PCT WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 : (11) International Publication Number: WO 99/02754
Al
C23C 16/44 (43) International Publication Date: 21 January 1999 (21.01.99)
(21) International Application Number: PCT/US98/13231 | (81) Designated States: JP, KR, SG, European patent (AT, BE, CH,
CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL,
(22) International Filing Date: 26 June 1998 (26.06.98) PT, SE).
(30) Priority Data: Published
08/893,917 11 July 1997 (11.07.97) Us With international search report.

(71) Applicant: APPLIED MATERIALS, INC. [US/US]; 3050
Bowers Avenue, Santa Clara, CA 95052 (US).

(72) Inventors: LITTAU, Karl, A.; 3278 Bryant Street, Palo
Alto, CA 94306 (US). CHEN, Chiliang, L.; Apartement
#7B, 20800 Homestead Road, Cupertino, CA 95914 (US).
VASUDEV, Anand; Apartement #2B, 122 East Creek Drive,
Menlo Park, CA 94025 (US).

(74) Agent: MULCAHY, Robert, W.; Applied Materials, Inc., P.O.
Box 450A, Santa Clara, CA 95052 (US).

(54) Title: REMOTE PLASMA CLEANING APPARATUS

Flourine [—304 326
Source i___r/_
Gas Suppl :
300 — as SupPy Diluent
-Gas
Supply
306 308 310 324
J 32/ s /316 120
L_d_.[- LL)_J Plasma Processing
Magnetron Isolator Autotuner : .
l__l I‘_l Applicator Chamber
318
302
322
)
15
(57) Abstract

A method and apparatus for cleaning a chamber in a substrate processing system having less reactivity with the chamber walls and
the components contained therein. The method includes mixing a diluent gas with a flow of radicals produced by a plasma remotely
disposed with respect to the chamber, at a point located between a plasma applicator and the chamber. The apparatus includes a fluid
manifold having multiple inlets and an outlet with the outlet being coupled to an intake port of the chamber. One of the inlets are in fluid
communication with the plasma applicator, with the remaining inlets being in fluid communication with a supply of the diluent gas. In this
fashion, the diluent gas flow and the flow of reactive radicals mix when traveling between the inlets and the outlet to form a gas—radical
mixture egressing from the outlet and traversing through the intake port.
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REMOTE PLASMA CLEANING APPARATUS

CROSS REFERENCE TO RELATED APPLICATIONS

This application is related to commonly assigned patent applications
entitled "APPARATUS AND METHODS FOR UPGRADED SUBSTRATE
PROCESSING SYSTEM WITH MICROWAVE PLASMA SOURCE", filed on
March 5, 1997 as application No. 08/811,627, and having Tsutomu Tanaka, Mukul
Kelkar, Kevin Fairbairn, Hari Ponnekanti and David Cheung listed as inventors;
" APPARATUS FOR IMPROVED REMOTE MICROWAVE PLASMA SOURCE
FOR USE WITH SUBSTRATE PROCESSING SYSTEMS", filed on April 23, 1997
as application No. _[AMAT1975/T19000] , and having Chien-Teh Kao, Kenneth

Tsai, Quyen Pham, Ronald L. Rose, Calvin R. Augason, and Joseph Yudovsky listed
as inventors (referred to herein as "Kao"); and "METHOD FOR IMPROVED
CLEANING OF SUBSTRATE PROCESSING SYSTEMS” filed concurrently
herewith as application No. _[AMAT2027/T20200] , and having Chien-Tien Kao,
Karl Littau, Anand Vasudev and Dong W. Koo listed as inventors; the disclosures of

which are hereby incorporated by reference.

BACKGROUND OF THE INVENTION
The present invention relates to substrate processing. Specifically, the
present invention relates to an apparatus and method for cleaning a chamber in a
substrate processing system that is less destructive to the chamber walls and the
components contained therein and increases the number of wafers that may be
processed between wet cleans.
One of the primary steps in the fabrication of modern semiconductor

devices is the formation of a layer, such as a metal silicide layer like tungsten
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silicide (WSi,), on a substrate or wafer. As is well known, such a layer can be
deposited by chemical vapor deposition (CVD). In a conventional thermal CVD
process, reactive gases are supplied to the substrate surface where heat-induced
chemical reactions take place to form the desired film over the surface of the substrate
being processed. In a conventional plasma-enhanced CVD (PECVD) process, a
controlled plasma is formed using radio frequency (RF) energy or microwave energy
to decompose and/or energize reactive species in reactant gases to produce the desired
film.

One problem that arises during such CVD processes is that unwanted
deposition occurs in the processing chamber and leads to potentially high maintenance
costs. With CVD of a desired film on a wafer, undesired film deposition can occur
on any hot surface including the heater or process kit parts of the apparatus, because
the reactive gases can diffuse everywhere, even between cracks and around corners,
in the processing chamber. During subsequent wafer depositions, this excess growth
on the heater and/or other parts of the apparatus will accelerate until a continuous
metal silicide film is grown on the heater and/or these other parts. Over time, failure
to clean the residue from the CVD apparatus often results in degraded, unreliable
processes and defective wafers. When excess deposition starts to interfere with the
CVD system's performance, the heater and other process kit parts (such as the
shadow ring and gas distribution faceplate) can be removed and replaced to remove
unwanted accumulations in the CVD system. Depending on which and how many
parts need replacing and the frequency of the replacement, the cost of maintaining the
substrate processing system can become very high.

In these CVD processes, a reactive plasma cleaning is regularly
performed in situ in the processing chamber to remove the unwanted deposition
material from the chamber walls, heater, and other process kit parts of the processing
chamber. Commonly performed between deposition steps for every wafer or every n
wafers, this cleaning procedure is performed as a standard chamber cleaning
operation where the etching gas is used to remove or etch the unwanted deposited
material. Common etching techniques include plasma CVD techniques that promote

excitation and/or disassociation of the reactant gases by the application of RF energy
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with capacitively-coupled electrodes to a reaction zone proximate the substrate
surface. In these techniques, a plasma of highly reactive species is created that reacts
with and etches away the unwanted deposition material from the chamber walls and
other areas. However, with some metal CVD processes, etching gases useful for
etching unwanted metal are often corrosive and attack the materials which make up
the chamber, heater, and process kit parts of the processing chamber.

Moreover, use of in situ plasma cleaning also causes ion bombardment
of the metallic parts of the CVD apparatus. The ion bombardment makes difficult to
effective cleaning of the excess CVD film without damaging the heater and other
chamber parts in the cleaning process. Thus, maintaining chamber performance may
result in a reduction of the operational life of these components. In addition to such
in situ plasma cleaning procedures and occurring far less frequently, a second
cleaning procedure involves opening the processing chamber and physically wiping
the entire reactor -- including the chamber walls, exhaust and other areas having
accumulated residue -- with a special cloth and cleaning liquids. This cleaning
procedure is commonly referred to as a wet clean, due to the liquids employed.
Failure to periodically employ a wet clean results in impurities accumulating in the
CVD apparatus that which can migrate onto the wafer and cause device damage.
Thus, properly cleaning CVD apparatus is important for the smooth operation of
substrate processing, improved device yield and better product performance.

As an alternative to in situ plasma cleaning, other conventional CVD
apparatus have a separate processing chamber connected to a remote microwave
plasma system. Because the high breakdown efficiency with a microwave plasma
results in a higher etch rate (on the order of about 2 um/min) than is obtained with a
capacitive RF plasma, these remote microwave plasma systems provide radicals from
the remote plasma that can more gently, efficiently and adequately clean the residue
without ion bombardment. Yet, the remote microwave plasma system suffers,
although to a lesser degree, some of the drawbacks of an in situ plasma cleaning
system. Some of the radicals from the remote plasma may react with the components
of the chamber, etching the same. As discussed above, this may cause physical

damage to the components of the chamber, including the chamber walls, substantially
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reducing the operational life of the same. In addition, the aforementioned reactions
between the chamber components and the radicals leaves a residue on the chamber
components which may contaminate wafer surfaces during processing.

What is needed, therefore, is a cleaning method and system for a CVD
apparatus that is less destructive to the chamber walls and the components contained

within the CVD chamber.

SUMMARY OF THE INVENTION

The present invention provides a method and apparatus for cleaning a
chamber in a substrate processing system that is less destructive to the chamber walls
and the components contained therein, while increasing the number of wafers that
may be processed between wet cleans. The present invention does so by mixing a
diluent gas with a flow of reactive radicals produced by a plasma remotely disposed
with respect to the chamber, at a point located between a plasma applicator and the
chamber. This produces a gas-radical mixture which allows increasing the flow rate
of a gas through the chamber, while decreasing the rate at which materials located
within the chamber are etched by the reactive radicals dispersed within the gas-radical
mixture.

The method of the present invention includes forming a plasma
remotely with respect to the chamber; forming, from the plasma, a flow of reactive
radicals traversing toward a substrate processing chamber and forming a diluent gas
flow. During a mixing step, the flow of reactive radicals is intermixed with the
diluent gas flow, anterior to the substrate processing chamber, to form a gas-radical
mixture. Thereafter, the gas-radical mixture is flowed into the substrate processing
chamber, with the chamber maintained at processing conditions suitable for reactions
with the reactive radicals to occur.

The apparatus includes a fluid manifold having multiple inlets and an
outlet with the outlet being coupled to an intake port of the chamber. One of the
inlets are in fluid communication with the plasma applicator, with the remaining inlets
being in fluid communication with a supply of the diluent gas. In this fashion, the

diluent gas flow and the flow of reactive radicals mix when traveling between the
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inlets and the outlet to form a homogeneous gas-radical mixture egressing from the
outlet and traversing through the intake port.

These and other embodiments of the present invention, as well as its
advantages and features are described in more detail in conjunction with the text

below and attached figures.

BRIEF DESCRIPTION OF THE DRAWINGS

Figs. 1A and 1B are vertical, cross-sectional views of one embodiment
of an exemplary substrate processing apparatus, such as a CVD apparatus, which may
be used in accordance with the present invention;

Figs. 1C and 1D are exploded perspective views of parts of the CVD
chamber depicted in Fig. 1A;

Fig. 1E is a simplified diagram of system monitor and CVD system 10
in a system which may include one or more chambers;

Fig. 1F shows an illustrative block diagram of the hierarchical control
structure of the system control software, computer program 70, according to a
specific embodiment;

Fig. 2A is a simplified cross-sectional view of a semiconductor device
manufactured in accordance with a specific embodiment of the present invention;

Figs. 2B and 2C are simplified cross-sectional views of integrated
circuit structures that incorporate WSi, layers in accordance with a specific
embodiment of the present invention,; -

Fig. 3 is a simplified plan view of a remote microwave plasma source
cleaning apparatus in accord with the present invention;

Fig. 4 is a flowchart illustrating the steps for performing a remote
microwave plasma cleaning procedure in accord with the present invention;

Fig. 5 is a detailed view of a mixing manifold shown above in Fig. 4;

Fig. 6 is a cross-sectional side lengthwise view of a remote microwave

plasma source module according to a specific embodiment of the present invention;
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Fig. 7 is a cross-sectional side transverse plan view shown in Fig. 6,
taken along lines A-A of an exemplary embodiment of a plasma source module shown
in Fig. 3;

Fig. 8 is a cross-sectional side transverse plane view along line A-A of
another embodiment of the remote microwave plasma source shown in Fig. 3;

Fig. 9 is an alternate embodiment of a plasma applicator show in Fig.
6;

Fig. 10 is a plan view of an alternate embodiment of a first end wall
shown above in Fig. 6;

Fig. 11 is a plan view of an alternate embodiment of a second end wall

shown above in Fig. 6.

DETAILED DESCRIPTION OF THE SPECIFIC EMBODIMENTS

I. Exemplary CVD System

Specific embodiments of the present invention may be used with or
retrofitted onto a variety of chemical vapor deposition (CVD) or other types of
substrate processing apparatus. One suitable substrate processing apparatus with
which the present invention can be used or retrofitted is shown in Figs. 1A and 1B,
which are vertical, cross-sectional views of a CVD system 10, having a vacuum or
processing chamber 15 that includes a chamber wall 15a and chamber lid assembly
15b. Chamber wall 15a and chamber lid assembly 15b are shown in exploded,
perspective views in Figs. 1C and 1D.

Reactor 10 contains a gas distribution manifold 11 for dispersing
process gases to a substrate (not shown) that rests on a resistively-heated pedestal 12
centered within the process chamber. During processing, the substrate (e.g. a
semiconductor wafer) is positioned on a flat (or slightly convex) surface 12a of
pedestal 12. Preferably having a surface of ceramic such as aluminum nitride,
pedestal 12 can be moved controllably between a lower loading/off-loading position
(depicted in Fig. 1A) and an upper processing position (indicated by dashed line 14 in

Fig. 1A and shown in Fig. 1B), which is closely adjacent to manifold 11. A
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centerboard (not shown) includes sensors for providing information on the position of
the wafers.

Deposition and carrier gases are introduced into chamber 15 through
perforated holes 13b (Fig. 1D) of a conventional flat, circular gas distribution face
plate 13a. More specifically, deposition process gases flow (indicated by arrow 40 in
Fig. 1B) into the chamber through the inlet manifold 11, through a conventional
perforated blocker plate 42 and then through holes 13b in gas distribution faceplate
13a.

Before reaching the manifold, deposition and carrier gases are input
from gas sources 7 through gas supply lines 8 (Fig. 1B) into a gas mixing block or
system 9 where they are combined and then sent to manifold 11. It is also possible,
and desirable in some instances, to direct deposition and carrier gases directly from
supply lines 8 to manifold 11. In such a case, gas mixing system 9 is bypassed. In
other situations, any of gas lines 8 may bypass gas mixing system 9 and introduce
gases through passages (not shown) in the bottom of chamber 12. As shown in Fig.
1B, there are three gas supply lines 8 in a specific embodiment to deposit WSi. A
first line 8a supplies a silicon-containing gas (e.g., dichlorosilane (SiH,Cl,) referred
to as "DCS" from a DCS source from gas source 7a) into gas mixing system 9, while
a second line 8b supplies a tungsten-containing gas (e.g., tungsten hexafluoride (WE,)
from a WF; source from gas source 7b) into gas mixing system 9. For each line 8a
and 8b, a carrier gas (e.g., argon from argon sources in gas sources 7a and 7b) can

be supplied with the process to stabilize gas flows as appropriate and to even the gas

flow between the two lines into mixing system 9. Such mixing of gases (DCS and

WF) upstream of chamber 15 is believed to result in more uniform gas distribution
into the chamber, thereby resulting in greater uniformity in the deposited WSi, film.
A third supply ﬁne 8c introduces an inert purge gas (e.g., argon from a gas source
7¢) from the bottom of the chamber to keep deposition gases away from the area of
the chamber below heater 12. In some preferred embodiments, an additional silicon
source (e.g., silane (SiH,) from source 7a may be supplied to gas line 8a.
Generally, the supply line for each process gas includes (i) several

safety shut-off valves (not shown) that can be used to automatically or manually shut
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off the flow of process gas into the chamber, and (ii) mass flow controllers (MFCs)
(also not shown) that measure the flow of gas through the supply line. When toxic
gases are used in the process, the several safety shut-off valves are positioned on each
gas supply line in conventional configurations.

The deposition process performed in reactor 10 can be either a thermal
process or a plasma-enhanced process. In a plasma-enhanced process, an RF power
supply 44 applies electrical power between the gas distribution faceplate 13a and
pedestal 12 to excite the process gas mixture to form a plasma within the cylindrical
region between the faceplate 13a and pedestal 12. (This region will be referred to
herein as the "reaction region"). Constituents of the plasma react to deposit a desired
film on the surface of the semiconductor wafer supported on pedestal 12. RF power
supply 44 can be a mixed frequency RF power supply that typically supplies power at
a high RF frequency (RF1) of 13.56 Megahertz (MHz) and at a low RF frequency
(RF2) of 360 kilohertz (kHz) to enhance the decomposition of reactive species
introduced into the vacuum chamber 15. Of course, RF power supply 44 can supply
either single- or mixed-frequency RF power (or other desired variations) to manifold
11 to enhance the decomposition of reactive species introduced into chamber 15. Ina
thermal process, RF power supply 44 is not utilized, and the process gas mixture
thermally reacts to deposit the desired film on the surface of the semiconductor wafer
supported on pedestal 12, which is resistively heated to provide the thermal energy
needed for the reaction.

During a plasma-enhanced deposition process, the plasma heats the
entire reactor 10, including the walls of the chamber body 15a surrounding the
exhaust passageway 23 and the shut-off valve 24. During a thermal deposition
process, heated pedestal 12 causes heating of reactor 10. When the plasma is not
turned on, or during a thermal deposition process, a hot liquid is circulated through
the walls 15a of reactor 10 to maintain the chamber at an elevated temperature.
Fluids used to heat the chamber walls 15a include the typical fluid types, i.e.,
water-based ethylene glycol or oil-based thermal transfer fluids. This heating
beneficially reduces or eliminates condensation of undesirable reactant products and

improves the elimination of volatile products of the process gases and contaminants
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that might otherwise condense on the walls of cool vacuum passages and migrate back
into the processing chamber during periods of no gas flow.

The remainder of the gas mixture that is not deposited in a layer,
including reaction products, is evacuated from the chamber by a vacuum pump (not
shown). Specifically, the gases are exhausted through an annular, siot-shaped orifice
16 surrounding the reaction region and into an annular exhaust plenum 17. The
annular slot 16 and the plenum 17 are defined by the gap betweén the top of the
chamber's cylindrical side wall 15a (including the upper dielectric lining 19 on the
wall) and the bottom of the circular chamber lid 20. The 360° circular symmetry and
uniformity of the slot orifice 16 and the plenum 17 are important to achieving a
uniform flow of process gases over the wafer so as to deposit a uniform film on the
wafer.

The gases flow underneath a lateral extension portion 21 of the exhaust
plenum 17, past a viewing port (not shown), throﬁgh a downward-extending gas
passage 23, past a vacuum shut-off valve 24 (whose body is integrated with the lower
chamber wall 15a), and into the exhaust outlet 25 that connects to the external
vacuum pump (not shown) through a foreline (also not shown).

The wafer support platter of resistively-heated pedestal 12 is heated
using an embedded single-loop embedded heater element configured to make two full
turns in the form of parallel concentric circles. An outer portion of the heater
element runs adjacent to a perimeter of the support platter, while an inner portion
runs on the path of a concentric circle having a smaller radius. The wiring to the
heater element passes through the stem of pedestal 12. Pedestal 12 may be made of
material including aluminum, ceramic, or some combination thereof.

Typically, any or all of the chamber lining, gas inlet manifold
faceplate, and various other reactor hardware are made out of material such as
aluminum, anodized aluminum, or ceramic. An example of such CVD apparatus is
described in commonly assigned U.S. Patent 5,558,717 entitled "CVD Processing
Chamber," issued to Zhao er al., hereby incorporated by reference in its entirety.

A lift mechanism and motor 32 (Fig. 1A) raises and lowers the heater

pedestal assembly 12 and its wafer lift pins 12b as wafers are transferred by a robot
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blade (not shown) into and out of the body of the chamber through an
insertion/removal opening 26 in the side of the chamber 10. The motor 32 raises and
lowers pedestal 12 between a processing position 14 and a lower wafer-loading
position. The motor, valves or flow controllers connected to the supply lines 8, gas
delivery system, throttle valve, RF power supply 44, and chamber and substrate
heating systems are all controlled by a system controller 34 (Fig. 1B) over control
lines 36, of which only some are shown. Controller 34 relies on feedback from
optical sensors to determine the position of movable mechanical assemblies such as
the throttle valve and pedestal which are moved by appropriate motors controlled by
controller 34.

In a preferred embodiment, the system controller includes a hard disk
drive (memory 38), a floppy disk drive and a processor 37. The processor contains a
single-board computer (SBC), analog and digital input/output boards, interface boards
and stepper motor controller boards. Various parts of CVD system 10 conform to the
Versa Modular European (VME) standard which defines board, card cage, and
connector dimensions and types. The VME standard also defines the bus structure as
having a 16-bit data bus and a 24-bit address bus.

System controller 34 controls all of the activities of the CVD machine.
The system controller executes system control software, which is a computer program
stored in a computer-readable medium such as a memory 38. Preferably, memory 38
is a hard disk drive, but memory 38 may also be other kinds of memory. The
computer program includes sets of instructions that dictate the timing, mixture of
gases, chamber pressure, chamber temperature, RF power levels, pedestal position,
and other parameters of a particular process. Other computer programs stored on
other memory devices including, for example, a floppy disk or other another
appropriate drive, may also be used to operate controller 34.

The interface between a user and controller 34 is via a CRT monitor
50a and light pen 50b, shown in Fig. 1E, which is a simplified diagram of the system
monitor and CVD system 10 in a substrate processing system, which may include one
or more chambers. In the preferred embodiment two monitors 50a are used, one

mounted in the clean room wall for the operators and the other behind the wall for the



10

15

20

25

30

WO 99/02754 PCT/US98/13231

11

service technicians. The monitors 50a simultaneously display the same information,
but only one light pen 50b is enabled. A light sensor in the tip of light pen 50b
detects light emitted by CRT display. To select a particular screen or function, the
operator touches a designated area of the display screen and pushes the button on the
pen 50b. The touched area changes its highlighted color, or a new menu or screen is
displayed, confirming communication between the light pen and the display screen.
Other devices, such as a keyboard, mouse, or other pointing or communication
device, may be used instead of or in addition to light pen 50b to allow the user to
communicate with controller 34.

The process for depositing the film can be implemented using a
computer program product that is executed by controller 34. The computer program
code can be written in any conventional computer readable programming language:
for example, 68000 assembly language, C, C+ +, Pascal, Fortran or others. Suitable
program code is entered into a single file, or multiple files, using a conventional text
editor and stored or embodied in a computer-usable medium, such as a memory
system of the computer. If the entered code text is in a high level language, the code
is 4compiled, and the resultant compiler code is then linked with an object code of
precompiled Windows™ library routines. To execute the linked, compiled object
code the system user invokes the object code, causing the computer system to load the
code in memory. The CPU then reads and executes the code to perform the tasks
identified in the program.

Fig. 1F is an illustrative block diagram of the hierarchical control
structure of the system control software, computer program 70, according to a-
specific embodiment. Using the light pen interface, a user enters a process set
number and process chamber number into a process selector subroutine 73 in
response to menus or screens displayed on the CRT monitor. The process sets are
predetermined sets of process parameters necessary to carry out specified processes,
and are identified by predefined set numbers. The process selector subroutine 73
identifies (i) the desired process chamber and (ii) the desired set of process
parameters needed to operate the process chamber for performing the desired process.

The process parameters for performing a specific process relate to process conditions
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such as, for example, process gas composition and flow rates, temperature, pressure,
plasma conditions such as microwave power levels or RF power levels and the low
frequency RF frequency, cooling gas pressure, and chamber wall temperature. These
parameters are provided to the user in the form of a recipe and are entered utilizing
the light pen/CRT monitor interface.

The signals for monitoring the process are provided by the analog and
digital input boards of the system controller, and the signals for controlling the
process are output on the analog and digital output boards of CVD system 10.

A process sequencer subroutine 75 comprises program code for
accepting the identified process chamber and set of process parameters from the
process selector subroutine 73 and for controlling operation of the various process
chambers. Multiple users can enter process set numbers and process chamber
numbers, or a user can enter multiple process set numbers and process chamber
number, so the sequencer subroutine 75 operates to schedule the selected processes in
the desired sequence. Preferably, the sequencer subroutine 75 includes a program
code to perform the steps of (i) monitoring the operation of the process chambers to
determine if the chambers are being used, (ii) determining what processes are being
carried out in the chambers being used, and (iii) executing the desired process based
on availability of a process chamber and type of process to be carried out.
Conventional methods of monitoring the process chambers can be used, such as
polling. When scheduling which process is to be executed, sequencer subroutine 75
takes into consideration the present condition of the process chamber being used in
comparison with the desired process conditions for a selected process, or the "age" of
each particular user entered request, or any other relevant factor a system
programmer desires to include for determining scheduling priorities.

Once the sequencer subroutine 75 determines which process chamber
and process set combination is going to be executed next, the sequencer subroutine 75
initiates execution of the process set by passing the particular process set parameters
to a chamber manager subroutine 77a-c, which controls multiple processing tasks in a
process chamber 15 according to the process set determined by the sequencer

subroutine 75. For example, the chamber manager subroutine 77a comprises
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program code for controlling sputtering and CVD process operations in the process
chamber 15. The chamber manager subroutine 77 also controls execution of various
chamber component subroutines that control operation of the chamber components
necessary to carry out the selected process set. Examples of chamber component
subroutines are substrate positioning subroutine 80, process gas control subroutine
83, pressure control subroutine 85, heater control subroutine 87, and plasma control
subroutine 90. Those having ordinary skill in the art will readily recognize that other
chamber control subroutines can be included depending on what processes are to be
performed in the process chamber 15. In operation, the chamber manager subroutine
77a selectively schedules or calls the process component subroutines in accordance
with the particular process set being executed. The chamber manager subroutine 77a
schedules the process component subroutines much like the sequencer subroutine 75
schedules which process chamber 15 and process set are to be executed next.
Typically, the chamber manager subroutine 77a includes steps of monitoring the
various chamber components, determining which components need to be operated
based on the process parameters for the process set to be executed, and causing
execution of a chamber component subroutine responsive to the monitoring and
determining steps.

Operation of particular chamber component subroutines will now be
described with reference to Fig. 1F. The substrate positioning subroutine 80
comprises program code for controlling chamber components that are used to load the
substrate onto pedestal 12 and, optionally, to lift the substrate to a desired height in
the chamber 15 to control the spacing between the substrate and the gas distribution
manifold 11. When a substrate is loaded into the process chamber 15, pedestal 12 is
lowered to receive the substrate, and thereafter, pedestal 12 is raised to the desired
height in the chamber, to maintain the substrate at a first distance or spacing from the
gas distribution manifold during the CVD process. In operation, the substrate
positioning subroutine 80 controls movement of pedestal 12 in response to process set
parameters related to the support height that are transferred from the chamber

manager subroutine 77a.
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The process gas control subroutine 83 has program code for controlling
process gas composition and flow rates. The process gas control subroutine 83
controls the open/ciose position of the safety shut-off valves, and also ramps up/down
the mass flow controllers to obtain the desired gas flow rate. The process gas control
subroutine 83 is invoked by the chamber manager subroutine 77a, as are all chamber
component subroutines, and receives from the chamber manager subroutine process
parameters related to the desired gas flow rates. Typically, the process gas control
subroutine 83 operates by opening the gas supply lines and repeatedly (i) reading the
necessary mass flow controllers, (ii) comparing the readings to the desired flow rates
received from the chamber manager subroutine 77a, and (iii) adjusting the flow rates
of the gas supply lines as necessary. Furthermore, the process gas control subroutine
83 includes steps for monitoring the gas flow rates for unsafe rates and for activating
the safety shut-off vaives when an unsafe condition is detected.

In some processes, an inert gas such as helium or argon is flowed into
the chamber 15 to stabilize the pressure in the chamber before reactive process gases
are introduced. For these processes, the process gas control subroutine 83 is
programmed to include steps for flowing the inert gas into the chamber 15 for an
amount of time necessary to stabilize the pressure in the chamber, and then the steps
described above would be carried out. Additionally, if a process gas is to be
vaporized from a liquid precursor, for example, tetraethylorthosilicate ("TEOS"), the
process gas control subroutine 83 is written to include steps for bubbling a delivery
gas, such as helium, through the liquid precursor in a bubbler assembly or
introducing a carrier gas, such as helium or nitrogen, to a liquid injection system.
When a bubbler is used for this type of process, the process gas control subroutine 83
regulates the flow of the delivery gas, the pressure in the bubbler, and the bubbler
temperature in order to obtain the desired process gas flow rates. As discussed
above, the desired process gas flow rates are transferred to the process gas control
subroutine 83 as process parameters. Furthermore, the process gas control
subroutine 83 includes steps for obtaining the necessary delivery gas flow rate,
bubbler pressure, and bubbler temperature for the desired process gas flow rate by

accessing a stored table containing the necessary values for a given process gas flow
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rate. Once the necessary values are obtained, the deli\)ery gas flow rate, bubbler
pressure and bubbler temperature are monitored, compared to the necessary values
and adjusted accordingly.

The pressure control subroutine 85 comprises program code for
controlling the pressure in the chamber 15 by regulating the size of the opening of the
throttle valve in the exhaust system of the chamber. The size of the opening of the
throttle valve is set to control the chamber pressure to the desired level in relation to
the total process gas flow, size of the process chamber, and pumping set-point
pressure for the exhaust system. When the pressure control subroutine 85 is invoked,
the target pressure level is received as a parameter from the chamber manager
subroutine 77a. The pressure control subroutine 85 operates to measure the pressure
in the chamber 15 by reading one or more conventional pressure manometers
connected to the chamber, to compare the measured value(s) to the target pressure, to
obtain PID (proportional, integral, and differential) values from a stored pressure
table corresponding to the target pressure, and to adjust the throttle valve according to
the PID values obtained from the pressure table. Alternatively, the pressure control
subroutine 85 can be written to open or close the throttle valve to a particular opening
size to regulate the chamber 15 to the desired pressure.

The heater control subroutine 87 comprises program code for
controlling the current to a heating unit that is used to heat the substrate 20. The
heater control subroutine 87 is also invoked by the chamber manager subroutine 77a
and receives a target, or set-point, temperature parameter. The heater control
subroutine 87 measures the temperature by measuring voltage output of a
thermocouple located in a pedestal 12, comparing the measured temperature to the
set-point temperature, and increasing or decreasing current applied to the heating unit
to obtain the set-point temperature. The temperature is obtained from the measured
voltage by looking up the corresponding temperature in a stored conversion table or
by calculating the temperature using a fourth-order polynomial. When an embedded
loop is used to heat pedestal 12, the heater control subroutine 87 gradually controls a

ramp up/down of current applied to the loop. Additionally., -a built-in fail-safe mode
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can be included to detect process safety compliance, and can shut down operation of
the heating unit if the process chamber 15 is not properly set up.

The plasma control subroutine 90 comprises program code for setting

the low and high frequency RF power levels applied to the process electrodes in the

chamber 15, and for setting the low frequency RF frequency employed. Plasma
control subroutine 90 also includes program code for turning on and setting/adjusting
the power levels applied to the magnetron or other microwave source used in the
present invention. Similarly to the previously described chamber component
subroutines, the plasma control subroutine 90 is invoked by the chamber manager
subroutine 77a.

The above reactor description is mainly for illustrative purposes, and
other equipment such as electron cyclotron resonance (ECR) plasma CVD devices,
induction coupled RF high density plasma CVD devices, or the like may be used with
the present invention to provide upgraded apparatus. Additionally, variations of the
above-described system, such as variations in pedestal design, heater design, RF
power frequencies, location of RF power connections and others are possible. For
example, the wafer could be supported and heated by quartz lamps. It should be
recognized that the present invention is not necessarily limited to use with or

retrofitting of any specific apparatus.

II. Exemplary Structures

Fig. 2A illustrates a simplified cross-sectional view of an integrated
circuit 200 which may be made in accordance with use of the present invention. As
shown, integrated circuit 200 includes NMOS and PMOS transistors 203 and 206,
which are separated and electrically isolated from each other by a field oxide region
220 formed by local oxidation of silicon (LOCOS), or other technique. Alternatively,
transistors 203 and 206 may be separated and electrically isolated from each other by
trench isolation (not shown) when transistors 203 and 206 are both NMOS or both
PMOS. Each transistor 203 and 206 comprises a source region 212, a drain region

215 and a gate region 218.
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A premetal dielectric (PMD) layer 221 separates transistors 203 and
206 from metal layer 240 with connections between metal layer 240 and the
transistors made by contacts 224. Metal layer 240 is one of four metal layers, 240,
242, 244 and 246, included in integrated circuit 200. Each metal layer 240, 242,
244, and 246 is separated from adjacent metal layers by respective intcr—métal
dielectric (IMD) layers 227, 228, or 229. Adjacent metal layers are connected at
selected openings by vias 226. Deposited over metal layer 246 are planarized
passivation layers 230.

For gate metallizations in some applications, a low resistivity tungsten
silicide (WSi,) film is deposited on top of a layer of polycrystalline silicon
(polysilicon), to form a layered structure called a "polycide" structure. Two
examples of such polycide structures are shown in Figs. 2B and 2C. As seen in Fig.
2B, a WSi, film 210 is deposited over a polysilicon film 211 to form a gate structure
222 that is part of a field effect transistor. The transistor is fabricated on a silicon

substrate 223 and also includes source and drain regions 225 and 231. In Fig. 2C, a

- WSj, film 241 is deposited over a polysilicon layer 245 as part of a contact structure

to source/drain region 250.

It should be understood that simplified integrated circuit 200 shown in
Fig. 2A and structures shown in Figs. 2B and 2C are for illustrative purposes only.
One of ordinary skill in the art could implement use of the present invention in
relation to fabrication of other integrated circuits such as microprocessors, appliéation
specific integrated circuits (ASICs), memory devices, and the like. Further, the
present invention may be applied to fabrication of PMOS, NMOS, CMOS, bipolar,
or BiCMOS devices. |

II. Remote Plasma Cleaning Source

As discussed above, forming the integrated circuit described with
respect to Fig. 2A results in unwanted deposition on any hot surface in the chamber,
includiﬁg the heater, process kit parts of the apparatus and the chamber walls. To
remove the unwanted residue, a remote plasma source 300 shown in Fig. 3, is in

fluid communication with the processing chamber 15. An exemplary plasma source
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includes a plasma applicator 302 in fluid communication with both a supply 304 of a
fluorine-containing gas, such as nitrogen tri-fluoride (NF,), and the processing
chamber 15. A microwave generator, such as a magnetron 306, is in electrical
communication with the plasma applicator 302 via an isolator 308 and an autotuner
310. Specifically, a first waveguide 312 is coupled between the magnetron 306 and
the isolator 308; a second waveguide 314 is coupled between the autotuner 310 and
the isolator 308; and a third waveguide is coupled between the autotuner 310 and the
applicator 302. The microwave energy generated by the magnetron travel towards
the applicator 302 by traversing waveguides 312, 314 and 316. The autotuner 308
reduces the amount of microwave energy reflected into the magnetron 306. The
autotuner 310 minimizes the microwave energy reflected by the applicator 302 back
into the remaining components of the plasma source 300.

The reactive gas from supply 304 is flowed, under vacuum from the
substrate processing chamber's pumping and exhaust system (not shown), into the
plasma applicator 302 where microwave energy transmitted from the magnetron 306
form standing waves. The standing waves in applicator 302 ignite and maintain a
plasma from the reactive gas, and a flow of reactive radicals, also under vacuum, is
discharged from applicator 302, through output waveguide 318 and toward the
processing chamber 15. The gas mixing system 9, shown in Fig. 1B includes a
mixing manifold 322. One inlet 320 of the mixing manifold 322 is coupled between
the output waveguide 318 and the applicator 302. The remaining inlet 320 of the
mixing manifold 322 is coupled to receive a flow, under vacuum, of diluent gas from
the diluent gas supply 326. The mixing manifold 322 includes an outlet 328 which is
coupled to an inlet 340 of the processing chamber 15.

The mixing manifold 322 is provided so that a flow of diluent gas may
be mixed with a flow of reactive radicals forming a homogeneous flow of a gas-
radical mixture, anterior to the processing chamber 15. This produces a gas-radical
mixture which allows increasing the flow rate of a gas mixture therethrough, while
decreasing the rate at which materials located within the chamber are etched by the
reactive radicals dispersed within the gas-radical mixture. With this gas-radical

mixture, more than three times the number of wafers may be processed in the
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chamber 15 before a wet clean in necessitated. Employing the prior art remote
plasma cleaning technique allowed approximately 3000 wafers to be processed before
a wet clean was necessary. Flowing the aforementioned gas-radical mixture, by
employing the mixing manifold 322, the number of wafers that mayvbe processed
between wet cleans is in excess of 10,000. This provides a substantial cost savings
benefit in the manufacture of integrated circuits. Performing a wet clean on a process
chamber necessitates down-time for the processing equipment. This translates into an
increased per wafer cost of manufacture.

The increased throughput between wet cleans achievable by employing
the gas-radical mixture according to the present invention is attributable to many
factors. Firstly, it is believed that a reduction in the etch-rate provided by
introducing the diluent gas into the reactive radical flow is dependent upon the
material bombarded by the reactive radicals. For example, some components in the
chamber 15, including the chamber walls, are typically formed from aluminum.
Were the circuit 200, shown above in Fig. 2A, processed in the chambef 15, some of
the chamber components, and portions of the chamber 15's walls, would be coated
with a tungsten silicide (WSi,) film. Typically, the fluorine atoms in the gas-radical
mixture reacts with the tungsten silicide and the aluminum material to form WE;, SiF,
and AlF;. The gas-radical mixture reduces the etch-rate of both the WSi film and
the Al components, but the reduction in the etch-rate of Al is greater than the
reduction in the etch-rate of the (WSL) film. Therefore, although the overall time
required to etch the (WSL) film increases, the reduction in the etch-rate of the Al
compounds is sufficient to provide a net reduction in the etching of the chamber
components and walls.

Secondly, the gas-radical mixture allows rapid removal of the AlE;,
during the plasma clean procedure, which forms on the surfaces of the chamber
components and walls. This reduces the amount of accumulation of AlF, in the
chamber 15 during a plasma clean, allowing a greater number of 'plasma cleans to be
performed before a wet clean is necessitated. Specifically, the diluent gas is mixed
with the flow of reactive radicals so that there is an increase in the flow rate of the

gas-radical mixture through the chamber 15 without substantially increasing the net
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flux of the reactive-radicals therethrough during a plasma clean process. Thus, a
greater quantity of AlF,, as well as WE;, SiF, may be removed from the chamber
without substantially increasing the reactions between the reactive radicals and the
chamber 15's components.

Referring to Figs. 3 and 4, during the plasma clean process, a grounding step
340 is performed in which the entire chamber 15 and the components therein are
grounded to preclude ion bombardment of the same by preventing large electric fields
from being present therein. At step 342, a plasma is formed in the applicator that
includes a plurality of reactive radicals. Thereafter, at step 344, a flow is formed
from the reactive radicals that moves towards the chamber 15. At step 346 a flow of
diluent gas is formed traveling from the diluent gas supply 326 toward the mixing
manifold 322. The flow of reactive radicals intermixes with the flow of diluent gas,
anterior to the chamber 15, when traveling through the mixing manifold 322 to form
a gas-radical mixture. At step 348 the gas-radical mixture flows into the chamber 15.
To remove deposition residue, as discussed above.

Referring to Figs. 1A, 3 and 4, typically the flow rates of the diluent
gas and reactive radicals into the mixing manifold 322 are such that the ratio of the
diluent gas to reactive radicals in the gas-radical mixture entering the chamber 15 is at
least 2:1. The flow rates of the respective gases are, however, dependent upon the
size of the chamber 15, as well as the temperature and pressure therein. In an
exemplary embodiment, the pedestal 12 is heated between 450 and 575°C, with
550°C being preferred. The face plate 13a is heated between S0°C and 100°C and the
chamber atmosphere is in the rage of 35°C to 55°C. At these temperatures, the flow
rate of the reactive radicals, such as NF, is in the range of 200-400 sccm and the flow
of diluent gas is in the range of 450 to 750 sccm, with the preferred flow rates being
300 and 700, respectively.

Referring to Figs 1A, 1B, 3 and 5, the chamber 15's pressure is
typically below one torr in order to prevent premature recombination of the reactive
radicals. To aide in the reduction of premature recombination, the mixing manifold
322 is distally positioned with respect to the plasma applicator 302 to reduce the back

pressure that may occur in the plasma source 300. In this fashion, premature
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recombination of the reactive radicals is reduced. To that end, the mixing manifold
322 is positioned adjacent to the inlet manifold 11. The mixing manifold 322
includes two fluid paths 350 and 352 each of which extends from at least one inlet,
terminating in a common mixing chamber 354, centered on the inlet manifold 11.
Fluid path 350 extends from a pair of inlets 320a and 320b, transverse to fluid path
352. Fluid path 352 extends from inlet 320c. An outlet orifice 356 is formed into the
mixing chamber 354 and coupled so as to place the same in fluid communication with
an input port 358 of the inlet manifold 11. Fluid path 350 typically comprises of a
pair of fluid conduits 350a and 350b each of which is uniquely associated with one of
the inlets 320a and 320b and coupled to the supply of diluent gas (not shown) to allow
the diluent gas to enter the mixing manifold 322. Fluid path 352, on the other hand,
is a single conduit coupled to the output wave guide (not shown) to allow the reactive
radicals to enter the mixing manifold 322. In this fashion, a homogenous gas-radical
mixture of the diluent gas and the reactive radicals is formed in the mixing chamber
354 anterior to the chamber 15, e.g., before egressing through the outlet orifice 356.
Typically, the diluent gas is an inert gas, such as argon (AR).
However, the diluent gas may be a reduction gas that will react with fluorine radicals
in the chamber 15. For example, often fluorine radicals are present in the chamber
subsequent to the removal of a substantial amount of the WSi, film. To reduce the
amount of etching of the chamber components, the diluent gas may be provided with
any compound that reacts with fluorine. An example of a reduction diluent gas is H,
which reacts with fluorine to form HF. Although the reactive gas employed to form
the plasma has been described being (NF,), it should be understood that other
fluorine-containing gases may be employed, such as carbon tetra-fluoride (CF,) sulfur
hexafluoride (SF,) or similar gases. In addition, chlorine-containing gases also may
be used in lieu of a fluorine containing gas. In such a case the reduction gas includes

a compound that is reactive with chlorine.

IV. ary E diment of a R e Plasma Cleanin urce
Referring to Fig. 6, although any plasma applicator 302 may be used,

in one embodiment plasma applicator 402 includes body 404 defining a volume 406
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of desired shape. A fluid inlet 408 is disposed opposite to a fluid outlet 410 so that a
fluorine-containing reactive gas may pass therebetween. Positioned at the juncture
between the volume 406 and the fluid inlet 408 is a first microwave arrestor 412.
Similarly, at the juncture between the fluid outlet and the volume 406 is a second
microwave arrestor 414. The arrestors 412 and 414 prevent egression of the
microwave plasma from volume 406 and are preferably comprised of grids, or metal
plates having a plurality of throughways. For example, arrestors 412 and 414 may be
formed from aluminum plates having a thickness ranging from about 0.05-0.25 inch,
preferably about 0.14 inch, with small holes therethrough, each of which has a
diameter of about 0.125 inch or less. The center-to-center hole separation ranges
from about 0.1-0.4 inch, preferably about 0.31 inch. This design prevents the escape
of microwave energy having a frequency of about 2.45 GHz from escaping the
applicator 402, thereby preventing a plasma present therein from traversing through
either the fluid inlet 408 or fluid outlet 410. The aforementioned holes allow the
reactive gases to enter into, and radicals to exit from, the applicator 402.

The plasma applicator 402 also includes a first and second spaced-apart‘
end walls 416 and 418 with two spaced-apart side walls 420 and 422 extending
between the first and second end walls 416 and 418. The fluid inlet is formed into
the first side wall 420, and the fluid outlet 410 is formed into the second side wall
422. Typically, the walls 416, 418 and 420 are made from aluminum, but other
materials may be employed, including copper, stainless steel and the like. A
microwave generator, such as a magnetron 424 is in electrical communication with
the first end wall 416 via an antenna 426 coupled to a waveguide system 428 to
transmit microwave energy into the volume 406. The magnetron is typically a CW
microwave source providing microwaves at about 2.45 GHz and between about 75
Watts (W) to about 1 kW of microwave power. The antenna may be any known
antenna in the art suitable for microwave transmission, including a stub antenna, a
slot antenna or the like. The antenna is position to optimize the transfer of
microwave energy into the waveguide 428 and is typically about one quarter-

wavelength away from one end of waveguide system 428.
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The waveguide system 428 may include more than one waveguide sections and
tuning elements, which are well known to one of ordinary skill in the art. Typically,
the waveguide system 428 may be a section of rectangular cross-sectional waveguide,
but waveguides having other cross-sectional dimensions (e.g., circular) may be used
in other embodiments. The waveguide system 428 may have any desired length with
a waveguide width of about 3.4 inches and a waveguide height of about 1.7 inches.
Part of waveguide system 428 is adjacent to microwave source 424 at one end and
adjacent to plasma applicator 402 at its other end. Waveguide system 428 may also
optionally include other optimizing features, such as directional couplers or a phase

detector to monitor reflected power and/or an
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isolator with a load to absorb any reflected microwave power that could otherwise
damage the magnetron.

To facilitate transfer of microwave energy from the waveguide system
428 to the volume 406, the first end wall 416 may include a microwave-transparent
plate 430 and an aperture 432 extending between the waveguide 428 and the plate
430. The microwave-transparent plate 342 may formed from any material that is
transparent to microwaves, such as alumina (ALO,) in either ceramic or sapphire
form, depending upon the application. ALO, in sapphire form is most preferred in
some specific embodiments. In specific embodiments, plate 430 has dimensions
greater than the transverse dimensions of the volume 406, and the dimensions of the
aperture 432 substantially correspond to the cross-sectional dimensions of waveguide
system 428. The thickness of microwave-transparent plate 430 is chosen in order to
optimize the operational life while maximizing microwave power transfer. Typically,
the thickness of microwave-transparent plate 430 ranges from about 0.25-0.75 inch,
with about 0.4 inch being the preferred thickness.

Fluid-tight integrity of the volume 406 should be maintained. To that
end, the components plasma applicator 402 may be coupled together by any method
known in the art to provide fluid-tight seals. For example, brazing, welding, or
fastening mechanisms, such as screws may be employed to connect the first and
second end walls 416 and 418 to side walls 420 and 422. Typically, the second end
wall 418 is removably attached to side walls 420 and 422 to facilitate cleaning of the
volume 406 via physically wiping the same with a special cloth and cleaning liquids.
To that end, bolts (not shown) may be employed to couple the second end wall 418 to
the side walls 420 and 422. Fluid-tight integrity may be maintained by disposing
sealing members therebetween, such as sealing member 434, which is disposed
between the microwave-transparent plate 430 and first and second side walls 420 and
422. Any type of sealing member may be employed, including a buna-rubber O-ring,
and/or gaskets made from metal, such as aluminum, or of Teflon™ or other
appropriate material impervious to microwaves.

Referring to Figs. 6 and 7, the volume is shown as having a

rectangular cross-section in two orthogonal planes, both of which extend parallel to
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flow path A. The dimensions of the walls 416, 418, 420 and 422 are selected so that
the volume has dimensions, e.g., length (l,,), width (w,p) and height (h,),
necessary to achieve the desired resonance mode of the microwave energy. Typically
the dimensions of the volume 406 are established to obtain one of the TE,,, resonance
modes, where n is an integer. In addition, the dimensions of the volume 406 may be
established to minimize the microwave energy reflected by the plasma. To adjust the
dimensions of the volume 406, a metal plate 436 may be disposed adjacent to the
microwave-transparent plate 430 so as to face the volume 406. The metal plate 436
may be a metal foil or a sputtered or otherwise deposited metal layer on microwave-
transparent plate 430. The metal plate may include a centrally located aperture 438 to
guide microwaves into the volume 406.

Referring to Figs. 6 and §, the side-walls 420 and 422 may define a
cylindrical volume 506, having an applicator length (l,,) and a radius (r,p), with 1,
and r,p chosen to excite one of the TE,;, resonance modes (where n is an integer).
The dimensions of 1,, and r,, may range from about 2-4 inches and about 1.5-5
inches, respectively, depending upon the resonance mode desired. For example, to
obtain the TE,,, resonance mode, 1,, and r,, are established to be approximately 3.67
inches and 2 inches, respectively. Preferably, the volume has dimensions to excite
the TE,,, resonance mode of the microwaves.

Referring to Fig. 9, the plasma applicator 602 is shown as having
passages 500 disposed at opposite ends of the volume 606 and are complementary to
the shape of the first and second sidewalls 620 and 622. In an exemplary
embodiment, the first and second side walls 620 and 622 define a cylindrical volume
606, and the passages 500 have an annular shape. The thickness of the first and
second sidewalls 620 and 622 range from about 0.05 inch to 0.25 inch, preferably
about 0.14 inch, separating passages 500 from the volume 606. The passages 500 are
built into the sidewalls 620 and 622 to provide a path through which a flow of coolant
may be placed in thermal communication with the volume 606. The cross-sectional
dimensions of each passage 500 from about 0.1-1 inch in length, with 0.53 inch being
preferred, to about 0.1-1 inch in height, with about 0.4 inch being preferred. To that

end, the total thickness of each of the applicator body 320 ranges from about 0.2-3
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inches, preferably about 1 inch, so that applicator body 320 meets strength
requirements and heat transfer passages 500 are accommodated.
Cooling the volume 606 in this manner facilitates transport of radicals to the
downstream mixing manifold (not shown). For example, when using a fluorine-
containing reactive gas such as NF, to form the plasma in applicator, the reactive gas
reacts with materials from which it is composed, typically of aluminum. This results
in the formation of aluminum fluoride (AIF) in the volume 606. Aluminum fluoride
forms at rates on the order of pms per minute in remote plasma systems reaching
temperatures of about 400°C. Flowing various coolants, such as water, water-based
ethylene glycol, or oil-based thermal transfer fluids, through passages 500, allows the
volume 606 temperature to be maintained at a predetermined temperature ranging
from about 0-100°C. At these temperatures, it is believed that AIF forms at
significantly slower rates on the order of ums per year. In one experiment, the use of
water, for example, at about 20-25°C, circulating through heat exchange passages
500 at a rate of at least about 2 liters/minute, preferably about 3 liters/minute, can
maintain the volume 606 at temperatures as low as room temperature (approximately
25°C). As another experiment, water at temperatures lower than about 20°C,
flowing at about 3 liters/minute, maintained the volume 606 at temperatures lower
than approximately 25°C. The cooling properties provided by the passages 500
coolant flow therethrough also result in lowering of the temperature of the
microwave-transparent plate (not shown) via conduction with the side walls 620 and
622. This reduces the probability of cracking of the plate 436 due to thermal shock.
Referring to Figs. 9, 10 and 11, a plurality of equally spaced threaded
bores 650 are disposed about the circumference of the opposed ends of the plasma
applicator 602 to facilitate removably attaching the first and second end walls 416 and
422. Specifically, the first end wall 416 is shown as being circular with the an outer
region 417 having a plurality of blind holes 421 which are adapted to align with the
plurality of threaded bores 650, when placed in a final seating position. Similarly,
the second end wall 418 also includes an outer region 419 having a plurality of blind

holes 421 which align with the plurality of thread bores 650. In this fashion, a
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plurality of screws (not shown) may be employed to rigidly attach the first and second
end walls 416 and 418 to the side walls 420 and 422.

To facilitate formation of a fluid-tight seal, an annular sealing member
434 is disposed about the circular transparent-microwave plate 436 in the first end
wall 416. The sealing member 434 has a radius slightly less than the radius of the
microwave transparent-plate 430, preferably about 2.25 inches. The radius of the
microwave transparent-plate 430 ranges from about 1-5 inches, with about 2.5 being
preferred. Having a thickness ranging from about 0.001-0.25 inch, preferably about
0.125 inch, metal sheet 436 has a thickness optimized to provide good thermal contact
to transfer heat from the microwave-transparent plate 430. This reduces thermal |
shock and, therefore, arcing. The aperture 438 has a rectangular shape with a width
(w,) of about 2.41 inches and a height (h,) of about 0.38 inch. However, aperture
438 may have any shape and dimensions desired, depending upon the application.

Similar to the first end wall 416, the second end wall 418 has a circular
shape with an annular groove 440 formed therein. The annular groove 440 surrounds
a portion of the first end wall having a cross section matching a cross section of the
volume 606. A sealing member, such as an O-ring 442 is disposed in the groove 440
to facilitate formation of a fluid-tight seal between the first and second side walls 420
and 422 and the second end wall 418.

Referring again to Fig. 3, although plasma source 300 has been
described as using a magnetron 306 as the source for microwave energy any type of
microwave generators may be employed. For example, an inexpensive puised, low
wattage power supply to generate between about 1-1.5 kW microwave power from
the magnetron, or a high wattage, continuous wave (CW) power supply to generate
typically up to about 2.5-6 kW microwave power from the magnetron. In some
preferred embodiments, magnetron 305 may be the type of magnetron employed in
some microwave ovens and be powered by a low cost, low wattage, pulsed 60 Hertz
(Hz) half-rectified power source (which contains large ripples) to provide microwaves
having a frequency of about 2.45 Gigahertz (GHz). Such pulsed, low wattage
microwave generators can be at least two orders of magnitude lower in price than a

high power CW microwave generator or an RF generator.
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The waveguides 312, 314, 316 may be any type known in the art, and
may be made of aluminum, copper, stainless steel, and the like. The dimensions of
the waveguides 312, 314, 316 are that needed to merely transmit microwave energy
to plasma applicator 302 without selectively guiding particular modes, according to
the specific embodiment.

The RF isolator is typically made of a material that provides RF
isolation, such as polytetrafluoroethylene (PTFE), and which is resistant to etching or
deposition by radicals (such as fluorine radicals when forming the plasma using a
fluorine-containing gas like NF;). In addition to PTFE (commercially available, for
example, as Teflon™ PTFE), any fluorinated material including fluorinated polymers
such as PFA (which is a polymer combining the carbon-fluorine backbone of
polytetrafluoroethylene resins with a perfluoroalkoxy side chain), fluorinated
ethylene-propylene (TFE), or the like, also may be used. Of course, other materials
may be used that are resistant to the particular reactive chemistry used.

In the present invention, reactive gases that are supplied to applicator
designs discussed above with respect to Figs. 6-11 can be ignited using fairly low
microwave power to form a plasma sustained by the standing waves formed therein.
For example, as low as about 250 W of microwave power may be provided to strike a
plasma, in contrast to conventional microwave plasma systems where a UV lamp or a
high microwave power levels on the order of 3 kW are required to strike plasma.
Therefore, by employing the applicators discussed above, a plasma may be formed
without the use of a plasma-enhancing gas like argon and without a UV lamp, thereby
decreasing the unit cost of the applicator. Advantageously, microwaves resonating in
the plasma applicator are able to energize reactive gases in the entire volume of
plasma applicator for efficient microwave energy usage and effective plasma ignition,
compared to conventional remote microwave plasma systems where a small volume in
a plasma applicator tube (disposed through a small portion of waveguide) contains the
plasma.

The above-described gas flow, chamber pressure and temperature
ranges provide for cleaning procedures that are sufficient to remove undesired

residues such as tungsten silicide residues that may be built up over time after
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processing multiple wafers or substrates. The parameters in the above processes
should not be considered limiting to the claims. Other oxide, nitride or metal-
containing residues may be cleaned using the present invention in substrate processing
appératus depositing other types of films besides tungsten silicide. The actual values
(temperature, pressure, gas flows, etc.) selected for a particular cleaning recipe will
vary according to various applications. Also, flow values mentioned above are for a
plasma applicator used with a DCSxZ chamber (equipped for a 200-mm wafer and
with a total volume of about 7 liters) manufactured by Applied Materials, but flow
values would differ depending on the type or size of chamber used. To that end, the
rate at which the reactant gas is introduced into applicator may be controlled by
system controller of CVD system 10 through a valve or MFC in the gas feed line.
The reactant gas initially may flow into the applicator without application of power to
the magnetron to provide gas flow stabilization. This gas flow stabilization may last
about 0.25-10 seconds, preferably about one second, in a specific embodiment before
powering the magnetron. Then, fluorine radicals (and possibly aiso NE,) from the
plasma created in the applicator of the remote module flow from an outlet
downstream into the substrate processing chamber to efficiently and gently clean the
residues in the processing chamber. The selected processing chamber pressure to
provide the internal applicator pressure is set and maintained throughout the cleaning
by a throttle valve in conjunction with the vacuum pump system of the substrate
processing chamber. The throttle valve and the vacuum pump system are all
controlled by system controller in-setting and maintaining the selected pressure.
After being set, processing conditions are maintained by system controller for a
selected time period ranging from about 50-1000 seconds, preferably ranging from
about 150-500 seconds, and most preferably about 340 seconds, for the entire
cleaning procedure. Once the magnetron is powered down after the cleaning is
complete, the pressure may be allowed to stabilize for about 0.25-10 seconds,
preferably about 5 seconds, before bringing the pressure to the desired level for the

subsequent process step to occur in the chamber.
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It is to be understood that the above description is intended to be
illustrative and not restrictive. Many embodiments will be apparent to those of skill
in the art upon reviewing the above description. By way of example, the inventions
herein have been illustrated primarily with regard to a cleaning apparatus, but they
are not so limited. Those skilled in the art will recognize other equivalent or
alternative methods of depositing or etching various layers while remaining within the
scope of the claims of the present invention. The scope of the inventions should,
therefore, be determined not with reference to the above description, but should
instead be determined with reference to the appended claims, along with the full

scope of equivalents to which such claims are entitled.
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WHAT IS CI AIMED IS:
1. A method of removing residue from a substrate processing chamber,

said method comprising the steps of:

forming a plasma remotely with respect to said chamber, said
plasma including a plurality of reactive radicals;

forming a flow of said reactive radicals traversing toward said
chamber;

forming a diluent gas flow;

mixing said flow of said reactive radicals and said diluent gas
flow anterior to said chamber to form a gas-radical mixture; and

flowing said gas-radical mixture into said chamber.

2. The method as recited in claim 1 wherein said flow of reactive radicals
and said gas flow are established to maintain a pressure within said chamber below

one torr.

3. The method as recited in claim 1 wherein said reactive radicals
comprise of the atoms associated with a reactive gas, with said reactive gas being

selected from a group consisting of NF;, dilute F,, CF,, C,F,, C,F;, SF;, and CIF,.

4. The method as recited in claim 1 wherein said diluent gas flow

comprises an inert gas.

5. The method as recited in claim 1 wherein said diluent gas flow

comprises of a reduction gas.

6. The method as recited in claim I wherein said chamber has
components therein, with a subset of said radicals in said gas-radical mixture reacting

with said components creating a residue and further including the step of exhausting
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said residue, with a rate at which said residue is exhausted is depending upon a rate

of said diluent gas flow.

7. The method as recited in claim 1 wherein said diluent gas flow travels
at a first rate and said flow of said reactive radicals travel at a second with a ratio of

said first rate to said second rate being at least 2:1.

8. A deposition device, including:

a process chamber having an intake port;

a plasma source for generating a plasma consisting of reactive
radicals;

a supply of diluent gas;

a pump system in fluid communication with said plasma source
and said supply of gas to create a diluent gas flow and a flow of said reactive radicals;
and

a fluid manifold having multiple inlets and an outlet with said
outlet being coupled to said intake port and one of said inlets being in fluid
communication with the said plasma source, with the remaining inlets being in fluid
communication with said supply of diluent gas so as to allow said diluent gas flow
and said flow of said reactive radicals to mix when traveling between said inlets and
said outlet forming a gas-radical mixture egressing from said outlet and traversing

through said intake port.

9. The deposition device as recited in claim 8 wherein said supply of

diluent gas comprises of an inert gas.

10.  The method as recited in claim 8 wherein said diluent gas flow travels
at a first rate and said flow of said reactive radicals travel at a second with a ratio of

said first rate to said second rate being at least 2:1.
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11.  The deposition device as recited in claim 8 wherein said supply of

diluent gas comprises of a reducing gas.

12.  The deposition device as recited in claim 8 wherein said plasma source
comprises of a plasma applicator defining an internal volume and a supply of reactive -
gas in fluid communication with said internal volume, with said supply of reactive gas
being selected from a group consisting of NF;, dilute F,, CF,, C,F,, C;F,, SF,, and
CIF,.

13.  The deposition device as recited in claim 8 wherein said plasma
applicator includes a microwave source in electrical communication with said plasma

applicator.

14.  The deposition device as recited in claim 8 wherein said pump system

maintains a pressure within said chamber below one torr.

15.  The deposition device as recited in claim 9 wherein said inert gas is

argon.

16.  An substrate processing system comprising:

a processing chamber having an intake port;

a supply of diluent gas;

a plasma source for generating a plasma consisting of reactive radicals,
said plasma source including a conductive plasma applicator defining an internal
volume, said applicator having an input aperture and an output aperture, each of
which is equipped with microwave arrestors;

a fluid manifold having multiple inlets and an outlet with said outlet
being coupled to said intake port and one of said inlets being in fluid comrhunication
with said gas outlet, with the remaining inlets being in fluid communication with said

supply of diluent gas;
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a pump system, in fluid communication with both said plasma source
and said supply of diluent gas, to create a diluent gas flow and a flow-of said reactive
radicals, with said flow of said reactive radicals traversing said output aperture
toward said mixing manifold and said flow of gas traveling from said supply to said
mixing manifold, with said gas flow and said flow of said reactive radicals combining
when traveling between said inlets and said outlet forming a gas-radical mixture
egressing from said outlet and traversing through said intake port;

a controller configured to regulate said pump system and said plasma
source; and

a memory, coupled to said controller, comprising a computer-readable
medium having a computer-readable program embodied therein for directing
operation of said substrate processing system, said computer-readable program
including a set of computer instructions to be operated on by said controller to
regulate the introduction of said radicals from said plasma into said mixing manifold,
said set of computer instructions including:

a first subroutine to be operated on by said controller to
regulate said pump system to introduce said reactive
radicals into said mixing manifold at a first rate to and
said diluent gas at a second rate so as to maintain a

pressure with said chamber less than one torr.

17.  The apparatus of claim 16 wherein said first rate is in the range of 200

and 400 sccm and said second rate is in the range of 500 and 800 sccm.

18.  The apparatus of claim 16 further including a gas delivery system in
fluid communication with said plasma applicator to transmit a reactive gas thereto,
with said controller being configured to regulate gas delivery system, wherein said set
of computer instructions further includes a second subroutine instructions to be
operated on by said controller to regulate said gas delivery system to introduce said
reactive gas at a first rate to said gas inlet during a first time period at a first flow

rate; a third subroutine of computer instructions for controlling said pump system to
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maintain a pressure of about 1-20 torr within said applicator during said first time

period. ‘

19.  The apparatus of claim 16 further including a microwave source in
electrical communication with said plasma applicator, with said controller being
configured to regulate said microwave source, wherein said set of computer
instructions further includes a fourth subroutine to be operated on by said controller
to regulate said microwave source to direct microwaves into said internal volume of

said applicator during said first time period.

20.  The apparatus of claim 19 wherein said fourth subset of computer
instructions controls said remote microwave plasma system to direct said microwave
energy at a power level ranging from about 150-500 W to ignite said plasma in said

applicator.
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