wo 2016/176593 A1 [N N0 0 00000 A

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2016/176593 Al

(51

eay)

(22)

(25)
(26)
(30)

1

(72

74

3 November 2016 (03.11.2016) WIPO|PCT
International Patent Classification: (81) Designated States (uniess otherwise indicated, for every
GO6F 9/30 (2006.01) GO6F 9/38 (2006.01) kind of national protection available). AE, AG, AL, AM,
. . AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
International Application Number: BZ. CA. CH. CL. CN. CO. CR. CU. CZ. DE. DK. DM
PCT/US2016/030159 DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
International Filing Date: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
29 April 2016 (29.04.2016) KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
B . MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
Filing Language: English PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
Publication Language: English SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
Priority Data: . L
62/154,927 30 April 2015 (30.04.2015) Us (84) D.es1gnated. States (unle.ss Olhe?"WlS@ indicated, for every
62/195,692 22 July 2015 (22.07.2015) Us kind Of regzonal protection avazlable): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
Applicant: MICROCHIP TECHNOLOGY INCOR- TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
PORATED [US/US]; 2355 West Chandler Blvd., Chand- TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
ler, Arizona 85224-6199 (US). DK, EE, ES, FL FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
Inventors: CATHERWOOD, Michael; 323 Highland LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
. SM, TR), OAPI (BF, BI, CF, CG, CIL, CM, GA, GN, GQ,
Springs Ln., Georgetown, Texas 78633 (US). MICKEY, GW, KM, ML, MR, NE, SN, TD, TG)
David; 1387 E. Glacier P1., Chandler, Arizona 85249 (US). ’ > ’ O ’
KRIS, Bryan; 15426 E. Via Del Palo, Gilbert, Arizona Published:

85298 (US). WILKIE, Calum; 724 N. Ash Dr., Chandler,
Arizona 85224 (US). SACHS, Jason; 4625 E. Runway Bar
Dr., Chandler, Arizona 85249 (US). REITER, Andreas;
Wallbergstrasse 52, 83620 Feldkirchen-Westerham (DE).

Agent: SLAYDEN, Bruce W., II; Slayden Grubert Beard
PLLC, 401 Congress Ave., Suite 1900, Austin, Texas
78701 (US).

with international search report (Art. 21(3))

before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments (Rule 48.2(h))

(54) Title: CENTRAL PROCESSING UNIT WITH ENHANCED INSTRUCTION SET

(57) Abstract: An integrated circuit has a master processing core with a central processing unit coupled with a non-volatile memory
and a slave processing core operating independently from the master processing core and having a central processing unit coupled
with volatile program memory, wherein the master central processing unit is contfigured to transfer program instructions into the
non-volatile memory of the slave processing core and wherein a transfer of the program instructions is performed by executing a
dedicated instruction within the central processing unit of the master processing core.

10

15

20

25

WO 2016/176593 PCT/US2016/030159

Central Processing Unit With Enhanced Instruction Set

RELATED PATENT APPLICATION

This application claims priority to commonly owned U.S. Provisional Patent
Application No. 62/154,927, filed April 30, 2015, which is hereby incorporated by reference

herein for all purposes.

TECHNICAL FIELD

The present disclosure relates to central processing units (CPU), in particular
microcontrollers with a digital signal processing units (DSP). The present disclosure
furthermore relates to multi-processor integrated circuit devices, in particular to

microcontrollers with multiple processors.

BACKGROUND

Embedded systems generally comprise a central processing unit (CPU), memory and a
plurality of peripheral devices to form a single chip system or a single chip microcontroller.
More advanced systems comprise more than one CPU. A CPU may furthermore be enhanced
to have digital signal processing capabilities such as the dsPIC cores manufactured by the
Assignee of this application. Fig.1 shows a block diagram of such a processing core. As can
be seen, this core has typical digital signal processing capabilities such as an X Data RAM and
a separate Y Data RAM and a DSP engine coupled with the RAMS and a register file such that
the RAMs can be accessed both in parallel. Other typical elements of this processing core are
shown. In addition this conventional DSP microcontroller shows in Fig. 1 at the bottom certain
peripheral devices coupled through the system bus with the core. Fig. 2 shows registers of the
core, such as the working registers of the register file and accumulator of the DSP engine as
well as other typical DSP registers. Fig. 3 shows a more detailed block diagram of the DSP
engine of the block diagram of Fig. 1. The processing core as shown in Figs. 1-3 is a single
processing core that comprises digital signal processing capabilities. It can be used in multi-

core device as one of the cores.

10

15

20

25

30

WO 2016/176593 PCT/US2016/030159

SUMMARY

There exists a need for an improved instruction set for such a processing core in
particular when used in a multi-core device such as, for example, a dual core microcontroller

comprising signal processing capabilities in at least one of its cores.

Multi-processor core microcontrollers may be designed with entirely separated cores
and each core may operate on a different system clock. Thus, to provide for the ability to
communicate between the two or more cores, a specific communication interface is necessary.
In particular, a means to move code protected data between processor memories on a multi-
processor device is needed. Solution had to be fully configurable yet be efficient with regards

to silicon use.

In a master-slave configuration of a multi-processor microcontroller, support for a dual-
core slave processor program load/verify methodology is needed while code protection is

maintained after program is loaded into the slave.

According to an embodiment, an integrated circuit may comprise: a master processing
core having a central processing unit coupled with a non-volatile memory; and a slave
processing core operating independently from the master processing core and having a central
processing unit coupled with volatile program memory; wherein the master central processing
unit is configured to transfer program instructions into the non-volatile memory of the slave
processing core; and wherein a transfer of said program instructions is performed by executing

a dedicated instruction within the central processing unit of the master processing core.

According to a further embodiment, the dedicated instruction has a first operand
defining a source address and a second operand defining a destination address, wherein the
destination address is auto-incremented after execution of the instruction. According to a
further embodiment, the dedicated instruction causes an information word to be transferred into
a buffer, and wherein the information is written into the volatile program memory from the
buffer. According to a further embodiment, the instruction causes the non-volatile memory to
output said information whereupon said information is captured by said buffer. According to
a further embodiment, the information is a 24 bit word. According to a further embodiment,
the integrated circuit comprises a plurality of slave processing cores and the dedicated

instruction has a third operand defining a target slave processing unit. According to a further

10

15

20

25

30

WO 2016/176593 PCT/US2016/030159

embodiment, the source address stored in the first operand can optionally be auto-incremented
after execution of the instruction. According to a further embodiment, the source address is a
special function register of a peripheral device associated with the master processing core.
According to a further embodiment, the peripheral device is a serial communication peripheral.
According to a further embodiment, the peripheral device is a parallel input port. According
to a further embodiment, the master processing core is further operable to execute a further
instruction that verifies an information stored in the non-volatile program memory. According
to a further embodiment, the further instruction causes a first information to be transferred into
the buffer and wherein the content of the buffer is compared with a second information stored
in the volatile memory. According to a further embodiment, the further instruction comprises
a first address which is applied to the non-volatile memory to output the first information and
a second address which is applied to the volatile memory to output the second information.
According to a further embodiment, the further instruction further verifies error correcting code
(ECC) associated with the first and second information. According to a further embodiment,
the ECC associated with the non-volatile memory can be read from the non-volatile memory
and the ECC associated with the source is separately generated. According to a further
embodiment, the non-volatile memory of the first processing core comprises a code protection
defined by a protection scheme and wherein the volatile program memory of the slave
processing unit has a code protection that depends on a setting of the protection scheme.
According to a further embodiment, the protection scheme defines a plurality of segments of
the non-volatile memory and wherein each segment has a protection setting in the protection
scheme. According to a further embodiment, each protection setting for the non-volatile
memory has a setting for a read operation and a setting for a program or erase operation.
According to a further embodiment, the protection scheme provides for a predefined number
of security levels, wherein each security level defines a protection setting for each segment.
According to a further embodiment, the code protection for the volatile program memory is the
same as the code protection for one of the segments of the non-volatile memory. According to
a further embodiment, a register stores which segment of the non-volatile memory is selected
to provide the code protection setting for the volatile memory. According to a further
embodiment, a setting for a read operation of the non-volatile memory applies to read and write
operations of the volatile memory. According to a further embodiment, when a segment is

protected, depending on a protection setting an instruction executed from one segment may not

10

15

20

25

30

WO 2016/176593 PCT/US2016/030159

operate on a different segment. According to a further embodiment, when a segment is
protected, depending on a protection setting an read instruction executed from one segment
may operate only on a predefined area of a different segment. According to a further
embodiment, the predefined area stores interrupt vectors. According to a further embodiment,
the non-volatile memory comprises a boot segment and a general segment. According to a

further embodiment, the non-volatile memory further comprises a test segment.

According to another embodiment, a method for providing firmware for a processing
core in a multi-core integrated circuit processing device comprising a first processing core
having a first central processing unit coupled with a non-volatile memory and a second
processing core operating independently from the first processing core and having a second
central processing unit coupled with volatile program memory, may comprise: executing a
dedicated instruction within the first central processing unit which causes data to be written

into the non-volatile memory of the slave processing core.

According to a further embodiment of the method, the dedicated instruction has a first
operand defining a source address and a second operand defining a destination address, wherein
the destination address is auto-incremented after execution of the instruction. According to a
further embodiment of the method, upon execution of the dedicated instruction, an information
word is transferred from the non-volatile memory into a buffer, and the information is written
into the volatile program memory from the buffer. According to a further embodiment of the
method, the method may further comprise repeating said dedicated instruction in a loop.
According to a further embodiment of the method, the integrated circuit comprises a plurality
of slave processing cores and the dedicated instruction has a third operand defining a target
slave processing unit. According to a further embodiment of the method, the source address
stored in the first operand can optionally be auto-incremented after execution of the instruction.
According to a further embodiment of the method, the method may further comprise executing
by the master processing core a further instruction that verifies an information stored in the
non-volatile program memory. According to a further embodiment of the method, the further
instruction causes a first information to be transferred into the buffer and wherein the content
of the buffer is compared with a second information stored in the volatile memory. According
to a further embodiment of the method, the further instruction comprises a first address which
is applied to the non-volatile memory to output the first information and a second address which

is applied to the volatile memory to output the second information. According to a further

10

15

20

25

WO 2016/176593 PCT/US2016/030159

embodiment of the method, the further instruction further verifies error correcting code (ECC)
associated with the first and second information. According to a further embodiment of the
method, the ECC associated with the non-volatile memory can be read from the non-volatile
memory and the ECC associated with the source is separately generated. Accordingto a further
embodiment of the method, the non-volatile memory of the first processing core comprises a
code protection defined by a protection scheme and wherein the volatile program memory of
the slave processing unit has a code protection that depends on a setting of the protection
scheme. According to a further embodiment of the method, the protection scheme defines a
plurality of segments of the non-volatile memory and wherein each segment has a protection
setting in the protection scheme. According to a further embodiment of the method, each
protection setting for the non-volatile memory has a setting for a read operation and a setting
for a program or erase operation. According to a further embodiment of the method, the
protection scheme provides for a predefined number of security levels, wherein each security
level defines a protection setting for each segment. According to a further embodiment of the
method, the code protection for the volatile program memory is the same as the code protection
for one of the segments of the non-volatile memory. According to a further embodiment of the
method, a register stores which segment of the non-volatile memory is selected to provide the
code protection setting for the volatile memory. According to a further embodiment of the
method, a setting for a read operation of the non-volatile memory applies to read and write
operations of the volatile memory. According to a further embodiment of the method, when a
segment is protected, depending on a protection setting an instruction executed from one
segment may not operate on a different segment. According to a further embodiment of the
method, when a segment is protected, depending on a protection setting an read instruction
executed from one segment may operate only on a predefined area of a different segment.
According to a further embodiment of the method, the predefined area stores interrupt vectors.
According to a further embodiment of the method, the non-volatile memory comprises a boot
segment and a general segment. According to a further embodiment of the method, the non-

volatile memory further comprises a test segment.

10

15

20

25

WO 2016/176593 PCT/US2016/030159

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 shows a block diagram of a microcontroller with a single CPU having digital

signal capabilities;
Fig. 2 shows various registers of the CPU according to Fig. 1;
Fig. 3 shows specific parts of a DSP engine of a CPU according to Fig. 1;
Fig. 4 shows a dual-core microcontroller according to an embodiment;
Fig. 5 shows a dual or multi-core microcontroller according to various embodiments;

Fig. 6 shows details of how the program RAM can be accessed according to some

embodiments;
Fig. 7 shows segmentation of the Flash memory; and
Figs. 8-11 show tables with various security levels.

DETAILED DESCRIPTION

As shown in Figs. 4 and 5, a dual or multi core processing device 400 can be designed
to have a master microcontroller 410 with a master central processing unit (CPU) 412 and one
or slave units 420 each having a slave central processing unit 422 wherein a core design of
each slave central processing unit 422 may be generally identical or similar to the core design
of the master CPU 412. However, according to other embodiments, the slave CPU 422 may
be different from the master CPU 412. The master microcontroller has its own set of peripheral
devices as shown in Fig. 4. A slave unit 420 may or may not have its own set of peripheral
devices and, thus, form a microcontroller by itself. Thus, each master and slave device form
more or less completely independent processing devices and may communicate with a
dedicated bus or communication interface 430. Figs. 4 and 5 shows such a design with a master
microcontroller 410 and a single slave microcontroller 420. A communication interface 430 is
provided that allows for communication between the two cores 410, 420. Each processor 412,
422 may be designed in a Harvard architecture as shown. However, the principles according
to the various embodiments may be easily translated into a von Neumann architecture. The
master unit comprises, e.g., flash memory 416 used as the program memory and random access

memory 414 used as data memory, each coupled with the master core 412.

10

15

20

25

30

WO 2016/176593 PCT/US2016/030159

As shown in Figs. 4 and 5, the slave unit 420 can be designed without flash memory.
Instead a dedicated program random access memory 426 is provided. Due to the fact that this
memory is volatile it will be loaded through the master 410 according to various embodiments.
This design choice has the advantage that a bottleneck provided by flash technology is avoided.
Flash memory is generally slower than RAM. Hence, there will be no read delays and the slave
can be operated at a higher execution speed which may be very beneficial for certain high speed
applications such as, e.g., SMPS applications. As stated above, more than one slave unit 420
may be implemented according to various embodiments. In case both cores are identical, the
master core 412 can be designed to include additional instructions which may either not be
implemented in the slave unit 422 or non functional in the slave unit. These additional
instructions allow the transfer of data from the flash memory 416 or from an external source
into the PRAM 426 of the slave device 420. For example, according to an embodiment,
multiple cores may be implemented within a single chip device and each core may have an
assigned configuration register, wherein one of the bits of such a register may define whether
the respective unit is a master or a slave. Logic may be present that allows for only one of the
cores to be set as a master. Once this bit has been set, the additional instruction may be allowed
to be executed. In the other units (slaves) these instructions may not be executed, for example,

they could be interpreted as illegal opcodes.

Control logic to access the PRAM 426 by the master unit 410 can be either located in
the master unit as shown in Fig. 4 with buffer/comparator unit 418. Alternatively, a similar
unit may be arranged within the slave unit 420 as shown in Figure 5 with PRAM wrapper unit
428. Either unit is designed to grant access of the PRAM either exclusively to the master unit
410 or to the slave unit 420. Other embodiments may place some part of the logic within the
master core and other parts in the salve core or arrange the logic outside both units. Similarly,
communication interface 430 may be insider either unit or entirely outside both units.
Additional control for the PRAM access units 418 or 428may be provided by the
communication interface 430 as indicated in Fig. 5 with the dotted line. Fig. 5 also shows
additional slave units 440 and 450 with dotted lines. All units may connect through a bus and
associated wrapper units 428 in each slave unit. The embodiments are therefore not limited
to a dual core implementation. A person skilled in the art will realize that other

implementations are possible.

10

15

20

25

30

WO 2016/176593 PCT/US2016/030159

Fig. 6 shows a block diagram of an exemplary interface at the slave side. In this
exemplary embodiment, the master slave interface forms the communication interface 430.
Two multiplexers 428a, 428b grant access to the data and address bus of the program RAM
426, respectively. Additional access logic 428c is shown which is connected to the master unit
410, the slave core 422 and the PRAM 426. In this embodiment, the communication interface
430 controls the multiplexers to give access to the master unit 410 while the slave processor is
held in a reset state. Once the PRAM 426 has been loaded with the slave firmware, the
multiplexers 428a, 428b will be controlled to grant access back to the slave unit 420 and the
CPU 422 will be released from reset. The access control and data verify logic 428c may
distribute the read and write and enable signals which may come either from the master unit
410 or the slave unit 420. The interface as shown in Fig. 6 may provide a write only path
between the master unit 410 and the PRAM 426. In such an implementation, the access control
and data verify logic 428c may be configured to perform a verification of written data. For
example, according to one embodiment, the access control and data verify logic may operate
in two different modes when coupled with the master unit 410. In a first mode, it provides the
logic signals for writing the slave firmware into the PRAM 426, wherein data bytes are written
in any suitable manner, for example, consecutively into the PRAM 426. In a second mode, the
unit 428c may provide a verification function. Instead of writing the data transmitted, the unit
428c compares the data provided by the master unit 410 with the content of PRAM 426 to
verify that it has been programmed correctly. Other embodiments of the master/slave interface

with respect to the PRAM are possible.

Thus, according to various embodiments, a Slave processor load/verify methodology
for a multi-core device, in particular a dual core microcontroller, can be provided. This
provides an improved efficiency and performance with respect to conventional multi-core
devices, especially for tight control loop applications (e.g. SMPS applications) using a DSP
engine within the core. However, a processing core does not have to be designed to include a
DSP engine. The principles according to various embodiments apply to a processing core
which only includes a conventional CPU. Furthermore, the efficiency and performance of an

associated C compiler will be improved by such an improved instruction set.

According to various embodiments, a new dual-(multi-) core architecture includes
dedicated CPU instructions to load & verify the Slave core Program RAM (PRAM). As

performance requirements increase, in particular, for DSP based applications, the need to

10

15

20

25

30

WO 2016/176593 PCT/US2016/030159

improve CPU throughput, in particular the DSP engine throughput, became evident: For
example, there exists a need for increased speed. According to one embodiment, a dual core
device targets 100MHz for the Master unit 410 using Flash memory as its program memory
(e.g., at 0.75 MIPs/MHz) and 120MHz for the Slave unit 420 using PRAM as its program
memory (e.g., at 0.9 MIPs/MHz). As mentioned above, the PRAM choice for program memory
426 in the slave unit 420 allows this unit to run more efficiently and at a higher speed.
Furthermore, according to some embodiments, latency with hardware context switching for
DSP may also need to be reduced. Finally, according to other embodiments, ISA
improvements may be needed to improve DSP algorithm efficiency. Gains in compiler
efficiency could be achieved with bit field instructions and a faster divider with a more flexible

register utilization according to some embodiments.

Some of these improvements could be achieved by adding new instructions and
capabilities with minimal changes to the existing design. Other improvements may be achieved
by accelerating divide operations using the same iterative non-restoring algorithm. The
following improvements can be implemented independently. Thus, various embodiments may

use all or a subset of these improvements.

In summary, CPU improvements may comprise: Dual-core support instructions which
provide for some or all of the following DSP improvements: Load & verify the Slave core
Program RAM (PRAM); Hardware context switch extended to include DSP accumulators,
status and DSP engine configuration; Data limit (bounds checking) instructions; Accumulator
32-bit data load/store instructions; and DSP normalization instruction. Compiler efficiency

gains that can be achieved are: Bit field instructions and Divide instruction improvements.

According to various embodiments, a dual core microcontroller with DSP functionality
may comprise a Slave core with PRAM Load (LDSLV) & Verity (VFSLV) instructions added
to facilitate Slave program initialization. These instructions are designed to be a faster
alternative to moving data from a memory mapped image of the PRAM when compared to
using conventional program space visibility (PSV) addressing or TBLWTx instructions. The
instructions are only enabled when the CPU is instantiated as a Master (CPU_IS MASTER =

1) as mentioned above. When disabled, they will be considered to be illegal opcodes.

Another benefit of using unique instructions to load/verify the PRAM is that it
simplifies the design and verification by not having to remap the PRAM into Master address

10

15

20

25

30

WO 2016/176593 PCT/US2016/030159
10

space, and keeping the existing PSV CPU instruction flow (and just have the Slave snoop the
passing address & data). According to one embodiment an existing MOV instruction could be
enhanced with a control flag to enable a Slave PRAM capture function. However, it is more
beneficial to create unique instructions (similar to the MOV opcode but ones that also asserted
a signal to the Slave to tell it to switch the PRAM into the Master clock domain and load it) as
it allows to add a level of better clarity to a user in regards to how the PRAM was initialized
(and a little security in so much as it is unlikely that these ops would ever be inadvertently

executed).

The LDSLYV instruction according to some embodiments differs from other data move
instructions in so much as it can move an entire instruction word (I-word) from PS (Flash) to
PS (Save PRAM) in 2 cycles. Each read will fetch a 24-bit word from Flash and then effect a
write of that word into the target Slave PRAM. A conventional dsPIC/PIC24 CPU architecture
has no means to move data values larger than 16-bits from Flash, so the data is not moved
through the Master CPU but captured (when available on the Flash data bus) by the Slave.
Thus, these new instructions are unique in that they are capable of moving data (as a single

entity) that is wider than the natural data width of the processor that is executing them.

The Slave will use the captured data to either write it to the specified PRAM address
(LDSLYV), or compare it with the contents of the specified PRAM address (VFSLV). The
LDSLVNFSLYV instructions operate in an identical fashion except that VFSLV asserts signal
cpu_slave pram_verify en to indicate that data read from the Master Flash is to be compared

against the PRAM contents (instead of being loaded into the PRAM).

These instructions may allow to transfer data from a predefined source including the
flash memory 416 of the master device 410 into the program RAM (PRAM) 426. To this end,
the master device 410 may provide for dedicated instructions to transfer and to verify

transferred data. For example:

- a load slave instruction LDSLV which moves a data word from Master Flash image
416 into a Slave PRAM wrapper or buffer 418/428 where it is captured along with a target
address. Such an instruction would define an indirect source address, for example, with or
without post increment functionality, an indirect destination address with post increment
functionality and a literal that would define which one of a plurality of slaves is the destination.

However, in a dual core (single slave) implementation the literal could also be omitted. The

10

15

20

25

30

WO 2016/176593 PCT/US2016/030159
11

option of having post increment functionality on the source allows the LDSLV/VFSLV to
automatically increment to the next source address after execution, in preparation for the
subsequent LDSLV/VFSLYV iteration. This is especially useful when executing from within a
REPEAT loop. When not using the post-increment option, the same instruction could be used
to write a block of identical data in the destination PRAM 426 (also known as blockfill).
Alternatively, the source address could point to a n-bit, e.g., 24-bit, special function register of
a master peripheral device, for example the Flash Controller programming data register.
According to other embodiments, the source could potentially also be a parallel input port, a
serial receive buffer, etc. Some embodiments may only be able to use an n-bit register, e.g., a
24-bit register, that is mapped into program address space. Thus, by directing external data to
the 24-bit special function register, it could be indirectly written into the PRAM 426 of the
slave device 420. The post increment function may however, be the main function to transfer
program data out of the master flash memory 416 into the slave PRAM 426. In one
embodiment, master flash 416 and slave PRAM 426 may be organized identical and each data
word read could be directly transferred into the PRAM 426 by an appropriate logic 428.
However, in some embodiments, the PRAM 426 may be organized in a different fashion than
the Flash memory 416. For example, flash memory 416 could be organized in 24 bit words,
whereas PRAM 426 could be organized in 48 bit words. In such an implementation, a buffer
418/428 may be provided that stores a first read from Flash memory 416 and writes the stored
data together with a subsequent read into the PRAM 426. According to some embodiments,
the limitation here may not be the width of the source Flash data, but the fact that the
LDSLV/VFSLYV operation can only work on a single n-bit value, e.g., a 24-bit value. So even
if the source Flash were 48-bits wide, only a 24-bit value can ever be moved in such an
embodiment. Other embodiments may not be restricted to such a value. Other transfer
mechanism may apply according to the specific design choices for the various memories.
Moreover, error correction coding (ECC) may be implemented in Flash memory 416 and in
the PRAM 426. With respect to error correction, even if the Flash and PRAM are both the same
word width with ECC, according to an embodiment, the ECC parity data is not copied. Rather,
it’s always regenerated within the PRAM wrapper when loading it. According to some
embodiments, this may be due to the limitation of reusing the existing PSV model which can
only utilize the existing 24-bit data paths in the core. Again, other embodiments may not face

such a restriction.

10

15

20

25

30

WO 2016/176593 PCT/US2016/030159
12

- a verify slave instruction VFSLV which reads, e.g., a 24-bit data word from Master
Flash image and compares data to the contents of the PRAM 426. Thus, a comparator may be
provided to perform the actual comparison of the data stored in Flash memory and in the
PRAM. While the Flash memory may be designed with respect to the ECC functionality that
this additional information is not readable according to some embodiments, the ECC data from
RAM may be readable. The comparison mechanism, for example a buffer and associated
comparator, may be equipped with logic to generate ECC data from the read Flash memory
data. Thus, this instruction may recalculate ECC parity on Master data and compares with
stored PRAM ECC for complete verify, and may also flag a (‘sticky’) verify error (in MSI

macro) in the event of a bad compare according to some embodiments.

- the LDSLV/VFSLYV instructions may be designed to be executed within a REPEAT
loop; they may use existing data pipeline to accelerate transfers to 1 word/cycle from (up to)
3 cycle (access time) Flash in some embodiments. A first execution may require more than 1
cycle, for example 5 cycles in order to prime the data pipeline and handle data alignment.
However, any subsequent transfer could be done in a single cycle. A last instruction or wrap
up may require for example 3 cycles to unroll the data pipeline. Depending on the size of the
program to be transferred into the PRAM, the single cycle transfers within the repeat loop
speeds up transfer significantly. Other embodiments may generally execute each instruction

in a single cycle.

- When operating in Slave Dual Panel mode according to some embodiments: the
LDSLV/VFSLV instructions may only have access to Active PRAM when the Slave is
disabled; and the LDSLV/VFSLYV instructions may always have access to Inactive PRAM.
Dual Panel mode applies to some devices that split the PRAM into two separate blocks. In this
mode, the PRAM control is such that the Slave may continue to execute from the “Active”
panel while the “Inactive” panel is being (re)loaded by the Master (presumably with a new
PRAM image that has been reprogrammed into Flash during a device update). Once complete,
the Master signals the Slave that it may switch panels (on-the-fly using a dedicated instructions,
e.g. the BOOTSWP instruction). This is a very specialized “Live Update” scheme that may be
implemented in some embodiments and is designed to allow the Slave to keep executing (e.g.,
an SMPS inner control loop) while a software update is being re-Flashed into the device.
Applications who run these loops at 100’s KHz or more, do not want the down-time associated

with a full device reset (milliseconds), so want to be able to load the new PRAM code then

10

15

20

25

WO 2016/176593 PCT/US2016/030159
13

instantly swap to it without a reset. Firmware for such embodiments may require a smart hand-
over because all BOOTSWP does is literally just switch PRAM panels. When the device resets
as normal (at some future time), the new PRAM code would be loaded into the “Active” panel

as normal.
Code Examples:
Example 1: LDSLV: PRAM LOAD FROM FLASH

; Slave #0 PRAM:

; load sequence prior to Slave being

; enabled
movpag #PRAM_DATA_PAGE,DSRPAG
mov .w #PRAM_DATA_BASE,w2
clr.w w5
repeat #PRAM LENGTH-1
ldslv [w2++], [w5++],#0

The code snippet shown in Example 1 demonstrates how the LDSLV instruction could

be used during application initialization to load the PRAM of Slave #0.
Example 2: VFSLV: PRAM VERIFY FROM FLASH

; Slave #0 PRAM:
; validation sequence prior to

; Slave being enabled.

movpag #PRAM_DATA_PAGE,DSRPAG
mov .w #PRAM_DATA_BASE,w2

clr.w w5

repeat #PRAM LENGTH-1

vfsly [w2++], [w5++],#0

; VERFERR=1 if mismatch detected
Btss.b MSIOSTAT, VERFERR
bra PRAMOK ; exit with no error

equ ¥ ; exit with error

10

15

20

25

WO 2016/176593 PCT/US2016/030159
14

The code snippet shown in Example 2 demonstrates how the VFSLV instruction could

be used during application initialization to verify the PRAM contents of Slave #0.
Example 3: LDSLV: PRAM BLOCK FILL FROM FLASH

; Slave #0 PRAM:

; block fill prior to Slave being

; enabled.
movpag #FILL_OPCODE_PAGE,DSRPAG
mov.w #FILL_OPCODE_ADDR,w2
clr.w w5
repeat #PRAM LENGTH-1
Idslv [w2], [w5++],#0

The code snippet shown in Example 3 demonstrates how the LDSLV instruction could
be used to block fill (i.e., load with a constant value) the PRAM of Slave #0. In this case, the

constant is sourced from Flash using register indirect address for LDSLV (no post-increment).
Example 4: LDSLV: PRAM LOAD FROM NVMDATAL

; Slave #0 PRAM:

; load PRAM addressed by pointer in

; w5 with opcode held in NVMDATAL

; while Slave is disabled.

; Verify data move.

; Exit with PRAM pointer incremented.
; Load DSRPAG and w2 to address

; NVMDATAL register

movpag #NVMDATAL
mov.w #NVMDATAL,w2
Idslv [w2], [w5++],#0

dec2 w5, w5

10

15

20

25

30

WO 2016/176593 PCT/US2016/030159
15

vfslv [w2], [w5++],#0
; VERFERR=1 if mismatch detected

btss.b MSIOSTAT, VERFERR
bra PRAMOK; exit with no error
equ * ; exit with error

Alternatively, the block fill opcode value may be a variable sourced from the NVM
Controller 24-bit NVMDATAL register. The NVMDATAL register is located within PS and
becomes a 24-bit r/w register when the NVM Controller is not enabled for Flash program/erase
(i.e, NVMCON.WREN = 0). The register is write-only whenever Flash program/erase is
enabled (i.e, NVMCON.WREN = 1). Any instruction opcode may be loaded into
NVMDATAL and subsequently loaded into the PRAM. The VFSLYV instruction may be used
in the same manner to confirm the success of the LDSLV operation. This approach may also
be used to load all or part of the PRAM with data sourced externally from the device, removing

the need to first program it into the Master Flash memory as shown in Example 4.

According to some embodiments, additional instructions may be implemented in a CPU
with DSP engine. Such additional instructions do not necessarily require the implementation
of the above mentioned load/verify instructions. Moreover, they do not require a multi core
design but could also be implemented in a single core device comprising a CPU and integrated

DSP engine.

Thus, according to some embodiments, a first type of instruction may be a 16-bit data
bounds check and limit functionality may add Force data Limit (FLIM/FLIM.v) instructions to
accelerate 16-bit data bounds check and limit operations. Such an instruction compares a target
signed value with an upper and lower limit held in respective W registers. If the target value
is greater than upper or less than lower limit, the exceeded limit register is loaded with the
target signed value. Thus, a saturation function can be defined with user selectable upper and

lower limits. Such an instruction can be implemented in two versions:

FLIM: Performs the above mentioned function on any of the working registers of a

CPU and sets status bits to indicate result

FLIM.v: Sets status bits to indicate result; Saves signed value by which limit is

exceeded into Wn which can be useful for anti-windup algorithms. Thus, this instruction

10

15

WO 2016/176593 PCT/US2016/030159
16

performs the same function as FLIM but also stores the overshoot (or undershoot) value in a

designated register as shown in the code snippet of example 5 below.

Example 5:

A second additional instruction is an accumulator max and min instructions
(MAXAB/MINAB) added to accelerate DSP accumulator based bounds check and limit
operations: These instructions compare a signed value in the target accumulator with an upper
(MAXAB) or lower (MINAB) limit held in the other accumulator. If the limit accumulator
value is greater than upper (MAXAB) or less than lower (MINAB) limit, the limit accumulator
is copied into the target accumulator. Again, these instruction can be implemented in two

implementations:

MAXAB/MINAB: performs the function as stated above and sets status bits to indicate

result

MAXAB . v/MINAB.v : performs the same function as above and sets status bits to
indicate result. Furthermore, these instructions save the signed value by which limit is
exceeded into Wn or memory (useful for anti-windup algorithms) similar to the FLIM.v

instruction but operating with 40-bit accumulator values.

10

15

20

WO 2016/176593 PCT/US2016/030159
17

Example 6:

When both types of instructions are executed they can be designed to be executed
subsequently as shown in the snippet above. These instructions automatically set the respective
flags indicating that a maximum or minimum limit has been reached. According to one
embodiment, the minimum limit instruction may be designed to perform like a no-operation
instruction if no limit is reached, thereby not affecting the flags of the status register. Thus, as
shown above the branch instruction needs to be executed only once. If the maximum limit
instruction triggers a flag, the minimum limit instruction would not reset it as it would execute
like a nop instruction. The following branch instruction would execute correctly. This
functionality may only require that the MAXAB(.v) instruction is executed before the
MINAB(.v) instruction.

Further instructions can be implemented which also do not require a dual or multi-core
design. According to some embodiments, a 32-bit Load/Store Accumulator instructions
(LAC.d/SAC.d) can be added to accelerate movement of intermediate results where resolution
cannot be lost: Existing Load/Store Accumulator (LAC/SAC) instructions move 16-bit data;
No direct means to move 1.31 accumulator data exist in the conventional dsPIC core.

According to various embodiments, instructions extended to move 32-bit data may comprise:

LAC.d : Read, optionally shift, then sign extend 32-bit value from memory into

accumulator A or B
SAC.d : Optionally shift, then store LS 32-bits of accumulator A or B into memory

According to some embodiments, these can be implemented as single instruction words,

which may execute in 2 cycles.

10

15

20

25

WO 2016/176593 PCT/US2016/030159
18

According to other embodiments, an accumulator normalization (NORM) instruction
can be added to accelerate existing normalization sequence (using FBCL instruction). Existing
CPU ISA supports accumulator data normalization through use of multiple instructions

including Find First Bit Clear Left (FBCL):

6 instruction, 5 cycle operation (up to 16-bit shift only).

Some embodiments may implement a NORM instruction that uses only 1 instruction
word and executes in 1 cycle. The instruction automatically normalizes target accumulator by

up to 16-bits in either direction. It may be cascaded for normalizations >16bits:

Exponent from each iteration can then be added,;
This results in 3 instructions, 3 cycle operation

However, other implementations of a NORM instruction may be able to normalize the

entire accumulator in a single iteration.

According to some embodiments, Bit field instructions (BFINS/BFEXT) are added to
improve compiler efficiency. Compiled code frequently needs to insert or extract multiple bits

within a target word: Bit field offsets and widths are invariably constant values

BFINS: Writes a bit field from a CPU W-register or from a literal value into a target

word
BFEXT: Reads a bit field from a target word and loads it into a CPU W-register

All bit field instructions are 2 word, 2 cycle operations: Without bit field, entire
operation requires around 7 words, 7 cycles to complete; With bit field, entire operation

requires around 4 words, 4 cycles to complete.

According to some embodiments, a divide improvement provide an interruptible, non-
restoring divide suite of instructions (same as for a conventional dsPIC): Execution time is
now 7 cycles (P33E:19 cycles) for all divide instructions (includes 1 cycle for REPEAT
instruction) and is fully backwards compatible with existing application code using original

divide REPEAT count.

10

15

20

25

WO 2016/176593 PCT/US2016/030159
19

Furthermore, according to some embodiments, an alternate set of divide instructions
can be provided to improve compiler register allocation efficiency: Existing (32/16-bit) divide

instructions: Dividend in Wm+1:Wm, Divisor in Wn, and Remainder:Quotient in W1:WO0

In an alternate set of divide instructions: Dividend in Wm+1:Wm, Divisor in Wn and

Remainder:Quotient in Wm+1:Wm; wherein W1:WO0 are preserved.

In summary, the following additional instructions can be provided, in particular for a
dsPIC core comprising a CPU and a DSP engine. Only the first instructions LDSLV and
VFSLV are specifically designed for multi-core devices, all other instructions may be

optionally implemented in any combination:
LDSLV, VFSLV : Load and Verify Slave PRAM
FLIM{.v} : Signed 16-bit data value bounds check and limit
MAXAB{.v}, MINAB{.v} : Accumulator 1.31 data value bounds check and limit
LAC.d, SAC.d: Accumulator 32-bit load and store
NORM : Accumulator normalization
BFIN, BFEXT : Bit filed insert and extract

DIVx2 : Alternate divide instruction set that preserve W1:WO0

According to further embodiments as shown in Fig. 7, a code protect scheme for a dual-
(multi-) core processor may be provided. This protection scheme is in particular beneficial for
the Slave processor in a dual core microcontroller. According to other embodiments, this
concept may also apply to a single core processor or microcontroller. Fig. 7 shows an
exemplary code protect scheme 700. Flash memory may be split into several segments, each
with its own rules pertaining to access of the other. For example, configuration registers which
may be only configured during programming of the device or a fuse mechanism may be
provided to set the access protection scheme. Fig. 7 shows that the flash is divided into a user
flash and a test flash partition. However, other embodiments may only provide a single
partition or even more partitions. The user flash partition is segmented into a boot segment
and a general segment. Furthermore, smaller segments for interrupt vector tables IVT and

AIVT may be provided, which may be included into the boot segment or which may have a

10

15

20

25

WO 2016/176593 PCT/US2016/030159
20

separate protection depending on the currently set protection level. Fig. 7 shows an interrupt
vector table IVT and an alternate interrupt vector table AIVT at different location. However,
other embodiments may integrate these two table into one segment VS that may be located
before the boot segment BS or at any other suitable location. Finally a configuration segment
may be provided that comprises various device configuration registers that can only be written
when the device is programmed, for example, by the integrated in-circuit program functions.
The arrangement of the segments may differ according to a respective implementation. The
protection scheme allows for a variety of different settings wherein the each segment may be
protected differently. In particular, access from one segment to another segment may be
restricted according to a specific setting. Furthermore, vectoring into a segment may be

restricted according to a security setting.

If implemented according to some embodiments, the Test address space contains a few
special sectors of Flash, all in the upper (highest address) half of the Program Space, which
may for example be a 24-bit Program Space. The Configuration segment in such an
embodiment (typically a single sector or less) resides within User Flash address space (lower

half of the 24-bit Program Space:

- One test sector is reserved for factory use (i.e., is only writeable in private test modes and
otherwise always protected) and contains device ID info, “fuse” values for the device
calibration data, etc. This sector also typically contains a single row of data for “customer

OTP” data which the customer may only write to (never erase).

- In Dual Boot (dual panel) devices as described above, another test sector is reserved for
the Boot (operating) Mode fuse value. This sector is protected unless the user erases the

entire device (Chip erase).

- One or more test sectors are reserved for use during device test, and subsequently by the
development tools to hold a Debug Exec. These sectors are writeable in public test modes

(like debug mode).

- The Configuration sector contains all the user programmable “fuses” to select user

options. It has (user defined) write permissions based on the code protect level selected.

10

15

20

25

30

WO 2016/176593 PCT/US2016/030159
21

All “fuse” data is automatically read and loaded into special device configuration

registers by the Flash Controller as a part of the device reset sequence.

As mentioned above, each segment may have its own access rules to prevent read/write
access from another segment (hereinafter designated as “outside” access). Moreover, vectoring
into a segment may be restricted, in particular in a high security setting. A table may define
the settings for each segment depending on what type of operation is performed wherein
different operations may have different security settings as will be shown in more detail in Fig.
10. The security can be split into read and write/erase protection separately, wherein, for
example, a write protection bit may be used to set the write protection separately. The
implementation may vary according to various embodiments. Fig. 8 shows an embodiment
with three different levels of protection for the boot segment. Fig. 10 shows an embodiment
with three different levels of protection for the general segment. Similar tables may be used
for the other segments. Each protection level provides separate protection for a read access to
different segments from outside the segment. In addition, each level may set whether write
protection is set or not. In the embodiment shown in Fig. 8 for the boot segment and Fig. 10
for the general segment, a first level provides no read protection which generally applies to all
accessed segments. If a write protection is active in this mode, it will be applied to all segments

which then cannot be programmed or erased from “outside” the respective segment.

A second level is shown as the standard level. Fig. 8 shows the protection for the boot
segment. In this setting, the boot segment cannot be read or written to from “outside” and
depending on the write protection setting, may not be written to from actions executed within
the boot segment. Fig. 10 shows the setting for the general segment. Here, the boot segment
as well as the general segment can perform read operations within the general segment. Writing
to the general segment is only allowed if the write protect bit is not set. Any operation from

within the test segment will not allow read or write access to the general segment.

The third level is shown as the high protection level. In this setting, for the boot
segment in addition to the standard setting protection vectoring into the boot segment may be
restricted. Thus, this additional protection may prevent any modifications of the vector table.

However, for the boot segment the protection may be identical to the standard setting.

Fig. 10 shows for the high security setting for the general segment, that any access from

the outside is prohibited. In other words, the general segment can only be accessed from within

10

15

20

25

30

WO 2016/176593 PCT/US2016/030159
22

the general segment. Even a Write access from within the general segment GS may be

prohibited by setting the respective protection bit.

Fig. 11 shows an embodiment with a more detailed table with the security operations
in application mode according to another embodiment in more detail. The operations are listed
under the left-most column, and the corresponding influence on GS, BS, CS and VS is shown
in the corresponding row. Various operations are defined. The first line (PC Rollover into
Segment) concerns a program counter roll-over into another segment. The second line (PFC
to Segment) concerns any type of program flow change, such as execution of a jump or a branch
instruction and its effect on the various segments. The next line (Vector from IVT or AIVT)
concerns vectoring into a specific segment. The next line (Table Read/PSV) concerns PSV or
table read instruction access to a segment. The next line (Page Erase) concerns a page erase
function that would affect a respective segment. The next line (Row Program) concerns the
programming of a memory row. Other actions are sown in the following rows. Thus, different
protection settings may apply to different types of action. Certain actions such as read and
write operations may be performed within one segment but affect other segments. The
protection scheme according to various embodiments allows to selectively protect these
actions. Some actions such as those caused by an interrupt may not per se come from a specific
segment, and therefore the table in Fig. 11 does not distinguish between the segments from
they are executed. The table in Fig. 11 shows whether the action is allowed by showing an
“OK” in the respective table cell or prohibited by showing either a “No” or “0’s”, wherein the
latter indicates that the operation will produce a “0” read. Some examples with respect to Fig.

11 are:

- Executing a TBLRD/PSV from segment GS will allow the CPU to see data from
segment GS irrespective of the segment GS security level, but will only allow the CPU to see
data from segment BS if its security is set to “none”. Segment CS is always readable as is

segment VS.

- Attempting a page erase using code executing in segment BS that targets segment GS
will fail if segment GS’ write protect is enabled and/or segment GS security is “high”. Note as

discussed below that segment CS has and additional security level called “enhanced”.

As shown in Fig 11, a variety of different actions can be protected according to

different settings wherein read and write actions may be separately protected. However, other

10

15

20

25

WO 2016/176593 PCT/US2016/030159
23

implementations may not distinguish between read and write. In addition, Fig. 11 shows that
for the configuration segment CS an additional security level may be implemented that may

allow a separate intermediate protection level.

According to some embodiments, the Slave PRAM 426 may be allocated to either the
boot segment (BS) or the general segment (GS) address space, for example, by a fuse circuit
of by configuration registers as mentioned above. According to another embodiment, the Slave

PRAM can only inherit Master segment GS security.

Thus, the Slave PRAM 426 will assume the security level assigned to the corresponding
Master Flash segment of flash memory 416. The LDSLV/VFSLYV instruction execution is now
implemented such that it is sensitive to the respective Flash execution segment from which it
is executed and to which the respective PRAM segment is assigned. Thus, the associated code
protect security levels are applied when such an instruction is executed. The LDSLV/VFSLV
are therefore seen within the PRAM as a read function. The program or page erase function
and its associated security rules only applies to the flash memory. Thus, the already defined
rules for BS/GS read of the Flash memory 416 will also be applied to Slave PRAM access
when using the LDSLV/VFSLYV instructions, which perform a read or write in the PRAM, such
that:

LDSLV/VFSLV will work if executed from within BS of the master and the Slave
PRAM is assigned to:

(1) the BS (irrespective of segment security level),
(2) the GS, and the GS is not at the ‘High’ security level.

LDSLV/VFSLV will work if executed from within GS of the master and the Slave
PRAM is assigned to:

(1) the GS (irrespective of segment security level);

(2) the BS, and the BS is at the ‘None’ security level.

10

WO 2016/176593 PCT/US2016/030159
24

If the aforementioned conditions are not met, LDSLV/VFSLV execution will have no
effect. Also, according to other embodiments other conditions may apply. The above
conditions are mere examples. It is assumed that the Flash access code protect rules (for the

source data read) will be met.

Fig. 9 shows an extended code protect scheme for the boot segment similar to that
shown in Fig. 8. Again similar tables may be used for other segments. If the PRAM 426 is
assigned to the boot segment of the master Flash memory 416, it may therefore be protected
from untrusted code in segment GS by setting Master BS to any security level (i.e., a level
other than ‘None’). Conversely, if the PRAM is assigned to the segment GS of the master, it
may also be protected from untrusted code in BS by setting Master GS to ‘High’ security.

10

15

20

25

WO 2016/176593 PCT/US2016/030159
25

CLAIMS

1. An integrated circuit comprising:

a master processing core having a central processing unit coupled with a non-volatile

memory;

a slave processing core operating independently from the master processing core and

having a central processing unit coupled with volatile program memory;

wherein the master central processing unit is configured to transfer program

instructions into the non-volatile memory of the slave processing core; and

wherein a transfer of said program instructions is performed by executing a dedicated

instruction within the central processing unit of the master processing core.

2. The integrated circuit according to claim 1, wherein the dedicated instruction has a
first operand defining a source address and a second operand defining a destination address,

wherein the destination address is auto-incremented after execution of the instruction.

3. The integrated circuit according to claim 1 or claim 2, wherein the dedicated
instruction causes an information word to be transferred into a buffer, and wherein the

information is written into the volatile program memory from the buffer.

4. The integrated circuit according to one of the preceding claims, wherein the
instruction causes the non-volatile memory to output said information whereupon said

information is captured by said buffer.
5. The integrated circuit according to claim 3, wherein the information is a 24 bit word.

6. The integrated circuit according to one of the preceding claims, wherein the
integrated circuit comprises a plurality of slave processing cores and the dedicated instruction

has a third operand defining a target slave processing unit.

7. The integrated circuit according to one of claims 2 - 6, wherein the source address

stored in the first operand can optionally be auto-incremented after execution of the instruction.

10

15

20

25

WO 2016/176593 PCT/US2016/030159
26

8. The integrated circuit according to one of claims 2 - 7, wherein the source address

is a special function register of a peripheral device associated with the master processing core.

9. The integrated circuit according to claim 8, wherein the peripheral device is a serial

communication peripheral.

10. The integrated circuit according to claim 8, wherein the peripheral device is a

parallel input port.

11. The integrated circuit according to one of the preceding claims, wherein the master
processing core is further operable to execute a further instruction that verifies an information

stored in the non-volatile program memory.

12. The integrated circuit according to claim 11, wherein the further instruction causes
a first information to be transferred into the buffer and wherein the content of the buffer is

compared with a second information stored in the volatile memory.

13. The integrated circuit according to claim 11 or claim 12, wherein the further
instruction comprises a first address which is applied to the non-volatile memory to output the
first information and a second address which is applied to the volatile memory to output the

second information.

14. The integrated circuit according to one of claims 11 - 13, wherein the further
instruction further verifies error correcting code (ECC) associated with the first and second

information.

15. The integrated circuit according to claim 14, wherein the ECC associated with the
non-volatile memory can be read from the non-volatile memory and the ECC associated with

the source is separately generated.

16. The integrated circuit according to one of the preceding claims, wherein the non-
volatile memory of the first processing core comprises a code protection defined by a protection
scheme and wherein the volatile program memory of the slave processing unit has a code

protection that depends on a setting of the protection scheme.

10

15

20

25

WO 2016/176593 PCT/US2016/030159
27

17. The integrated circuit according to claim 16, wherein the protection scheme defines
a plurality of segments of the non-volatile memory and wherein each segment has a protection

setting in the protection scheme.

18. The integrated circuit according to claim 17, wherein each protection setting for
the non-volatile memory has a setting for a read operation and a setting for a program or erase

operation.

19. The integrated circuit according to one of claims 16 - 18, wherein the protection
scheme provides for a predefined number of security levels, wherein each security level defines

a protection setting for each segment.

20. The integrated circuit according to one of claims 17 - 19, wherein the code
protection for the volatile program memory is the same as the code protection for one of the

segments of the non-volatile memory.

21. The integrated circuit according to one of claims 17 - 20, wherein a register stores
which segment of the non-volatile memory is selected to provide the code protection setting

for the volatile memory.

22. The integrated circuit according to one of claims 18 - 21, wherein a setting for a
read operation of the non-volatile memory applies to read and write operations of the volatile

memory.

23. The integrated circuit according to one of claims 17 - 22, wherein when a segment
is protected, depending on a protection setting an instruction executed from one segment may

not operate on a different segment.

24. The integrated circuit according to one of claims 17 - 23, wherein when a segment
is protected, depending on a protection setting and read instruction executed from one segment

may operate only on a predefined area of a different segment.

25. The integrated circuit according to claim 24, wherein the predefined area stores

interrupt vectors.

10

15

20

25

WO 2016/176593 PCT/US2016/030159
28

26. The integrated circuit according to one of claims 17 - 25, wherein the non-volatile

memory comprises a boot segment and a general segment.

27. The integrated circuit according to one of claims 17 - 26, wherein the non-volatile

memory further comprises a test segment.

28. A method for providing firmware for a processing core in a multi-core integrated
circuit processing device comprising a first processing core having a first central processing
unit coupled with a non-volatile memory and a second processing core operating independently
from the first processing core and having a second central processing unit coupled with volatile

program memory, the method comprising:

executing a dedicated instruction within the first central processing unit which causes

data to be written into the non-volatile memory of the slave processing core.

29. The method according to claim 28, wherein the dedicated instruction has a first
operand defining a source address and a second operand defining a destination address, wherein

the destination address is auto-incremented after execution of the instruction.

30. The method according to claim 28 or claim 29, wherein upon execution of the
dedicated instruction, an information word is transferred from the non-volatile memory into a

buffer, and the information is written into the volatile program memory from the buffer.

30. The method according to one of claims 28 - 30, further comprising repeating said

dedicated instruction in a loop.

31. The method according to one of claims 28 - 30, wherein the integrated circuit
comprises a plurality of slave processing cores and the dedicated instruction has a third operand

defining a target slave processing unit.

32. The method according to one of claims 29 - 31, wherein the source address stored

in the first operand can optionally be auto-incremented after execution of the instruction.

33. The method according to one of claims 28 - 32, further comprising executing by
the master processing core a further instruction that verifies an information stored in the non-

volatile program memory.

10

15

20

25

WO 2016/176593 PCT/US2016/030159
29

34. The method according to claim 33, wherein the further instruction causes a first
information to be transferred into the buffer and wherein the content of the buffer is compared

with a second information stored in the volatile memory.

35. The method according to claim 33 or 34, wherein the further instruction comprises
a first address which is applied to the non-volatile memory to output the first information and

a second address which is applied to the volatile memory to output the second information.

36. The method according to one of claims 33 - 35, wherein the further instruction

further verifies error correcting code (ECC) associated with the first and second information.

37. The method according to claim 36, wherein the ECC associated with the non-
volatile memory can be read from the non-volatile memory and the ECC associated with the

source 1s separately generated.

38. The method according to one of claims 28 - 37, wherein the non-volatile memory
of the first processing core comprises a code protection defined by a protection scheme and
wherein the volatile program memory of the slave processing unit has a code protection that

depends on a setting of the protection scheme.

39. The method according to claim 38, wherein the protection scheme defines a
plurality of segments of the non-volatile memory and wherein each segment has a protection

setting in the protection scheme.

40. The method according to claim 38 or claim 39, wherein each protection setting
for the non-volatile memory has a setting for a read operation and a setting for a program or

erase operation.

41. The method according to claim 39 or claim 40, wherein the protection scheme
provides for a predefined number of security levels, wherein each security level defines a

protection setting for each segment.

42. The method according to one claims 39 - 41, wherein the code protection for the
volatile program memory is the same as the code protection for one of the segments of the non-

volatile memory.

10

15

WO 2016/176593 PCT/US2016/030159
30

43. The method according to claim 42, wherein a register stores which segment of the

non-volatile memory is selected to provide the code protection setting for the volatile memory.

44. The method according to one of claims 40 - 43, wherein a setting for a read
operation of the non-volatile memory applies to read and write operations of the volatile

memory.

45. The method according to one of claims 39 - 44, wherein when a segment is
protected, depending on a protection setting an instruction executed from one segment may not

operate on a different segment.

46. The method according to one of claims 39 - 45, wherein when a segment is
protected, depending on a protection setting an read instruction executed from one segment

may operate only on a predefined area of a different segment.

47. The method according to claim 46, wherein the predefined area stores interrupt

vectors.

48. The method according to one of claims 28 - 47, wherein the non-volatile memory

comprises a boot segment and a general segment.

49. The method according to one of claims 28 - 48, wherein the non-volatile memory

further comprises a test segment.

WO 2016/176593

PCT/US2016/030159

1/12
FIG. 1A
(PRIOR ART)
X ADDRESS BUS
Y DATA BUS
X DATABUS 16}
{} VANIZAN 161 16 16
8L 16[}
INTERRUPT))
CONTROLLER PSV AND DATA DATA
TABLE DATA LATCH LATCH
AN . 24
C—7] ACCESS 6!l Y DATA X DATA
CONTROL A1 RAM RAM
BLOCK (4 KBYTES) | | (4 KBYTES)
—| |— ADDRESS | | ADDRESS
V.V LATCH LATCH
24 PCU | PCH | PCL VANEAN 7AN
24 PROGRAM COUNTER 16/L16|L 16[l 1611
N STACK | LOOP s {
ADDRESS CONTROL | CONTROL
LATCH LOGIC | LOGIC XWAGU
PROGRAM
MEMORY
(144 KBYTES) Y ADDRESS BUS
DATA Y
EEPROM 1614
ANANEA
DATA LATCH 24 161 161 164
[1 / ROM —
—— LatcH -1 R = —
|_
16, | | <
II |
‘ ‘ ‘ :
Ll
=
FIG' lA | | 11 11 _III 11 11
(PRIOR ART) : oo o k
TOFIG. 1B

SUBSTITUTE SHEET (RULE 26)

WO 2016/176593

2/12

PCT/US2016/030159

FROM FIG. 1A
’I | I |1 |1 |1 | I‘
| | 11 11 11 11 11
I I lll ‘ ‘ lll ‘ ‘ |
INSTRUCTION 16 x 16
DECODEAND | W REG ARRAY <>
CONTROL [1
CONTROL
SIGNALS TO YVYYvy POWER-UP || 16|} 16
VARIOUS BLOCKS - | TIMER Y
OSCILLATOR DSP DIVIDE
TIMING START-UP ENGINE SUPPORT
TIMER
OSC1/CLKI AN
<} GENERATION ~ SORBOR F
RESET \/ v
MCLR |Z WATCHDOG \ 16-BIT ALU
TIMER 6 »
Voo Vss LOW 21 21
A A VOLTAGE ——>
VDD "vss DETECT >
CANT 10-BIT INPUT OUTPUT
oanz | |OR12BIT | | CAPTURE | | COMPARE 12¢c™™
ADC MODULE MODULE

VAR,

v

v

Vi

spi1. | [UARTY, 10
TIMERS DCl SPI2 uaRT2 | | PORTS
FIG. 1B
(PRIOR ART)

SUBSTITUTE SHEET (RULE 26)

WO 2016/176593

3/12

PCT/US2016/030159

15 0
F] PUSH.S AND WOWREG) [
POP.S SHADOWS W1
W2
W3
W4
DSP OPERAND W5
REGISTERS W6
= WORKING/
. ADDRESS
We REGISTERS
DSP ADDRESS W9
REGISTERS W10
W11
W12
W13
FRAME POINTER/W14
STACKPTRW15 [0 | |
SPLIM 0 | STACK POINTER LIMIT
39 31 15 0
psp [Acca[Accau ACCAH ACCAL
ACCUMULATORS] ACCB| ACCBU ACCBH ACCBL
22 0
0 | PROGRAM COUNTER
7 0
TBLPAG DATA TABLE PAGE ADDRESS
7 0
PROGRAM SPACE VISIBILITY
PSVPAG PAGE ADDRESS
15 0
RCOUNT REPEAT LOOP COUNTER
15 0
DCOUNT DO LOOP COUNTER
22 0
DOSTART 0 | DO LOOP START ADDRESS
22 0
DOEND 0 | DO LOOP END ADDRESS
[SRH > SRL .
OA | OB | SA | SB |OAB|SAB| DA | DC| I1PL<20> |RA| N |ov|sz]| c [STATUS
------------------- - "] REGISTER
FIG. 2 15 0
(PRIOR ART) CORCON CORE CONTROL REGISTER

SUBSTITUTE SHEET (RULE 26)

Y DATA BUS

WO 2016/176593

4/12

A

40-BIT ACCUMULATOR A

40-BIT ACCUMULATOR B

y Y

PCT/US2016/030159

4L

A

SATURATE
ADDER

NEGATE
)

40,

40,

A

40|

-~

SIGN-EXTEND
A

L\

BARREL
SHIFTER

32,

40 |

16,
/>

ROUND LOGIC
SATURATION LOGIC

32,

7

17-BIT x 17-BIT
MULTIPLIER/
SCALER

16-BIT TO 17-BIT
CONVERSION

A 4

6] 16,

X DATA BUS

ZERO BACKFILL = 7

\i

C “toFrROM |

FIG. 3
(PRIOR ART)

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/030159

5/12

v "DIA

WO 2016/176593

¢ndd| .. [2ndd| |2ndd V1% 72 bndd | . |vndd| [1NdD
N ¥3d ga¥ad | | vyad \ N ¥3d g¥3d| | vyad
JOV4YIALNI
NOILVOINNWNOD
8Ly
/
HOLVYHVdANOD
¥y3addng |
 J \ A
| ™Moo | | ™00 |
NVYd (> s [VY HSV1d [« waLswn [+ vy
/ / / \ \ N
ocy TAA ey oLV 4% 11447
0cy oLy

00¥

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/030159

WO 2016/176593

6/12

00S

omﬁ ¢ 'DIA
ZNdD voo ZNdD ZNndd (01% 72 } NdD 000 | NdD | NdD
N ¥3d g ¥3d Y 43dd M. N ¥3d 9 ¥3d Y ¥3id
I |
»| JOV44H3INI _A
gy T — NOILVOINNWWOD |
| |
/ 1 | — -
HIddVEM |« —
Wid [« T ===
Y Y =7 v v
B 3400 | | ™00 |
NYY | s Nvdd HSV1d (e yaLsYn [AV
/ / / \ \ \
LA % TAA 1A 7 oLV A% 1744 %
||||||||||||| . N
" oLy
3 (0]747

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/030159

WO 2016/176593

7/12

9 'DIA 0y
/
— oldoA >
Oldd Snd ¥31S193Y YNvE
; ¥3LSI93Y
— doow v
- -t |l ———————
AVHA | o J | walsiomy _ Mvmm_%s\,_ oL
—_ IdS ey Sndg snd
vossanouq | LSO 219071 ¥3LSID3Y
] Wvax [1S3N03Y
o B VIS LdN¥¥3LNI
UM
T Tan R 18— — T04LNOD
uv v.vdSd JOVAUALNI
' NAQY Sd IAVIS ¥ILSYI
21907 AJIMIA
| vvaaw < V1v¥a 30YdS WYHOONd HILSYI
o8¢CY T04INOD < SSIAQAY FOVdS NYHDO0Ud HILSYI
SS300V ‘ ‘ ‘ ‘
A A / 0 XNIN | E 0 XN } r
% \
agev o BgCY
ug
1nogQ yaay |«
»IN3
> UM ~-9zY
WYY NVHD0Yd
AdIMIA HO QYOT INVd HILSYIN

319VN3 LM WVHd ¥3LSYIN

SUBSTITUTE SHEET (RULE 26)

WO 2016/176593 PCT/US2016/030159

8/12
AN
VT (VS)
BOOT SEGMENT (8S)
AIVT (VS)
USER | |
FLASH GENERAL
SEGMENT (GS)
CONFIGURATION
SEGMENT (CS)
TEST SPACE (TS)
TEST
cLasH | 7 | DEVICE CALIBRATION
BOOT CALIBRATION
FIG. 7
ACTIVE BS SECURITY LEVEL: NONE STANDARD HIGH
WRITE PROTECTED: NO | YES | No | YES | No | YES
OPERATION SEG
SECURE
BS
v vecTor(")
READ o~
v X
TS
BS | X v X v X
PROGRAM OR oS
PAGE ERASE J X
T8
FIG. 8

SUBSTITUTE SHEET (RULE 26)

WO 2016/176593 PCT/US2016/030159

9/12
ACTIVE BS SECURITY LEVEL: NONE STANDARD HIGH
WRITE PROTECTED: NO | YES | NO | YES | NO | YES
OPERATION SEG
SECURE
READ OR PRAM BS v vecTor("
ACCESS (USING

LDSLV/VFSLV) GS J X

TS

BS | Vv X v X v X
PROGRAM OR oS
PAGE ERASE N, X

TS

FIG. 9
ACTIVE GS SECURITY LEVEL: NONE STANDARD HIGH

WRITE PROTECTED: NO | YES | NO | YES | NO | YES
OPERATION SEG

BS v X

READ GS v

TS WV X

BS [V ()| X [V (1) X
PROGRAM OR

TS |V (1) X

FIG. 10

FIG. 11A | FIG. 11B

FIG. 11C

FIG. 11

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/030159

WO 2016/176593

VII DIAd

A

10/12
TOFIG. 11B

o -

300N NOILYOINddVY NI G3LLINY3d LON

0011=d0O0¥d ISVH3 1130 FJONFHI4TY

SO 00L0=d090¥d (6 ‘P ILON)

Sd 3SVYH3 TaINVd JAILOVNI

0LL1=d0D0Y¥d (ILON) ISV¥3 dIHD

XX01=d090Hd WVO0Hd Q4OM 300N 1004

3 3 5 3 INOYH ONILND3XT TTHM
ON | ON | ON | ON 3 5] O |310n| ™ [310N| O |z10n]| MO |9 HSV14 3009 INJWO3S 40
5 5 5 2 2 1000=d090¥d WVHO0Hd QHOM
aoN | 79 |aion| MO |aion| M0 | ON | ON 15ion| MO |3i0n| ™ |SB| 0100=d0908d WaD0Hd MOY
2 9 2]]
oN | oN | on| oN 0 0 %0 50 |s9 NO¥4 ONILND3XT TTHM
310N 310N 310N 310N
- - % 0 % % HSV14 3009 INJWO3S 40
Jon | 7 Laion] 0 [3on] 0 | ON | ON |5 on| %0 |gion| YO [SE 1100=d090Yd ISV 39V
s0 s0 0 %0 %0 %o |so NOY4 ONILND3XT TTHM
30VdS 3009 INIWO3S
%0 %0 %0 s0 %0 yo |sg 40 ASJ/Qv3Y T1avL
+ +
0PX0+ mmowﬁwmg mmowﬁmé HOLOTA + ¥aay (9 3LON) LNINO3S NOX ONINNNY NIHM
LMVIS S8 v 35V LAV/LA LAY O LAl WO¥4 03HOL34 ¥O193A
AINO YO YO L0 (NOILONYLSNI 13STY) SA
$3SS3HAAQV "LSNI MO YO MO ({3LON) (HOL34 LdNY¥ALNI) SA
€151 OLNI Od4d 3O 3O 3O S9 (0 ILON) WO
30 30 30 %0 sq INIW93S OL 94d
(Q3LLINY3d LON SA NO¥4
h/[0] 9}
NOLLN33X3) TEISSOd LON (93LON) INIWD3S OLNI ¥IAOTION Od
SIA | ON |S3A] ON | S3A] ON | S3A] ON | S3A] ON | S3A | ON Q3L03L0¥d 3LIEM
HOH QUVANVIS | 3NON HOH | QUVONVIS | 3NON TINTT ALIENO3S
sq 39 INIWO3S

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/030159

WO 2016/176593

d11 DId

11/12

(TINVd 3ALLOY NOHd 38 ATNO NV NOLLNO3X3) a3NI43d LON T3ATT ALIMNDIS SA 41 AINO LN MO

(TINVd JALLOY NO¥4 38 ATNO NV NOLLNO3X3) YO

Q3LLINY3d LON
Q3LLINY3d LON

14’ |13LON] 1y"@ [13ION] ‘e 3 3
Y3ION 1 3 on| o [aion| vo |aion| O | ON | ON | ON | ON |5 on| X0 [g0n| X0
yaoN | 2 P wo 1292 o [2 [wo 122 o (22 U wo |22 Iyo |22 | yo

310N 310N 310N 310N 310N JLON 310N

14’ |13LON| 1'y"a [13ION| 4' 3
ON"13ion| S0 [aton| o [aton| O | ON | ON | ON | ON 1 ON ON fq o[2O
on 1% vo (%% ol wolon | on 22 vo 22 1 wol.2]

JLON ILON JLON 310N 310N 310N
(@310N)
" 0
B

(0000004, ¥Z LY 0LOD 13S3Y
o IHL ¥04 1d30XT QILLINYId (QILLINYT LON SD WORH NOLLND3X3)
10N SA WO¥4 NOILND3X3)
BJU
QILLINYI LON QILLINY3 LON

U | SIA] ON | SIA| ON | SIA] ON | SIA| ON | S3A] ON | SIA | ON | S3A | ON
e HOH | QUYONVLS | 3NON HOH | G3ONVHNZ | QUVANVLS | 3NON
SL SA (2310N) D

FROM FIG. 11A

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/030159

WO 2016/176593

12/12

IIT "DIA

@3L01M1S3Y LON 4V UNIJ0 AFHL NIHM 03LNO3XT ONIZA ST LYHL INFWOIS FNVS FHL LIOHVL LYHL
S1dNYYALNI (NSNLTY LdNHYILNI) S8 NI ONILNDIXT TTHM ¥NOI0 ANY S9 1398V 1YHL HO (AYINI
LdNYYILNI SO NI ONILNOAXT ITHM ¥NDI0 ANV S8 1IDUVL LVHL SLANHYILNI OL AINO S3ITddV

ANON, SI T3ATT ALIMNO3S S8 NIHM (13AT1 ALIMNDIS S8 STWNSSY SA ANV) 0318YN3 S|
$4 41 40 ‘(13N ALI¥ND3S $9 SANNSSY SA ANY) A318vSIA S| S NIHM G3LLINYI ATNO

1AV 3HL OL AN31X3 LON S30d NOILOFLOHd LM

30VdS SS3HAAY JALLOVNI NIHLIM 031¥O0TNIHM Q3L03L0¥d JLIbM 39
SAVMTV TIIM | TANVd 'FAOW LOOE T¥NA A3LI3LO¥d NI ONILYHIHO NIHM

(@3svy3 Sl 39¥d G0N IHL NIHM J00IW LOOE TTONIS OL SLINVA3A 3DIA3A) AIWAYEOO0U SI Lig NOIS FIAIA FIVdS ¥3SN
300N LOOE JTONIS ‘NOILIAQY NI “39Vd JA0N 30VdS O4NI SN (STINVd T1V NI) JOVdS ¥3SN 40 TIV 40 SLSISNOD 3SV¥a diHO

A1ddY TILS SANTVA dO TINVd JAILOYNI ONISN STTINY ALIMNDI3S ¥IHLO TTV "(30VdS
JALLOVNI NI NFHM 03103 LOYd SAVMTY | TINVd :NOILdIOX3) GFHONSI SI NOILOTLOHd JLI-M TNV
3AILOVNI FHL NIHLIM S3AIS3Y INJWOIS LIDUVL 41 'FAILLIV SINOILIALO¥d JLIMM NIHM SSFOJV ON

(6 3LON 33S) 30O LOOE T¥NA 03LO3LO¥d NI Q3 LIGIHNI 38 AVA OSTV LI 0 = INISTHd 1008 TvNd
N3HM HO JA0N 1008 FTONIS NI 4379vSIA SI 3SVH3 TINVd JAILIVNI "ATNO 300N 1008 TvNA OL S3ddV

dV1 HOHY3 SSIHAAY NV NI LINS3Y TTIM ANV A3LI8IHOYHd SI TINVd JAILOVNI FHL WO¥4 NOILNO3X3
S18S34aav LONNVO ASd
ST13A3TNOILOTLOYd ¥ HLIM S31VH3dO SO

310N

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2016/030159

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F9/30 GO6F9/38
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X US 6 327 648 B1 (HEDAYAT SHAHIN [US] ET 1-10,
AL) 4 December 2001 (2001-12-04) 28-35
the whole document

A US 2008/235493 Al (FORTIER THOMAS [CA]) 1-10,
25 September 2008 (2008-09-25) 28-35
the whole document

A US 2002/059502 Al (REIMER JAY B [US] ET 1,28
AL) 16 May 2002 (2002-05-16)
the whole document

D Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents : L
"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand

"A" document defining the general state of the art which is not considered the principle or theory underlying the invention

to be of particular relevance

"E" earlier application or patent but published on or after the international "X" document of particular relevance; the claimed invention cannot be

filing date considered novel or cannot be considered to involve an inventive
"L" document which may throw doubts on priority claim(s) or which is step when the document is taken alone
cited to establish the publication date of another citation or other

. e "Y" document of particular relevance; the claimed invention cannot be
special reason (as specified)

considered to involve an inventive step when the document is

"O" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination
means being obvious to a person skilled in the art

"P" document published prior to the international filing date but later than
the priority date claimed "&" document member of the same patent family

Date of the actual completion of the international search Date of mailing of the international search report

12 July 2016 26/09/2016

Name and mailing address of the ISA/ Authorized officer

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040, .y . .
Fax: (+31-70) 340-3016 Moraiti, Marina

Form PCT/ISA/210 (second sheet) (April 2005)

International application No.
INTERNATIONAL SEARCH REPORT PCT/US2016/030153
Box No.ll Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. I:' Claims Nos.:
because they relate to subject matter not required to be searched by this Authority, namely:

2. I:' Claims Nos.:
because they relate to parts of the international application that do not comply with the prescribed requirements to such
an extent that no meaningful international search can be carried out, specifically:

3. |:| Claims Nos.:
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box No. lll Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

see additional sheet

-

As all required additional search fees were timely paid by the applicant, this international search report covers all searchable
claims.

2. I:' As all searchable claims could be searched without effort justifying an additional fees, this Authority did not invite payment of
additional fees.

3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers
only those claims for which fees were paid, specifically claims Nos.:

4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is
restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
1-10, 28-35
Remark on Protest The additional search fees were accompanied by the applicant's protest and, where applicable, the

payment of a protest fee.

The additional search fees were accompanied by the applicant's protest but the applicable protest
fee was not paid within the time limit specified in the invitation.

I:' No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet (2)) (April 2005)

International Application No. PCT/ US2016/ 030159

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

This International Searching Authority found multiple (groups of)
inventions in this international application, as follows:

1. claims: 1-10, 28-35

Dedicated instruction for instructions transfer in slave
processor

2. claims: 11-15, 36, 37

Verification instruction

3. claims: 16-27, 38-49

Code protection for slave processor

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2016/030159
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 6327648 Bl 04-12-2001 NONE
US 2008235493 Al 25-09-2008 CA 2680030 Al 02-10-2008
CN 101636715 A 27-01-2010
EP 2137612 Al 30-12-2009
JP 5547056 B2 09-07-2014
JP 2010522402 A 01-07-2010
KR 20090132621 A 30-12-2009
KR 20120037029 A 18-04-2012
TW 200844854 A 16-11-2008
US 2008235493 Al 25-09-2008
WO 2008118812 Al 02-10-2008
US 2002059502 Al 16-05-2002 EP 1209565 A2 29-05-2002
JP 3936175 B2 27-06-2007
JP 2002215414 A 02-08-2002
US 2002059502 Al 16-05-2002

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - claims
	Page 27 - claims
	Page 28 - claims
	Page 29 - claims
	Page 30 - claims
	Page 31 - claims
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - wo-search-report
	Page 45 - wo-search-report
	Page 46 - wo-search-report
	Page 47 - wo-search-report

