PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7 :

GOG6F 9/44 Al

(11) International Publication Number:

(43) International Publication Date:

WO 00/22518

20 April 2000 (20.04.00)

(21) International Application Number: PCT/US99/23857

(22) International Filing Date: 14 October 1999 (14.10.99)

(30) Priority Data:

09/173,095 14 October 1998 (14.10.98) Us

(71) Applicant: UNISYS CORPORATION [US/US]; Township
Line and Union Meeting Roads, P.O. Box 500, Blue Bell,
PA 19424-0001 (US).

(72) Inventors: GOIFFON, David, A.; 5563 Park Place Drive,
Shoreview, MN 55126 (US). HARTMANN, Gerald, E.;
3810 Upton Avenue, Minneapolis, MN 55412 (US). JOHN-
SON, David, R.; 4751 Helmo Avenue North, Oakdale, MN
55128 (US).

(74) Agents: STARR, Mark, T. et al.; Unisys Corporation, Town-
ship Line and Union Meeting Roads, P.O. Box 500, Blue
Bell, PA 19424-0001 (US).

(81) Designated States: AU, JP, European patent (AT, BE, CH,
CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL,
PT, SE).

Published
With international search report.
Before the expiration of the time limit for amending the
claims and to be republished in the event of the receipt of
amendments.

(54) Title: AN OBJECT MANAGEMENT SYSTEM SUPPORTING THE USE OF APPLICATION DOMAIN KNOWLEDGE MAPPED

TO TECHNOLOGY DOMAIN KNOWLEDGE

(57) Abstract

ELEMENT 602

An object management ;’7
system s provided - for - --ooo 75 T TAPPLICATION DOMAIN I *:
managing, cataloging, and DOMAIN ! LGCATUR_\ '
discovering various potentiall] ELEMENT| ~608 !
p y i
reusable code and data prvr— prve ! l
components that exist within !)
an plnformaﬁon Technology ELEMENT ELEMENT [\\ SUB-TYPE !
(IT) platform, and which each 1 éo 4 606 | E —~ APPDLDI,.f:ITNmN i
have well-defined interfaces : 625 APPLIES TO 7 |
with other components. For SUB-TYPE | ! 618 |
630 634
each of these re-usable code | TUULI ‘:—— : 7 6(26 |
and data components, an 610 616 {| VORD |FOR | oo |FOR concept | INCLUDES i
associated software object i IvaRIANT N 620 !
called an "asset element" I I E A 628 ! :
is created that describes TRANSACTION t !
PROGRAM | 1
the ~ associated ~component. MAQCEEEENT ! CHILD DF 621 !
Relationships are created ~ 61/1 ! :
between various asset 6i4 bomomomoe FoTTmSTmSSSTmTemmooomomeeomsooosssosesoos ’
elements to represent the 1
relationships existing between G121 APPLICATION| |DATABASE {~613 L6815
the software components. . ---me-m--mmmmo-ommm——mo——mCo—emmeo :

Other software objects called

"locator elements" are created that each describes an application concept or sub-concept. This application concept or sub—concept is
associated with a problem solved by the code and data components within the IT platform. Relationships are created between the various
locator elements to correlate the concepts and sub—concepts to software constructs represented by asset elements. The object management
system further supports various object discovery tools capable of identifying locator elements associated with a particular concept. These
locator elements and the associated relationships may then be efficiently traced to identify related asset elements and the associated
software and code constructs. This provides an efficient concept-based search mechanism for the code constructs. Other tools are provided
for creating, modifying, and deleting the elements. A model may be used to define the various type of relationships and elements that may
exist within the system, thereby simplifying the various tools needed to support element creation, modification, deletion, and traversal.

AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG
BJ
BR
BY
CA
CF
CG
CH
CI

CN
Cu
Cz
DE
DK
EE

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cote d’Tvoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

KR
KZ
LC
LI

LK
LR

Spain

Fintand

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Ireland

Tsrael

Iceland

Ttaly

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
SZ
TD
TG
TJ
™
TR
TT
UA
UG
uUs
UzZ
VN
YU
W

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

WO0.00/22518 PCT/US99/23857

10

15

20

25

30

An Object Management System Supporting the Use of
Application Domain Knowledge Mapped to Technology
Domain Knowledge

Background of the Invention

Field of the Invention

This invention relates generally to an improved object management system for
tracking, cataloging, and managing data and code components; and, more specifically,
to an object management system that stores objects within a technology domain for
modeling the data and code components, and objects within an application domain for
modeling application-related concepts, and that further includes object relationships that
map objects from the application domain to objects within the technology domain for

use in cataloging reusable code and data components..
Description of the Prior Art

Many of today’s software solutions are being designed using an object-oriented
approach. According to this methodology, a design is broken into code components
wherein each component is tailored to perform a discrete function on any data to which
it is passed. If each component is designed to accomplish the function in a generalized,
versus a task-specific, way, the components may potentially be reused to solve a
different task. Using this type of approach, a large library of components can be
developed which may be mixed and matched to solve a variety of problems.

Using object-oriented design methodology, each reusable code or data
component has predefined interfaces or relationships to other components. As a simple
example, consider a program component that includes instructions that reference data in
a table. The program component might be described as having a relationship to the table

component of “references”. Within a large complex system, thousands of components

10

15

20

25

30

WO 00/22518 PCT/US99/23857

and component relationships may be defined. Managing these components becomes a
daunting task. For more information on object-oriented design methodology and the
problems associated with component management, see “Object-Oriented System
Development” by Dennis de Champeaux, Douglas Lea, and Penelope Faure, published
by Addison Wesley, 1993.

Well-organized management of components and component relationships is
essential if reuse of constructs is to be practical. This can be understood by considering
a variety of situations in which groups of components must be identified. For example,
assume a user makes a new version of a code component. Changes made to the code
component may require that further modifications be made to related code components
so that compatibility is maintained. Some method of identifying the related code
components is needed. Preferably, this method of identification can be automated.
Another related example involves the modification of a data component. For example,
assume a component of the type “TableColumn”, which is a column of a table, is
deleted. This deletion will affect any table that includes the column, and will further
affect any code component that references the affected tables. Again, some method is
needed of easily identifying the affected components before the change is made and
incompatibility results.

Another situation requiring the tracking of components and component
relationships involves the porting of solutions to a new environment. Because computer
technology is rapidly evolving, it often becomes desirable to transport a software
solution from a first data processing platform to a second data processing platform to
leverage the existing knowledge base. This type of “transformation” operation may
require re-implementation of a portion of the existing code components into a different
coding language, or may involve creating additional layers of code called “wrappers” to
bridge the existing code interfaces to the new platform architecture. To make this type
of porting operation more expedient, all code and data components associated with the
targeted solution must be easily identifiable.

Still another example of a situation necessitating component tracking involves

renovation operations. These types of operations involve updating code and data

- WO 00/22518 PCT/US99/23857

10

15

20

25

30

components to accommodate changing requirements. A good illustration of this type of
operation involves updating code components to correctly handle dates occurring after
December 31, 1999. Another type of renovation effort is needed to allow software to
handle the European Monetary Unit (EMU), or “Euro”, which will become the common
currency within many European countries within the next few years. Still other types of
conversion are necessary when porting software between two machines that do not use
the same word sizes. Software modification is further required when porting code to a
machine having an expanded addressing space. These types of renovation efforts are
generally performed on an identified solution, making it necessary to track all code and
data components associated with a given solution.

The above-described objectives can be accomplished by tracking the various
relationships existing between the components. As discussed above, object-based
systems generally record relationships describing how code or data components of a
particular type correlates to other components. For example, a code component may be
said to “reference” a table component, or a table component may be said to “include™ a
column component. As another example, multiple code components may be “included”
within part of a larger transaction management component. These types of relationships
are described in terms of what the two related components are (e.g., a code module and a
table.) It may be said these relationships, which are described in terms of software and
data constructs and principles, are part of a “technology domain”. That is, these
mappings model software technologies as objects and object relationships.

Although the relationships existing within a technology domain may be
adequate to identify groups of components for purposes such as those described above,
other situations require a different knowledge base. To illustrate, assume a new
development effort is initiated to design a particular application. It may often be
desirable to identify existing components that are related to that effort so that some of
these components can potentially be reused to create the new solution. For example,
assume a new transaction management system is being developed to handle debit cards
issued by a bank. It is useful to determine which code and data components are already

in existence to handle banking transactions. To this end, it is helpful to track

10

15

20

25

30

WO 00/22518 PCT/US99/23857

components based on the type of applications with which they are associated. This may
be described as providing a mapping of components to applications within an
“application domain”. Thus, for example, a particular component may be mapped to the
application “banking”, or perhaps, more specifically, to “mortgages”. The application
mappings may then be used as a subject matter index when locating components.

While prior art object management systems may provide some type of a tracking
mechanism related to application domain mappings, this mechanism is not related to, or
interconnected with, a technology domain mapping. As a result, two sets of mappings
must be consulted when attempting to identify a set of components for a given purpose.
For example, consider the case in which all banking applications are to be migrated
from a first data processing platform to a second platform. Using some type of a first
tracking system, a first check is made for all components mapped to application
“banking” within the application domain. The resulting list of components may, and
probably does, call other components that might be considered “general purpose”, and
which are not included in this list. Therefore, the technology domain mapping must be
utilized to determine which other components have relationships to components in the
first list so that the related components can be included on the list. Finally, the list must
be processed to remove duplicate components. This processing requires two individual
processing efforts and some type of cross-checking operation. This can be time-
consuming, and can make development of an automated component identification
mechanism more difficult. The process is complicated further if multiple application
domain mappings may be possible. For example, if abbreviations or synonyms are
used within the application domain to perform the mapping function, the above process
must be repeated multiple times. A more efficient solution is needed wherein
application domain mapping and technology domain mapping is integrated within a
single object management system.

Processing can be further automated if the application-to-technology domain
mappings are model-driven. A model defines, in a general-purpose way, the various
object types and relationships types that will be used to represent the code and data

components in the system. Each of the objects created according to the model stores

WO0.00/22518 PCT/US99/23857

“meta-data”, or “data about data”, that describes the code or data component represented
by the object. This meta-data includes data describing the location of the modeled code
or data component, and further includes one or more definitions that describe
relationships with other software constructs represented by other objects. These
relationships model the relationships between the actual code and data components. The
use of modeling in designing object-oriented code components is described further in

the publication entitled “Object-Oriented System Development” referenced above.

- WO 00/22518 PCT/US99/23857

10

15

20

Objects

It is a primary object of the invention to provide an improved object
management system;

It is another object of the invention to provide an object management system
that includes an application domain mapping which is integrated with a technology
domain mapping;

It is a further object of the invention to provide a model-driven object
management system that is capable of mapping an application domain to a technology
domain;

It is yet another object of the invention to provide an automated mechanism
for discovering objects mapped to an application domain;

It is still another object of the invention to provide an automated mechanism
for discovering objects mapped to a technology domain; and

It is yet another object of the invention to provide a mechanism for performing
Natural Language Understanding (NLU) searches to identify code and data software
constructs existing within a data processing platform.

Still other objects and advantages of the present invention will become readily
apparent to those skilled in the art from the following detailed description of the
preferred embodiment and the drawings, wherein only the preferred embodiment of
the invention is shown, simply by way of illustration of the best mode contemplated

for carrying out the invention.

WO 00/22518 PCT/US99/23857

10

15

20

25

30

Summary of the Invention

The forgoing objects and other objects and advantages are provided in the
current invention, which is an object management system for use in managing reusable
code and data components. Management is performed by mapping “concepts” stored
within an “application domain” to software constructs that exist with a “technology
domain”.

The object management system is used within an Information Technology (IT)
department which owns various code, data, and system "assets" used to perform the
work of the IT department. For example, a program could be considered a code asset, a
database might be described as a data asset, and a resource such as a directory could be
considered a system asset. For each of these re-usable assets, an associated construct is
created within a repository to model the asset. This associated construct may be
described as an “asset element”. Each asset element stores meta-data, that is, "data
about data", that describes the associated code, data, or system component, and that
further describes the location of the component within the system. For example, the
meta-data may include a server name and a directory path describing the location of the
associated component. The meta-data further includes data describing relationships
between the associated code, data, or system component and other related components.
The relationships between components are modeled, and described, in terms of
relationships that are created between the elements that represent the components.

Because the asset clements describe the relationships and dependencies existing
between various types of software components such as programs, databases, tables, and
the like, the asset elements may be said to map each of the components to a technology
domain. The relationships that are represented by these asset elements may be traversed
using automated means to identify software constructs that are inter-related. This is
useful in performing analysis following code updates, and may also be utilized when it
is desirable to perform porting or renovation operations on a related group of code and
data components.

The object management system further stores software objects that each includes

7

10

15

20

25

30

WO 00/22518 PCT/US99/23857

information that identifies, or is associated with, a particular concept. These objects are
referred to as “locator elements”. According to the preferred embodiment, each of the
locator elements stores information descriptive of an application, or business objective,
performed by the code, data, and system modules. For example, these business
objectives could include “banking”, “airlines reservations”, “government accounting”,
or other IT missions. The locator elements are said to define an “application domain”
which describes an index, or catalog, of the types of applications that are addressed by
the various code and data components existing within the system.

In a manner similar to that described above with respect to the asset elements,
each of the locator elements stores data that describes relationships with other locator
elements. These relationships create a hierarchical concept tree structure, wherein the
locator elements are the nodes of the tree, and the relationships are the branches. The
hierarchical tree structure categorizes the concepts represented by the locator elements
into various classifications and sub-classifications. For example, a locator element
describing a concept "banking" may have a "sub-concept” relationship with another
locator element that stores the sub-concept "retail banking". The network of locator
elements and element relationships may be easily navigated to search for natural
language phrases and concepts.

According to the preferred embodiment of the invention, each of the locator
elements residing in the hierarchical concept tree structure may further be related to
elements storing string data. The collection of elements storing string data is said to
make up the Lexicon of the system. The Lexicon may be searched using Natural
Language Understanding (NLU) concepts to determine whether a user-specified
character string is located in the Lexicon. If a string is included in the Lexicon, the
relationships between an element in the Lexicon may be traversed to locate the related
elements in the hierarchical concept tree structure.

Relationships may further be defined between various locator elements in the
hierarchical concept tree structure and asset elements in a manner that is similar to the
way in which relationships are formed between locator elements and other locator

elements, and asset elements and other asset elements. These relationships may be

WO 00/22518 PCT/US99/23857

10

15

20

25

30

created to connect various ones of the concepts described by locator elements to the
asset elements that describe the associated code and data components. Because the
various relationships defined between the elements may be easily traversed using
standard tooling provided by the Object Management System, the object management
system allows a user to efficiently identify all code and data objects existing within the
system that are associated with a particular concept or sub-concept. Thus the
application-to-technology domain mappings allow NLU searches to be performed on the
various code and data constructs within the platform.

According to one embodiment of the object management system, each of the
elements in the system is created according to a predefined model that is also stored in
the object management system. This model defines all element types and relationship
types that can exist within the system. Any asset or locator element must exist as an
instance of one of the predefined element types. Because the various automated element
management routines can consult the model instead of the various element instances to
gain information about potential element relationships, tasks such as element location is
greatly simplified. This model also supports object management tools that allow users
to manually create, modify, and delete asset and locator elements, and to form additional
relationships between the elements.

Still other objects and advantages of the present invention will become readily
apparent to those skilled in the art from the following detailed description of the
preferred embodiment and the drawings, wherein only the preferred embodiment of
the invention is shown, simply by way of illustration of the best mode contemplated
for carrying out the invention. As will be realized, the invention is capable of other
and different embodiments, and its several details are capable of modifications in
various respects, all without departing from the invention. Accordingly, the drawings
and description are to be regarded to the extent of applicable law as illustrative in

nature and not as restrictive.

WO0.00/22518 PCT/US99/23857

10

15

20

25

30

Brief Description of the Figures

The present invention will be described with reference to the accompanying
drawings.

Figure 1 is a block diagram of the major functional components of the Object
Management System of the preferred embodiment;

Figures 2A and 2B, when arranged as shown in Figure 2, are a block diagram of
the Object Management System within which the current invention operates;

Figure 3 is a block diagram of the generalized model for the Element
Inventory Schema (EIS);

Figure 4 is a block diagram showing the relationship between instances of
elements and the various type definitions provided in the Element Inventory Schema;

Figure 5 is a block diagram exemplifying the use of a model to define Asset
Elements;

Figure 6 is a block diagram of the model stored in the Element Inventory
Scheme (EIS);

Figure 7 is a block diagram illustrating the interrelationships between element
instances created using the element subtypes of element type “Locator”;

Figures 8A and 8B, when arranged as shown in Figure 8, is a block diagram
showing an example of Application Domain mapping to Technology Domain
Mapping;

Figure 9 is a diagram showing a second example of Application Domain to
Technology Domain mapping;

Figure 10 is a diagram showing an example of using the Element Locator to
s_earch the Lexicon of Figure 9;

Figures 11A and 11B, when arranged as shown in Figure 11, are a flow chart
of the process used by the Element Locator to traverse the element constructs during a
search ;

Figure 12 is an illustration of Relationship View provided by Element Viewers
using the element instances shown in Figure 5;

Figure 13 is an illustration of Affinity View provided by Element Viewers;

10

- WO 00/22518 PCT/US99/23857

Figure 14 is a flowchart of the process used to create a new element ;

Figure 15 is a flowchart of the process used to implement the element
modification function provided by Element Viewers; and

Figure 16 is a flowchart of the process that may be used to create the "applies

5 to" relationship for a newly-created Asset Element.

11

- WO 00/22518 PCT/US99/23857

10

15

20

25

30

Detailed Description of the Preferred Embodiments

System Environment

Figure 1 is a block diagram of the major functional components of the Object
Management System 100 within which the current invention operates. The system
includes Element Inventory 102, which stores the various objects, or “elements”, that
are used to manage the code and data components (not shown in Figure 1) that
support an enterprise. Each of the objects stores meta-data, or “data about data”. This
meta-data describes, among other things, the location of, and the type of, data or code
that is stored within the respective component or module residing elsewhere within
the system. This meta-data also describes the various relationships that the respective
data or code module has with other data and/or code modules. In this manner, the
Element Inventory 102 serves as an index which points to, and describes, the various
data and code resources used to perform the functions of the particular Information
Technology (IT) platform which utilizes the Object Management System 100. The
Element Inventory 102 may also include objects, or elements, that contain meta-data
that points to and describes the processes and tools used by the Object Management
System itself.

According to the preferred embodiment, each element within the Element
Inventory 102 is associated with a respective pre-defined element type. Examples of
element types may include “Table”, “TableColumn”, or “Program”. These element
types, which are recorded in a model associated with Element Inventory 102, are
stored in the Element Inventory Schema (EIS) 103. The element type associated with
a particular element is representative of the functionality of the associated data, code
or system component. EIS further stores relationship types, which define how one
element type is related to another element type. This will be discussed further below.

The Element Inventory 102 is supported using functions provided by
Inventory Administration 104. These support functions include the backup facilities
used to make a copy of selected elements, and restore facilities used to restore an
existing saved copy of an element to the Element Inventory. The administration

12

WO 00/22518 PCT/US99/23857

10

15

20

25

30

functions further include export and import operations provided to exchange
information between the Element Inventories of one or more remote Object
Management Systems such as that shown as Remote Object Manage System 107.
The export function provides a copy of an element to the remote system, whereas the
import function receives a copy of an element from a remote system, and stores the
copy within the Element Inventory 102. Export/import exchanges are accomplished
using self-defining intermediate file structures of the type utilized by various
export/import standards such as eXtended Markup Language (XML).

Inventory Administration 104 further includes an archive function. This
function is similar to the export operation in that it creates a self-defining intermediate
file. Unlike the export function, which allows a copy of an exported element to
remain within the Element Inventory 102, the archive function deletes an element
from the Element Inventory while retaining an archived record of the element for
possible later use.

The Inventory Administration 104 also supports a Migration Function. This
function is utilized to copy an element and the corresponding inventory information
pertaining to that element between multiple Object Management Systems that are at

different release levels.

The Element Inventory 102 and Inventory Administration 104 are managed by
the Asset Inventory Manager 106. The Asset Inventory Manager (AIM) is the
software that provides an interface to the Element Inventory 102 and Element
Inventory Schema 103. One of the functions of the AIM is to hide the underlying
repository implementation by providing an Application Program Interface (API)
tailored for elements. The AIM provides an interface that supports the operations
required by both the Mission Specific Facilities, shown in Block 108, and the

Common Facilities, shown in Block 110.

The types of Mission-Specific Facilities shown in Block 108 may vary
between Object Management Systems as required by the needs of the users. These
include the renovation and transformation tools that are used to adapt existing
software to changing user requirements. When tools are installed, they are registered

13

WO 00/22518 PCT/US99/23857

10

15

20

25

30

in the Element Inventory 102. That is, for each tool, one or more elements are created
that define each of the tools, and that define the types of relationships these tools may
have with other code and/or data constructs within the system. Thus, the tools that are
used by the Object Management System are inventoried in a similar manner to all
other code and data constructs within the system.

New versions of tools may be installed over time. When this occurs, updated
versions of the associated elements are also created and interrelated. The relationship
between a version of a tool and elements created by the tool are also recorded in the
Element Inventory. Tool administering functions are performed using the graphical
user interface associated with the Common Workbench 111.

Figure 1 illustrates some of the Mission-Specific Facilities, or tools, that will
be commonly provided by the Object Management System 100 of the preferred
embodiment, including the Year 2000 Facilities 112, the Euro Facilities 114, and the
Modernization Facilities 116. The Year 2000 Facilities 112 contain the user
interfaces, tools, protocols, and processes required to support analysis and renovation
of applications to be ready for the year 2000. Euro Facilities 114 include the user
interfaces, tools, protocols, and processes required to convert business applications
into code which handles the new European Monetary Unit (Euro)

Mission-Specific Facilities 108 further includes Modernization Facilities 116.
Modernization Facilities involves the user interfaces, tools, protocols, and processes
that are required to integrate new applications with existing applications and/or to re-
implement all or parts of existing applications within different systems and platforms,
or using different software technologies.

Each of the Mission-Specific Facilities will generally be invoked on a group of
related code and data components. To locate the related code and data components on
which these Mission-Specific Facilities will be invoked, some type of element
identification function must be invoked using the relationships defined within
Element Inventory 102. In the current Object Management System 100, the
relationships exist as integrated application and technology mappings so that code and

data components can be discovered in a single, automated process. This greatly

14

- WO 00/22518 PCT/US99/23857

10

15

20

25

30

reduces the amount of time and effort required to perform this task, as will be
discussed below.

After a group of code or data components have been identified as the target of
some type of renovation or transformation operation, Element Packager 118 is utilized
to build the identified elements into a package that includes all of the code and data
necessary to transform the group of components. To perform this function, the
Element Packager must extract additional information about each of the elements
from Element Inventory 102.

After element packaging is completed, the Modernization Facilities 116 are
used to perform some type of transformation operation on the element package. This
may be accomplished by either wrapping all, or part, of an existing element package
with layers of software called a “wrapper” that provide an interface bridge between
the wrapped elements that makes that package accessible from a different operating
environment. Alternatively, some of the elements in the package may be entirely re-
implemented using a new technology.

The Mission-Specific Facilities shown in Figure 1 are exemplary only. Still
other types of tools could be included within the current Object Management System
100, including, but not limited to, facilities to migrate software to platforms having a
different word size or address-space size. These are represented by Future Facilities
119.

Object Management System 100 further includes Common Facilities 110.
These functions aid the user in understanding the relationships between elements, and
also aid in invoking the tools used to perform the transformation and renovation
operations. Common Facilities 110 include the Affinity Analyzer 122, which is a tool
thét analyzes the relationships existing between various elements contained within the
Element Inventory 102. For example, the Affinity Analyzer determines which
elements are involved in the processing performed to accomplish a particular function.
The Affinity Analyzer 122 further provides a graphic display representing the various
elements and element relationships for those code and data components provided by

the IT platform. The graphical displays, which are capable of illustrating complex

15

- WO 0022518 PCT/US99/23857

10

15

20

25

30

element networks, are used for advanced impact analysis and element packaging
purposes. For example, before a particular code module 1s modified, the relationships
existing between the associated element modeling that code module and other
elements may be used to determine which other code or data components need to be
modified to maintain compatibility. These relationships may be graphically depicted
using the Affinity Analyzer 122. The Affinity Analyzer allows software analysts to
interrogate and visually mine single or disparate sets of elements without having to
understand the details of the elements or relationships. Query and exploration,
hypothesis generation, and knowledge discovery routines eliminate the need to
compose complex queries for investigating how various code and data components
are structured or interrelate. In the preferred embodiment, the Affinity Analyzer is
implemented using the Netmap tool commercially available from the Alta
Corporation.

The Common Facilities 110 further comprises the Element Locator 124. This
tool uses Natural Language Understanding (NLU) technology to locate potentially
reusable elements in the Element Inventory 102. This makes the information stored in
the Element Inventory more accessible to other environments since the details of
Element Inventory structure do not have to be known from outside the local system.
The Element Locator 124 is able to perform a very efficient “concept™ search using
application domain mappings stored in the Element Inventory 102. The Element

Locator 124 is described in detail below.

Also included in the Common Facilities 110 is the Process Manager 126. The
Process Manager provides a mechanism whereby a user can discover, inventory, and
transform elements with a minimum number of keystrokes using scripted sequences

of tool invocations called "plans".

A user accesses both Common Facilities 120 and the Mission-Specific
Facilities 108 through a graphical user interface represented on Figure 1 as the

Common Workbench (Workbench) 111. In the preferred embodiment, Object

16

WO 00/22518 PCT/US99/23857

10

15

20

25

30

Management System 100 is a web-based system having a “web-like” interface,
although other types of interfaces, graphical or non-graphical, could be utilized. The
Workbench 111 is shown providing selections for Year 2000 Renovation 132, Euro
Renovation 134, Application Modernization 136, and any other additional future
extension, shown as Future Mission Extension 138, that may be needed.

Also included in the Workbench 111 are functions that allow the user to
manage, view, and report on the elements and element relationships existing within
the Element Inventory 102. These tools include Element Discovery Functions 142.
Element discovery refers to the process of initially creating elements and the
relationships among elements in the Element Inventory. Generally, an Element
Discovery Function will analyze a target group of software and data constructs and the
interrelationships between these constructs. The Element Discovery Function will
then automatically create elements associated with the code and data constructs. If the
Object Management System is model driven, the Element Discovery Function 142
will utilize the various element type definitions stored within the model, for example,
“program” or “database”, to create the elements. As discussed above, each of these
elements includes meta-data that describes the location and function of the associated
code or data element. This meta-data will further describe the relationships that an
element has with other elements, wherein each element relationship models the
relationship between the associated code or data construct and other code or data
constructs represented by the related elements. The Element Discovery Function will
generally create a group of elements that may then be stored within the Element
Inventory 102, and which then become available as part of the system knowledge base
to manage the associated code and data components.

» A wide variety of vendor tools are available to perform Element Discovery
Functions 142. For example, the Fulcrum tool commercially available from the RMC
Corporation is capable of automatically analyzing Cobol code constructs and related
data structures. This tool must be synchronized with the element types included
within a model and stored within the Element Inventory Schema 103. This

synchronization allows Fulcrum to create elements having recognized element types

17

- WO 00/22518 PCT/US99/23857

10

15

20

25

30

and relationship types, and that are consistent with other element types used within
the system. Many other types of tools are available for analyzing code and data
constructs of various other types of software languages. The type of Element
Discovery Functions 142 which are available within a given Object Management
System 100 will vary depending on the types of IT functions and technologies that are

supported by that system.

Once elements and element relationships are created and recorded within the
Element Inventory 102, the related code and data entities can be managed, and
become available as potential building blocks to form larger applications. Element
Locator 124 can be used to locate groups of elements associated with a particular
application or applications so that one or more of the Mission-Specific Facilities can
be performed on the element group. The identified elements may then be provided to
the Element Packager 118 to be packaged prior to being operated on by the
Modernization Facilities 116 in the manner discussed above. Element Locator 124
operates using the technology and application domain mappings that will be described
in detail below.

The system further includes several element view functions shown collectively
as Element Viewer 144. Element Viewers allow a user to see the elements and
element relationships that are stored within Element Inventory 102, and in some cases
may be used to create new relationships between existing elements. Four main view
functions, or “views”, are provided by the Element Viewers 144. The first view,
which provides the default view of Object Management System 100, is the Element
Explorer View. This view informs the user of the elements/element type matchings.
(For example, the view will inform a user that an element is of the element type
“TableColumn”, “Table”, or “Program”) This view allows a user to specify a
particular element type as defined within the EIS 103, and in response, provides a list
of all of the elements stored within the Element Inventory 102 that are of the type
specified. This view further allows a user to create a new element using a selected

element type. When a new element is created, memory is allocated within Element

18

WO 00/22518 PCT/US99/23857

10

15

20

25

30

Inventory 102. The user can then manually enter the meta-data that will be stored in
the new element. For example, the user may enter the location of the associated code,
data, or system component, and may manually enter the relationship information that
will relate the newly-created element to other elements. Element creation will be

discussed further below.

From the default Element Explorer View, the user is able to select one of the
other views, including the Properties View, Relationships View, or Affinity View.
The Properties View enables the user to view the list of attributes associated with a
selected element or element type, and which are stored within the Element Inventory
102. Attributes provide additional information about the code and data module
associated with, and described by, the selected element, as will be described further
below. The Relationships View is a graphic illustration of the relationships existing
between a selected element and other elements, or between a selected element type
and other element types. This view further allows a user to create new relationships
for that element. This will be described further below. In comparison to the
Relationships View, the Affinity View provides a more distant view of a chain of
related elements. The Affinity View takes as input a user-provided starting element or
clement type and an ending element or element type, and displays the starting
element, the ending element, and all elements and element relationships which
provide the chain, or “slice” of interconnections leading from the starting element to
the ending element. A similar view is provided between a specified starting element
type and a specified ending element type. The relationships which are provided in
these views represent relationships between software constructs that exist within the
technology domain mappings as will be described below.

Workbench 111 further provides Administration Functions 146 to administer

the Element Inventory.

Object Management System Subsystems and Interfaces

Figures 2A and 2B, when arranged as shown in Figure 2, are a block diagram

19

- WO 00/22518 PCT/US99/23857

10

15

20

25

30

of the preferred embodiment of the Object Management System within which the
current invention operates. In this diagram, process control flow is represented by a
solid arrow, and data flow is represented by a dashed arrow, as shown by control flow
indicator 202 and data flow indicator 204, respectively. It may be noted that in Figure
2, any of the dashed arrows representing data flow indicators are implemented as
network interconnections. A dashed box with an arrow represents a process, and a
dashed box with a double arrow represents a replicated process, as shown by process
and replicated process indicators 206 and 208, respectively. A solid loop with an
arrow represents a thread, and a solid loop with a double arrow represents a replicated

thread, as shown by thread and replicated thread indicators 210 and 212, respectively.

The functionality embodied within Object Management System can be
physically divided into three servers, the Asset Inventory Manager (AIM) Server 214,
the Client Server 216, and the Script Server 218. The AIM Server 214 supports the
Element Inventory 102, Inventory Administration 104, the Asset Inventory Manager
106, the Mission-Specific Facilities 108, and the Common Facilities 110 shown in
Figure 1. The Client Server provides the user interface to AIM Server 214, and
supports the Common Workbench 111 of Figure 1. Finally, the Script Server 218
supports execution of various scripts that are used to execute the scripted plans
described above in reference to Process Manager 126.

The software constructs shown as AIM Server 214 reside on a data processing
system such as that shown in Figure 2 as Data Processing System 219. Data
Processing System 219 includes Memory 221 intercoupled to one or more Instruction
Processors (IPs) shown as IP 222A and IP 222B. Data Processing System 219 has
one or more user interfaces such as Display Terminal 223. Client Server 216 and
Script Server 218 may reside on the same Data Processing System 219, or on similar
data processing systems (not shown) intercoupled to Data Processing System 219 via
network interconnections. In an alternatively embodiment, Object Management

System has multiple Client Servers 216 and multiple Script Servers 218.

20

- WO 00/22518 PCT/US99/23857

10

15

20

25

30

The AIM Server

AIM Server 214 includes Element Repository (ER) 220, which is the
repository that stores and manages persistent objects (elements). ER 220 may be
implemented across multiple hosts interconnected by a remote interface. In the
preferred embodiment shown in Figure 2, the ER is implemented using the Unisys
Universal Repository (UREP) commercially available from the Unisys Corporation,
although other types of repositories could be utilized including, but not limited to, a
Microsoft Repository commercially available from the Microsoft Corporation.
Unisys Universal Repository (UREP) is a fully object-oriented repository for
providing access to, concurrent sharing of, and immediate update support of all
objects stored within the repository. For more information on the UREP system from
Unisys, see the UREP Technical Overview, Document Number 8807 6971-000
available from the Unisys Corporation, and which is incorporated herein by reference
in its entirety.

In the preferred embodiment, the Element Repository 220 is loaded with the
Element Repository Model (ERM) 226. The ERM is an object model which defines
objects within ER 220 used to store the element types, relationship types, elements,
and relationships.

Within the ERM, the model that defines the various element types is called the
Element Inventory Schema (EIS) 103, as discussed above. This model is installed in
the Element Repository at system installation time, but may be varied throughout the
life of the system. The model definition may be specific to a particular Object
Management System. The Element type definitions within EIS 103 provide the
templates used during element creation, and define the type of information contained
in, the attributes associated with, and the relationships existing between, the elements.

In addition to the EIS, the ERM further contains the Element Inventory 102.
The Element Inventory, which is discussed above in reference to Figure 1, is the
collection of elements, each of which is an object storing meta-data about other code,
data, or system entities residing elsewhere. This meta-data describes, either directly

or indirectly, where the respective entity resides (for example, which directory and

21

10

15

20

25

30

WO0.00/22518 PCT/US99/23857

server stores the entity). It may be remembered that numerous network
interconnections exist within the current Object Management System, and each are
depicted by an instance of data flow indicators 204. Any of these network
interconnections may interface to another server storing code, data, or system modules
represented by the elements stored in Element Inventory 102. For example, Figure 2
shows a network interconnection represented by Line 224 connecting a Host A 228 to
Data Processing System 219. Host A 228 includes Memory 229 which stores code
and data modules. Memory 229 is interconnected to one or more IPs shown as IP
230A and IP230B for executing instructions, and for aiding in the development of,
and the execution of, any of the code and/or data modules. Multiple hosts of the type
represented by Host A 228 may be interconnected to Object Management System 100
so that data, code or system modules developed and stored on the host may be
managed and cataloged by Object Management System. Alternatively, a host such as
Host A 228 that is managed by Object Management System 100 need not be
interconnected to Object Management System 100. In that case, any information
exchange being conducted between the two systems would occur via a tangible

medium (such as by tapes.)

The meta-data included in each of the elements of Element Inventory 102
further describes the relationships the element has with other elements. As discussed
above, these relationships model the relationships the associated data, code or system
module has with other modules. In the preferred embodiment, the types of meta-data
stored within a particular element, as well as the types of relationships that may be
created for a particular element, are dictated by the element type associated with the
element. The definitions for element types are stored within the model in the EIS 103.
This is discussed in detail below.

The Element Repository is accessed using the UREP Dynamic Link Library
(DLL) 231. This DLL provides programmatic access to objects stored in ER 220,
including objects of ERM 226.

The UREP DLL 231 interfaces with the Asset Inventory Manager Executable

22

10

15

20

25

30

WO0.00/22518 PCT/US99/23857

(AIM EXE) 232. The AIM EXE implements the Asset Inventory Manager 106
function of Figure 1. As discussed above, one of the functions of the AIM EXE 232
is to provide an interface to the Element Repository 220 that hides the underlying
repository implementation. For example, the services provided by the AIM EXE hide
the functions provided by the UREP DLL 231. The AIM EXE further masks the user
from any transaction management and database locking that is required to accomplish
a given task. The AIM EXE does so by providing an Application Program Interface
(API) that supports the operations required by the entities accessing the various
elements stored within the Element Inventory 102.

The following services are provided by the AIM EXE. Various ones of these
services are called by the Element Discovery Functions 142, and Element Viewers

144 to perform the tasks discussed above:

Connect: This service connects the session to the Element Repository. This
service further opens the repository, makes a repository log entry in the newly

created object, and begins a UREP session.

Disconnect: This service disconnects the session from the Element
Repository. In the preferred embodiment, this is accomplished by ending the
UREP session and closing the repository. This service is called with a
parameter that indicates whether uncommitted changes should be discarded. If
uncommitted changes exist which are not to be discarded, the request for this

service is disregarded.

Export Element Types: This service reads element types from the EIS 103
and writes them into a file in a predetermined format as shown by dashed line
227. In the preferred embodiment, this format is XML. This service is called

by scripts which execute on the Script Server 218.

Import Element Types: This service reads element types from a file and

23

- WO 00/22518 PCT/US99/23857

10

15

20

25

30

writes them into the EIS 103 in a predetermined format, which in the preferred
embodiment is XML format, and is shown by dashed line 227. This service is
called by scripts that execute on the Script Server 218. The element types are
installed at initialization time, and may be updated as desired during the life of

a system.

Get Element Types: This service reads element types from the EIS 103 and
returns them to the caller in an output parameter. In the preferred

embodiment, the output format is XML.

Put Element Types: This service reads element types from an input
parameter and writes them to the EIS 103. In the preferred embodiment, the

input format is XML.

Export Elements: This service reads elements from the Element Inventory
102 and writes them into a file as is indicated by dashed line 240. This service
is called by scripts executing on either the Client Server 216 or the Script

Server 218.

Import Elements: A service which reads elements from a file and writes
them into the Element Inventory 102 as indicated by dashed line 240. This
service includes options for handling already-existing elements, including the
Ignore, Overwrite, and Create New Version options. This service is called by

scripts executing on either the Client Server 216 or the Script Server 218.

Get Elements: A service that reads elements from the Element Inventory 102
and returns them to the caller in an output parameter. This service is called by
various ones of the Interactive Tools 259. The element that is to be retrieved
may be specified according to an element name, or may be specified using

relationship data used to address a particular element within the Element

24

- WO 00/22518 PCT/US99/23857

10

15

20

25

30

Inventory. Another option for this service allows an element to be specified

for retrieval according to a particular character string that the element stores.

Get Element for Update: A service called by various ones of the Interactive
Tools. This service sets an update lock on an element for a particular session,
then reads the selected element from the Element Inventory 102 so that it is
returned to the requester as an output parameter. The selected element may be
specified by element name, or may be specified using relationship data used
to address an element within the Element Inventory. Another option allows
the selected element to be specified according to particular character string

that the element stores.

Create Elements: A service called by the Interactive Tools, and that provides
elements as input parameters so that they can be written to the Element

Inventory 102.

Update Element: A service called by the Interactive Tools 259 for providing
elements as input parameters so that they can be written to the Element
Inventory 102. This service must be preceded by a call to “Get Element for

Update” service.

Delete Elements: A service called by the Interactive Tools 259 that deletes

specified elements from the Element Inventory 102.

Get BLOB: A service called by Interactive Tools 259 which reads a Binary
Large Object (BLOB) attribute from an Element in the Element Inventory 102
and writes it into a file. The file can reside on a remote host, specified by a

Universal Naming Convention (UNC) name.

Get BLOB for Update: A service called by Interactive Tools which sets an

25

10

15

20

25

30

WO0.00/22518 PCT/US99/23857

update lock for this session on a BLOB Element in the Element Inventory 102,
reads its BLOB attribute, and writes the BLOB attribute into a file. The file

can be on a remote host, specified by UNC name.

Update BLOB: This service, which is called by the Interactive Tools, reads a
BLOB from a file, and writes the BLOB as an attribute of a BLOB Element in
the Element Repository 102. The file can be on a remote host, specified by
UNC name. This service call must be preceded by Get BLOB for Update.

Save: A service which commits all uncommitted changes to the Element
Inventory 102. When invoked from interactive session, this service also saves
a description of the state of the Common Workbench 111, including the state

for any executing Interactive Tools.

Undo Last: A service that rolls back the last uncommitted change to the
Element Inventory 102. This service may be called by either Interactive Tools

259 or by scripts.

Undo All: This service rolls back all uncommitted changes to the Inventory,
if any such uncommitted changes exist. This service may be called by either

the Interactive Tools 259 or scripts.

An instance of the AIM EXE 232 is created for each session that is active on
the AIM server. If multiple sessions are active, multiple instances of the AIM EXE
will be active at once. This is indicated by the replicated process indicator 244.

Creation of the AIM EXE 232 is performed by the Session Controller 248 as is
indicated by control flow indicator 250. Creation of the AIM EXE invokes the
"Connect" service to establish a session with the Element Repository 220. A session
is ended when the Session Controller 248 calls the AIM EXE "Disconnect" service.

In the preferred embodiment, the Session Controller 248 is an NT service that

26

10

15

20

25

30

WO0.00/22518 PCT/US99/23857

is started automatically at AIM Server boot-up or manually by the administrator. The
Session Controller is responsible for generating begin and end session requests in
response to user requests received from Application Main 271 to log in and log off the
Object Management System, respectively. These requests are represented by control
flow indicator 272. Such requests may also be received by the Session Controller 248
from script execution on Script Engine 273, as shown by control flow indicator 274.
The Session Controller is also responsible for receiving administrator requests to
terminate orphaned sessions by destroying orphaned COM objects.

The browser-level client interface to AIM Server 214 is provided by the
Internet Information Server (IIS) 280. In the preferred embodiment, IIS 280 responds
to requests from Web Browser 281 by delivering login Active Server Pages (ASPs)
282 to the user for allowing login functions to be performed. The requests are
represented by control flow indicator 283, and the IIS responses are represented by
data flow indicator 284. IIS returns an HTML page which displays the names of the
Object Management Systems if more than one system is available to the user, and
further directs the user to the URL of the selected login form ASP. The URLs for the
login form ASP is obtained from NT Registry 285, which stores system persistent
data such as system names and ASP URLs that cannot, or should not, be held in the
Element Repository 220.

A login form ASP returns an HTML page to the client. This ASP contains a
form in which the user enters login information such as a user id and password. The
user is then directed to the Login Request ASP, which sends the entered information
to the Session Controller 248 for validation, as shown by control flow indicator 286.
If a session is not successfully created for the user, an HTML page is returned to the
client requesting that the information be reentered. Otherwise, a session is

established.

Once a user is logged in, the client-side application files for the Object
Management System are downloaded from Mass Storage 287 to the Client Server

216, and Application Main 271 on Client Server begins execution. Thereafter, further

27

10

WO 00/22518 PCT/US99/23857

communication between Client 216 and AIM Server 214 is performed via the Session
Controller 248 using Distributed Component Object Module (DCOM) protocol, as
shown by control flow indicator 272.

The AIM Server 214 further includes Plan Hub 288, which acts as a central
router for script execution requests and script execution status. The Plan Hub receives
requests for script execution from the Client Server 216, and forwards these requests
to a specified Script Controller 289, which is the process executing on Script Server
218. These requests are represented by control flow indicator 290. As an NT service,
the Plan Hub process is started automatically when the AIM Server is booted, and
may also be started manually by a system administrator.

AIM Server 214 also includes Logger 292, which is an NT service that
receives script execution status from Script Controller 289 so that this status can be

recorded.

28

- WO 00/22518 PCT/US99/23857

10

15

20

25

30

Client Server

Turning now to a description of the Client Server 216, a user establishes a
session with the AIM Server by invoking the URLs of Login ASPs using Web
Browser 281. The user receives HTML login pages and application files from IIS
280. Once a user is logged in and a session is established for the user, communication
between client and server is via DCOM, although the browser session is maintained.

Application Main 271 is the main client-side process supporting the object
management functions. As an executable, the process for Application Main is started
at creation. Application Main provides for the start-up of the individual Interactive
Tools 259 via the interface shown as Line 260. Application Main further has access to
ones of the global services such as Save, Undo, and Logoff, which are provided by the
AIM EXE 232.

Invocation of Interactive Tools 259 by Application Main starts each of the
Interactive Tools at its logical starting point. These tools call services provided by the
AIM EXE to perform functions such as retrieving element type definitions from the
EIS 103, retrieving element data from the Element Inventory 102, making requests for
the creation of new elements according to the EIS model, or making requests to
modify existing elements. These requests are shown in Figure 2 as Control Flow
Indicator 262 and Data Flow Indicator 264. A new thread is started when one of the
Interactive Tools 259 begins communicating with the AIM EXE 232. When a request
from Interactive Tools 259 is processed successfully by AIM EXE, notification of
changes to data in the ER 220 is returned by the AIM EXE 232 via Session Controller
248 to Application Main 271, which then forwards the notification to Interactive

Tools 259 via the interface shown as Line 260.

Script Server

The AIM EXE 232 further communicates with Script Server 218. Within
Script Server 218, Script Controller 289 accepts requests from the Plan Hub 288 to
execute a Plan, which is a scripted invocation of services provided by AIM EXE 232,

and/or programmatic tool invocations. In response, the Script Controller reads a

29

- WO 0022518 PCT/US99/23857

10

15

20

25

30

requested scripted plan, which is stored as an element in the Element Inventory 102,
via the AIM EXE 232 as indicated by control flow 266. Thereafter, Script Controller
289 forks a process in which the plan is executed by Script Engine 273. The Script
Controller further sends periodic notifications to the Plan Hub 288 to report on the
script execution status. Upon termination of the script, the Script Controller writes an
element that is a plan completion record to the Element Inventory 102 and notifies the

Plan Hub.

Detailed Description of the Element Inventory Schema and Domain Mappings

Figure 3 is a block diagram of the generalized model for the Element
Inventory Schema (EIS). As discussed above, the preferred embodiment of the Object
Management System 100 utilizes a model loaded within EIS 103 which includes the
element type definitions as represented by Element Type 302. Each element type may
represent a particular type of software construct or data structure for a code or data
module existing within one of the host systems interconnected to Object Management
System 100. Examples of element types include “table”, “program”, “database”,
“application”, and “transaction management system”. As many element types may be
defined as is necessary to support a given mission of the data processing systems that
are managed by Object Management System 100. Generally, a set of element types
will be loaded when the Object Management System is initialized. The model is
flexible, and may be updated during the life of the system using service calls to the
AIM EXE 232 such as "Put Element Types" and "Import Element Types".

Each element type has predefined Binary Relationship Type 304 with one or
more other element types, as is represented by Block 304. For example, an element
type of “table” has a binary relationship type with an element of type “column”. This
relationship represents the fact that an element of type "table" may be created within
Element Inventory 102 to represent a data module existing on one of the host systems
interconnected to the Object Management System 100. The actual table may include
one or more columns, and each of these columns will be represented by other

elements of type "column" that are also stored in the Element Inventory 102. To

30

- ‘WO 00/22518 PCT/US99/23857

10

15

20

25

30

restate, each element type 302 represents a type of a potentially reusable code or data
module located on various host systems managed by Object Management System 100.
The relationship types which exist between element types represent various
relationship types that exist between the reusable code and data modules.

Returning to the above example, it may be said an element type of "table" has
a Binary Relationship Type 304 of "includes" with an element type of "column".
Looking at the relationship from another viewpoint, it may be said an element of type
"column" is “included by” an element of type "table". Thus “includes” and “included
by” defines the roleA and roleB associated with the relationship between table
elements and column elements, as is represented by lines 306 and 308, respectively.
A given element type may be associated with zero or more relationships of a
particular Binary Relationship Type 304. This is indicated by vectors 310 and 312.

An Element Type 302 may each be associated with one or more Attribute
Types such as Attribute Type 314, as is represented by Line 315. An Attribute Type
is a type of fact that may be stored about an element. “Comment” or “Data type” is an
example of attribute types. More than one attribute type may be stored for a given
element type.

The element type definitions are hierarchical. A given element type may
include element sub-types below it in the element hierarchy, and may be included
within an element super-type that is above it in the hierarchy. For example, an
element type “Information System Tool” could include sub-types such as
“compiler”. Element super-types for “Information System Tool” could be “Tool”
generally. Element types each inherits the defined attribute types associated with the
super-type immediately above it in the hierarchy. This includes the ability to form the
relationship types that the super-type was capable of forming. The definitional
hierarchy implemented by subtypes and super-types is represented by line 316.

Multiple element types may be grouped into categories, each of which is
referred to as an Element Type Group 318. This grouping is represented by line 320.
In the preferred embodiment, three Element Type Groups exist: an Asset Element

Type Group, a Locator Element Type Group, and a System Element Type Group.

31

- WO 0022518 PCT/US99/23857

10

15

20

25

30

The Asset Element Type Group includes all element types that define elements that
represent code, data, or system components, for example, the elements that model
code, data, or system components stored on Host A 228. The Locator Element Type
Group includes all element types that define elements that store the various tasks or
applications that are performed by the code, data and system components represented
by the Asset Elements. A detailed description of the use of the Locator Element Type
Group is described below. The System Element Type Group includes all element
types that define the elements that contain meta-data about the tool set of the Object
Management System. For example, elements of this type will store meta-data
describing the various relationships, and the locations of, the tools shown in Figure 1

as Mission-Specific Facilities 108 and Common Facilities 110.

In the preferred embodiment, each of the definitions in Figure 3, including
Element Type 302, Binary Relationship Type 304, Attribute Type 314, and Element
Type Group 318, are stored as objects within Element Repository 220. Element
Repository provides a permanent, recoverable definition object stored in persistent

storage (e.g., on disk) for each of these entities.

Figure 4 is a block diagram showing the relationship between instances of
elements and instances of relationships, and the various type definitions provided in
the model stored in the Element Inventory Schema. When an element, shown as
Element 402, is created or loaded within Element Inventory 102, it is assigned to one
of the predefined Element Types 302, as indicated by Line 403. Element 402 may be
said to be an instance of that particular Element Type. By virtue of this association,
Element 402 acquires the potential to be related to other defined element types
according to each predefined Binary Relationship Type 304 that is defined for the
Element Type 302, as is shown by Lines 404 and 406. Element 402 also may become
associated with an Attribute 408 that is an instance of Attribute Type 314 defined for
Element Type 302, as is represented by Line 410.

Element 402 and Attribute 408 are versioned objects, meaning that different

32

10

15

20

25

30

WO0.00/22518 PCT/US99/23857

versions of these elements may reside within the Element Inventory 102 at a given
time. For example, if two versions of a code entity exist, two different versions of the
associated element will exist. These two versions may or may not have relationships
with different versions of a different element, depending on the interrelationships
existing between the code entities within the system. For example, an updated version
of a program will be associated with a later element version, which may or may not
have the same relationships as the earlier element version. If the updated program
version must reference an updated version of a table, for example, the table will
further be described by meta-data in a later version of an associated element, and a
relationship will be created between these two later versions of elements.

As discussed above and shown in Figure 4, binary relationships are created
between two elements. One manner of representing relationships between elements is
by including pointers to the various related elements within the meta-data stored
within an element. That is, the element stores a relationship indicator such as a
pointer that may be used to address a respectively related element. Those skilled in
the art will recognize that many ways of representing the element relationships exist,

such as by storing name indicators identifying the various related elements.

Figure 5 is a block diagram showing an example of using the element model to
define Asset Elements. In this diagram, Asset Element types are listed at the top of
each block, and the name of element instances is represented below the element type.
For example, this block diagram assumes an Asset Element type of “BaseTable” 502
is defined in EIS 103. This element type has a Binary Relationship Type with the
Asset Element type “Column” 504 . This represents the fact that a software
component which is a table (and which is represented by an element of element type
“BaseTable”) has (at least one) column. As stated above, the relationships between
elements represent relationships between the components described by the elements.

Figure 5 further depicts that an instance of element type “BaseTable” 502
exists called “Employee” 506. This element is a construct that stores data that

describes the actual software module with which it is associated, which in this

33

10

15

20

25

30

WO 00/22518 PCT/US99/23857

example is a table. That is, this element represents an actual table of data which exists
elsewhere on the system, for example, on Host A 228. This element is assigned the
element type of "BaseTable", and is also given a name representing the function
provided by the table, which in this case is "Employee". The element further stores an
indication of all other elements to which it is related. This actual table may include
columns containing information about employees of a business. This is represented
by the fact that element "Employee" is related to elements of type "Column” 504 that
include elements "EmpID" 508, "LastNm" 510, and the like. These column elements
are related to element “Table” through the Binary Relationship Type represent by
Line 511, and described by roleA 404 and roleB 406 of “hasCol” 512 and “ofTbl”
514. This represents the relationship between the actual table component, and the
individual column components that comprise the table. Hereinafter, for the sake of
brevity, instances of binary relationships will be discussed and depicted in terms of
either roleA 404 or roleB 406, but not both.

Element type “BaseTable” is shown having various other predefined
relationships to other element types include element type “View” 515. Two instances
of element type “View” 515 shown as “EmPhoneDir” 516 and “EmpByState” 518 are
shown to exist, each having a relationship with element “Employee” 506 represented
by Line 507. Other element types related to element type “BaseTable” include “Key”
520, “Index” 522, “File” 524, “Schema” 526, and “Trigger” 528, all of which have
Element instances created and stored in the Element Inventory 102 which are related
to element Employee 506, as is represented by Lines 530 and 532, 534, 536, 538, and
540, respectively. It may be noted that element type “Constraint” 542 is related to
element type “BaseTable”. However, for the particular element instance “Employee”
of element type “BaseTable”, no element instance of type “Constraint” 542 has been
created. This demonstrates that the element and relationship type definitions within
EIS 103 define potential, not mandatory, relationships which may or may not be
established for a given element instance. It may further be noted that more than one
type of relationship can be established between an element of a given element type

and another element of a second element type. For example, element “Employee” 506

34

10

15

20

25

30

WO 00/22518 PCT/US99/23857

of element type “BaseTable” 502 is capable of establishing the two different types of
relationships represented by Lines 530 and 532 with element “EmpID” 544 of element
type “Key” 520.

Attributes 408 of a predetermined Attribute Type 314 may be attached to each
of the Elements. For example, assume the element type “Column” is related to an
attribute type of “DataType” describing the data type of the column data. For a
created element instance of element type “Column”, meta-data may be stored within
the element to describe the data stored within the associated data module containing
the column data, and may indicate that data is of type string, long integer, short
integer, or character, for example.

For any of the Asset Elements, information is also stored that describes the
location of the associated code, data or system component. This information does not
necessarily have to be stored within each of the elements, but need only be stored
within one of the elements within a group of elements. This can best be understood
by returning to the current example. As noted above, it will be assumed element
"Employee" 506 represents, and contains meta-data associated with, an actual table
existing on one of the servers or host systems associated with the Object Management
System 100. Assume this table resides on Host A 228 of Figure 2. Somehow the
location of this table must be recorded within the Element Inventory. This can be
done by recording the information directly in each element associated with the table.
For example, the server name, directory path, and any other location information
could be recorded within element "Employee" 506, and further within all other
elements describing the table data, including each and every Column Element shown
in Figure 5. This approach results in duplication of a large amount of data, since
multiple elements store the same location information. This data duplication means
that more space is required to implement Element Inventory 102, and also means that
a change in location of a given code or data module requires changes to many
elements.

Instead of storing location information in every element, in the preferred

embodiment, the location of the table is only recorded once. This location is stored in

35

© WO 00/22518 PCT/US99/23857

10

15

20

25

30

a separate element having a dedicated element type. In the current example, this
element type is called "Host" 546. An instance of this element type called "Host A"
548 is shown connected to element "HR*PERSONNEL" 550 via a relationship
represented by Line 552. Element "Host A" 548 will include the server name and
directory path for the file "HR*PERSONNEL" located on Host A 228. Further
assume that the relationship represented by Line 536 indicates that the file
"HR*PERSONNEL" stores a table represented by element "Employee” 506. Because
the location of the file is known, by implication the location of the included table is
also known, and can be determined by traversing element relationships stored within

Element Inventory 102 to find the element of type "Host" 546.

The example of Figure 5 helps illustrate the modeling approach. A model is
stored within the EIS 103 describing potential relationships and attributes for a
defined element type. For each element type, element instances may be created
having only some, or all, of the predefined relationships. An element instance may
have a selectable multiple number of relationships of a given type. For example,
BaseTable “Employee” 506 has multiple relationships of the type “hasCol”, each with
an instance of element type “Column” 504.

At this point, it will be recognized by one skilled in the art that an object
management system for managing code and data components could be constructed
without the use of a model to define the various elements. For example, the definition
of each of the element structures could be stored within the associated element itself
without having a separate element definition provided by the model. However, the
use of a model makes many of the tasks associated with managing objects easier. For
example, often it is desirable to locate all elements that are somehow related to a
particular target element of interest. As discussed above, this could be necessary if an
entire application is to be ported to a new environment. To facilitate this task, every
relationship associated with the target element must somehow be recorded so that it
may be traversed. If the definitions for these relationships are recorded within the

element themselves instead of within a model, the various tools used to search,

36

WO0-00/22518 PCT/US99/23857

10

15

20

25

30

manage, create, and modify elements must include hard-coded information about each

Element Type. If a model is used, however, these element management routines may

.use the model as a map to traverse the relationships within the Element Inventory 102,

and to further create and/or modify elements, and no special knowledge about element

type definitions need be incorporated within the actual management tools.

The use of the model in searching the Element Inventory 102 is best shown by
example. Assume the model for element type “BaseTable” is stored in the Element
Inventory Schema 103. A particular named element within the Element Inventory
may be known or is otherwise located. The associated element type for the known
element is used to access the element type definition within the model. The model
indicates that the subject element type is associated with one or more Binary
Relationship Types. For each of these Binary Relationships Types, the meta-data
stored within the element is analyzed to determine if any instance of these Binary
Relationship Types exists for the particular element instance. If an instance of any of
these Binary Relationship Types exists for the element instance, the Binary
Relationship instance may be traversed to locate a related element. This process can
be made recursive such that each of the identified elements is made the target of the
search, and all related elements associated with the target are further identified.
Using this method, the element relationships can be traversed to find all elements that
are either directly, or indirectly, related to the target element. All relationship
traversal is performed using the model definition. This model-based method is
particularly useful because it can accommodate the situation wherein new element
type definitions are added to the Element Inventory Schema 103, or wherein element
type definitions are modified. This modification of element definitions can be
accomplished without modifying any of the element management tools.

As mentioned above, searching of the Element Inventory may be performed to
identify related elements for the purpose of migrating the associated code and data
components to a new platform. However, other uses exist for traversing relationships.

For example, before a code entity is modified, it may be desirable to assess the

37

© WO 00/22518 PCT/US99/23857

10

15

20

25

30

possible impact the changes will have on other code or data entities. This impact
analysis can utilize the model stored in the EIS to traverse element relationships so
that code and/or data components related to the component that will change may be
located and evaluated. Further modifications may then be made to related component,
if necessary, so that compatibility is maintained. This type of analysis can also be

made when a component is deleted.

The element and element relationship types discussed above and shown in
Figure 5 may be described as element types and element relationships existing within
the “Technology” Domain. This Technology Domain mapping represents how the
associated data structures and software concepts interrelate. For example, an element
of type “Program” relates to an element of type “Subroutine” via relationship of type
“calls”, and element of type “Subroutine” relates to element of type “Database” via
relationship of type “accesses”, and etc. As discussed above, these mappings can be
used to identify a group of elements that operate together as a unit. The Technology
Domain mapping does not, however, provide information on the type of application(s)
with which the particular element is associated. That is, the Technology Domain
mapping does not indicate the type of problem the associated code or data component
is designed to solve. For example, the Technology Domain mapping does not indicate
whether the associated software construct is designed to solve a banking problem,
book an airlines reservation, or perform a calculation related to an insurance
application. This type of application-related information is generally provided in a
separate index that may be referred to as an Application Domain mapping. This
Application Domain mapping can be used for many purposes, including determining
which elements are available for potential reusability when developing related
applications.

In prior art systems, any Application Domain mapping is independent of the
Technology Domain mapping. Thus, once an element is identified using an
Application Domain mapping, any related elements must be discovered using the

separate Technology Domain mapping. This is both time-consuming, and also makes

38

- WO 00/22518 PCT/US99/23857

10

15

20

25

30

it difficult to automate the process of identifying related elements. The current
invention integrates the domain mappings to provide an efficient way to identify code

and data components using a Natural Language Understanding (NLU) search.

Definition of the Application Domain

Figure 6 is a block diagram of the model stored in the EIS 103. As discussed
above, this model is hierarchical. In the preferred embodiment, the root Element Type
is designated “Element” 602. Under the root element type “Element” are three
subtypes called “System Element” 604, “Asset Element” 606, and “Locator Element”
608. These are referred to as “sub-types” because these element types have a subtype
relationship with element type "Element". This subtype relationship is shown as Line
316 of Figure 3. This subtype relationship allows each of the element subtypes to
inherit certain characteristics of the element type "Element".

Element type “System Element”, and all element types which are a subtype of
type “System”, are used to define elements that support the operations of the Object
Management System. For example, "System Element" 604 has an element subtype of

"Tool," 610, wherein an instance of type Tool includes meta-data about the various
tools used in the object management system.

Element type “Asset Element” includes those element subtypes that are used
to support the Information Technology (IT) Mission of the system. As discussed
above in reference to Figure 5, these element subtypes may include the element types
of “Program” 611, “Application” 612, “Database” 613, “Transaction Management
System” 614, and so on, that are used to accomplish the particular tasks of the user.
Many different Asset Element types may be created depending on the needs of the
user. For a given Object Management System, literally thousands of different Asset
Element types may be defined within the EIS 103. Both System and Asset Element
types are defined in the manner which is exemplified in Figure 5 and discussed above
in reference to Technology Domain mappings, as is indicated by Box 615 (shown
dashed). These element types may include sub-types that include sub-types, and etc.,

in a hierarchical manner as represented by Figure 3. The "subtype" relationship

39

10

15

20

25

30

WO 00/22518 PCT/US99/23857

represented by Line 616 between the element type "Asset Element" 606 and the other
subtypes allows each of the element subtypes to inherit certain characteristics of the
element type "Asset Element". For example, all element types that are a subtype of
element type "Asset Element" 606 are capable of forming the same type of
relationships that may be formed by an element of type "Asset Element”. This will be

explained further below.

Application Domain mapping is performed using the Element type “Locator
Element” 608 and all element types which are a subtype of element type "Locator
Element" 608, as is indicated by Box 617 (shown dashed). As with the Technology
Domain mapping, the Application Domain mapping follows the model shown in
Figure 3 which allows for hierarchical definitions. Within the defined hierarchy,
element type “Locator Element” has several sub-types, including element types
“Application Domain” 618, "Concept" 620, "Word" 622, and "Word Variant 624".
By virtue of the subtype relationship represented by Line 625, each of these subtypes
inherit the characteristics of element type "Locator Element" 608. This includes the
ability to form relationships of the type that can be formed by element type "Locator
Element".

The four element types that have relationships of type "subtype" with element
type "Locator Element" also have various relationships with one another. Element
type "Application Domain" 618 has a relationship type of "includes" 626 with element
type "Concept" 620, as is shown by Line 626. Element type of “Concept” 620 has a
relationship type of "for" with element type of “Word” 622, as is represented by Line
628. Element type of "Word" 622 has a relationship of type "of" 630 with element
type of "Word Variant" 624, as indicated by Line 630. Finally, the element type
"Concept" 620 may be related to itself via a binary relationship of type "child of" as
indicated by Line 621.

The element types that have a subtype relationship with element type "Locator
Element" 608 shown in Figure 6 are used to create a hierarchical tree structure of

natural language concepts. An element of type "Application Domain" 618 is used to

40

10

15

20

25

30

WO 00/22518 PCT/US99/23857

store an indicator of a particular broad application area. Elements of type “Concept”
are used to define concepts that have a subset relationship to a related element of
element type “Application Domain”. The concept hierarchy is further extended by
defining other elements of type "Concept" that have a relationship of type "child of"
621 to a previously-defined Concept Element. This newly-defined Concept Element
may be described as a "child" of the originally-defined "parent" concept. The child
Concept Element will store a concept that is a sub-category of that stored by the
parent Concept Element to which it is related. Any number of hierarchical levels of
Concept Elements may be created, and any Concept Element may have one or more
children. Children of the same parent concept are said to be "sibling" Concept
Elements.

Each Concept Element, regardless of the level at which it exists within the
Concept hierarchy, may have a relationship of type "for" 628 with an element of type
"Word". An element of type "Word" stores a word that is somehow indicative of a
concept stored by a directly-related Concept Element. An element of type "Word"
622 can be related to multiple elements of type "Concept" 620.

Finally, an element type "Word Variant" 624 stores a derivative form of a
word stored by a directly-related Word element. This derivative form may be a plural,
possessive, acronym, abbreviation, slang term, foreign language representation, or any
other alternative form required or desired by a user. In the preferred embodiment, a
Word or Word Variant element stores a character string, but other representations for
a word could be utilized.

Figure 6 further shows that element type "Concept" can form a relationship of
type "applies to" 634 with element type "Asset Element" 606. Because of the
principal of inheritance described above, any element type that is a subtype of element
type "Asset Element" can also form a relationship of "applied to" 634 with a element
type "Concept". This type of relationship maps a natural language concept residing
within Application Domain 617 to an element that resides with the Technology
Domain 615. The creation and use of the element and relationship types shown in

Figure 6 are best explained in the following examples.

41

10

15

20

25

30

WO0-00/22518 PCT/US99/23857

Figure 7 is a block diagram illustrating the interrelationships between element
instances created using the element subtypes of element type “Locator”. This diagram
is similar to that shown in Figure 5. Within each block, element types are listed
across the top, with the instance of the element appearing below. An element of type
“Application Domain” 618 is created to store the broad concept identifier “Banking”,
shown as element 702. Elements of element type “Concept” 620 may be created for
the element “Banking” which include elements "Loan" 730, “Mortgage” 704,
“Saving” 706, and “Checking” 708. These elements are associated with concepts that
identify areas within the broad category “Banking”. Further assume elements of type
“Word” 622 are created having a relationship with element “Mortgage” 704 to
describe various types of Mortgages. These elements could include such elements as
“Adjustable Rate Mortgage” 710 , “Thirty-Year Fixed” 712, or “Fifteen-Year Fixed”
714. In a similar manner, elements of sub-type Word 622 could be created for each of
the elements of sub-type Concept. Further assume an element of sub-type “Word
Variant” 624 is created having a relationship to element “Adjustable Rate Mortgage”
710 that stores the acronym “ARM”, shown as element 716. Other similar elements
of sub-type Word Variant could be created to store acronyms, synonyms,
abbreviations, or foreign language representations having relationships to other
elements of type “Word” 622. In addition, each of the Word and Word Variant
elements can be associated with multiple Concept Elements. This is shown by
Concept Element “Loan” 730, which is associated with Word Elements “Adjustable
Rate Mortgage” 710, "Thirty-Year Fixed" 712, and “Fifteen-Year Fixed” 714. The
resulting relationships form a hierarchical tree structure that branches from the
element “Banking” 702 and describes various application-type concepts that are each
somehow related to the broad term “Banking” and which may be used to describe
various ones of the Asset Elements.

Taken together, all of the elements of type “Word” 622 and “Word Variant”
624 are described as the “Lexicon” of the Object Management System. The use of

this Lexicon in performing a search of Element Inventory 102 will be discussed

42

. WO 00/22518 PCT/US99/23857

10

further below.

Figure 7 further shows the use of the parent/child relationships as shown in
Figure 6 in defining elements of type “Concept” 620. Concept Elements called
“Commercial Checking” 718 and “Consumer Checking” 720 might be described as
children of parent concept "Checking" because these element have the parent/child
relationship with element Checking as represented by Line 621 of Figure 6. These
child concepts are further said to be siblings to each other. These child elements
store concepts which may be described as sub-concepts of the concept represented by
element “Checking” 708. As discussed above, each of the child concepts may have a
relationship as a parent to a different concept element, so that many levels of
hierarchy may be created within the concept elements. Each of the Concept Elements
may be associated with Word elements in a manner which is similar to that shown for

elements “Loan” 730, “Mortgage” 704, or “Savings” 706.

43

- WO 0022518 PCT/US99/23857

10

15

20

25

30

Integrating the Application Domain Knowledge with the Technology Domain
Knowledge

As discussed above, element type “Concept” has a predefined relationship
type with element type “Asset Element” referred to as “applies to”, shown in Figure 6
as relationship type “applies to” 634. This relationship type is used to map
Application Domain knowledge to Technology Domain knowledge. It may be
recalled that for the subtype/super-type relationship, each of the element types that are
children of a parent element type inherits the ability to form the relationship types the
parent element types have the capability to form. Therefore, any of the element types
that are defined as a subtype of type “Asset Element” 606 inherits the potential to
form one or more relationships having the relationship type “applies to”” 634 with a
element of type “Concept” 620 or “Child Concept” 632. Application to Technology
Domain mapping is accomplished by creating a specific instance of relationship type
“applies to” between a specific element of type “Concept” 620 and a specific Asset

Element.

Figures 8A and 8B, when arranged as shown in Figure 8, is a block diagram
showing an example of Application Domain mapping to Technology Domain
Mapping using the elements shown in Figure 7. As discussed above, the elements
from Figure 7 perform an Application Domain mapping function. Figure 8 further
includes Asset Elements, which are illustrated as blocks with the element type listed
across the top, and the element instance listed below. Element “BankStatements’ 802
is an element of type “Application” 612, which is an element type defined as an
aggregation of programs. Thus, this element has a defined relationship of
“Aggregation” 806 with element “CheckStatements” 810, of element type “Program”
611, and has the defined relationship of “Aggregation” 812 with element
“LoanStatements” 816, which is also of element type ‘“Program” 611. The two
elements CheckStatements 810 and LoanStatements 816 might be programs that are

executed to generate the monthly bank statements for banking clients. Each of these

44

- WO 00/22518 PCT/US99/23857

10

15

20

25

30

two programs is shown having a relationship of type “References” 822 with the
element “ClientData” 820, which is of element type “DataBase” 613. During
execution, program CheckStatements 810 calls a subroutine called
“PrintCheckStatements”. This relationship is illustrated as relationship “Calledby”
826 between element CheckStatements 810 and element PrintCheckStatements 828,
which has an element type of SubRoutine 830.

The asset elements shown in Figure 8 represent a Technology Domain
Mapping that illustrates the manner in which various software constructs interrelate
within the Application “BankStatements”. If an operation such as a transformation or
renovation function is performed on this application, all of the asset elements shown
in Figure 8 must be considered as targets of that operation. Because of the element
relationships existing between these Asset Elements, the code, data, and system
components represented by the elements be identified so that a group operation may
be performed. One way to identify the interrelated entities is by using Element
Viewers 144 to graphically view the specific element “BankStatements” and all
elements having a relationship to these elements. However, if the user is not aware of
a specific named element, it is desirable to locate related elements by specifying
concepts from the Application Domain so that these concepts may then be used to
locate Asset Elements within the Technology Domain. Mapping from the Application
to Technology Domain is performing using the predefined relationship type “applies
to” 634, as described above, which is shown in Figure 6 existing between element
type “Concept” 620 and “Asset Element” 606.

Figure 8 illustrates an instance of relationship type “applies to” existing
between concept element “Mortgage” 704 and program element “LoanStatements”
812, as shown by Line 840. Similarly, the relationship illustrated by Line 841
interconnects concept element “Loan” 730 with program element “LoanStatements”
816, and the relationship illustrated by Line 842 interconnects concept element
“Checking” 708 with program element “CheckStatements” 810. These relationships
can be handled in the same manner that any other predefined relationships are used to

enable the efficient location of elements that are specified according to natural

45

10

15

20

25

30

WO0.00/22518 PCT/US99/23857

language concepts. This can best be understood by example.

Assume a user who is unfamiliar with a particular data processing system and
its associated software applications wants to determine which software code and data
constructs are available for processing Adjustable Rate Mortgage information. The
user can provide the term “ARM” as a natural language expression to Element
Locator 124. The Element Locator will first search all elements of type “Word” 622
and “Word Variant” 624 for a match of the ASCII character string “ARM”. If an
element is found which stores this string, relationships are traversed to obtain the
related concept. In this example, element 716 is initially located. By traversing
relationship 850, Word element “Adjustable Rate Mortgage” 710 is located. Element
Locator next traverses all relationships of type “for” 628 (shown in Figure 6) to find
concepts “Loan” 730 and “Mortgage” 704. According to one embodiment of the
invention, Element Locator may next determine if the located elements “Loan™ and/or
“Mortgage” have parents or children existing within the Concept/Subconcept element
hierarchy discussed above. If so, and if the search parameters have specified that this
hierarchy is to be included in the search, the Element Locator may further traverse up
and/or down the Concept/Subconcept hierarchy a predetermined number of levels as
specified by the user, so that the located concepts are further included in the list of
located Concept Elements. Finally, using the identified Concept Elements, the
various “AppliedTo” relationships are traversed to find all related Asset Elements. In
this example, Element Locator has identified Concept Elements “Loan” 730 and
“Mortgage” 704, and thereafter traverses relationships shown by Lines 841 and 840,
respectively, to locate Asset Elements “LoanStatements” 816.

A In the preferred embodiment, once the initial list of Asset Elements is
identified, traversal of Asset Element relationships starting with these identified
elements may be performed manually using Element Viewers 144, or may be
automatically accomplished using the Affinity Analyzer 122. This will be discussed
further below. Since the same type relationship traversal may be performed for
Locator Elements and Asset Elements, in an alternative embodiment, the Element

Locator 124 could be adapted to continue the element traversal to locate all other

46

- WO 00/22518 PCT/US99/23857

10

15

20

25

30

Asset Elements having relationships with the initially-located Asset Elements.

However, relationship traversal is not generally continued in an automated manner
once an initial set of asset elements is located for practical reasons that will be
discussed further below. Since the traversal of element relationships is performed
using the definition of the element types in the model, the algorithm used to perform
this traversal is independent of the specific element types or interconnecting
relationship types that may be defined for the given instance of the Object

Management System.

Figure 9 is a graph showing a more detailed example of Application Domain
to Technology Domain mapping. Each of the blocks in Figure 9 represents an
element or a collection of elements in Element Inventory 102. Elements of the type
“Asset Element” 606 are shown in column 902. Each of these Asset Elements may be
said to map into the Technology Domain as software constructs of a particular type.
Elements of the type “Locator” 608 are shown as Concept Elements 620 in Column
904, with each sub-concept element being listed indented below the parent Concept
Element to which the sub-concept relate. Word Elements are listed in Column 906,
and Word Variant Elements 624 are listed in Column 908. As discussed above, the
collection of Word and Word Variant elements comprise what is referred to as the
“Lexicon” 910 of the Object Management System.

In the example of Figure 9, the Concept Element “Customer” 912 is shown as
being related to two Concept Elements “Wholesale Customer” 914 and “Retail
Customer” 916 via a sub-concept relationship. That is, both of the elements
“Wholesale Customer” 914 and “Retail Customer” 916 may be said to be “child"
cbncepts of concept “Customer” 912, and may also be described as children of the
parent element “Customer”. This concept/sub-concept hierarchy may be any number
of levels deep depending on user requirements.

Concept Element “Customer” 912 has a relationship of type “for” 628 with
Word Element “Client” 918 shown by Line 919. Word Element “Client” has a

relationship “of” 624 with a collection of Word Variant Elements “Clients” 920,

47

10

15

20

25

30

WO0.00/22518 PCT/US99/23857

“Client’s” 922, “Clients’” 924, and “ClientData” 926 as is represented by Line 928.

The Application Domain mapping is performed by creating a relationship of
type “AppliedTo” 634 from various Concept Elements, such as “Wholesale
Customer” to Asset Elements such as “ClientInfo” 930, as represented by Line 931, or
from "Retail Customer” 916 to "CustData" 933. The resulting relationships can be
automatically traversed using Element Locator 124 so that a user can identify an Asset
Element or a related collection of Asset Elements merely by providing a natural
language word description of the desired concept.

Figure 9 further shows a further embodiment of the invention, wherein
Lexicon 910 is expanded to include another Application Concept Domain shown by
Block 932, which represents Concept Elements such as “Transaction” 934 and
“HVTIP” 936. This particular Application Concept Domain includes concepts and
words that actually describe certain ones of the Asset Element types. In that respect,
this Application Domain might be said to include concepts and words that are
descriptive of the Technology Domain. For example, Asset Element 938, called
"PayrollDep", contains meta-data describing a code component that is part of a
HVTIP Transaction for performing a Payroll Deposit transaction. This is indicated by
the element type for this element, which is "HVTIPXtn". This element type describes
a particular type of software construct, and might therefore be said to reside within the
"Technology Domain" as discussed above. One of the Concept Elements "HVTIP"
932 shown in Block 932 resides in the Application Domain, but stores the concept
"HVTIP" that is descriptive of the software construct type "HBTIPXtn".

It will be recalled that relationships of the type described in the foregoing
paragraph already exist between each Asset Element stored in Element Inventory 102
and an associated element type stored in the EIS 103. These relationships may be
used by the Element Explorer View of Element Viewers 144 to inform a user of the
elements/element type matchings. (It might be remembered that in this view, a user
may specify a particular element type as defined within the EIS 103, and in response,
Element Explorer View will provide a list of all of the elements stored within the

Element Inventory 102 that are of the type specified.) Since an element/element type

48

10

15

20

25

30

WO0.00/22518 PCT/US99/23857

matching function is already provided to the user, the creation of Concept Elements
indicative of element types might, at first glance, appear redundant. However, these
Concept Elements can be matched with Word and Word Variant elements in a manner
that is not supported by the EIS. This capability would allow a user to search, for
example, on the natural language phrase "TIP Transaction" as shown stored in Word
Element 940. Depending on the tasks to be performed by the Object Management
System, this migration of some of the technology domain concepts into the
Application Domain may be a useful function.

Figure 10 is a graph showing an example of using the Element Locator 124 to
search the Lexicon 910 of Figure 9. According to one embodiment of the invention,
Element Locator 124 allows the user to specify a match phrase as shown specified in
box 1002. This is the phrase used to search Lexicon 910 to locate Word and Word
Variant Elements. The user is further allowed to specify, for any Concept Elements
located during the search, whether Concept Elements which are parents, sibling,
and/or children will also be included in the search. This selection capability is shown
provided by Boxes 1004, 1006, and 1007, respectively. As discussed above, the
concept hierarchy can extend many levels. Therefor, according to one embodiment of
the invention, the user is allowed to individually select the number of levels of
hierarchy included in the concept traversal for the parent concepts, as well as the
number of levels to traverse for the children concepts. This is shown by Boxes 1008
and 1009, respectively.

In the example of Figure 10, a user specifies “Clients” in Box 1002 as the
search phrase. Element Locator 124 searches Lexicon 910, including all Word and
Word Variant elements to locate the Word Variant Element 920 storing “Clients” as is
sﬁown by step 1 in Box 1010. Element Locator then traverses relationship shown as
Line 928 to Word Element “Client” 918, and further traverses relationships shown as
Lines 919 and 1012 to Concept Elements “Customer” 912 and “Customer Info”
1014, respectively, as shown in step 2 listed in Box 1016. Since the user selected
“Child Concepts” in Box 1007, all children of Concept Element “Customer” 912 and

“Customer Info” 1014 are added to the search, as shown in step 3 listed in Box 1017.

49

10

15

20

25

30

WO0.00/22518 PCT/US99/23857

This includes Concept Element “Wholesale Customer” 914. Since “two” levels of
hierarchy are selected for use in the child search in Box 1009, any children concepts
of “Wholesale Customer” 914 (not shown in Figure 10) would also be included in this
search. After these Concept Elements are identified, the relationships of type
“AppliedTo” 634 are traversed to find the Asset Elements shown as elements
“CustData” 933 and “ClientInfo” 930. This is shown in Box 1018 as step four. After
the Asset Elements related to the desired concepts have been identified, other tools
are available within Object Management System 100 to further traverse the
relationships among Asset Elements to find the related Asset Elements. This will be
discussed further below.

In the preferred embodiment of the invention, the user interface to Element
Locator 124 queries the user as each new level of Concept Elements are located,
providing an opportunity for the user to remove undesired concepts from the list
before continuing with the search. For example, after step two in Box 1016, Element
Locator 124 interactively provides a user with a list of Concept Elements “Customer
Info” 1014 and “Customer” 912. The user may decide to remove “Customer” 912
from this list. This would further prevent location of the concept element “Wholesale
Customer” 914. According to the preferred embodiment, this opportunity for user
intervention is provided as each level of the Concept hierarchy is traversed, assuming
multiple levels of hierarchy exist.

Figures 11A and 11B, when arranged as shown in Figure 11, are a flow chart
of the process used by the Element Locator 124 to traverse the element constructs
during a search of the type illustrated in the example of Figure 10. The Element
Locator receives user input, which in the preferred embodiment is a character string,
énd some search selection parameters of the type shown in Figure 10. This is shown
in Step 1102. The Word and Word Variant Elements are searched to find any existing
match to the provided character string, as shown in Step 1104. If a match is found
within a Word Variant Element, the specific relationship of type “Of” 630 is traversed
to find the related Word Element(s), as shown in Step 1106. The identified Word
Element(s), which may have been identified by either one of Steps 1104 or 1106, are

50

- WO 0022518 PCT/US99/23857

10

15

20

25

30

then provided to the user to allow the user to remove any unwanted words from the
list. This is shown in Step 1107. This step is allowed since a string stored in a Word
Variant Element may be a variant of more than one Word Element.

After the user has removed any unwanted words from the list, each of the
remaining Word Elements are processed to find the related Concept Elements, as
shown in Step 1108. This is done by traversing the relationships of type “For” 628.
The initial list of Concept Elements is then provided to the user to allow the user to
interactively select ones of these elements to be removed for further consideration in
the search, as shown in Step 1110. If the user selected the addition of Sibling Concept
Elements, the Concept Element hierarchy is traversed to find any Sibling Concept
Elements that may exist for each of the remaining Concept Elements in the list. This
is shown by Decision Step 1111, and Step 1112. If the user further opted for the
inclusion of Parent Concept Elements within the List, each of the Concept Elements
in the list obtained in Step 1110 is processed to determine whether a Parent Concept
Element exists. This is shown by Decision Step 1114 and Step 1116. The located
Parent Concept Elements are added to the list. The user is then allowed to remove
any identified elements from the list before continuing with the search, as shown in
Step 1118. This process is repeated for each additional level of hierarchy to be
included in the search, as is shown by Decision Step 1120.

The user may also have selected the inclusion of children concepts. If so, each
of the Concept Elements from the list obtained in Step 1110 is processed to determine
whether a Child Concept Element exists. This is shown by Decision Step 1122 and
Step 1124. The located Child Concept Elements are added to the list. The user is
then allowed to remove any identified elements from the list before continuing with
tﬁe search, as shown in Step 1126. This process is repeated for each additional level
of hierarchy to be included in the search, as is shown by Decision Step 1128. For
each identified Concept Element, any existing “AppliedTo” Relationship is traversed
to locate an associated Asset Element, as illustrated in Step 1130, and an Asset
Element list is created.

One skilled in the art will recognize that other embodiments of the above-

51

10

15

20

25

30

WO 00/22518 PCT/US99/23857

described search process exist. For example, any existing “applies to”™ relationship
could be traversed prior to obtaining a complete set of Concept Elements.
Alternatively, the Element Locator 124 could be allowed to execute without any
human intervention so that no filtering of concepts is performed as new Concept
Elements are located.

Element Locator uses calls to the AIM EXE 232 service "Get Elements" to
retrieve the elements from Element Inventory 102. As discussed above, this service
can be called with a number of options. It can locate an element based on the stored
content of the element, or based on a specified element name identifier, or based on
relationship data that may have been read from a previously-retrieved element. The

relationship data is used to traverse the various branches in the tree hierarchy.

Expanding a List of Initially-Located Asset Elements

The Element Locator 124 is used to find a set of Asset Elements related to one
or more concepts of interest. This initially-located set may be expanded to include
related Asset Elements. In this manner, a functional set of Asset Elements can be
identified, and in turn, the associated code, data, and system modules can be located
and used as a package. This package may become the target of a renovation or
transformation operation.

The set of initially-located Asset Elements can be expanded in a number of
ways. The user may use Element Viewers 144 to locate element information, and in
some cases, graphically view selected ones of the identified Asset Elements. For
example, one of the functions provided by Element Viewers 144 in Figure 1 is the
Relationship View, which allows a user to obtain a graphical display of an element,
and to further graphically view any existing relationships and related elements. This
view allows the user to navigate these relationships within the graphical display so
that a chain of elements and element relationships can be traversed.

Figure 12 is an illustration of Relationship View provided by Element Viewers
144 using the element instances shown in Figure 5. Element “Employee” 1202 of

type “BaseTable” is the selected element, with all relationships associated with this

52

10

15

20

25

30

WO 00/22518 PCT/US99/23857

element shown as Lines 1204-1218. The associated Asset Elements are shown on the
periphery interconnected to Lines 1204-1218. The Relationship View user interface
allows the user to make any of these peripheral Asset Elements the selected element
such that the newly-selected element is displayed in the center of the screen with all
its associated relationships and related elements.

Element Viewers 144 further includes an Affinity View, which allows the user
to determine which elements are associated with a selected focus element. A selected
Asset Element is displayed at the left of a display screen, with the relationships and
interconnecting elements fanning out to the right.

Figure 13 is an illustration of Affinity View provided by Element Viewers
144. The selected Asset Element is shown as element “Account Number” 1302 of
Element Type “Column”. Element Account Number 1302 has a relationship “is part
of” 1304 with Asset Element 1306 of Element type “Base Table”, and further has
relationships “is part of” 1308 with Asset Elements 1310 and 1312 of element type
“View”. In a similar manner, the relationship chain continues to include the Asset
Elements shown in Windows 1316 and 1318, and that are related to Asset Element
1306. The display further includes the Asset Element in Window 1320 that is related
to Asset Elements 1310 and 1312.

Another tool that may be utilized to create a package of Asset Elements from
the initially-located set of Asset Elements in the Element Packager 118. Element
Packager requires as an input parameter a list of Asset Elements, which may be
created by Element Locator 124 in the manner described above. Element Packager
uses this list to automatically locate any and all other Asset Elements that are related
to this list of elements. A display is provided of the newly-located elements that
graphically depicts the manner in which the located elements are related to the initial
set of elements. The user is allowed to selectively remove elements from the list of
newly-located elements, and to thereafter repeat the process to further locate any
additional elements related to the most-recently located list of elements. Any number
of iterations may be performed until a user has determined the desired set of Asset

Elements has been obtained. The set of elements is packaged into a reusable set that

53

- WO 00/22518 PCT/US99/23857

10

15

20

25

30

may thereafter be utilized to perform renovation or transformation operations.

Defining Element Mappings

The Application Domain and the related Lexicon, including the Word and
Word Variant Elements, are initially created when the Object Management System 1s
installed by system administrators, which occurs as follows. First the model of
element types is loaded into the EIS 103. Then a base set of Locator Elements is
Joaded into Element Inventory 102 via the AIM EXE 232 using file I/O, as shown on
line 240 of Figure 2. This includes the Concept, Word, and Word Variant Elements
that are required to support the needs of the user based on the IT mission of the user
system. In the preferred embodiment, elements are loaded in groups such that all
Concept, Word, and Word Variant elements related to the same element of type
"Application Domain" 618 are loaded together. Each group of elements of this nature
will be associated with a broad application area, such as "Banking". Various ones of
these groups of elements are available commercially from the Unisys Corporation as
separate "Application Domains". The user may also select to have an Application
Domain created and loaded that reflects the element type definitions provided by the
EIS 103. An exemplary Application Domain of this type is shown in Block 932 of
Figure 9.

After initialization of the Element Inventory 102 and the EIS 103, Asset
Elements are created and stored within Element Inventory 102. In the preferred
embodiment, each Asset Element is one of the predefined asset element types defined
by the model. As discussed above, Asset Element creation will generally be
performed using a variety of discovery tools that are synchronized with the model in
the EIS. Each of these tools is capable of automatically analyzing a specified body of
software constructs, creating Asset Elements of the types defined by the model, and
thereafter generating the meta-data contained in the newly-created Asset Elements.
The Fulcrum program commercially-available from the RMC Corporation is an

example of this type of tool, and is capable of creating a knowledge base for Cobol

54

10

15

20

25

30

WO.00/22518 PCT/US99/23857

code components.

After the installation of the base set of Locator Elements, Locator Elements
may further be created and modified using such tools as Element Viewers 144 of
Figure 1 accessible via Interactive Tools 259. This allows a user to customize the
Lexicon to meet the specific needs and conventions of an IT organization. In the
preferred embodiment, Element Explorer View of Element Viewers 144 allows a user
to create an element of any selected element type. This functionality is supported by
various calls to the AIM EXE 232 such as the "Create Element" service call discussed
above.

Figure 14 is a flowchart of the process used to create a new element. Element
Viewers 144 makes a call to the AIM EXE 232 service "Get Element Types" with the
element type specified by the user, as shown by Block 1404. The called AIM EXE
service retrieves the type definition from the EIS 103 and provides it to the Element
Explorer View. A template of a storage structure for the desired element type is
created based on the element type definition, as shown in Block 1406. Then Element
Explorer View polls the user for the attribute and relationship information that will be
stored in the newly-created element, as shown in Block 1408. In the preferred
embodiment, the content information is supplied as string data. The relationship
information can be supplied in terms of the unique identifiers that name the elements
to be related to the current element. After the user supplies the related element
name(s), the specified element structure(s) is/are retrieved from the Element Inventory
102 using one or more "Get Element for Update" service calls, as indicated in Block
1410. The element type definition for the newly-created element will indicate, for
that element type, the legal relationship types that may be formed, and will therefor
also indicate the element types that may form relationships with that element type.
Using this information, and the element type specifications from the elements
retrieved in Block 1410, the relationship(s) to be created are verified as being legal
relationships, as indicated by Block 1412. If the specified relationship(s) are legal,
relationship data is created and stored in the newly-created element, and the element is

stored in the Element Inventory 102 using a "Create Element" service call as shown in

55

10

15

20

25

30

WO0.00/22518 PCT/US99/23857

Block 1414. In the preferred embodiment, a relationship is recorded using
relationships between objects stored within the ERM 226 of the Element Repository
220, wherein these relationships are supported by the UREP object-oriented
repository referenced above. Within the UREP, the relationships are implemented
using pointers, but could be implemented in other ways as well. The contents of the
related element(s) are also updated to reflect the newly-created relationships, and the
modified elements are written to the Element Inventory 102 using an "Update

Element" service call, as shown in Block 1416.

In addition to providing the ability to create new elements, Element Viewers
144 also provide a "modify" function which allows users to specify new relationships

between existing elements, or change the string data stored within an element.

Figure 15 is a flowchart of the process used to implement the element
modification function provided by Element Viewers. The name of the selected
element is first obtained from the user as shown in Block 1502. A call is made to the
AIM EXE Service "Get Element For Update" as shown in Block 1504. This returns a
copy of the contents for the specified element if such an element exists as shown in
Block 1506. Otherwise, an indication is provided that no element of that name was
located, and the message is passed to the user. The user is allowed to change the
attributes and relationships of the element as shown in Block 1508. The user interface
polls the user for new string data, and for any relationship changes. Relationships can
be created or deleted for the specified element. If a new relationship is created as
indicated in Decision Step 1509, the relationship must be verified based on the
element type definition, as shown in Block 1510. Additionally, the new element
relationship must also be recorded in the related element. This means the other
related element storage structure must also be retrieved if it hasn't already, as
indicated in Block 1512. The contents of the related element are updated to reflect
the newly-created binary relationship, as illustrated in Block 1514. Finally, a call is

made to the AIM EXE service "Update Element" with the names of the elements to

56

10

15

20

25

30

WO0.00/22518 PCT/US99/23857

update, as shown in Block 1516. This call updates the Element Inventory 102.

Finally, Asset Elements may also be created in a manner that is similar to that
described above with respect to Locator Elements. In one embodiment, when an
Asset Element is created using Element Viewers 144, the user is provided with the
option to create a relationship of type "applies to" 634 with a Concept Element storing
a concept indicative of the element type for the newly-created Asset Element. (This
capability assumes, of course, that an Application Domain of the type shown in Block
932 of Figure 9.) This can be best shown by returning to the example of Figure 9. If
Asset Element "PayrollDep" 938 were newly-created, Element Viewers 144 will poll
the user on whether an "applies to" relationship is to be created with Concept Element
936 indicative of the concept "HVTIP". The Element Viewers 144 utilize a
relationship existing between the element type definitions from the EIS and the
respective Concept Element to determine which Concept Elements are related to
which element types. As discussed above, the use of an Application Domain
indicative of element types provides users with a way to associated part of the

Lexicon with element type definitions from the EIS.

Figure 16 is a flowchart of the process that may be used to create the "applies
to" relationship for an Asset Element. Element Explorer View of Element Viewers
144 makes a call to the AIM EXE 232 service "Get Element Types" with the Asset
Element type specified by the user, as shown by Block 1604. The called AIM EXE
service retrieves the type definition from the EIS 103 and provides it to the Element
Explorer View. A template of a storage structure for the desired element type is
created based on the element type definition, as shown in Block 1606. Then Element
Explorer View polls the user for the attribute and relationship information that will be
stored in the newly-created Asset Element, as shown in Block 1608. The relationship
information can be supplied in terms of the unique identifiers that name the elements
to be related to the current element. Next, the user is polled regarding whether a

relationship of type "applies to" should be created for the newly created Asset

57

- WO 00/22518 PCT/US99/23857

10

15

20

Element, as shown in Block 1610. After the user supplies the requested information,
the specified element structure(s) is/are retrieved from the Element Inventory 102
using one or more "Get Element for Update" service calls, as indicated in Block 1612.
This includes the retrieval of the Concept Element associated with the element type
of the newly-created Asset Element, if the user specifies that the "applies to"
relationship is to be created.

As discussed above, the associated Concept Element is retrieved using a
relationship created between the associated Concept Element and the element type
definition provided by the EIS. Next, the specified relationships are verified using the
element type definition for the newly-created element. This is shown in Block 1614.
If the specified relationship(s) are legal, relationship data is created and stored in the
elements, as shown in Block 1616. The newly-created element is stored in the
Element Inventory 102 using a "Create Element" service call as shown in Block 1618.
The contents of the related element(s) are also updated to reflect the newly-created
relationships, and the modified elements are written to the Element Inventory 102
using an "Update Element" service call, as shown in Block 1620.

Having described an exemplary embodiment of the invention in the drawings
and accompanying description, those skilled in the art will recognize that various
modifications to the exemplary embodiment could be made without departing from

the scope and spirit of the claims set forth below.

58

w

[S2 I

10
11
12
13
14
15
16
17

18

oo

WO 00/22518 PCT/US99/23857

Claims
What is Claimed is:
Claim 1:
1. For use in a system having a memory for storing modules containing data

signals, each of the modules being identifiable as a respective type of software
construct for performing one or more functions, an object management system for
managing the modules, comprising:

a first memory to store asset elements, each of the asset elements comprising
data signals descriptive of a respectively associated one of the modules; and

a second memory coupled to said first memory to store locator elements, each
of said locator elements including concept signals indicative of a respective one of the
one or more functions, each of said locator elements further comprising first
relationship signals indicative of one or more first relationships, each of said first
relationships existing between said each of said locator elements and a respectively
related other one of said locator elements, at least one of said locator elements further
including second relationship signals indicative of a second relationship between said
at least one of said locator elements and a respectively related one of said asset
elements, wherein said at least one of said locator elements includes concept signals
indicative of one of the one or more functions that may be performed by the module
that is respectively associated with said respectively related one of said asset

elements.

Claim 2:
2. The object management system of Claim 1, and further including element

locator means coupled to said second memory to search each of said locator elements
to identify a selected one of said locator elements including concept signals indicative
of a selected one of the one or more functions, said element locator means to further
identify, for said selected one of said locator elements, any said respectively related

one of said asset elements.

59

w

[o2 W 62 B

N oy U W

(0]

WO 00/22518 PCT/US99/23857

Claim 3:
3. The object management system of Claim 2, wherein said element locator

means further includes selection means to selectably cause said element locator means
to identify, for said selected locator element, one or more of said respectively related
other ones of said locator elements, and to further identify for each of said
respectively related other ones of said locator elements any said respectively related

one of said asset elements.

Claim 4:
4. The object management system of Claim 3, wherein said element locator

means further includes user interface means to allow said selected one of the one or

more functions to be provided as input by a user of the object management system.

Claim 5:
5. The object management system of Claim 4, wherein each of said first

relationships forms a branch in a hierarchical tree structure having multiple levels, and
wherein said element locator means further includes level selection means for causing
said element locator means to identify predetermined ones of said locator elements
located within said hierarchical tree structure not more than a selected number of said
multiple levels from said selected one of said locator elements, and for further causing
said element locator means to identify, for each identified one of said locator

elements, any said respectively related one of said asset elements.

Claim 6:
0. The object management system of Claim 5, and further including display

means coupled to said user interface means for displaying each of said identified ones
of said locator elements prior to identifying any said respectively related one of said

asset elements.

Claim 7:

7. The object management system of Claim 6, wherein said user interface means
further includes control means to allow a user of said object management system to
deselect any of said identified ones of said locator elements to prevent any said

60

- WO 00/22518 PCT/US99/23857

4

o b WP

[o2 TR 02 Y

RN R

W o 3 o U

10
11

12

respectively related one of said asset elements from being identified.

Claim 8:

8. The object management system of Claim 1, wherein ones of said data signals
included within each of said asset elements are element name signals indicative of a
type of software construct performed by said module associated with said each of said
asset elements, and wherein ones of said locator elements each stores, for said

respectively related one of said asset elements, said element name signals.

Claim 9:

9. The object management system of Claim 1, wherein said management system
further includes a third memory coupled to said first memory and to said second
memory to store element type definitions, each of said element type definitions to
define a type of asset element or a type of a locator element, and wherein each of said
asset elements and each of said locator elements are associated with a respective one

of said element type definitions.

Claim 10:
10. For use with a data processing system having a memory coupled to an
instruction processor, the memory to store modules, ones of the modules storing
instructions to be executed by the processor, other ones of the modules storing data
signals to be processed by the processor, each of the modules having one or more
predefined interfaces to other ones of the modules, and each of the modules structured
as an associated predetermined software construct and being associated with one or
more tasks to be performed by the data processing system, a computer-implemented
method of managing the modules, comprising the steps of:

a.) defining as an asset element a group of data signals descriptive of a
respectively associated one of the modules, wherein said group of data signals is
indicative of the type of software construct associated with said respectively

associated one of the modules;

61

13
14
15
16
17
18
19

20

VR SR

o g o0 o W NP

WO0.-00/22518 PCT/US99/23857

b.) defining as a locator element a group of concept data signals descriptive of
a respectively associated one of the one or more tasks to be performed by the data
processing system; and

c.) defining a group of relationship signals to be included within said locator
element which are indicative of a relationship between said locator element and said
asset element, and whereby said respectively associated one of the one or more tasks
is mapped to said asset element, and is further mapped to said respectively associated

one of the modules.

Claim 11:
11. The method of Claim 10, wherein step a.) further includes defining multiple
ones of said asset elements, each storing data signals descriptive of a different

respectively associated one of the modules.

Claim 12:

12. The method of Claim 11, wherein step b.) further includes defining multiple
ones of said locator elements, each to store ones of said concept data signals being
descriptive of a different associated one of the one or more tasks to be performed by

the data processing system.

Claim 13:

13. The method of Claim 12, wherein step c.) further includes defining multiple
groups of said relationship signals, each to be included within a respectively different
one of said locator elements, each being indicative of a relationship between said
respectively different one of said locator elements and a respectively associated one of
said asset elements, and whereby the one or more tasks described by said respectively
different one of said locator elements is mapped to said respectively associated one of
said asset elements, and is further mapped to said respectively associated one of the

modules.

62

- WO 00/22518 PCT/US99/23857

o 3 o o W N < o0 ook WM

< o0 ok W

Claim 14:

14. The method of Claim 13, wherein step b.) further includes defining, for each
of said multiple ones of said locator elements, locator relationship signals indicative
of one or more relationships existing between said each of said locator elements and
one or more other ones of said locator elements, and whereby said one or more
relationships existing for each of said locator elements defines a multi-level
hierarchical tree structure wherein each of said locator elements is a node in said
multi-level hierarchical tree structure and each of said one or more relationships is a

branch in said multi-level hierarchical tree structure.

Claim 15:
15. The method of Claim 14, and further including the steps of:

(d) receiving as an input parameter a selected group of concept data signals;

(e) locating one of said locator elements that includes said selected group of
concept data signals;

() utilizing ones of said relationship signals in the located one of said locator
elements to locate said respectively associated one of said asset elements; and

(g) identifying, for said respectively associated one of said asset elements, said

respectively associated one of the modules.

Claim 16:
16. The method of Claim 14, and further including the steps of:

(d) receiving as an input parameter a selected group of concept data signals;

(e) receiving as an input parameter a selected number of levels in said multi-
level hierarchical tree structure;

(f) identifying one of said locator elements that includes said selected group
of concept data signals;

(g) identifying all of said locator elements having predetermined relationships
to the identified locator element located in step (f) and that exist not more than said

selected number of levels in said multi-level hierarchical tree structure from said

63

- WO 00/22518 PCT/US99/23857

10
11
12
13

14

o U1 ok W NN

locator element identified in step (f);

(h) locating, for each of the locator elements identified in steps (f) and (g), any
said respectively associated ones of said asset elements; and

(j) identifying, for said respectively associated one of said asset elements, said

respectively associated one of the modules.

Claim 17:
17. The method of Claim 16, wherein step (g) further includes the steps of:

(gl) providing a list of identified locator elements; and

(g2) allowing for de-selection of any of said identified locator elements in said
list, whereby said de-selection of any of said identified locator elements thereafter
prevents any of said respectively associated ones of said asset elements from being

located for a de-selected one of said locator elements.

64

PCT/US99/23857

1/20

WO 00/22518

[914 WWIHIS
| Niwav AYOLNIANI
POl (a0INIANI c0l —— €01~ INIWI13
i 4IOUNYW AYOLINIANI 13SSV
001 -~ I\ I
611 0 901 “
- 911 —vel 921
VE muuwﬁruw 3\ [S3LIT1ov3 NOILYZING3a0W — N
WILSAS 811 INIW313 | | SS300Md
INFWIOININ |l | | | STILITIOVA | | SIILITTOV A NES D O
17340 0dN3 0002 3v3A INIWI 3 NT37 ATONY
310W3 221
N\ S ALINI 44
SITLITIIYA I14133dS-NOISSIW SITLITIIYA NOWWOD
go1 0 ar1 —~ 0 I
ONIONNA IALLVELSININAY vl
NOISN3LX3 NOIIN3LX3 NOILINILX3 NOILN3LX3 s
NOISSIW NOILYZINYIAOW | [NOILYAONTY| | NOILYAON3Y (¥)ANIAOISIA INIWITI
EAIE NOILY2I 1ddv 0yN3 0002 dY3IA AN3IA0DSIA INIWIT3 5p1
N ge ~gel N pel Nzel
HINIENNOA NOWWOD
i 0 WILSAS INIWIOYNYW 133rd0

PCT/US99/23857

2/20

WO 00/22518

A N I N N NN N Y § -m -
I I vl 2 _ r8e £8
] A ~ g9z |) it -
“ “ Omm “ | “ r llllllllllllllllllllllll |“ \mmm “
m Lol |lrltlll'.wllllll—w.wnll.wallllllllln..H;..||||||||||||||||||..,“. |||||| j 212 4 PS¢ ~ +
1 N 1 1
i f SITXD¥d WOIC f SITX0¥d WOIE ¥3ISAONE
“] T E3n
! _ 7
| 'y | | | | | 182
' [937708.ND0 _ _ “ NIYH |
| Ld139S SININODWOD| | 3INION3I|| || SLNINOdWOD| | [|INOILYIIddv |
! RETRSEN LdIAIS || || INIITD 1Y | 092 | /2 “
“ f@wm 1dIy3S 1T \ Y Y
i £L2 ¥O1 INOW SI00L | o
i r62— 141938 JATLIVYILNI
|
i s3rg SN LAIER mmmu >3)14 ¥IAN3S INIITD
oA 1Y0dX3/130dNT P4 130dX3/180dN]
/
S V\ ||||||||| 7 I
“— 912]
JE 122 .
QYIHL - ve 9I4 c 9I4
EICRIGEEN cle (CER
de 9I4

r——"

319517938 M 802 ss30m¥d Y 902

| PSR | | S —

iR aRE | ve 914
viva y+02 0¥1INOD o202

PCT/US99/23857

3/20

WO 00/22518

HINYIS WIY 022 EEN N 82 9I4
g9zz | AJOLINIANI YWIHIS INTW3IT3 \
201 UL _IN3IW33 AYOLINIANI Alee
7 IN3W33 4333
ppo. A — _ _T1TC_ ! AHOW3NW
~ v 1 -eol | / N\
S3114 i Y I
130dX3/130dW1 Lovve /| 170 433N ree ! dI || dI
! .
22 Oy | y JaNIg+D | 222 wea2
L Tl T S R IX3 WIV —2e2 ! WILSAS
I |
| 0/1 3114]) t» | s82 uz;%m«uaamﬁ_
| w»zuzmm&mm ||||||||||| O [ogere Nple
7 AdL1ST93Y
| 3083 4INYIS WIV 119 | voz HS1D
N
! ' Lago 1 TYNIWY3L
| | | rmee——— - _ﬁi-!, 28e AVIdS1a
|) 1 |
I I ! . S
! T sasy N1ogn]t £8€ Cee” gee
| ! a_] m 622
1 I
. 1 - -----,-u/.-L_ / AYOW3NW
IR T | ! £ 7\
1R L ¥V 830N [T N (411)
1R anH 1, _ NDISS3S| 1] ! 43A43S NOILYWIOAINI di || dI
o NvIdfr |98 TYNYILINI
TR W X I A S /v 1soH |
“ " .l.l.llmllll.Tl. - IIIIIMNMM“ o __ Omm me\u/lw > ' 7 A}
| 1062y o | . L1y j-ese “yie HOEc WOEe

PCT/US99/23857

4/20

WO 00/22518

123rd003NOISYIAAIWYNGTAIN=]

IdAL
y0€ | dIHSNOI L¥13
ANYNIE
mﬁm\)A.._o g ~—OIt
90€ -
4310d v3710d SNOILYZIYI33dS
80€E —
~ i
IdALYIANS 1770
SiE
g1 E~ JdAL INIWI3 ﬁ \ 5 ddAl 3JLINGId1L1V
S3dALENS . 0 5 \ege 5
pie
02€ —|
SON3ILX3 1°°0 ~
dNOyo]
IdAL INIW313 [—8IE € 914
SNOISNILX3 . 'O

PCT/US99/23857

WO 00/22518

5/20

3dAL
- JdIHSNOI 1Y13Y
v 914 AYYNIE
//vom
3dAL
JdIHSNOI LYT13Y
ANYNIE
.0 .0
pOY—
SNOI1YZIYI33dS g370y v310Y
90v —1 N314100W
w@v « 0 I
80%
| 31NgIyL1Y ' INIWIT3 031 4100W
20¥
(EICERR

ddAl 31NETIJ11V

mov\L

ddA1l IN3JW33

PCT/US99/23857

6/20

WO 00/22518

S 914
<INON>
spc | INIWSLSNOD
INIVYLSN
T3INNOSY3d
YWIHIS
926~
0SS
\
JINNDOSYId.yH | 9ESN SJ
3714 EEAN
%
¥2S NOGZANOLS
pE
S3A0LS
X 3AM SYH
VISR -8vS [uniswn
H |
130 IS X3IANI

SYAVY3IONVHI

d399191

1

o

d10PId1L

L - 0PS

DIY1SVH

J1V1SAGdWI+—81S
31A3INOHddWI +—91S

AR3IA

]

——GIS

82S

33A071dWA

318v13Svd

g1 40A

AIAAIYN
2€S \ |

JO0A3XNOI S
NI

[34dSVH
AIANOT 3

0 4
—0ES

04SVH

dIdW3

— VS

AN

—0c2S

JIvdHLJIE
Z 3NOHJ
[INOHJ

AJLINNOD
ENRARN
ALID
cSdav
1S40V
WNOIW
WNLSAI 4
WN1SV1
QIdW3+

L-0SS
-01S

—80S

NWN10J

-7 0S

PCT/US99/23857

7/20

WO 00/22518

[= e e e e o e e o ———— —— e —— o —— — ——— — — —

]
_ |
9 9I4 S19—" £19~13svavivd| |NODILWIIlddv— <19
|
|
.. i 119 w19
I
129 | uuhm>m
40 G1IHD _ INIWIOYNYW
229 29 “ HvdJhdd NOI 1JYSNY1L
829 - L “ _
029 — N INGTYYA| !
|
muo:uqu SR 5] d90A mmu qyom || 919 019
! -
|
atg | °°° N\ vea| 069 | 3dAL-8ns oot
/ |
0Ol S3I1ddv c29 |
NIvWOd N / ! 09
NOILvYII1ddV I _ y °09 \
|
3IdAL-4NS /// | IN3IW3T3 IN3IW3T3
« ! 13SSY WILSAS
|
909 | IN3W313 _
d01v207 " NIYWOa
.................... oo NIVWOO NOILVIIAddY | ___ | ADOMONHIAL 1 .
4 i

| IN3IW33

PCT/US99/23857

WO 00/22518

8/20

80L —

029

ONIMI3IHI 1—024 | ONIMIIHI {—8IL
YIWNSNOD Y1 283IWWOD
1433N0D2 029 | 1d3INOJ +—029
a3xI 4 a3xId
vﬁn,/;m<u>-zuuhuﬁu mﬁm./;m<u>->HmHIH
229 qaon 229 ay0Om
v
L ONIMI3IHID 90L . SONIAVYS 0L < 39vY0130W
L 1d43IN0D 029 < 1d43IN0OD 029 < 1d32NOD

819]

NIVWOd NOILVY3JI'1ddY

SIL

WV

P29 <} INVIJVA da0AM

30Y0 130K
014 L~ 319
37891snray
229 <} QoA
oec L NwDT
029 <} 1d3INOD
L 914

PCT/US99/23857

WO 00/22518

9/20

Omw/¢H¢D INIITD SINIFWILVYLS v_quU\\mmmw
- INTYd
€19 — 3svavivad INILNO¥ENS +—0€8
/ 028
™
228\ SION3I¥I43Y SIININIAIY A8037793)__ 928
918 SINIWILVYLS NvOT SINIWILYLS MI3FHD | 018
119 — WYYO0Yd WYY00Yd — 119
1v8 NOI1v93309y NOI1v¥93¥99y
L~ _ ~™~gpg _ 908
0L S3I7ddv | _0ov8
0L S3I1ddv
01 S3I7ddV _ :
cv8 208~ SINIWILYLS MNvd v 913

cl9

NOI1v3I1ddv

PCT/US99/23857

10/20

WO 0022518

8 9I4 g8 914 91L WY
. . p29 L INVINVYA QOAM
g8 0I4 | ¥v8 OI4
0S8 ~|
3001 30W
piL a3xId 21 4. _03xid o1l 31vY
SYIA-NITLAI 4 YYIA-ALATHL J1av LSAray
229 ay0om 229 ANOA 229 < ayOA
7G8 - 2g8
80, - ONIMI3HD 90. -l SONIAVS y0L L 39vOLYOW oeL L NvOl _
029 I 1d32NOD 029 -} 1433NOD 029 1d3INOD 029 < 1d432NOD !
1v8 |
\
\\ovm 0L S317ddv |
\\\ 0L S3Iddy
0L S3I11ddy |

20L -

Dszzcm

819

NIVWOd NOI1IV3I1ddv

2vg

WO 00/22518
11/20

ELEMENT INVENTORY

PCT/US99/23857

FIG.9A |

102—" LOCATOR ELEMENTS-\\i
902-\\\~ .
ASSET ELEMENTS CONCEPT ELEMENTS |~— 904 .
912~ — ——CTTTTTTmI e |
- 931\T\\ CUSTOMER I —
NAME ; [|
CLIENTINFO N\ 194y "‘K\\\r\\ﬁ
TYPE | WHOLESALE CUSTOMER k|
SYBASETABLE 1916 }
7 ! RETAIL CUSTOMER A
930 A D
NAME : QUERY : !
CUSTDATA ! !
TYPE ! , ACCOUNT BALANCE e
ORACLETABLE :
933" : CUSTOMER INFO b
| !
| |
NAME: | | 1
CUSTACCOUNT | UPDATE :
TYPE: i ‘—J[.———_—»
CREDIT
DRACLETABLE i ._~%__ﬁ
! DEBIT —
| |
NAME - : APPLICATION CONCEPT |
L4G DOMAIN ; .
TYPE : { BANK ING |
LOGFILE e T L. S
AT . TRANSACTION |2 |
PAYROLLDEP I [
TYPE : LOG FILE | :
HVTIPXtn ! :
'936 | 1
938// . CICS i
NAME : 7! HVTIP -
LOANPAYMENT| 932 | ~__|
TYPE : ' APPLICATION CONCEPT
HVTIPXtn i DOMAIN: |

TRANSACTION

WO 00/22518 PCT/US99/23857

12/20
. FIG.9B
| 06— LEXICONT™910 08 —
VORD ELEMENTS /918 VORD VARIANT ELEMENTS
CLIENT CLIENTS T1~920
CLIENT’S ~9g22
CUSTOMER 928 CLIENTS” ™ 924
CLIENTDATAT— 926
WHOLESALE CUSTOMERS
CUSTOMER ‘S
RETAIL CUSTOMERS
CUSTINFO
CREDITED
S
CREDIT CREDITING
DEPOSITED
g
DEPDSIT DEPOSITING
DEBITED
-
DEBIT DEBITING
VITHDREV
o
W ITHDRAW VITHDRAWING
FIG.SA
HVTIP
UNISYS FIG.9B
TIP TRANSACTION}—940
FIG.9

PCT/US99/23857

13/20

. WO 00/22518

L J3W0LSND. Ol 914

L101 1d33NOD INIAYd WO 9101
,43WOLSND ITYSIIOHA., - 0101
1d3IINOD Q1IHD ONIJ'€ ., INI112..040n LOOY ya

0€6 WON 4., ¥3IWOLSNI. ANV L SINIITJ. INYIYA
N\ ,//r LO04NT 33WO1SNJ. WO¥4. INIT .,
37991 3SVEAS S1d3INOJ ANI4°2) \ayOmM L00Y ONI4 1
tJJA L fe—e{ §IWOLSNI ITYSITOHA
O4NILIN3IITD V4 B
F NN ol 1T / ..
IN3W3T3 _ VIVAINII D }—926
| y3WOLSNI mmm
371991 312v0 6 ! mﬁm\ IV/P . SINII D —v26
t3dAL ! 616 IN3ITD
T . 10—
Y1vaLSNI i v S.IN3I12}—226
A | (04N ¥3WOLSND SIN3IJ|_026
2101
INIJW3II3 8101 mn /
- ~T p101
(LAIWOLSND 3TYSITOHA.) !
LagonaarLs 30y ia3Ta5 7 | 1 SLd3INDD SAY0A 100N SINYINYA
IN3N3T3 ANV.OINI | !
43NOLSNI. LdIINDD WOdS | 1 3Svd 3003 TMONM ¥01vI07

L~ 9Y1IVALSNJ., INJWITI ONId' ¥

S13A31[2}—s6001 $73a31[_}—8001 2001

S1d3INOD DJHIu_ﬂ S1d3IINOD ONITFIS S1d3IINOD ININVd SINIID| :Ay0M HILYW
L00T 9001 v0O01 NOIYILIND HINY3S

—— - - —— - —— - = ——— ——_— —— o)

- WO 00/22518

PCT/US99/23857

START

1102~ RECEIVE AS INPUT A
F1G 114 CHARACTER STRING

Y

SEARCH ALL WORLD VARIANT
AND WORD ELEMENTS TO

] LOCATE ELEMENTS

FIG. 11B 1104 STORING THE RECEIVED
CHARACTER STRING

Y

FIG. 11 IF A MATCH IS FOUND IN A
- __| VORD VARIANT ELEMENT,
1106 TRAVERSE"OF”
RELATIONSHIP(S) TO
LOCATE RELATED WORD
ELEMENT(S)

'

PROVIDE LIST OF LOCATED

1107— WORDS TO USER TO ALLOW

REMOVAL OF UNWANTED
WORDS

Y

FOR EACH REMAINING
WORD ELEMENT IN LIST,
1108— TRAVERSE"FOR”
RELATIONSHIP TO
LOCATE RELATED
CONCEPT ELEMENT

!

PROVIDE LIST OF LOCATED
CONCEPTS TO USER TO
ALLOW REMOVAL OF
UNWANTED CONCEPTS

14/20

SEARCH OF

SIBLING

CONCEPTS
?

1110

FIND ALL SIBLING CONCEPT

ELEMENTS FOR REMAINING FIG. 11A

CONCEPT ELEMENTS IN
LIST

WO 00/22518

PCT/US99/23857

CONCEPT
?

NO

YES

1118 —T USER TO ALLOW REMOVAL

1116
N
FOR EACH LOCATED

CONCEPT LOCATE ANY
EXISTING PARENT

Y

PROVIDE LIST OF LOCATED
CONCEPT ELEMENTS TO

OF UNWANTED CONCEPTS

1120

ADDITIONAL
LEVELS OF

NO YES

HIERARCHY

1122 1124
o N 2 r !
FOR EACH LOCATED
USER SELECT YES _ | CONCEPT, LOCATE ANY
SEARCH OF CHILD EXISTING CHILD
CONCEPT CONCEPT
’ {
PROVIDE LIST OF LOCATED
N CONCEPT ELEMENTS TO
1126 —T USER TO ALLOV REMOVAL
OF UNWANTED CONCEPTS
1130 -
AN
FOR EACH REMAINING ADDITIONAL
LEVELS OF _'ES

LOCATED CONCEPT
ELEMENT IN LIST,
TRAVERSE ANY EXISTING
”APPLIED TO”
RELATIONSHIP TO FIND A
RELATED ASSET ELEMENT

HIERARCHY

1128

END

PCT/US99/23857

WO 00/22518

16/20

2l 9I4

A3ITA JIHSNOI1V13Y

J1V1ISASdW3
JINNOSH3d SYAYIHI INOHddW3
YWIHIS 330011 AIIA
P12 1~
2121
[] 3J1vaHLNIE
N 23INOHJ
glet [INOHJ
JINNOSYId . 3H c0cl~_] 33A07dW3 — ANINNDI
—
371 4 r, L 31gv13svd \ L 31V1S
g121 AlLID
Olcl 2syav
1SyAY
8021 021 TWWN1IST 4
902l — WNL1SYT
aQIdnW3
<INON> WNL1SYT WNL1SY
NWN102
INIYYLISNOD X3IANI A3

PCT/US99/23857

. WO 00/22518

17/20

AITA ALINT 44V

0cEl
L =5 2]14044S100yaAnt1dy _clel
> NP2V 139 1avd sI 311404gs100yisny — OI€I
YW3IH3S 5T /
40 Lavd SI
meﬂ
c0El
| [424suod|D1u0u10213 womﬁlb/ \\\\
aJuo | 0gXoay) 42quNN1UN0ddy
Buiyosaygmoupyil 1 p WWN103
B Buixoayji i1 sodaq
40 1avd SI
ERIFIREN zm:u¢mz<w:/ 90€ 1
40 E«m/ S1 > oe
p, 1unodoybuiyoay)
91E1l 40 1894 ST 318v1 3Svd
/~ /
S1UNO0JJyY
YWIHIS

D10

WO 00/22518 PCT/US99/23857

18/20

START

MAKE A CALL TO AIM EXE SERVICE“GET
ELEMENT TYPES“WITH THE SPECIFIED ™S 1404
ELEMENT TYPE,

v

CREATE A STORAGE STRUCTURE USING ELEMENT
TYPE DEFINITION 1

POLL USER FOR ELEMENT CONTENTS, INCLUDING
ATTRIBUTE, INFORMATION, STRING INFORMATION |
AND ELEMENT RELATIONSHIP DATA 1408

Y

CALL SERVICE"GET ELEMENT UPDATE”TO RETRIEVE
THE SPECIFIED RELATED ELEMENTS

+ — 1410

USE RETRIEVED ELEMENT DATA AND ELEMENT TYPE
DEFINITION TO VERIFY THE USER-SELECTED i~ 1412
RELATIONSHIPS

VRITE USER-SPECIFIED INFORMATION INTO
NEWLY-CREATED ELEMENT STRUCTURE AND CALL
AIM EXE SERVICE“CREATE ELEMENT”TO CREATEL 1414
THE ELEMENT STRUCTURE IN THE ELEMENT
INVENTORY

UPDATE RELATIONSHIP DATA IN RELATED ELEMENT
STRUCTURES AND CALL AIM AIM SERVICE“UPDATE |~i4g
ELEMENT “TO UPDATE THE RELATED ELEMENTS

1406

END

FIG.14

. WO 0022518 PCT/US99/23857

19/20

GET ELEMENT NAME
FROM USER | > 1502

'

MAKE A CALL TO AIM EXE
SERVICE "GET ELEMENT T\ 504
FOR UPDATE

'

RETURN COPY OF N
ELEMENT STRUCTURE 1506
TO CALLING TOOL

'

IF USER SPECIFIES A
CHANGE IN CONTENTS, | — 1508
VRITE NEW CONTENTS

TO APPROPRIATE FIELD
IN ELEMENT STORAGE s 1510

STRUCTURE

FIG.1S

VERIFY THAT A VALID
RELATIONSHIP IS BEING
CREATED FOR THIS
ELEMENT TYPE | THEN
YES CHANGE POINTER DATA

TO POINT TO
SPECIFIED ELEMENT

'

NO CALL “ GET ELEMENT FOR
1512~ UPDATE” TO RETRIEVE

ELEMENT STRUCTURE FOR

THE SPECIFIED RELATED

ELEMENT
RELATIONSHIP
BEING
CHANGED
?

ELEMENT
1516
-
Ny }
g)?g ESEAR\[/:IACLEL-SEDQIT? UPDATE THE POINTER DATA
ELEMENT "TO STORE NEW FOR THE NEWLY-RETRIEVED
ELEMENT IN ELEMENT ELEMENT TO REFLECT THE
INVENTORY NEWLY-CREATED ELEMENT
RELATIONSHIP

e
DONE 1514

. WO 00/22518
20/20

|MAKE A CALL TO AIM EXE SERVICE"GET

ELEMENT TYPES”WITH THE SPECIFIED ASSETIN
ELEMENT TYPE,

PCT/US99/23857

1604

CREATE A STORAGE STRUCTURE USING ELEMENT

1 1606

TYPE DEFINITION

POLL USER FOR ELEMENT CONTENTS, INCLUDING
ATTRIBUTES,STRING INFORMATION AND ELEMENT

DATA IN THE ELEMENT STORAGE STRUCTURE

RELATIONSHIP DATA,AND ENTER USER-SPECIFIEDT™ 1608

!

POLL USER REGARDING CREATION OF “APPLIES

!

TO"RELATIONSHIP 1610

CALL SERVICE”GET ELEMENT FOR UPDATE”TO RETRIEVE

THE SPECIFIED RELATED ELEMENTS, INCLUDING
THE RELATED CONCEPT ELEMENT THAT IS

ASSOCIATED VWITH THE ASSET ELEMENT TYPE FOR
THE NEWLY-CREATED ELEMENT

— 1612

!

DEFINITION 7O VERIFY THE USER-SELECTED

USE RETRIEVED ELEMENT DATA AND ELEMENT TYPE

RELATIONSHIPS

UPDATE THE RELATED ELEMENTS TO
CREATE THE NEW RELATIONSHIPS,
INCLUDING THE “APPLIES TO”
RELATIONSHIP IS SO SPECIFIED

Y

CALL AIM EXE SERVICE“CREATE ELEMENT”TO

A

ELEMENT IN THE ELEMENT INVENTORY

!

CALL AIM EXE SERVICE “UPDATE ELEMENT® TD
UPDATE THE RELATED ELEMENTS

END

FIG. I

- 1616

CREATE THE ELEMENT STRUCTURE FOR THE NEWPigig

L~ 1620

6

INTERNATIONAL SEARCH REPORT [ronat moomson
PCT/US 99/23857

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7 GO6F9/44

According to Intemational Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 GO6F

Documentation searched other than minimum documentation to the extent that such documents ars included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C.DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

LOCATING AND COMPREHENDING SOFTWARE
OBJECTS FOR REUSE"

PROCEEDINGS OF THE INTERNATIONAL
CONFERENCE ON SOFTWARE ENGINEERING,US,LAS
ALAMITOS, IEEE. COMP. SOC. PRESS,

vol. CONF. 13, 1991, pages 318-328,
XP000221649 ISBN: 0-8186-2140-0

Y page 321, left-hand column, line 15 -page 3,4

X FISCHER G ET AL: "COGNITIVE TOOLS FOR 1,2,8-15

3,4

323, right-hand column, line 2; figures

5-7,16,
17

Further documents are listed inthe continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents :

"A" document defining the general state of the art which is not
considered to be of particular retevance

"E" earlier document but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

0" document referring to an oral disclosure, use, exhibition or
other means

"P" document published prior to the intemnational filing date but
later than the priority date claimed

T" later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

"X" document of particular relevance; the claimed invention
cannot be considered novael or cannot be considered to
involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu~
ments, such combination being obvious to a person skilled
in the art,

"&" document member of the same patent family

Date of the actual completion of the international search

¢ March 2000

Date of mailing of the international search report

09/03/2000

Name and mailing address of the ISA

European Patent Offico, P.B. 5818 Patentiaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Bijn, K

Form PCT/ISA/210 (second sheet) (July 1992)

page 1 of 2

INTERNATIONAL SEARCH REPORT

Inte .donal Application No

PCT/US 99/23857

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication,where appropriate, ot the relevant passages

Relevant to claim No.

Y SELFRIDGE P G: "KNOWLEDGE REPRESENTATION
SUPPORT FOR A SOFTWARE INFORMATION SYSTEM"
PROCEEDINGS OF THE CONFERENCE ON
ARTIFICIAL INTELLIGENCE
APPLICATIONS,US,NEW YORK, IEEE,

vol. CONF. 7, 1991, pages 134-140,
XP000298890 ISBN: 0-8186-2135-4

A page 135, right-hand column, Tine 24 -page
139, left-hand column, line 10

A PREMKUMAR DEVANBU ET AL: "LASSIE: A
KNOWLEDGE-BASED SOFTWARE INFORMATION
SYSTEM"

PROCEEDINGS OF THE INTERNATIONAL
CONFERENCE ON SOFTWARE ENGINEERING,US,LOS
ALAMITOS, IEEE COMP. SOC. PRESS,

vol. CONF. 12, 1990, pages 249-261,
XP000293780 ISBN: 0-8186-2026-9

page 253, right-hand column, line 4 —page
258, right-hand column, 1ine 33

A US 5 632 022 A (BECKMAN BRIAN C ET AL)
20 May 1997 (1997-05-20)

column 3, line 60 —-column 4, line 62
column 5, Tine 55 -column 6, line 35

3,4

1,2,5-17

1-17

1-17

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

page 2 of 2

INTERNATIONAL SEARCH REPORT

nformation on patent family members

Inter >nal Application No

PCT/US 99/23857

Patent document Publication Patent family Publication
cited in search report date member(s) date
US 5632022 A 20-05-1997 NONE

Form PCT/ISA/210 (patent family annex) (July 1992)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

