
(19) United States
US 20090254518A1

(12) Patent Application Publication (10) Pub. No.: US 2009/0254518 A1
El-Sabbagh (43) Pub. Date: Oct. 8, 2009

(54) METHODS AND SYSTEMS FOR JOINING
DATABASE TABLES USING INDEXING DATA
STRUCTURES

(76) Inventor: Alan El-Sabbagh, Jounieh (LB)

Correspondence Address:
CHERNOFF, VILHAUER, MCCLUNG & STEN
ZEL, LLP
601 SW Second Avenue, Suite 1600
PORTLAND, OR 97204-3157 (US)

(21) Appl. No.: 12/387,392

(22) Filed: Apr. 30, 2009

Related U.S. Application Data

(63) Continuation of application No. 1 1/234.407, filed on
Sep. 23, 2005.

1 OO6

DATABASE MANAGEMENT
SYSTEM

1002

Publication Classification

(51) Int. Cl.
G06F 7/30 (2006.01)

(52) U.S. Cl. 707/2; 707/102; 707/E17.054;
707/101: 707/E17.005; 707/100

(57) ABSTRACT

A method for identifying joined rows in a database compris
ing a plurality of tables. The method comprises selecting a
group of tables directly or indirectly joined with each other,
selecting an order of the group based on relationships among
the tables, generating an intermediate data structure which
identifies the group of tables, a number of virtual tables equal
to one less than the number of tables in the group, and an
indication of an adjacent table, and a common table and key
for at least some of the group of tables and the virtual tables,
generating indexing data structures for the group of tables and
virtual tables, and, inserting information from rows of the
group of tables into the indexing data structures using the
intermediate data structure. The indexing data structure for
one virtual table indicates which of the rows of the tables have
common data elements.

1OOO

ROW
NSERTON
SYSTEM

ROW
DELETON
SYSTEM

BJoinTree
CREATION
SYSTEM

BoinTrees

Patent Application Publication Oct. 8, 2009 Sheet 1 of 36 US 2009/0254518 A1

Alpha 102. 102, 102, 102. 102, 104
2 a a c e s

100-N- 0 | | | | -/
106

Figure 1A

Beta 102, 102 102

106

100 N.

1OON

100-N
1 OON

Figure 1B

Gamma 102 102. 102. 102,
2 s a - ice

Figure 1C

US 2009/0254S18A1 Oct. 8, 2009 Sheet 2 of 36 Patent Application Publication

US 2009/0254518 A1 Oct. 8, 2009 Sheet 3 of 36 Patent Application Publication

Figure 2D

Figure 2E

Patent Application Publication Oct. 8, 2009 Sheet 4 of 36 US 2009/0254518 A1

Figure 2G

US 2009/0254S18A1 Oct. 8, 2009 Sheet 5 of 36 Patent Application Publication

\/9 ?un61-·
ÁgduuÐ s? EnEno I??un

US 2009/0254S18A1 Oct. 8, 2009 Sheet 6 of 36 Patent Application Publication

gº ?un61-I

penu??uoo) uuu???JObIV ?SITUÏ?edu?OT

US 2009/0254S18A1 Oct. 8, 2009 Sheet 7 of 36 Patent Application Publication

O€ 3.Infil

p?ñ????O5) uuu??uobIV ?s! Tuqedu?OT

US 2009/0254S18A1 Oct. 8, 2009 Sheet 8 of 36 Patent Application Publication

CJC ?un61

Patent Application Publication Oct. 8, 2009 Sheet 9 of 36 US 2009/0254S18A1

OUEUE PATH

- -
Figure 4A

OUEUE PATH

Alpha Alpha ,
Figure 4B

OUEUE PATH
Alpha Alpha

300- -302
Figure 4C

OUEUE PATH
Alpha

3OO -302
Figure 4D

OUEUE PATH

300

Figure 4
OUEUE

Beta 300

Figure 4G

Patent Application Publication Oct. 8, 2009 Sheet 10 of 36 US 2009/0254518 A1

Adjacent
Table

Alpha

Figure 5D

Patent Application Publication Oct. 8, 2009 Sheet 11 of 36 US 2009/0254518 A1

Figure 5E
ADJACENT LIST

Adjacent Common
Table Table Ke

als as a an upon is a sess as a a a manan a s as a reas as as as as - - - a was - - - -

Figure 5F
6.2LSI............APJACENTIST........

Adjacent Common
Table Table Ke

Figure 5G
ADJACENTIST.......

Adjacent Common
Table Table Ke

Figure 5H

Patent Application Publication Oct. 8, 2009 Sheet 12 of 36 US 2009/0254518 A1

Adjacent Common
Table Table Key

Figure 5
404 400

“...ISI. a laa a -a - a ADJACENTIST... Adjacent Common
Table Table Key

Gamma Alpha

Figure 5J
ADJACENT LIST

Adjacent Common
Table Table Key

Patent Application Publication Oct. 8, 2009 Sheet 13 of 36 US 2009/0254518 A1

NODES ADJACENT LIST
Adjacent siri-----------
Table Table Ke

Gamma

Figure 5L
ADJACENT LIST

Adjacent Common
Table Table Key

Gamma

404 Figure 5M
ADJACENT LIST

Adjacent Common
Table Table Key

Gamma

Patent Application Publication Oct. 8, 2009 Sheet 14 of 36 US 2009/0254518A1

502

Figure 6A

BUF2
Table

502

T , Alpha
Gamma

Figure 6B

502 BUF2
Table Key

T , Alpha
Gamma

Figure 6C

Patent Application Publication Oct. 8, 2009 Sheet 15 of 36 US 2009/0254518 A1

502

500
5O2 504

T oR,
Figure 6E 400

a a as a a - a -a - a via al- ADJACENT LIST

---s-s-a-Adjacent Common “finefited
Table Table Key Table Key

Gamma Alpha

Alpha

Figure 6F
BUF2 500

Table Key
504

T R Alpha

Figure 6G

US 2009/0254S18A1 Oct. 8, 2009 Sheet 16 of 36 Patent Application Publication

V/ Qun61–

US 2009/0254S18A1 Oct. 8, 2009 Sheet 17 of 36 Patent Application Publication

g/. ?Jnfil

'L ?Iqe? uuou, “º Mou ???

uuu??uObIV/ Quº Sul

US 2009/0254S18A1 Oct. 8, 2009 Sheet 18 of 36 Patent Application Publication

O/. ?un61-I

("sÁøy, '(º L)331 L,g)KaxixeN

uuu??uobIV AÐXu?OTppV

US 2009/0254S18A1 Oct. 8, 2009 Sheet 19 of 36 Patent Application Publication

q/ enfil

| 'L ?Iqe? uuou, “º Mou e?

O? ?A??e?au ?ue 'dQ pue'sÁÐy?p???ue?ul “sÁÐy? je?? ao??ON

Uu???JODIVÝ ??ÐIÐCI

EL ?Inôl

US 2009/0254S18A1

uuu??uob IV A3xAu?OTI?CI

Patent Application Publication

Patent Application Publication Oct. 8, 2009 Sheet 21 of 36 US 2009/0254518 A1

608

Employee id

EMai

Phone Numbere-Employees
Hire Date

6O2 612

Department d Has Country id

Department Name
Departments Country Na The Countries

Manager id

Location id Street Address
606

Postal Code

Locations secrats Located

State Province
61O

Figure 8

Patent Application Publication Oct. 8, 2009 Sheet 22 of 36 US 2009/0254518 A1

? 602
Employees

EMPLO PHONE HIRE OP Art
NAME EMAIL NUMBER dAT JCBD SALARY MENt

to era elemen o le

to acade-eeeeeee
4 lose-eeeeeee so a

Figure 9A
? 604

Job History
EMPLOYEED START DATE END DATE JOBD DEPARTMENT D

12/16/1998 12/15/1999 AC AUD

05/16/1999 05/15/2001 | AC AUD

12/16/1999 12/15/2001 SA REP

Figure 9B
606

Departments ?
Department d Department Name Manager d Location d

Figure 9C

Patent Application Publication Oct. 8, 2009 Sheet 23 of 36 US 2009/0254518 A1

608
Jobs ?

JOB ID JOB TITLE MIN SALARY MAX SALARY

4. SA REP Sales Representative 3OOOO 40000

Figure 9D
? 61 O

Locations
STREET ADDRESS

1000 22220 Cochrane Drive V6V 29

1010 Calle Sermiento 62547 Guadalajara Baja e
numero 300

a to redes even as rese Toulouse Moyenne
Figure 9E

? 612
Coutries

Country d Country Name

Figure 9F

Patent Application Publication Oct. 8, 2009 Sheet 24 of 36 US 2009/0254518 A1

Employees

Job d

Employees

Locations

Job History

Jobs Job History

Departments

Locations

Figure 9G Y-800

Countries Country id

Employees

Departments

Figure 9H 800

Patent Application Publication Oct. 8, 2009 Sheet 25 of 36 US 2009/0254518 A1

Common inherited
Adjacent Table Table Ke Table Ke

Employees Job. History Employees Employee d Employees Department id

Departments Erly Departments Department d Location ld
Employees

obs Job. History Jobs Job (d
Departments
Employees
Job. History

A. Locations Departments
Jobs

Employees
wif Job. History
it 5 Countries Departments Countries Country id
- obs

Locations
vid

is E,
Employees

O 7 Job History Jobs Job. History Job lod Departments location_ld
- Departments

Employees
Job History
Departments

Jobs |- Departments location ld Employees
Job. History

s Departments Countries Locations Country d
Jobs

Locations

Employees Job. History
Departments Jobs
Locations Countries

Adjacent List
10

Figure 9 Y-goo

Patent Application Publication Oct. 8, 2009 Sheet 26 of 36 US 2009/0254518 A1

O Employees Job. History Employees Employeed Smployees Department id
- -

Keys inherited Keys

Figure 10A

PHONE HIRE OEPART
NUMBER JOB ID SAARY Ment d

O 233-4268 2021998 60000

Keys Row R. inherited
Keys

Figure 10B

B*Tree(T) map 101 FIN

Figure 10C

Patent Application Publication Oct. 8, 2009 Sheet 27 of 36 US 2009/0254518 A1

- -

Keys inherited Keys
Figure 11A

EMPLOYEED START DATE END DATE JOBD DEPARTMENTD
DP

Keys Row R. inherited
us Kevs Figure 11B y

Figure 11C
EMPLOYEES

JOB HISTORYT, EMPLOYEES "k - JOB HISTORY "k

- l

Keys inherited Keys

Figure 11 D

street. --
Figure 11E

Patent Application Publication Oct. 8, 2009 Sheet 28 of 36 US 2009/0254518 A1

Keys Inherited Keys

Figure 12A

STREET ADDRESS

Keys Row R. inherited
Figure 12B Keys

Figure 12C

Patent Application Publication Oct. 8, 2009 Sheet 29 of 36 US 2009/0254518 A1

- -

Keys inherited Keys
Figure 13A

Deparment d Department Name Location Id

a Depaments Ely Department d Departments Location ld

O FN FINANCE 101 1OOO

Keys Row R, inherited
Figure 13B Keys

Figure 13C

EMPLOYEES
JOB HISTORY IT

EMPLOYEES
DEPATMENTST. JOB HISTORY "k a-mm

DEPARTMENTS

Employees
7 Job History Jobs Job. History Jobid Departments Location d

Departments

- -

Keys inherited Keys

Figure 13D

Figure 13E

ik

Patent Application Publication Oct. 8, 2009 Sheet 30 of 36 US 2009/0254518 A1

Employees
3 Jobs Job. History Jobs Job Id

Departments

Keys inherited Keys
Figure 14A

JOB ID JOB TITLE MIN SALARY MAX SALARY

Dr. AC AUD Accounting Auditor 3OOOO 6OOOO

Keys Row R.

Figure 14B

Figure 14C

EMPLOYEES
JOB HISTORY
DEPARTMENTS ik

EMPLOYEES
JOB HISTORY IT --> JOBS T. k

"DEPARTMENTS
Employees
Job History
Departments Locations Departments Location ld

Jobs

Keys Inherited Keys
Figure 14D

stretto -ele
Figure 14E

JOBS

Patent Application Publication Oct. 8, 2009 Sheet 31 of 36 US 2009/0254518 A1

EMPLOYEES EMPLOYEES

Employees
Job. History
Departments

Jobs
Locations

JOB. HISTORY OSCR DEPARTMENTS 'i LOCATIONS ". - DEPARTMENTS ik
JOBS JOBS

LOCATIONS

- -

Keys Inherited Keys
Figure 14F

street. --
Figure 14G

Patent Application Publication Oct. 8, 2009 Sheet 32 of 36 US 2009/0254518 A1

Employees
Job. History
Departments Countries Country id

Jobs
locations

- -

Keys Inherited Keys
Figure 15A

Country d Country Name
DP,
O Ca Canada

Keys Row R.
Figure 15B

Figure 15C
EMPLOYEES EMPLOYEES
JOB HISTORY
DEPARTMENTS

JOBS ik
LOCATIONS

JOB HISTORY
coUNTRIES IT, DEPARTMENTST. - .

JOBS k

Employees Job History
1C Departments Jobs

Locations Countries

LOCATIONS
COUNTRIES

Keys Inherited Keys

Figure 15D

street -
Figure 15E

Patent Application Publication Oct. 8, 2009 Sheet 33 of 36 US 2009/0254518 A1

B+Tree(TO)

to to ace to Isa.
O4 ACC . 1OS SAL

Figure 16A
B*Tree(T,)

101 ACAUD

B*Tree(T,) Figure 16B

ace too in to sal to
Figure 16C

B*Tree(T)

Figure 16F

Patent Application Publication Oct. 8, 2009 Sheet 34 of 36 US 2009/0254518A1

B*Tree(T)

B*Tree(T)

o ACAUD tOOO ACLAUD 1020 ACAUD 1010

Figure 16G

Figure 16H
B*Tree(T)

cool to so too too so too
Figure 16

B*Tree(T)

B*Tree(T)

oo::close
N-N-

90 2
Figure 16K

Figure 16J

Patent Application Publication Oct. 8, 2009 Sheet 35 of 36 US 2009/0254518A1

1 OOO

1 OO6 1012

1013

DATABASE MANAGEMENT ROW
SYSTEM NSERTION

SYSTEM

ROW
DELETON
SYSTEM

1004 1014

BJoinTree a

CREATION BJoinTrees
SYSTEM

1 OO8
1010

1002

1017

QUERY QUERY
SYSTEM ANSWER

SET 1016

1018
Figure 17

Patent Application Publication Oct. 8, 2009 Sheet 36 of 36 US 2009/0254518A1

JON
SEOUENCE 1 O20

as so u rur ou a so or un up ur a sea a mass - no us - - - - - - - - - - -

PATH
GENERATOR

1 O25

1022

DATABASE 1026
Join Path List
GENERATOR

1 O2

1028
BJoinTree
GENERATOR

1030

was so was a as a par as a m as a as m r vs - r art

BjoinTrees

1010

Figure 18

US 2009/0254518 A1

METHODS AND SYSTEMIS FOR JOINING
DATABASE TABLES USING INDEXING DATA

STRUCTURES

REFERENCE TO RELATED APPLICATION

0001. This application is a continuation of application Ser.
No. 1 1/234407 filed on 23 Sep. 2005 which is hereby incor
porated herein by reference.

TECHNICAL FIELD

0002. The invention relates to databases, and to methods
and systems for implementing join operations within index
ing data structures such as, for example, B"Trees.

BACKGROUND

0003. A database may comprise a set of tables, each table
having one or more columns and a plurality of rows. Each
table may be indexed using a B-Tree. A B-Tree is a tree data
structure which can be used to identify selected rows of a
single table based on certain keys. The time required to insert,
delete or search for keys in a B-Tree varies logarithmically
with the number of data elements in the B-Tree.

0004 Some databases employ a variation of the B-Tree
known as a B"Tree. A B*Tree differs from a standard B-Tree
in that all row identifiers are stored in the leaves of a B"Tree.

0005 Databases often include a number of related or
joined” tables. Two tables are joined if each of the tables

includes one or more columns that are related to correspond
ing columns in the other one of the tables. When such a
database is queried to locate all rows having a particular data
element (referred to as a “key'), some prior art systems
execute a join for all of the tables of the database to produce
a join table. A join is an operation wherein all of the rows of
all of the tables of the database are scanned to identify rows
containing the key specified by the query. Performing join
operations can be time consuming.
0006 Performance has been always a challenge for rela
tional database systems. A major problem with relational
database systems is that a good relationship Schema requires
many tables having columns in common between them.
Accordingly, it is often necessary to calculate many joins to
execute queries.
0007. A database administrator typically spends a lot of
time to tune the structure of a database to permit queries to be
executed efficiently. In order to reduce the number of joins
required to execute queries, some database schemas avoid the
use of normal forms such as the Boyce-Codd normal form
(BCNF). One prior art example of such a schema is known as
the “Star Schema'. The Star Schema was developed to sim
plify joins. A database organized according to the Star
Schema typically has one main table or “fact table', and a
plurality of other tables or “dimension tables' which are each
in direct join with the fact table.
0008 Another example of a prior art system for dealing
with joins is the bitmap join index originated by the Oracle
Corporation of Redwood Shores, Calif. A bitmap join index
has pre-joined the tables. Queries can quickly retrieve row ID
lists of matching table rows in all tables by consulting the
bitmap join index. Some restrictions on using the bitmap join
index include:

Oct. 8, 2009

0009 indexed columns must be of low cardinality;
0010 SQL queries must not have any references in their
WHERE clauses to data columns that are not contained in the
index; and,
0011 updating bitmap join indexes involves substantial
overhead. In practice, bitmap join indexes are typically rebuilt
each evening to incorporate data changes made by daily batch
load jobs. Accordingly, bitmap join indexes may be unsuit
able for databases that are modified during the processing
day.
0012. The inventor has developed efficient systems to
make join tables available for a database without the need to
calculate them each time the database is queried, and without
avoiding the use of normal forms or limiting the number of
distinct values in the columns of the tables.

SUMMARY

0013 The following embodiments and aspects thereofare
described and illustrated in conjunction with systems, tools
and methods which are meant to be exemplary and illustra
tive, not limiting in Scope.
0014. One aspect of the invention provides a method for
identifying joined rows in a database comprising a plurality of
tables. The method comprises selecting a group of tables from
the plurality of tables, each table of the group of tables being
directly or indirectly joined with each of the other tables in the
group of tables, selecting an order of the group of tables,
generating an intermediate data structure comprising infor
mation identifying each of the group of tables, a number of
virtual tables equal to one less than a number of tables of the
group of tables, each virtual table comprising information
identifying two or more of the group of tables, and an indi
cation of an adjacent table, a common table and a common
key for at least some of the group of tables and the virtual
tables, generating an indexing data structure for each of the
group of tables and virtual tables, and, inserting data pointers
and data elements from rows of the group of tables into the
indexing data structures using the intermediate data structure.
The tables may be ordered based on relationships among the
group of tables. The indexing data structure for one of the
virtual tables indicates which of the rows of the group of
tables have common data elements.
0015. Another aspect of the invention provides a database
system comprising a database having a plurality of tables
stored therein, a database management system for modifying
the database, a B'Tree creation system for creating at least
one B'"Tree, the at least one B'"Tree comprising an index
ing data structure that indicates which of the rows of tables of
the database have common data elements, a row insertion
system configured to receive a row insertion signal from the
database management system upon insertion of a row into a
table of the database for updating the at least one B'"Tree to
reflect the inserted row, a row deletion system configured to
receive a row deletion signal from the database management
system upon deletion of a row into a table of the database for
updating the at least one B'"Tree to reflect the deleted row,
and, a query system for scanning the B'"Tree for the index
ing data structure that indicates which of the rows of tables of
the database have common data elements and for retrieving
rows of tables from the database which satisfy a join condi
tion specified in a query using the indexing data structure to
provide an answer set.
0016. Another aspect of the invention provides a computer
readable medium carrying data structures for facilitating

US 2009/0254518 A1

execution of queries of a database comprising a plurality of
tables. The data structures comprise a relation-indicating data
structure comprising names of a group of tables from the
plurality of tables, each table of the group of tables being
directly or indirectly joined with each of the other tables in the
group of tables, a number of virtual tables equal to one less
than a number of tables of the group of tables, and, an indi
cation of an adjacent table, a common table and a common
key for at least some of the group of tables and the number of
virtual tables. The data structures also comprise an indexing
data structure for each of the group of tables and the number
of virtual tables, the indexing data structure for a last of the
virtual tables indicating which of the rows of the group of
tables have common data elements.
0017. In addition to the exemplary aspects and embodi
ments described above, further aspects and embodiments will
become apparent by reference to the drawings and by study of
the following detailed descriptions.

BRIEF DESCRIPTION OF DRAWINGS

00.18 Exemplary embodiments are illustrated in refer
enced figures of the drawings. It is intended that the embodi
ments and figures disclosed herein are to be considered illus
trative rather than restrictive.
0019. In drawings which illustrate non-limiting embodi
ments of the invention:
0020 FIGS. 1A-C illustrate three example base tables:
0021 FIG. 2A shows pseudo-code for an example algo
rithm for creating a JoinGraph;
0022 FIGS. 2B-F illustrate steps involved in creating a
JoinGraph for the example tables of FIGS. 1A-C:
0023 FIG. 2G is a graphical representation of the Join
Graph of FIG.2F:
0024 FIGS. 3A-C show pseudo-code for an example
algorithm for creating a JoinPathI list;
0025 FIG. 3D shows pseudo-code for an example algo
rithm for determining a common table and key for two input
tables;
0026 FIGS. 4A-G illustrate steps for creating a path from
the JoinGraph of FIG. 2F:
0027 FIGS.5A-N illustrate steps for creating a JoinPath
List for the tables of FIGS. 1A-C based on the JoinGraph of
FIG. 2F;
0028 FIGS. 6A-G illustrate steps for adding inherited
tables and keys to the JoinPathlist of FIG. 5N:
0029 FIG. 7A shows pseudo-code for an example algo
rithm for creating B"Trees for a B'Tree:
0030 FIG. 7B shows pseudo-code for an example algo
rithm for inserting information from a row of a table into a
B'Tree;
0031 FIG. 7C shows pseudo-code for an example recur
sive algorithm called by the algorithm of FIG. 7B;
0032 FIG. 7D shows pseudo-code for an example algo
rithm for deleting information from a row of a table from a
B'Tree;
0033 FIG. 7E shows pseudo-code for an example recur
sive algorithm called by the algorithm of FIG. 7D;
0034 FIG. 8 shows an example relationship schema com
prising a plurality of base tables;
0035 FIGS. 9A-F show the base tables of the FIG. 8
example;
0036 FIG.9G shows a JoinGraph for the base tables of
FIGS. 9A-F;

Oct. 8, 2009

0037 FIG. 9H is a graphical representation of the Join
Graph of FIG.9G:
0038 FIG.91 shows a JoinPathList for the base tables of
FIGS. 9A-F;
0039 FIGS. 10A-C illustrate steps for inserting informa
tion from the first row from the table Employees of FIG. 9A
into a B'Tree;
0040 FIGS. 11 A-E illustrate steps for inserting informa
tion from the first row from the table Job History of FIG.9B
into a B'Tree;
0041 FIGS. 12A-C illustrate steps for inserting informa
tion from the first row from the table Locations of FIG. 9E
into a B'Tree;
0042 FIGS. 13 A-E illustrate steps for inserting informa
tion from the first row from the table Departments of FIG.9C
into a B'Tree;
0043 FIGS. 14A-G illustrate steps for inserting informa
tion from the first row from the table Jobs of FIG. 9D into a
B'Tree;
0044 FIGS. 15A-E illustrate steps for inserting informa
tion from the first row from the table Countries of FIG.9F into
a B'Tree;
004.5 FIGS. 16A-K show completed B'Trees of a B.'"
Tree after information from all of the rows of the tables of
FIGS. 9A-F have been inserted;
0046 FIG. 17 shows a database system for creating and
updating B' "Trees according to one embodiment of the
invention; and,
0047 FIG. 18 shows an example B'Tree creation sys
tem for the database system of FIG. 17.

DESCRIPTION

0048. Throughout the following description specific
details are set forth in order to provide a more thorough
understanding to persons skilled in the art. However, well
known elements may not have been shown or described in
detail to avoid unnecessarily obscuring the disclosure.
Accordingly, the description and drawings are to be regarded
in an illustrative, rather than a restrictive, sense.
0049. The invention provides methods and systems for
managing databases having tables which have one or more
related columns. Such tables are referred to as being in “direct
join' with one another. Direct joins may be specified by a
database administrator who defines the tables and columns
for the database. Also, a direct join between two tables may
Sometimes be specified by a query which is used to search for
a correlation between two differently-named columns. The
two differently-named columns may be from different tables,
in which case those tables are considered to be in direct join
for the purpose of the query, or may be from the same table, in
which case that table is said to be in “selfjoin.” A table in self
join may be considered as two tables in direct join for the
purpose of the query, as described further below. Two tables
which are in direct join are said to be “adjacent tables”. Some
embodiments of the invention provide methods for identify
ing rows from a group of tables which have common data
elements, which are referred to as rows in join or joined
rows'.

0050. Each table in a database has a name that identifies
the table. It is to be understood that the names used in methods
and systems according to the invention need not be the same
as the names, if any, given to the tables by a database admin
istrator. All that is required for a table's name is that, given the
name, the table may be unambiguously identified.

US 2009/0254518 A1

0051 Methods according to some embodiments of the
invention comprise selecting a group of tables in join and
ordering the tables in the group. The tables may be ordered
based on relationships among the tables. Such a method gen
erates an intermediate or relation-indicating data structure
comprising the group of tables, a number of virtual tables
equal to one less than the number of tables in the group, and
an indication of adjacent tables and common columns for at
least some of the group of tables and the virtual tables. Data
pointers and data elements from rows of the group of tables
are inserted into indexing data structures, using the interme
diate data structure, to indicate which of the rows of the subset
of tables have common data elements. The following descrip
tion includes examples of how one embodiment of Such a
method may be implemented, but it is to be understood that
Such methods could be implemented using different steps.
0052 Systems according to some embodiments of the
invention produce data structures referred to herein as “B'-
Trees” from which rows having one or more data elements in
common with each other (joined rows') may be readily
identified. One embodiment of the invention provides a
method for producing a B'"Tree by the following steps:
0053 1. Generate a JoinGraph from the tables which are in
direct join with one another.
0054 2. Generate a JoinPathlist from the tables and their
adjacent tables and keys in the JoinGraph.
0055 3. Insert data pointers and data elements such as
keys and inherited keys from rows of the tables into indexing
data structures such as B"Trees driven by the JoinPathlist.
0056. Each of the above steps are explained in detail in the
following description.
0057 FIGS. 1A-C show three example tables, Alpha, Beta
and Gamma. Each table comprises a plurality of rows 100 and
columns 102. Each row 100 has a data pointer 104 associated
therewith. Each data pointers 104 may comprise information
which identifies the associated row 100 of that table. Data
pointers 104 may comprise row numbers for rows 100 of their
respective tables, or may comprise other information which
may be used to identify the associated rows 100. Data ele
ments 106 are stored in rows 100 under each column 102.
Columns 102 may be used to index the tables, and are some
times referred to as “keys”. In some situations, two or more
columns may together comprise a key. Tables Alpha, Beta and
Gamma are referred to hereinas “base tables'. Base tables are
database objects whose structure and the data elements they
contain are stored in electronic memory, another computer
readable storage medium, or other data storage means.
0058 Base tables Alpha and Beta do not have any com
mon or related columns, so these tables are not in direct join.
Base tables Alpha and Gamma are in direct join with each
other, because they both include column 'A'. Base tables
Beta and Gamma are also in direct join with each other,
because they both include column “G”. Thus, Alpha and
Gamma are adjacent tables, as are Beta and Gamma. Tables
Alpha and Beta are not adjacent, but are indirectly joined
because each is in direct join with table Gamma. It is to be
understood that two tables need not have columns with the
same name to be in direct join. For example, two tables may
be in direct join if they contain related columns, as specified
by the database administrator or a query.

Generating a JoinGraph

0059 A JoinGraph is a data structure which indicates
which of the base tables in a database, or which of the base

Oct. 8, 2009

tables in a Subset of tables in a database, are adjacent to one
another. Each base table identified in a JoinGraph is in direct
join with at least one other table in the JoinGraph. Each of the
base tables in a JoinGraph is either directly or indirectly
joined with every other table in the JoinGraph.
0060 A JoinGraph may be represented graphically, with
each of the base tables represented by a vertex or node of the
graph, and an edge connecting each pair of tables in direct
join. Alternatively, a JoinGraph may be represented as a
linked list comprising a nodes list, which lists the base tables
as vertexes of the JoinGraph, and an adjacent list, which lists
all of the adjacent tables for each vertex of the JoinGraph.
0061. A JoinGraph may also specify, for each adjacent
table, a key which it shares with the associated base table. The
key may identify one or more columns shared between the
base table and its adjacent table. A JoinGraph may be gener
ated, for example, by the following method:
0062 1. Insert the names of the base tables into the nodes
list as vertexes of the JoinGraph.
0063. 2. For every direct join between 2 tables T, and T:
0064 a. insert the name of table T in the adjacent list for
table T, followed by the name of the key (which may com
prise one or more columns) of T, which is shared by T, which
is referred to as the common key between T, and T, and,
0065 b. insert the name of table T in the adjacent list for
table T, followed by the common key between T and T.
FIG. 2A shows example pseudo-code of an algorithm for
generating a JoinGraph. In the pseudo-code of FIG. 2A,
"DBA stands for database administrator, and refers to the
person or persons responsible for setting up the database and
defining the columns of the various base tables, as well as the
joins between the tables.
0.066 FIGS. 2B-F show the creation of an example Join
Graph 200, comprising nodes list 202 and an adjacent list 204.
JoinGraph 200 is useful in constructing a JoinPathlist for the
base tables Alpha, Beta and Gamma, as discussed below.
0067. The first step in generating JoinGraph 200 com
prises inserting the names of the base tables as nodes list 202
of JoinGraph 200, as shown in FIG. 2B. Next, the names of
the base tables in direct join with each base table in nodes list
202 are inserted in adjacent list 204. As shown in FIG. 2C, the
name of base table Gamma is inserted in adjacent list 204 as
an adjacent table to base table Alpha, along with the name of
the common key “A” between Alpha and Gamma. Likewise,
as shown in FIG. 2D, the name of base table Alpha is inserted
in adjacent list 204 as an adjacent table to base table Gamma,
along with the commonkey 'A' between Gamma and Alpha.
As shown in FIG. 2E, the name of base table Gamma is
inserted in adjacent list 204 as an adjacent table to base table
Beta, along with the common key “G” between Beta and
Gamma. As shown in FIG. 2F, the name of base table Beta is
inserted in adjacent list 204 as an adjacent table to base table
Gamma, along with the common key “G” between Gamma
and Beta. FIG. 2G shows a graphical representation of Join
Graph 200 of FIG. 2F. It is to be understood that JoinGraph
200 may comprise any structure that indicates the relation
ships shown in FIG. 2G.

Generating a JoinPathlist
0068 A JoinPathlist is a data structure which is based on
a plurality of joined base tables. A JoinPathList may be cre
ated for any group of base tables wherein each of the tables is
directly or indirectly joined with every other table in the
group. A JoinPathlist may comprise an intermediate data

US 2009/0254518 A1

structure or a relation-indicating data structure in some
embodiments of the invention. The group of tables used to
form a JoinPathlist may comprise all of the base tables in a
database, or some subset of the base tables in a database. Such
a group of base tables is sometimes referred to as a join
sequence' (although the order of the base tables in a join
sequence is not important). A JoinPathlist also includes at
least one virtual table. A virtual table is a table whose contents
identify two or more base tables. A virtual table may be made
up of the names of two or more base tables. A virtual table
may be named for the base tables identified by the virtual
table (although it is to be understood that different names
could be assigned to virtual tables without departing from the
spirit or scope of the invention). A JoinPathList may be used
to identify joined rows of the base tables in the join sequence,
as described below.
0069. A JoinPathList may comprise a nodes list and an
adjacent list. The nodes list lists all of the base tables of the
join sequence as vertexes of the JoinPathlist. The nodes list
also lists as vertexes a number of virtual tables equal to one
less than the number of base tables (i.e., if there are n base
tables there are n-1 virtual tables, such that the nodes list
contains a total of 2n-1 vertexes). The adjacent list may com
prise, for each vertex in the nodes list, the name of an adjacent
table, the names of a common table and a commonkey for that
Vertex (if any), and the names of an inherited table and an
inherited key for that vertex (if any). The adjacent list for the
last vertex may be empty. Not all vertexes necessarily have an
inherited table and an inherited key.
0070. Some base tables may include two or more different
columns that reference each other. Such base tables are said to
be in “self join'. When a base table is in self join, the base
table may be treated as two separate tables, with one base
table indexed by one of the two columns, and the other base
table indexed by the other of the two columns. When a name
is given for a table in a query, that name may be used instead
of the table's real name. Accordingly, a self join may be
specified by a query which looks for correlations between two
columns of the same table, in which case the two names for
the table given in the query may be used.
0071. A JoinPathlist may be generated in three steps.
First, a path is constructed from the JoinGraph, the path
comprising an ordered list of all the base tables in the join
sequence. Second, a nodes list and an adjacent list for the
JoinPathiList are generated. Third, the names of inherited
tables and inherited keys are inserted into the adjacent list.
0072 A path may be constructed for a join sequence of
base tables To . . . T., of a JoinGraph, for example, by the
following method:
0073 1. Create 2 auxiliary data structures. The auxiliary
data structures may comprise dynamic structures such as
dynamic arrays, linked lists or dynamic collections, or alter
natively may comprise static data structures (although if static
data structures are used, the size of the static data structures
must be selected to accommodate all of the base tables in the
join sequence). In the illustrated example, the auxiliary data
structures comprise two dynamic arrays named “QUEUE'
and "PATH'. However, it is to be understood that the names
chosen for the auxiliary data structures do not affect the
operation of the method. QUEUE may be referred to as a “first
auxiliary data structure. PATH may be referred to as a “sec
ond auxiliary data structure.”
0074 2. Insert To (which may be any arbitrarily selected
table from the join sequence) into PATH.

Oct. 8, 2009

0075 3. Insert To into QUEUE.
0076 4. Designate the first element in QUEUE as T.
0077 5. For each adjacent table in the adjacent list of the
JoinGraph for T., if the adjacent table is one ofTo...T.
and the adjacent table is not already contained in PATH:
0078 a. insert the name of the adjacent table into PATH;
and,
(0079 b. insert the name of the adjacent table into QUEUE.
0080) 6. Remove T from QUEUE.
I0081 7. Repeat steps 4-6 until QUEUE is empty.
Once QUEUE is empty after step 7 above, PATH contains an
ordered list of the base tables in the join sequence, which may
be used as a path for generating a JoinPathlist, as described
below. The ordered list of base tables may begin with any
arbitrarily selected base table of the join sequence. The next
base tables in the ordered list may be the base tables in direct
join with the arbitrarily selected base table, followed by base
tables which are separated from the arbitrarily selected base
table by two direct joins, and so on.
I0082. After a path has been created, the path may be used
to generate the nodes list and the adjacent list for the Join
Path List, for example, by the following method:
0083 1. Insert all the names of the base tables from PATH
as vertexes in the nodes list of the JoinPathlist.
0084 2. Create a buffer “BUF.
0085 3. Insert the name of the first table from PATH into
BUF.
I0086 4. Designate the next table in PATH as T.
(0087 5. Insert the contents of BUF (“T”) into the
adjacent list as the adjacent table for T, in the JoinPathlist.
I0088 6. Insert the name of T, into the adjacent list as the
common table for T, in the JoinPathlist, and insert a common
key between T, and Tinto the adjacent list as the common
key for T. The commonkey may comprise the key for the first
table whose name is in Twhich is an adjacent table from
the adjacent list for T, in the JoinGraph.
I0089. 7. Insert the name of T, into the adjacent list as the
adjacent table for T in the JoinPathList.
I0090) 8. Insert the name of the first base table in T.
which has a common key with T, into the adjacent list as the
common table for T in the JoinPathList, and insert the
commonkey between Tand T, into the adjacent list as the
common key for T.
I0091) 9. Add the name of T, to T.
0092] 10. Add the contents ofT as a vertex in the nodes
list of the JoinPathList.
(0093. 11. Designate the next table in PATH as T, and repeat
steps 5-10, until the last table in PATH has been processed.
Step 9 above results in the creation of a virtual table, which is
added as a vertex in the nodes list of the JoinPathlist in step
10. The first iteration of the above method results in a virtual
table made up of the names of the first two base tables in
PATH being added as a vertex in the nodes list of the Join
Pathlist. The last iteration of the above method results in a
virtual table made up of the names of all of the base tables in
PATH being added as a vertex in the nodes list of the Join
PathList.
0094. After the nodes list and the adjacent list for the
JoinPathlist have been generated, the last vertex of the nodes
list comprises a virtual table without any adjacent table, com
mon table, or common key. At this point, one or more table
and key pairs may optionally be inserted into the adjacent list
as common tables and commonkeys for the last vertex before
the inherited tables and keys are inserted. This step causes the

US 2009/0254518 A1

index of joined rows which will eventually be created to be
automatically sorted by <table, key> as it is created. This step
is not necessary, since the index of joined rows could also be
sorted after it is created.
0095. The names of inherited tables and inherited keys
may be inserted into the adjacent list for the JoinPathlist, for
example, by the following method:
0096 1. Create a new structure “BUF2 with 2 fields:
Table and Key
0097 2. Designate the last table (which will be a virtual
table) in the nodes list as T.
I0098. 3. or each base table T in T if:
0099 any couple <Table. Key> in BUF2 contains T in
Table; and,
0100 the couple <Table. Key> containing T is not already
in the adjacent list (either as the common table and common
key or the inherited table and inherited key) for T in the
JoinPathlist,then
0101 insert the couple <Table. Keys containing T in the
adjacent list of the JoinPathlist as an inherited table and
inherited key for T.
10102) 4. If T is not a base table then insert the common
table and the commonkey for T from the adjacent list of the
JoinPathlist as a new couple <Table. Keys in BUF2.
(0103) 5. Designate the table preceding Tin the nodes list
of the JoinPathList as T.
0104 6. Repeat steps 3-5 until there is no preceding table
from Tin the nodes list of the JoinPathList as T (i.e., until
the first table in the nodes list has been processed).
0105. The methods described above may be carried out,
for example, in a database system comprising a processor
adapted to access a database containing the base tables in the
join sequence. FIGS. 3A-C show example pseudo-code of an
algorithm for generating a JoinPathlist, and FIG. 3D shows
example pseudo-code of an algorithm for determining a com
montable and key for two input tables which may be called by
the algorithm of FIGS. 3A-C. In the pseudo-code of FIGS. 3A
and 3D, "Link Item' is used to refer to base tables in the
adjacent list of T in the JoinGraph. In the pseudo-code
of FIG. 3C, “BUF2.Table” and “BUF2. Key are used to refer
to the contents of the fields Table and Key, respectively, in
BUF2. The following paragraphs describe how the above
methods could be applied to create a JoinPathlist for the base
tables Alpha, Beta and Gamma of FIGS. 1A-C and 2B-F.
0106 FIGS. 4A-G illustrate the creation of an example
path for base tables Alpha, Beta and Gamma. JoinGraph 200
has been created. JoinGraph 200 identifies adjacent tables and
shared keys for each base table. Subsequently, two dynamic
arrays named “QUEUE 300 and “PATH 302 are created, as
shown in FIG. 4A. The name of one of the base tables is
inserted into both PATH 302 and QUEUE 300. In the illus
trated example, table Alpha is selected to be the first table
inserted in PATH 302 and QUEUE300, as shown in FIG.4B,
but it is to be understood that any table could be selected.
0107 Next, the following steps are repeated until QUEUE
300 is empty:
0108 Locate the first table listed in QUEUE 300 in Join
Graph 200.
0109 For each table which is adjacent to the first table of
QUEUE 300, if PATH 302 does not contain the name of the
adjacent table, insert the name of the adjacent table into both
PATH 302 and QUEUE 300 (see FIGS. 4C and 4E).
0110 Remove the name of the first table from QUEUE
300 (see FIGS. 4D, 4F and 4G).

Oct. 8, 2009

In FIG. 4E only Beta is inserted in PATH 302 and QUEUE
300, even though both Beta and Alpha are adjacent to
Gamma, since Alpha is already in PATH 302.
0111 PATH 302 is used in generating a JoinPathList 400,
as shown in FIGS.5A-N. JoinPathlist 400 comprises a nodes
list 402 and an adjacent list 404. First, the names of the base
tables in PATH 302 are inserted into nodes list 402 of Join
Pathlist 400, and a buffer named “BUF 406 is created, as
shown in FIG. 5A. Next, the name of the first table T, from
PATH 302 is inserted in BUF 406, as shown in FIG. 5B.
0112. After the name of the first table from PATH 302 is
inserted in BUF 406, the next table T, in PATH 302 is identi
fied, which is table Gamma in the illustrated example. Next,
the name of the table in BUF 406 (Alpha), referred to as T.
is inserted as the adjacent table for T. (Gamma) in adjacent list
404, as shown in FIG. 5C. Then the name of T. (Gamma) is
inserted in adjacent list 404 as the common table for T,
(Gamma), and the common key (A') between T. (Gamma)
and T. (Alpha) is inserted in adjacent list 404 as the com
mon key for T. (Gamma), as shown in FIG. 5D. Next, the
name of T, (Gamma) is inserted as the adjacent table for T
(Alpha) in adjacent list 404, as shown in FIG. 5E. Then the
name of the first base table in T. (Alpha) which has a
commonkey with T. (Gamma) is inserted in adjacent list 404
as the common table for T and the common key (“A”)
between T.(Alpha) and T, (Gamma) is inserted in adjacent
list 404 as the common key for T.(Alpha), as shown in
FIG.5F. Then the name ofT (Gamma) is added to BUF406,
as shown in FIG.5G, and T. (now Alpha Gamma) is added
to nodes list 402 as shown in FIG. 5H.

0113. Then the name of the next table T, in PATH 302 is
identified, which is table Beta in the illustrated example.
Next, the contents of T. (Alpha Gamma) are inserted as the
adjacent table for T. (Beta) in adjacent list 404, as shown in
FIG.5I. Then the name of T. (Beta) is inserted in adjacent list
404 as the common table for T. (Beta), and the common key
(“G”) between T, (Beta)and T (Alpha Gamma) is inserted
in adjacent list 404 as the commonkey for T. (Beta), as shown
in FIG. 5.J. Since T. (Alpha Gamma) is a virtual table, the
common key is determined by checking the base tables in
T (Alpha Gamma) one by one until a base table having a
commonkey with T. (Beta) is located. The commonkey for T,
(Beta) in adjacent list 404 may comprise one or more columns
from the first base table listed in T. (Alpha Gamma) that
are also in T. (Beta).
I0114) Next, the name of T. (Beta) is inserted as the adja
cent table for T (Alpha Gamma) in adjacent list 404, as
shown in FIG. 5K. Then the first base table in T. (Alpha
Gamma) which has a commonkey with T. (Beta) is inserted in
adjacent list 404 as the common table for T (Alpha
Gamma), and the common key (“G”) between T. (Alpha
Gamma) and T. (Beta) is inserted in adjacent list 404 as the
common key for T. (Alpha Gamma), as shown in FIG.5L.
Then the name of T. (Beta) is added to BUF 406, as shown in
FIG.5M, and the contents of T. (now Alpha Gamma Beta)
are added to nodes list 402 as shown in FIG. 5.N.

(0.115. After all of the remaining tables from PATH 302
have been processed as set out in the above paragraphs, BUF
406 is no longer needed and a new buffer, BUF2500 is created
having two fields Table 502 and Key 504, as shown in FIG.
6A. BUF2 500 is used to process each of the tables (both
virtual and base tables) T in nodes list 402 one by one,

US 2009/0254518 A1

starting with the bottom table and moving upward, in order to
insert the names of inherited tables and keys into adjacent list
404.
0116. As shown in FIG. 6A, the first table from nodes list
402 selected as T is the virtual table Alpha Gamma Beta.
The base tables T. constituting Ti (Alpha Gamma Beta) are
taken one at a time, and compared with each of the rows of
BUF2 500 to determine the inherited tables and keys for
adjacent list 404. If Table 502 of a row of BUF2500 contains
the name ofT and Table 502 and Key 504 of that row are not
the same as the common table and common key pair for T
(Alpha Gamma Beta) in adjacent list 404, then the names of
Table 502 and Key 504 of that row are inserted into adjacent
list 404 as an inherited table and inherited key of T (Alpha
Gamma Beta), provided they are not already there. Since
BUF2 500 is initially empty, no inherited tables or keys are
inserted for the virtual table Alpha Gamma Beta.
I0117 Next, if T is not a base table, the names of the
common table and key for Tin adjacent list 404 are inserted
in Table 502 and Key 504 respectively of one row of BUF2
500. Since adjacent list 404 is empty for the virtual table
Alpha Gamma Beta, BUF2 500 remains empty, and the next
table up nodes list 402 becomes T. (Alpha Gamma), as
shown in FIG. 6B.
0118. The above steps are now repeated with virtual table
Alpha Gamma as T BUF2500 is still empty, so no inherited
tables or inherited keys are inserted into adjacent list 404 for
Alpha Gamma. However, adjacent list 404 does contain table
Gamma and key "G” as the common table and common key
for Alpha Gamma, so these are inserted into Table 502 and
Key 504, respectively, of BUF2 500, as shown in FIG. 6C.
0119 The above steps are now repeated with base table
Beta as T, as shown in FIG. 6D. BUF2 500 is no longer
empty, but Beta is not in Table 502 of BUF2 500, so no
inherited tables or inherited keys are inserted into adjacent list
404 for Beta. Although Beta and “G” appear in adjacent list
404 for T (Beta), they are not inserted into Table 502 and
Key 504, of BUF2 500, since T is a base table (Beta).
0120. The above steps are now repeated with base table
Gamma as T as shown in FIG.6E. Since T (Gamma) is in
Table 502 in the first row of BUF2500, and Table 502 and Key
504 of that row are not the same as the common table and key
pair for Ti (Gamma) in adjacent list 404, Table 502 and Key
504 of that row are inserted as an inherited table and key for
T. in adjacent list 404, as shown in FIG. 6F. Although
Gamma and “A” appearin adjacent list 404 for T (Gamma),
they are not inserted into Table 502 and Key 504, of BUF2
500, since T (Gamma) is a base table.
0121 The above steps are now repeated with base table
Alpha as T, as shown in FIG. 6G. Alpha is not in Table 502
of BUF2 500, so no inherited tables or inherited keys are
inserted into adjacent list 404 for Alpha. Although Alpha and
“A” appear in adjacent list 404 for T (Alpha), they are not
inserted into Table 502 and Key 504, of BUF2500, since T.
(Alpha) is a base table.
0122) The methods described above may be applied to
produce a JoinPathlist for any number of tables in join. The
JoinPathlist may be used to process the rows of the joined
tables to generate indexing data structures indicating the rela
tionships between joined rows, as described below.

Creating B"Trees
0123. Once a JoinPathlist has been created for a join
sequence of base tables, an indexing data structure is created

Oct. 8, 2009

for each vertex of the nodes list. The resulting series of index
ing data structures is referred to as a “B'TreeTM”. B'Tree
is a trademark coined by the inventor to refer to a join iden
tifying data structure comprising a series of indexing data
structures, as described herein. The indexing data structure
created for the last virtual table of the nodes list comprises a
plurality of sets of data pointers. Each data pointer comprises
information identifying a row of a base table. The data point
ers may comprise row numbers for the base tables, or may
comprise any other information from which the rows may be
identified. Each set of data pointers points to rows from tables
in join together. The indexing data structures preferably com
prise B"Trees, and the following discussion and examples
refer to the indexing data structures as B"Trees. However, it is
to be understood that the indexing data structures may com
prise any suitable data structure, such as, for example any
kind of primary or secondary indexes.
0.124. Each B"Tree may be designated by the name of the
B'Tree, followed by an indication of the vertex of the nodes
list to which it relates. For example, if a join sequence has n
base tables To . . . T., the BTrees may be designated as
B"Tree(T)... B"Tree(T), where B"Tree(T)... B"Tree
(T) relate to the base tables of the JoinPathList, and B"Tree
(T) . . . B'Tree(T) relate to the virtual tables of the
JoinPathlist. FIG. 7A shows example pseudo-code of an
algorithm for generating a B'"Tree.
(0.125 Each B"Tree of the B'Tree has a number of data
pointers equal to the number of base tables in the vertex to
which it relates. For example, the B"Trees relating to the
Vertexes containing the names of base tables will each have
one data pointer, and the B"Trees relating to the vertexes
containing the names of virtual tables will each have two or
more data pointers. Each B"Tree may also have a Key defined
by the pair <common table, common key> for the vertex to
which it relates, and an Inherited Key defined by the pair
<inherited table, inherited key> for the vertex to which it
relates. The B"Trees for base tables and virtual tables which
do not have any inherited table or inherited key in the Join
Path List do not have an InheritedKey.

Inserting Rows
(0.126 Once the B'Tree has been created, data pointers,
keys and inherited keys from the rows of the base tables of the
join sequence are inserted into the B'Tree. In order to insert
the data pointer, key and inherited key from a designated row
of a designated base table, first the designated base table is
located in the JoinPathlist and the definitions of the key and
inherited key are obtained (for some base tables, there is no
inherited key). Next, the designated row of the designated
base table is scanned to obtain the data pointer, key and
inherited key (if one exists), which are used as input param
eters in a recursive function for inserting information into the
B'Tree.
I0127. The recursive function adds the data pointer, key
and inherited key (if one exists) of the designated row to the
B"Tree for the designated base table and then searches for the
key of the designated row in the B"Tree for the adjacent table
for the designated base table. If the key is found in the B"Tree
for the adjacent table, the function obtains the data pointer,
key and inherited key (if one exists) from the BTree, and
locates the virtual table which comprises a combination of the
names of the designated base table and its adjacent table.
Then, the recursive function identifies the datapointer(s), key
and inherited key (if one exists) for the B"Tree of that virtual

US 2009/0254518 A1

table, calls itself with those parameters, and when it returns
after the call is complete, searches again for another occur
rence of the key of the designated row in the B"Tree for the
adjacent table for the designated base table. As described
further below, when the recursive function calls itself,
depending on the table used in the call, the recursive function
Sometimes inserts only data pointers and keys, into the
B'Tree for the table used in the call, and sometimes only data
pointers. Finally, after the recursive function has failed to find
the key, insertion of the designated row is complete.
I0128. In one embodiment of the invention, a row R, from
table T may be inserted, for example, by the following
method:

I0129) 1. Locate the entry of T in the JoinPathList.
I0130 2. From the adjacent list for T locate the definition
of the key and inherited key.
0131 3. From R., get the data elements from the columns
constituting the key (“Key) and the inherited key (“Inherit
edKey).
0132 4. Call the recursive function AddJoinKey, using
To the data pointer for row R, (“DP), Key, and Inherited
Key, as the input parameters.
I0133. The recursive function Add.JoinKey(TDP. Key,
Inherited Key) may, for example, be executed as follows:
10134) 1. Add DP. Key, and Inherited Key, to B'Tree(T)
I0135 2. Locate the entry of T in the JoinPathList.
10136) 3. From the adjacent list for T locate the definition
of the adjacent table (“T”).
10137 4. Locate the entry of T in the JoinPathList.
I0138) 5. Search for Key, in B"Tree(T), and if Key, is
found in B"Tree(T):
I0139 (a) From B"Tree(T), get DP. Key, and Inherited
Key:
I0140) (b) Locate the entry ofT in the JoinPath List (T.
refers to the virtual table made up of T and T);
I0141 (c) From the adjacent list for T. locate the defini
tion of Key and Inherited Key;
0142 (d) From Key, Inherited Key, Key, and Inherited
Key, get Key, and Inherited Key (i.e., select those data
elements which match the definition of Key and Inherited
Key);
I0143 (e) Call Add JoinKey with Te DP (i.e., both DP,
and DP), Key, and InheritedKey, as the input parameters
TDP. Key, and Inherited Key, respectively, while preserv
ing the previous values of i, k and ik for use when the called
AddJoinKey returns (the previous values ofi, k, and ik may be
stored, for example, in a stack); and,
0144 (f) When the called AddJoinKey returns, search for
another occurrence of Key, in B"Tree(T):
0145 (i) if another occurrence of Key, is found in B"Tree
(T), return to step (a) above; and,
0146 (ii) if not, return to the method which called
AddJoinKey (which could be AddJoinKey itself, or the inser
tion method described above).
FIGS. 7B and 7C show example pseudo-code of an algorithm
for inserting information from rows of tables, and a recursive
algorithm called by the insertion algorithm, respectively.
0147 The insertion method and recursive algorithm
described above may be used to update the B'Tree when a
new row is added to one of the base tables in the join
sequence. The insertion method may be automatically trig
gered by insertion of a new row into one of the base tables by,
for example, a database management system.

Oct. 8, 2009

0.148. The operation of the above described example inser
tion method and recursive function are described in greater
detail below with reference to an example database.

Deleting Rows
0149. When a row of one of the base tables is to be deleted,
the B'Tree must be modified to reflect the deletion. Data
from a row R, from table T may be deleted from the BJoin
Tree, for example by the following method:
(0.150) 1. Locate the entry of T in the JoinPathlist.
I0151] 2. From the adjacent list for T. locate the definition
of the key and inherited key.
0152 3. From R., get the data elements from the columns
constituting the key (“Key) and the inherited key (“Inherit
edKey).
I0153. 4.Call the recursive function DelJoinKey, using T.
the data pointerfor row R. (“DP), Key, and Inherited Key, as
the input parameters.
I0154) The recursive function DelJoinKey(TDP, Key,
InheritedKey) may, for example, be executed as follows:
(O155 1. Delete DP. Key, and Inherited Key, from B"Tree
(T)
I0156 2. Locate the entry of T in the JoinPathlist.
(O157 3. From the adjacent list for T. locate the definition
of the adjacent table (“T”).
I0158 4. Locate the entry of T in the JoinPathlist.
(0159) 5. Search for Key, in B"Tree(T), and if Key, is
found in B"Tree(T):
(0160 (a) From B"Tree(T), get DP. Key, and Inherited
Key:
(0161 (b) Locate the entry ofT in the JoinPathlist (T.
refers to the virtual table made up of T and Tik):
0162 (c) From the adjacent list for Tik- locate the defini
tion of Key and Inherited Key;
(0163 (d) From Key, Inherited Key, Key, and Inherited
Key, get Key, and Inherited Key (i.e., select those data
elements which match the definition of Key and Inherited
Key);
(0164) (e) Call DelJoinKey with Te DP (i.e., both DP,
and DP), Key, and InheritedKey, as T DP. Key, and
InheritedKey, respectively, while preserving the values of i, k
and ik for use when the called DelJoinKey returns; and,
(0165 (f) When the called DelJoinKey returns, search for
another occurrence of Key, in B"Tree(T):
(0166 (i) if another occurrence of Key, is found in B"Tree
(T), return to step (a) above; and,
0.167 (ii) if not, return to the method which called Del
JoinKey (which could be DelJoinKey itself, or the deletion
method described above).
FIGS. 7D and 7E show example pseudo-code of an algorithm
for deleting information from rows of tables, and a recursive
algorithm called by the deletion algorithm, respectively.

Example Database
0168 FIG. 8 shows a relationship schema of an example
database 600 which is used to demonstrate how the above
method may be used to generate an index which identifies
joined rows. Database 600 comprises six base tables:
Employees 602, Job History 604, Departments 606, Jobs
608, Locations 610 and Countries 612.
(0169 Base tables 602–612 are shown filled with sample
data in FIGS. 9A-F. Each table comprises a plurality of rows,
which are identified by data pointers shown adjacent the left

US 2009/0254518 A1

sides of tables 602–612 in FIGS. 9A-F. Each data pointer
comprises information identifying a row of a base table. The
data pointers may comprise row numbers for the base tables,
or may comprise any other information from which the rows
may be identified. Each row contains data elements stored in
a plurality of columns shown along the tops of tables 602–612
in FIGS. 9A-F.

(0170 FIG.9G shows a JoinGraph 800 for tables 602–612
in FIGS. 9A-F, which has been generated by the method
described above under the heading “Generating a Join
Graph.” FIG. 9H is a graphical representation of JoinGraph
800 of FIG.9G. FIG.9I Shows a JoinPathlist 900 for tables
602–612 in FIGS. 9A-F, which has been generated by the
method described above under the heading “Generating a
JoinPathlist.

(0171 JoinPathList 900 has eleven vertexes in the nodes
list, so eleven B"Trees are created to form the B'Tree for
tables 602–612. Each of the eleven B"Trees are referred to as
B"Tree(T), where Trefers to the i' table in the nodes list
of JoinPathlist 900.

(0172 FIGS. 10A-C illustrate the steps involved in insert
ing the data pointer and data elements from the first row
(“R”) of table Employees 602 (“To) into the B''Tree.
It should be noted that the order of insertion of rows from the

base tables is not important. First, Trois located in JoinPath
List 900, and the definitions of Keyo and InheritedKey are
identified, as shown in FIG. 10A. Next, the data elements for
Keyo and Inherited Keyo are obtained from Ro, as shown in
FIG. 10B. Then the recursive function Add.JoinKey(To
DPo Keyo, Inherited Keyo) is called, and DPo Keyo and Inher
ited Key are inserted into B'Tree(To), as shown in FIG.
1OC.

(0173) Next, the adjacent table T (Job History) for To
is identified from JoinPathlist 900, and Key is searched for
in B"Tree(T). Since no other rows have been inserted yet,
B"Tree(T) is still empty, the recursive function Add.Join
Key (To DPo Keyo, Inherited Keyo) ends, and insertion of
the first row of table Employees 602 is complete.
(0174 FIGS. 11A-E illustrate the steps involved in insert
ing the data pointer and data elements from the first row
(“R”) of table Job History 604 (“T”) into the Boin
Tree. First, T is located in JoinPathList 900, and the defi
nitions of Key, and Inherited Key, are identified, as shown in
FIG. 11A. Next, the data elements for Key, and InheritedKey
are obtained from Ro, as shown in FIG. 11B. Then the recur
sive function Add JoinKey(TDP, Key, Inherited Key) is
called, and DP. Key and Inherited Key are inserted into
B"Tree(T), as shown in FIG. 11C.
(0175) Next, the adjacent table To (Employees) for T
is identified from JoinPathlist 900, and Key is searched for
in B"Tree(To). Since the value of Key is found in B"Tree
(T), as shown in FIG. 10C, DP. Key and Inherited Key
are obtained from B"Tree(To). Next, table To (Employ
ees Job History) is located in JoinPathlist 900, and the defi
nitions of Key and Inherited Key are identified, as shown in
FIG. 11D. Then, the data elements from Key, InheritedKey,
Key and Inherited Key, which fit the definitions of Key and
InheritedKey are identified, along with DP, which com
prises both DP and DP (i.e., DP comprises information
identifying both the row identified by DP and the row iden
tified by DPo). Then, the recursive function Add.JoinKey(Tre
DP. Key, Inherited Key) is called, and DP. Key and Inher
ited Key are inserted into B'Tree(Tie)as shown in FIG. 11E.

Oct. 8, 2009

(0176) Next, the adjacent table T. 2 (Departments) for
Teis identified from JoinPathList 900, and Key is searched
for in B"Tree(T). Since B"Tree(T) is still empty, the
recursive function AdJoinKey(Te DP. Keys. Inherited
Keys) ends and returns to complete Add JoinKey(TDP,
Key, InheritedKey), where another occurrence of Key is
searched for in B"Tree(To). Since another occurrence of
Key, is not found in B"Tree(To). Add JoinKey(TDP,
Key, Inherited Key) ends, and insertion of the first row of
table Job History 604 is complete.
(0177 FIGS. 12A-C illustrate the steps involved in insert
ing the data pointer and data elements from the first row
(“R”) of table Locations 610 ("T, a”) into the B'Tree.
First, T is located in JoinPathList 900, and the definitions of
Key and InheritedKey are identified, as shown in FIG. 12A.
Next, the data elements for Key and Inherited Key are
obtained from Ro, as shown in FIG. 12B. Then, the recursive
function Add JoinKey(Tia DP. Keya, Inherited Key) is
called, and DP. Key and Inherited Key are inserted into
B"Tree(T), as shown in FIG. 12C.
(0178) Next, the adjacent table T. s. (Employees Job His
tory Departments Jobs) for Ta is identified from JoinPath
List 900, and Key is searched for in B"Tree(Ts). Since
B"Tree(Ts) is still empty, the recursive function Add Join
Key(Tia DP. Keya, Inherited Keya) ends, and insertion of
the first row of table Locations 610 is complete.
(0179 FIGS. 13 A-E illustrate the steps involved in insert
ing the data pointer and data elements from the first row
(“R”) of table Departments 606 (T2) into the Boin
Tree. First, T is located in JoinPathList 900, and the defi
nitions of Key and InheritedKey are identified, as shown in
FIG. 13A. Next, the data elements for Key and Inherited
Key are obtained from Ro as shown in FIG. 13B. Then, the
recursive function AddjoinKey(Te DP. Keys, Inherited
Key) is called, and DP. Key and Inherited Key are inserted
into B'Tree(T), as shown in FIG. 13C.
(0180. Next, the adjacent table T. (Employees Job His
tory) for Tais identified from JoinPathList 900, and Key, is
searched for in B"Tree(Tie). Since the value of Key (FIN)
is found in B"Tree(Tie), as shown in FIG. 11E, DP. Key
and Inherited Key are obtained from B"Tree(Tie). Next,
table T 7 (Employees Job History Departments) is located
in JoinPathlist 900, and the definitions of Key, and Inherit
edKey, are identified, as shown in FIG. 13D. Then, the data
elements from Key, Inherited Key, Key and Inherited Key
which fit the definitions of Key, and InheritedKey, are iden
tified, along with DP7, which comprises both DP and DP.
Then, the recursive function Add JoinKey(T7, DP, Key,
InheritedKey,) is called, and DP7, Keyz. Inherited Key,) are
inserted into B'Tree(T) as shown in FIG. 13E.
(0181. Next, the adjacent table T. s. (Jobs) for T, is
identified from JoinPath List 900, and Key, is searched for in
B"Tree(T). Since B"Tree(Ts) is still empty, the recursive
function Add JoinKey(T7, DP7, Key, Inherited Key,) ends
and returns to complete Add JoinKey(TDP. Key. Inher
ited Key), where another occurrence of Key is searched for
in B"Tree(T). Since another occurrence of Key, is not
found in B"Tree(T). AddjoinKey(TDP. Keys, Inherit
edKey) ends, and insertion of the first row of table Depart
ments 606 is complete.
0182 FIGS. 14A-G illustrate the steps involved in insert
ing the data pointer and data elements from the first row
(“R”) of table Jobs 608 (“T”) into the B'Tree. First,
T is located in JoinPathlist 900, and the definitions of Keys

US 2009/0254518 A1

and InheritedKey are identified, as shown in FIG. 14A (as
can be seen from JoinPathlist 900, there is no inherited table
or inherited key for Ts). Next, the data element for Keys is
obtained from Ro, as shown in FIG. 14B. Then, the recursive
function Add JoinKey(Ts, DPs, Keys, Inherited Keys) is
called, and DPs, and Keys are inserted into B'Tree(Ts as
shown in FIG. 14C.

0183) Next, the adjacent table T. (Employees Job His
tory Departments) for T is identified from JoinPathList
900, and Keys is searched for in B"Tree(T). Since Keys
(“AC AUD") is found in B'Tree(T), as shown in FIG. 13E,
DP7, Key, and Inherited Key, are obtained from B'Tree(T,).
Next, table T. s. (Employees Job History Departments
Jobs) is located in JoinPathlist 900, and the definitions of
Keys and Inherited Keys are identified, as shown in FIG. 14D
(as can be seen from JoinPathlist 900, there is no inherited
table or inherited key for Ts). Then, the data element from
Key, Key, and Inherited Key, which fits the definition of
Keys is identified, along with DPs, which comprises both DPs
and DP,. Then, the recursive function Add.JoinKey(Ts, DPs,
Keys, InheritedKeys) is called, and DPs and Keys are inserted
into B'Tree(Ts) as shown in FIG. 14E.
(0184) Next, the adjacent table T (Locations) for Tsis
identified from JoinPath List 900, and Keys is searched for in
B"Tree(T). Since Keys (“1000) is found in B"Tree(T),
as shown in FIG. 12C, DP. Key and Inherited Key are
obtained from B"Tree(Tal). Next, table To (Employees
Job History Departments Jobs Locations). is located in Join
Pathlist 900, and the definitions of Keys and Inherited Key
are identified, as shown in FIG. 14F (as can be seen from
JoinPathlist 900, there is no inherited table or inherited key
for To). Then, the data element from Keys, Key and Inher
ited Key, which fits the definition of Keys is identified, along
with DP, which comprises both DPs and DP. Then, the
recursive function Add.JoinKey(To DPs, Keys, Inherited
Key) is called, and DP and Key are inserted into B'Tree(T
to) as shown in FIG. 14G.
(0185. Next, the adjacent table T. s. (Countries) for Tois
identified from JoinPathlist 900, and Key searched for in
B"Tree(Ts). Since B"Tree(Ts) is still empty, the recursive
function Add JoinKey(To DP. Keys. Inherited Keys) ends
and returns to complete Add JoinKey(Ts, DPs, Keys. Inher
itedKeys), where another occurrence of Keys is searched for
in B"Tree(Tal). Since no other occurrence of Keys is found in
B"Tree(T), the recursive function Add JoinKey(Ts, DPs.
Keys, Inherited Keys) ends and returns to complete Addoin
Key(Ts, DPs, Keys. Inherited Keys), where another occur
rence of Keys is searched for in B"Tree(T,). Since no other
occurrence of Keys is found in B"Tree(T,) insertion of the
first row of table Jobs 608 is complete.
0186 FIGS. 15A-E illustrate the steps involved in insert
ing the data pointer and data elements from the first row
(“R”) of table Countries 612 ("Ts") into the B'Tree.
First, Tsis located in JoinPathList 900, and the definitions of
Keys and Inherited Keys are identified, as shown in FIG. 1 SA
(as can be seen from JoinPathlist 900, there is no inherited
table or inherited key for Ts). Next, the data element for
Keys is obtained from Ro, as shown in FIG. 15B. Then, the
recursive function AddjoinKey(Ts, DPs, Keys, Inherited
Keys) is called, and DPs and Keys are inserted into B"Tree(T
s), as shown in FIG. 15C.
0187 Next, the adjacent table To (Employees Job His
tory Departments Jobs Locations) for Ts is identified from
JoinPathlist 900, and Keys is searched for in B"Tree(Ts).

Oct. 8, 2009

Since Keys (“ca”) is found in B"Tree(To), as shown in FIG.
14G, DP, and Keys are obtained from B"Tree(T). Next,
table To (Employees Job History Departments Jobs
Locations Countries) is located in JoinPathList 900, and the
definitions of Keyo and Inherited Key are identified, as
shown in FIG.15D (as can be seen from JoinPathList 900, the
adjacent list for To is empty). Then, the recursive function
Add JoinKey(To DPo, Keyo, Inherited Keyo) is called,
and DP, which comprises both DPs and DP, is inserted into
B"Tree(To) as shown in FIG. 15E.
(0188 Next, since there is no adjacent table for To the
recursive function Add JoinKey(To DPo, Keyo, Inherit
edKeyo) ends and returns to complete Add JoinKey(Ts
DPs, Keys, Inherited Keys), where another occurrence of
Keys is searched for in B"Tree(T). Since no other occur
rence of Keys is found in B"Tree(T), insertion of the first
row of table Countries 612 is complete.
(0189 The above method is then repeated for all of the
remaining rows of base tables 602–612. This results in further
entries being added to each of the B"Trees of B'Tree. FIGS.
16A-K show the completed B'Tree(To) to B'Tree(To),
respectively.
(0190. As can be seen in FIG. 16K, each entry of B"Tree
(Trio) comprises a list of six data pointers which identify
joined rows of the six base tables 602–612. For example, the
second entry 902 of B'Tree(To) indicates that the first row
of table Employees 602 (identified by the row number “0”),
the third row of table Job History 604 (identified by the row
number "2"), the first row of table Departments 606 (identi
fied by the row number “0”), the fifth row of table Jobs 608
(identified by the row number “4”), the first row of table
Locations 610 (identified by the row number “O'”) and the first
row of table Countries 612 (identified by the row number “0”)
are all joined.
(0191) A database administrator may create a B'Tree for
a set of tables in join in a database. In systems according to
one embodiment of the invention the database administrator
can declare the set of tables in join and the commonkeys. The
system internally generates the JoinGraph and JoinPathlist
to create the corresponding B' "Tree. Any time such a set of
tables in join is queried, the system can quickly return all rows
which are in join by simply scanning the indexing data struc
ture of the B'Tree for the virtual table which comprises the
names of all of the set of tables in join. This information is
then available to the entity that requested the query without
waiting for the join specified by the query to be calculated.
The identification of rows in join may be used to rapidly
identify relationships between rows from different tables of
the database.
0.192 In practice, a database administrator may create a
plurality of B'Trees for a database, one for each join
sequence required for common or expected queries. If a query
is received which requires a join sequence different from
those for which B'"Trees have already be defined, the data
base administrator may create a new B'Tree for that query,
or the database could compute the join in any suitable way.
The new B'Tree will then be available if another similar
query is received in the future.
(0193 As described above, creating a B'Tree involves
scanning each of the base tables of a join sequence only once.
Therefore, the time required to create a B'Tree for n tables
To . . . T-1 with cardinalities lo . . . 1-1, respectively, varies
with the Sum of the cardinalities (lo-... +1). In contrast, in
order to calculate a join for the same tables by taking the first

US 2009/0254518 A1

row from table To looking for all the rows in T that satisfy
the join with that first row, repeating with all the remaining
rows of To for T, then repeating the whole process with each
row of To for tables T. . . . T, the execution time required
would vary with the product of the cardinalities (lo... *l).
Some prior art systems use various methods to reduce the
execution time required to calculate such joins, but as one
skilled in the art will appreciate, creation of a B'"Tree may
be more convenient in any situations, since it does not require
any special database schema, and the B'"Tree may be saved
for use with future queries.
0194 When a database which is provided with a system
according to one embodiment of the invention is updated, for
example by inserting one or more rows into the base tables, or
by deleting one or more rows from the base tables, any B'".
Trees which have been created for that database may also be
updated. For example, any time a row is inserted into one of
the base tables by a database management system, the above
described insertion method and recursive add function may
be called by the database management system to update the
B'Trees. Likewise, if a row is deleted from one of the base
tables, the above described deletion method and recursive
delete function may be used to update the B'Trees. If an
existing row is to be modified, the modification may be
accomplished, for example, by deleting the existing row and
inserting the modified row. Accordingly, a database does not
need to be read only for the B'Trees to be able to provide
reliable indications of rows in join.
(0195 FIG. 17 shows a database system 1000 according to
one embodiment of the invention. Database system 1000
comprises a database 1002 having a plurality of tables 1004
stored therein. Database 1002 and tables 1004 may be modi
fied by a database management system 1006. Database man
agement system 1006 may be used to insert or delete rows of
data in tables 1004 by a database administrator, authorized
users, and/or automated data processing systems.
(0196) Database system 1000 comprises a B'Tree cre
ation system 1008 which may be used by the database admin
istrator to create one or more B'Trees 1010 for database
1002. B'Tree creation system 1008 may implement one or
more methods according to the invention in order to create
B'Trees 1010. An example B'Tree creation system 1008
is shown in FIG. 18 and described further below.
0197) Database system 1000 may also comprise a row
insertion system 1012 and a row deletion system 1014. Data
base management system 1006 may be configured to provide
row addition signals 1013 and row deletion signals 1015 to
row insertion system 1012 and row deletion system 1014,
respectively, whenever rows are added to or deleted from
tables 1004 of database 1002. Row insertion system 1012 and
row deletion system 1014 may be configured to automatically
update B'"Trees 1010 upon receipt of a row insertion signal
1013 or a row deletion signal 1015 from database manage
ment system 1006.
0198 Database system 1000 may also comprise a query
system 1016. Query system 1016 may be used to retrieve data
from tables 1004 of database 1002 in response to a query 1017
and provide an answer set 1018 to a user. When a query 1017
requires the identification of joined rows, query system 1016
may obtain a list of all rows of tables 1004 of database 1002
in join by scanning the indexing data structures stored in one
of the B'Trees 1010 which corresponds to the join
sequence required for query 1017. Query system 1016 may
then use the list received from that B'Tree 1010 to retrieve

Oct. 8, 2009

data from the identified rows of tables 1004 of database 1002
for use in answer set 1018. If B'Trees 1010 do not contain
an indexing data structure which satisfies the join condition
specified in query 1017, a new B'"Tree may be created in
B'Trees 1010 by B'Tree creation system 1008. Alterna
tively or additionally, query system 1016 may optionally
execute a join according to any suitable known method.
(0199 FIG. 18 shows an example B'Tree creation sys
tem 1008. B'Tree creation system 1008 is configured to
receive a join sequence 1020 comprising a group of tables
specified by the database administrator. Join sequence 1020 is
received by a path generator 1022 which retrieves informa
tion 1024 about relationships between the tables of join
sequence 1020 from database 1002. Path generator 1022 gen
erates a path 1025 comprising an ordered list of the tables in
join sequence 1020. The ordered list of tables may begin with
any arbitrarily selected table of join sequence 1020. The next
tables in the ordered list may be the tables in direct join with
the arbitrarily selected table, followed by tables which are
separated from the arbitrarily selected table by two direct
joins, and so on. A JoinPath List generator 1026 receives
information 1024 and path 1025 and generates a JoinPath List
1027. JoinPathlist 1027 is received by a B'Tree generator
1028 which retrieves information 1030 from rows of the
tables in join sequence 1020 from database 1002 in order to
generate a B'Tree 1010 for join sequence 1020. It is to be
understood that B'Tree creation system 1008 shown in
FIG. 18 is illustrated for example only, and that other con
figurations of a B'"Tree creation system 1008 are possible
without departing from the spirit or scope of the invention.
(0200. Because a B'"Tree comprises an indexing data
structure that indicates all rows in join, systems according to
the invention are able to locate rows in join at any time
without the need to calculate joins every time a query is
executed. Systems according to preferred embodiments of the
invention have the further advantage of being able to be used
with existing databases without requiring limits on the num
ber of distinct values which may be in a column, and without
requiring a specific relationship Schema. For huge tables Such
as those in data warehouses, the time required to execute a
query, which may take hours with certain prior art systems,
may be reduced to seconds with some systems according to
the invention.

0201 Certain implementations of the invention comprise
computer processors which execute Software instructions
which cause the processors to perform a method of the inven
tion. For example, one or more processors in a database
system may implement the methods described herein, and/or
the algorithms of FIGS. 2A, 3A-D and 7A-E by executing
Software instructions in a program memory accessible to the
processors. The invention may also be provided in the form of
a program product. The program product may comprise any
medium which carries a set of computer-readable signals
comprising instructions which, when executed by a data pro
cessor, cause the data processor to execute a method of the
invention. Program products according to the invention may
be in any of a wide variety of forms. The program product
may comprise, for example, physical media Such as magnetic
data storage media including floppy diskettes, hard disk
drives, optical data storage media including CD ROMs,
DVDs, electronic data storage media including ROMs, flash
RAM, or the like. The instructions may optionally be com
pressed and/or encoded.

US 2009/0254518 A1

0202 In another implementation, systems according to
Some embodiments of the invention could be incorporated as
an index engine in a database management system for a
database system designed to be used with B'Trees. In such
an implementation, the SQL create index declaration may be
extended to include indexing on multiple tables.
0203 While a number of exemplary aspects and embodi
ments have been discussed above, those of skill in the art will
recognize certain modifications, permutations, additions and
sub-combinations thereof. It is therefore intended that the
following appended claims and claims hereafter introduced
are interpreted to include all Such modifications, permuta
tions, additions and Sub-combinations as are within their true
spirit and scope.
What is claimed is:
1. A method for identifying joined rows in a database

comprising a plurality of tables, the method comprising:
Selecting a group of tables from the plurality of tables, each

table of the group of tables being directly or indirectly
joined with each of the other tables in the group of tables:

Selecting an order of the group of tables based on relation
ships among the group of tables;

generating an intermediate data structure comprising infor
mation identifying each of the group of tables, a number
of virtual tables equal to one less than a number of tables
of the group of tables, each virtual table comprising
information identifying two or more tables of the group
of tables, and an indication of an adjacent table, a com
mon table and a common key for at least Some tables of
the group of tables or the virtual tables:

generating an indexing data structure for each table of the
group of tables and each virtual table of the virtual
tables; and,

inserting data pointers and data elements from rows of the
group of tables into the indexing data structures using
the intermediate data structure, wherein the indexing
data structure for one of the virtual tables indicates
which of the rows of the group of tables have common
data elements.

2. A method according to claim 1 wherein selecting the
order of the group of tables comprises:

(a) creating first and second auxiliary data structures;
(b) inserting one of the group of tables into the first and

second auxiliary data structures;
(c) designating a first table in the first auxiliary data struc

ture as a current table;
(d) for each adjacent table of the group of the tables that has

at least one column which corresponds to a column of
the current table and has not already been inserted in the
second auxiliary data structure, inserting the adjacent
table into the first and second auxiliary data structures;

(e) removing the current table from the first auxiliary data
structure; and

(f) repeating steps (c) to (e) until the first auxiliary data
structure is empty.

3. A method according to claim 1 wherein selecting the
order of the group of tables comprises arbitrarily selecting
one table of the group of tables as a first table and selecting
tables of the group of tables in directioin with the first table as
a second group of tables to follow the first table.

4. A method according to claim 3 wherein selecting the
order of the group of tables further comprises selecting tables
of the group of tables in direct join with any of the second

Oct. 8, 2009

group of tables other than the first table as a third group of
tables to follow the second group of tables.

5. A method according to claim 1 wherein generating the
intermediate data structure comprises:

generating a nodes list comprising the names of each of the
group of tables arranged in the order, followed by the
number of virtual tables, the first virtual table compris
ing the first two tables in the order, and the last virtual
table comprising all of the group of tables; and,

generating an adjacent list containing the indication of the
adjacent table, the common table and the common key
for at least one of the group of tables and the number of
virtual tables.

6. A method according to claim 5 wherein generating the
intermediate data structure further comprises:

inserting definitions of an inherited table and an inherited
key into the adjacent list for one or more of the tables
virtual tables.

7. A method according to claim 1 wherein generating an
indexing data structure for each of the tables and each of the
virtual tables comprises generating a B"Tree for each of the
tables and each of the virtual tables.

8. A method according to claim 1 wherein inserting data
pointers and data elements from rows of the group of tables
into the indexing data structures comprises inserting a data
pointer identifying a designated row of a designated table and
at least one data element from the designated row of the
designated table into the indexing data structures.

9. A method according to claim 8 wherein inserting the data
pointer identifying the designated row of the designated table
and at least one data element from the designated row of the
designated table into the indexing data structures comprises
calling a recursive add function having the designated table,
the data pointer identifying the designated row and at least
one data element of the designated row as inputs.

10. A method according to claim 9 wherein calling the
recursive add function comprises:

locating an adjacent table for the designated table;
searching for a data element of the designated row in the

indexing data structure for the adjacent table, and if
found:
locating a data pointer identifying a row containing the

found data element from the indexing data structure
of the adjacent table;

locating a virtual table which comprises the designated
table and the adjacent table;

locating any data element from the indexing data struc
tures of the designated table and the adjacent table
which corresponds to a definition of the common key
or an inherited key for the located virtual table; and

calling the recursive add function having the located
virtual table, the data pointer identifying the desig
nated row and the located data pointer identifying the
row containing the found data element, and any
located data element from the indexing data structures
of the designated table and the adjacent table as
inputs.

11. A method according to claim 9 comprising, when a row
is added to one of the tables, automatically updating the
indexing data structures by inserting a data pointer identify
ing the added row and at least one data element from the
added row into the indexing data structures by calling the
recursive add function having the table of the added row, the

US 2009/0254518 A1

data pointer identifying the added row and at least one data
element from the added row as inputs.

12. A method according to claim 9 comprising, when a row
is deleted from one of the tables, automatically updating the
indexing data structures by removing a data pointer identify
ing the deleted row and at least one data element from the
deleted row from the indexing data structures by calling a
recursive delete function having the table of the deleted row,
the data pointer identifying the deleted row and at least one
data element of the deleted row as inputs.

13. A method according to claim 1 wherein the one of the
virtual tables whose indexing data structure indicates which
of the rows of the group of tables have common data elements
comprises information identifying all tables of the group of
tables.

14. A database system comprising:
a database having a plurality of tables stored therein, each

table comprising one or more rows;
a database management system for modifying the data

base;
a B'Tree creation system for creating at least one B'.

Tree, the at least one B'"Tree comprising an indexing
data structure that indicates which of the rows of tables
of the database have common data elements; and,

a query system for scanning the B'Tree for the indexing
data structure that indicates which of the rows of tables
of the database have common data elements and for
retrieving rows of tables from the database which satisfy
a join condition specified in a query using the indexing
data structure to provide an answer set.

15. A database system according to claim 14 wherein the
B'Tree creation system comprises:

a path generator for receiving a join sequence comprising a
plurality of tables and information about the tables of the
join sequence and generating a path;

a JoinPathI list generator for receiving the path and infor
mation about the tables of the join sequence and gener
ating a JoinPathlist;

a B'Tree generator for receiving the JoinPathList and
information from rows of tables of the database and
generating a B'"Tree.

16. A database system according to claim 14 further com
prising:

a row insertion system configured to receive a row insertion
signal from the database management system upon
insertion of a row into a table of the database for updat
ing the at least one B'"Tree to reflect the inserted row.

17. A database system according to claim 14 further com
prising:

a row deletion system configured to receive a row deletion
signal from the database management system upon dele
tion of a row into a table of the database for updating the
at least one B'Tree to reflect the deleted row.

18. A computer readable medium carrying data structures
for facilitating execution of queries of a database comprising
a plurality of tables, the data structures comprising:

Oct. 8, 2009

a relation-indicating data structure comprising:
information identifying a group of tables from the plu

rality of tables, each table of the group of tables being
directly or indirectly joined with each of the other
tables in the group of tables:

a number of virtual tables equal to one less than a number
of tables of the group of tables; and,
an indication of an adjacent table, a common table and a
common key for at least some of the tables or virtual
tables; and,

an indexing data structure for each of the group of tables
and the number of virtual tables, the indexing data struc
ture for a last of the virtual tables indicating which of the
rows of the group of tables have common data elements.

19. A computer readable medium according to claim 18
wherein each virtual table comprises information identifying
two or more tables of the group of tables.

20. A computer readable medium according to claim 18
wherein the last of the virtual tables comprises information
identifying all tables of the group of tables.

21. In a database system comprising a database having a
plurality of tables Stored therein, each table comprising one or
more rows, each row containing one or more data elements, a
method of identifying rows of a group of tables which contain
common data elements, the method comprising:

defining a number of virtual tables equal to one less than a
number of tables of the group of tables, each virtual table
comprising names of two or more tables of the group of
tables and a last virtual table comprising names of all of
the group of tables;

generating an indexing data structure for each table of the
group of tables and each virtual table of the virtual
tables, the indexing data structure for the last of the
virtual tables indicating which of the rows of the group
of tables have common data elements; and

scanning the indexing data structure for the last of the
virtual tables.

22. In a database system comprising a database having a
plurality of tables Stored therein, each table comprising one or
more rows, each row containing one or more data elements, a
computer readable medium carrying data structures for facili
tating execution of queries of a group of tables, the data
structures comprising:

a number of virtual tables equal to one less than a number
of tables of the group of tables, each virtual table com
prising names of two or more tables of the group of
tables and a last virtual table comprising names of all
tables of the group of tables; and

an indexing data structure for each table of the group of
tables and each virtual table of the virtual tables, the
indexing data structure for the last of the virtual tables
indicating which of the rows of the group of tables have
common data elements.

c c c c c

