, the table 143
provides a convenient mechanism for viewing and defining
large sets of data.

In another embodiment, the table also includes
columns for specifying a source state and a destination
state for each transition row (not shown). This enables an
entire model to be displayed as one or more tables of rows.

The tables can be used to automatically generate a
graphical display of a model. Similarly, a graphical model
could be used to generate corresponding tables. The
equivalence of the model and the table enable a user to
easily "flip" between the different model representations.

Additionally, the table may offer a column for a
name of the row (not shown). The named model element can
then be included in other expressions.

Each row of the table 143 can also include a

likelihood value 252. The likelihocd values can be used to

10

15

20

25

30

WO 00/72146 PCT/US00/14291

select a row from the table during path detection.
Referring also to FIG. 13, a process 258 for selecting a row
based on likelihood values includes determining currently
eligible rows 260, normalizing the likelihood values of the
eligible transitions 262 to produce a probability for each
eligible transition, and selecting a transition based on the
produced probabilities.

For example, assume the TEST model variable is set
to "1" in FIG. 12. Under this assumption, PINs 001, 002,
003, and 004 represent eligible transitions because these
transitions satisfy their associated predicate and/or
constraint expression(s). As shown, the likelihood wvalues
in a table need not add to 1 or 100. For example, adding
the likelihood values of the eligible rows (PINs 001, 002,
003, and 004) yields a total of 160. A row (e.g,
representing a transition) can be selected by using the
total likelihood value and the individual likelihood values

of the eligible rows to dynamically create selection ranges

for each row. For example, a sample set of ranges may be:
PIN=001 0.000 - 0.062 (e.g., 10/160)
PIN=002 0.063 - 0.188 (e.g., 0.062 + 20/160)
PIN=003 0.189 - 0.750 (e.g., 0.188 + 90/160)
PIN=004 0.751 - 0.999 (e.g., 0.750 + 40/160).

Thereafter, a row can be selected by generating a random
number between 0 and 1 and selecting the transition having a
range covering the generated number. For example, a random
number of 0.232 would result in the selection of the

transition setting the PIN variable to "003". Use of

10

15

20

25

30

WO 00/72146 PCT/US00/14291

probabilities enables a model to be tested using data that
reflects actual usage. Additionally, the use of
probabilities enables a small set of rows to represent a
large set of data. Further, normalizing likelihood values
to produce probabilities enables the path detection
instructions to process probabilities with different
combinations of eligible rows.

Other embodiments can include variations of the
features describe above. For example, probabilities and/or
likelihood values can be assigned to transitions with or
without the use of table model elements. Additionally,
though the determination of eligible transitions and
normalizing their respective likelihood values provides a
designer with flexibility, these actions are not required to
take advantage of the benefits of including probabilities in

the model.

Importing Data into the Model:

The rows in the table and other model information

can be hand entered by a user. Alternatively, a user can
import the data from an external source. Referring to FIG.
14, a process 250 enables users to import data into a model
by specifying 252 an external information source for
importing 254 into the model. For example, referring to
FIG. 15, for, a user can specify a file name of a CSV (Comma
Separated Value) file. The first line 266 of the CSV file
defines table schema information such as the table variables
and their corresponding data types. For example, as shown
the variable named PIN has been type-cast as a number 268.

Subseqguent information in the CSV is pailred with the

10

15

20

25

30

WO 00/72146 PCT/US00/14291

variables defined in the first line 266. For example, the
number 001 is paired with the variable PIN while the string
"FirgstPIN" is paired with the string variable named
OtherInformation.

A database or spreadsheet could also be used as a
source of external data. For example, a user could specify
a relational database view or table. 1In response,
instructions can automatically access the database to obtain
schema information for the table. For example, an SQL
(Structured Query Language) select command can be used to
determine the variables and data included in a particular
table or view and output this information to a CSV file.
For interfacing with different types of data sources, the
instructions may support ODBC (Open Database Connectivity)
drivers.

Importing data from an external source can relieve a
user from having to define a large number of transitions
between states by hand. However, the importing capability
is not limited to transitions. Additionally, the imported
data can reflect actual testing conditions. For example, a
log file produced by a system in actual use can provide a

valuable source of data for the model.

Specifying a Mix of Paths:

Referring to FIG. 16, a process 300 enables a user
to control the mix of paths outputted during path detection.
The process 300 enables a user to specify 302 a desired mix
of generated tests. For example, a user can specify a
percentage (or ratio) of paths that include a particular

model element or that satisfy a particular expression.

10

15

20

25

30

WO 00/72146 PCT/US00/14291

During path detection, instructions track the current mix of
paths (e.g., how many paths are in the mix and how many
paths include the model element) and determine 306 whether a
newly detected path brings the mix closer to the user
specified percentage(s). If so, the newly detected path is
saved in the mix. Otherwise, the path is discarded.

Many different procedures for determining whether a
detected path brings the mix close to the user specified
percentages could be used. For example, one procedure saves
a detected path if the path satisfies any specified
expression that is currently under-represented in the mix
generated thus far. For example, referring to FIG. 17, a
bank machine model 320 includes states 322-330 that
represent different bank machine transactions. As shown, a
user has specified that the mix of paths generated should
include 40% 332 withdrawals 322 and 35% 334 checking-to-
savings 330 transfers. Assume that after nine paths, two
paths have included withdrawals 332 (i.e., 22%) and three
have included checking-to-savings 330 (i.e., 33%)
transactions. Further assume a newly generated path
included the model elements A - Tag - B - Tsr - F. This path
includes a withdrawal 332, but no checking-to-savings 330
transactions. Since the running percentage of withdrawals
332 is only 22% as compared to a target of 40%, the new path
will be included in the mix.

Other embodiments use different techniques for
determining whether a path improves the mix of tests. For
example, in the previous example, including the new path
improved the percentage of withdrawals 332 from 22% to 33%,

but would lower the percentage of checking-to-savings 330

10

15

20

25

30

WO 00/72146 PCT/US00/14291

transactions to 30%. Thus, saving the new path in the mix
would bring the percentage of withdrawals 332 in the mix
closer to the withdrawal target by 8% while bringing the
percentage of checking-to-savings 330 by 3% away from its
target. One embodiment totals the amount each current
percentage is from its target percentage and compares this
to the same total if the current path were saved in the mix.

If the total would be reduced by inclusion of the path, the
path is saved in the mix. Additionally, in some
embodiments, a user can specify that some target percentages
take priority over others.

The specified targets need not add up to 100% as
each test mix expression is independent of the other
expressions. For example, as shown in FIG. 17, the targets
only totalled 75%. This gives a user flexibility in using
the test mix feature.

By specifying a mix of paths, a user can generate
tests for model features of interest without defining
additional expressions to control model behavior.
Additionally, the technique enables a user to produce tests
relevant to areas of interest or that mimic behavior of

interest.

Other Embodiments:
The techniques described here are not limited to any

particular hardware or software configuration; they may find
applicability in any computing or processing environment.
The technigques may be implemented in hardware or software,
or a combination of the two. Preferably, the techniques are

implemented in computer programs executing on programmable

10

15

20

25

WO 00/72146 PCT/US00/14291

computers that each include a processor, a storage medium
readable by the processor (including volatile and non-
volatile memory and/or storage elements), at least one input
device, and one or more output devices. Program code is
applied to data entered using the input device to perform
the functions described and to generate output information.
The output information is applied to one or more output
devices.

Each program is preferably implemented in a high
level procedural or object oriented programming language to
communicate with a computer system. However, the programs
can be implemented in assembly or machine language, if
desired. 1In any case, the language may be a compiled or
interpreted language.

Each such computer program is preferable stored on a
storage medium or device (e.g., CD-ROM, embedded ROM, hard
disk or magnetic diskette) that is readable by a general or
special purpose programmable computer for configuring and
operating the computer when the storage medium or device is
read by the computer to perform the procedures described in
this document. The system may also be considered to be
implemented as a computer-readable storage medium,
configured with a computer program, where the storage medium
so configured causes a computer to operate in a specific and
predefined manner.

Other embodiments are within the spirit and scope of

the appended claims.

10

11

WO 00/72146 PCT/US00/14291

What is claimed is:

1. A method of using a computer to analyze an
extended finite state machine model of a system, the model
having states interconnected by transitions, the method
comprising:

receiving at least one expression and corresponding

expression target;
determining paths of states and transitions through

the model; and
selecting paths such that the representation of
paths satisfying the at least one expression in the selected

paths substantially corresponds to the expression target.

2. The method of claim 1, wherein the

representation comprises a guantitative representation.

3. The method of claim 1, wherein the expression

comprises a boolean expression.

4. The method of claim 1, wherein the expression
comprises at least one of the following: a variable, an
operator, a state, a transition, a sub-model, a table-model,

and a requirement.

5. The method of claim 1, wherein the expression

target comprises a percentage.

6. The method of claim 5, wherein selecting

comprises selecting such that the percentage of selected

10

11

WO 00/72146 PCT/US00/14291

paths satisfying the expression substantially corresponds to

the expression target percentage.

7. The method of claim 1, wherein selecting
comprises determining whether a path would improve the
correspondence of the representation of paths satisfying the

expression to the expression target.

8. The method of claim 1, wherein receiving at
least one expression and corresponding expression target
comprises receiving more than one expression and

corresponding expression target.

9. The method of claim 8, wherein selecting
comprises determining whether a path would improve the
correspondence of the representation of paths to more than

one expression target.

10. A computer program product, disposed on a
computer readable medium, for analyzing an extended finite
state machine model of a system, the model having states
interconnected by transitions, the computer program product
including instructions for causing a processor to:

receive at least one expression and corresponding
expression target;

determine paths of states and transitions through
the model; and

select paths such that the representation of paths

satisfying the at least one expression in the selected paths

12

WO 00/72146 PCT/US00/14291

substantially corresponds to the expression target.

11. The computer program product of claim 10,
wherein the representation comprises a quantitative

representation.

12. The computer program product of claim 10,

wherein the expression comprises a boolean expression.

13. The computer program product of claim 10,
wherein the expression comprises at least one of the
following: a variable, an operator, a state, a transition,

sub-model, a table-model, and a regquirement.

14. The computer program product of claim 10,

wherein the expression target comprises a percentage.

15. - The computer program product of claim 10,

a

wherein the instructions for selecting comprise instructions

for selecting such that the percentage of selected paths
satisfying the expression substantially corresponds to the

expression target percentage.

16. The computer program product of claim 10,

wherein the instructions for selecting comprise instructions

for determining whether a path would improve the

correspondence of the representation of paths satisfying the

expression to the expression target.

wN

WO 00/72146 PCT/US00/14291

17. The computer program product of claim 10,
wherein the instructions for receiving at least one
expression and corresponding expression target comprise
instructions for receiving more than one expression and

corresponding expression target.

18. The computer program of claim 17, wherein the
instructions for selecting comprise instructions for
determining whether a path would improve the correspondence
of the representation of paths to more than one expression

target.

WO 00/72146

1/13

o

Create extended finite
state machine model of | j02
system

l

Determine paths through ~ 104
model

Generate test scripts | _ 106
based on each
determined path

F1G. 1 (PRWRZ ART)

PCT/US00/14291

PCT/US00/14291

WO 00/72146
2 /13
jo8
126 b_;
s (oxPin)
Entry ! (l EnterPIN Withdrawal Exit
T § T, O
@ 8 ® Toe o (€) e) (?)
V10 e \ Hb
Tee 123 25
FIG. 2
\
§”0 ne 120 S\'+ n
Entry EnterPIN Withdrawal (Exit
é‘_ |ﬁ

C D

Tag Tac (€) Tep S()

e

23
FIG. 3 -
124
<
Ve Tap
E e EnterPIN Withd | Exit
ntry s nter ithdrawa i
@ | Tag ®) ___©] 0
ho 123 e
Tc‘-

WO 00/72146 PCT/US00/14291

3 /13
Nz (f165. 2-4)
GoodPin
149
(K)
S
132
Entry
. (V)
128 134
PINEntry
L
FI1G, 5
1033
la?—l‘u /
Entry EnterPin Entry J, PinEntry
b 7 L
@) ®)) 0 W
"3 (120 g 5
Ho 1z 128 130
My
Ni"/__/
"2

FIG. 6

WO 00/72146 PCT/US00/14291

4 /13

200

R\

Receive expressions

describing requirements
s QO >

Generate path through

~204
model

\ 4

/ Determine whether path
satisfies requirement
expressions

]

""Qob

FIG. 7

WO 00/72146 PCT/US00/14291

5 /13

. Save 7 iImport; ; Close T Move 1AM %
“Export ; Rempext. | Birt 3 : Remove } <En/isable

Req.# | Version| Description Features |Referenced Objecir [Source | Comments
No wld@wal wio valid AN | Access L et T2 (i) (o

Y < >)Y S)

20% .| 210 2\ i Ay 2l a\g L0

101

[V]
~4

g
;
e reserd

T T iy iy A e AN
G2 e

FIG, ®

WO 00/72146 PCT/US00/14291
6/ 13
// 224
: Requirement Numbers

Total Test per Req. 2 3 2 3 3 0 1 E 220
;Zw or | Test 10 104 102 |14 141 |12 | 121 225
Te:tp Number) _

3 1 X X X

1 2 X

2 3 X X - 23]

1 4 X

0 5

2 6 X X

3 7 X X e

0 8

1 9 X

1 10 X

e

2)32 230

FIG. §

WO 00/72146 ' PCT/US00/14291

7 /13

240

Receive expressions

o : ~1
describing assertions

While determining a path
or after determininga [~ 2%t

2 path, evaluating an

assertion

does path violate ¥

assertion ?

oty

Halt processing; initiate
debugger

FiG. 10

WO 00/72146 PCT/US00/14291
8 / 13
S 143
Entry PinTable PINEntered
(0] (¢4])
S l_\
123 36
FIG. 1)
250 88T ot 43 356
§ < D) ¢

Row PIN : Likelihood Predicate (‘.onsyaint

1 001 10 TEST == 1 ITERATE (3)

2 002 20 TEST ==1

3 003 90 TEST == 1

4 004 40 ((TEST == 1) || (TEST == 2))

5 005 25 TEST==2

Entry PINEntered
— —3
(0} ()]
5)
129 13D

FicG.12

WO 00/72146

9 /13

PCT/US00/14291

s 22

determine eligible (5

880

|

determine probability
values from normalized
likelihood values of
eligible

roul S

I~ 2 b

oW
select . based on
determined probability
values

~a64

FIG . '3

WO 00/72146

10 /13

PCT/US00/14291

250
;

Receive specification of
external information
source

N

import information from
information source into
model

~25Y

generate paths through
mode! based on imported
information

-2 So

FIG. 14

WO 00/72146

11 /13

4

2
*PIN String.Otherlnformation
270 ,‘_i 001, "First PIN'

002, "Second PIN"

Fl5. \C

- 260

PCT/US00/14291

WO 00/72146

12 /13

receive specification of
desired mix

determine path through 31
model

!

does path improve
mix ?

discard path

i~ 310

L

PCT/US00/14291

300

S
I~ 2072
4
308
save path

Fi1G. b

WO 00/72146 PCT/US00/14291

13 / 13
310
322
¢ 207330
Withdrawal
(B)
Taz
/J
Entry Tﬁ 4 Deposit
(0] ©) Q2¥
S‘aTn’@“’;_
Vao 326 Checking
? Ten
I (D)
Transfer
(D) T-f. E
Checking to
Savings
o r{EE st
330

FIG |+

INTERNATIONAL SEARCH REPORT

Inte ional Appiication No

PCT/US 00/14291

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7 GO6F11/00

According to Interational Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

IPC 7 GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, PAJ, INSPEC

Electronic data base consufted during the intemational search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X L. APFELBAUM: "Spec-based tests make sure 1-4,8,
telecom software works" 10-13,17
IEEE SPECTRUM,
vol. 34, no. 11,
11 November 1987 (1987-11-11), pages
77-83, XP002149691
Y 5-7,9,
14-16,18
the whole document
Y EP 0 869 433 A (SIEMENS CORP RES INC) 5-7,9,
7 October 1998 (1998-10-07) 14-16,18
column 3, line 16 -column 4, line 35
column 7, line 5 - Tine 18
column 13, line 23 -column 14, line 20
figure 9
)

m Further documents are listed in the continuation of box C.

E Patent family members are listed in annex.

* Special categories of cited documents :

‘A" document defining the general state of the art which is not
considered to be of particular relevance

E earlier document but published on or after the international
filing date

'L document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

O document referring to an oral disclosure, use, exhibition or

T later document published after the intemational filing date
or priofity date and not in conflict with the appiication but
cited to understand the principle or theory underlying the
invention

X document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention

cannot be considered to involve an inventive step when the
document is combined with one or more other such docu—

other means ments, such combination being obvious to a person skilled
P document published prior to the intemational filing date but in the art.
later than the priority date claimed *&" document member of the same patent family
Date of the actual completion of the intemational search Date of mailing of the international search report
20 October 2000 07/11/2000
Name and mailing address of the ISA Authorized officer
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo i,
Fax: (+31-70) 340-3016 Renault, S

Form PCTASA/210 (second sheet) (July 1992)

page 1 of 2

INTERNATIONAL SEARCH REPORT

intc onal Application No

PCT/US 00/14291

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication,where appropriate, of the relevant passages

Relevant to claim No.

A US 5 500 941 A (GIL LUIS)

19 March 1996 (1996-03-19)

column 4, line 43 —column 5, line 5
column 6, line 62 —column 7, line 10
column 8, line 34 - line 64

figure 4

A US 5 394 347 A (TREMBLAY SYLVIA C ET AL)
28 February 1995 (1995-02-28)

column 5, line 65 —column 6, line 22
column 15, line 23 - line 59

5-7,9,
14-16,18

1-18

Fomn PCTASA/210 (continuation of second sheet) (July 1982)

page 2 of 2

INTERNATIONAL SEARCH REPORT

information on patent family members

Inte Jonal Application No

PCT/US 00/14291

ciod n seareh ropor e Fmemberts) e
EP 0869433 A 07-10-1998 NONE
US 5500041 A 19-03-1996 NONE
Us 5394347 A 28-02-1995 NONE

Fomn PCTASA210 (patent famnily annex) (July 1992)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

