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DATA ANALYSIS METHOD AND SYSTEM

Field of Invention

The present invention relates to a method of analysing data and in particular relates to
the use of ariificial neural networks (ANNs) to analyse data and identify relationships
between input data and one or more conditions.

Background fo the Invention

An artificial neural network (ANN), or “neural network’, is a mathematical or
computational model comprising an interconnected group of artificial neurons which is
capable of processing information so as to model relationships between inputs and

outputs or to find patterns in data.

A neural network may therefore be considered as a non-linear statistical data modelling
tool and generally is an adaptive system that is capable of changing its structure based
on external or internal information that flows through the network in a training phase. The
strength, or weights, of the connections in the network may be altered during training in
order to produce a desired signal flow.

Various types of neural network can be constructed. For example, a feedforward neural
network is one of the simplest types of ANN in which information moves only in one
direction and recurrent networks are models with bi-directional data flow. Many other

neural network types are available.

One particular variation of a feedforward network is the muitilayer perceptron which uses
three or more layers of neurons (nodes) with nonlinear activation functions, and is more
powerfut than a single layer perceptron model in that it can distinguish data that is not

linearly separable.

The ability of neural networks to be trained in a learning phase enables the weighting
function between the various nodes/neurons of the network to be altered such that the
network can be used to process or classify input data. Various different learning models
may be used to train a neural network such as “supervised learning” in which a set of

example data that relates to one or more outcomes or conditions is used to train the
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network such that it can, for example, predict an outcome for any given input data.
Supervised learning may therefore be considered as the inference of a mapping

relationship between input data and one or more ouicomes.

Training an artifical neural network may involve the comparison of the network output to
a desired output and using the error between the two outputs to adjust the wieghting
between nodes of the network. In one learning model a cost function C may be defined
and the training may comprise aitering the node weightings until the function C can no
longer be minimised further. In this way a relationship between the input data and an
outcome or series of outcomes may be derived. An example of a cost function might be

C = E [(f(x)-y)?] where (x, y) is a data pair taken from some distribution D.

In one application, a neural network might be frained with gene expression data from
tissues taken from patients who are healthy and from patients who have cancer. The
training of the network in such an example may identify genes or gene sets that are
biomarkers for cancer. The trained network may be used to predict the likelihood of a

given person developing cancer based on the results of an analysis of a tissue sample.

Another field of technology in which an artificial neural network might be used is
meteorology in which, for example, temperature or pressure data at a series of locations
over time could be used to determine the likelihood of there being rainfall at a given

location at a given time.

A known problem with artificial neural networks is the issue of overtraining which arises
in overcomplex or overspecified systems when the capacity of the network significantly
exceeds the needed free parameters. This problem can lead to a neural network
suggesting that particular parameters are important whereas in reality they are not. This
is caused by the identification of a set of parameters having a higher importance and by
the false detection of parameters. These parameters are likely to have a lower

performance when classifying unseen data/cases.

It is an object of the present invention to provide a method of analysing data using a

neural network that overcomes or substantially mitigates the above mentioned problem.

Statements of Invention
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According to a first aspect the present invention provides a method of determining a
relationship between input data and one or more conditions comprising the steps of:
receiving input data categorised into one or more predetermined classes of condition;
training an artificial neural network with the input data, the artificial neural network
comprising an input layer having one or more input nodes arranged to receive input data;
a hidden layer comprising two or more hidden nodes, the nodes of the hidden layer being
connected to the one or more nodes of the input layer by connections of adjustable
weight; and, an output layer having an output node arranged to output data related to the
one or more conditions, the output node being connected to the nodes of the hidden
layer by connections of adjustable weight; determining relationships between the input
data and the one or more conditions wherein the artificial neural network has a
constrained architecture in which (i} the number of hidden nodes within the hidden
layer is constrained; and, (ii) the initial weights of the connections between nodes are
restricted.

The present invention provides a method of analysis that that highlights those
parameters in the input data that are particularly useful for predicting whether a given
outcome is likely. In other words, compared to prior art systems the method of the
present invention effectively increases the difference or “contrast” between the various
input parameters so that the most relevant parameters from a predictive capability point

of view are identified.

The present invention provides a method of determining a relationship between intput
data and one or more conditions using an artificial neural network. The ANN used in the
invention has a constrained architecture in which the number of nodes within the hidden
layer of the ANN are constrained and in which the initial weights of the connections

between nodes are restricted.

The method of the present invention therefore proposes an ANN architecture which runs
contrary to the general teaching of the prior art. In prior art systems the size of the hidden
layer is maximised within the constraints of the processing system being used whereas
in the present invention the architecture is deliberately constrained in order to increase
the effectiveness of the predictive capability of the network and the contrast between
markers of relevance and non relevance within a highly dimensional system. In
comparison to known systems, the present invention provides the advantage that the

predictive performance for the markers that are identified is improved and those markers
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identified by the method according to the present invention are relevant to the underlying
process within the system.

Preferably in order to maximise the predictive effectiveness of the present invention the
number of hidden nodes is in the range two to five. More preferably the number of hidden
nodes is set at two.

Preferably the initial weights of the connections between nodes have a standard
deviation in the range 0.01 to 0.5. It is noted that lowering the standard deviation makes
the artificial neural network less predictive. Raising the standard deviation reduces the
constraints on the network. More preferably, the initial weights of connections between
nodes have a standard deviation of 0.1,

Conveniently the input data comprises data pairs (e.g. gene and gene expression data)
which are categorised into one or more conditions (e.g. cancerous or healthy). In the
example of gene data then the gene may be regarded as a parameter and the
expression data as the associated parameter value. Furthermore, input data may be
grouped into a plurality of samples, each sample having an identical selection of data
pairs (e.y. the gene and gene expression data may detail the condition -
healthy/cancerous — of a plurality of individuals).

Training of the neural network may conveniently comprise selecting a particular
parameter in each sample (i.e. the same parameter in each sample) and then training
the network with the parameter value associated with the selected parameter. The
performance of the network may be recorded for the selected parameter and then the

process may be repeated for each parameter in the samples in turn.

The determining step of the first aspect of the invention may comprise ranking the
recorded performance of each selected parameter against the known condition and the

best performing parameter may then be selected.

Once the best performing parameter from the plurality of samples has been determined
then a further selecting step may comprise pairing that best performing parameter with
one of the remaining parameters. The network may then be further trained with the

parameter values associated with the pair of selected parameters and the network
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performance recorded. As before, the best performing parameter may then be paired
with each of the remaining parameters in turn.

The selecting, training and recording steps may then be repeated, adding one parameter
in turn to the known best performing parameters until no further substantial performance
increase is gained.

Conveniently it is noted that the input data may be grouped intoc a plurality of samples,
each sample having an identical selection of data pairs, each data pair being categorised
into the one or more conditions and comprising a parameter and associated parameter
value, and the training and determining steps of the first aspect of the invention may
comprise: selecting a parameter within the input data, training the artificial neural network
with corresponding parameter values and recording artificial neural network
performance; repeating for each parameter within the input data; determining the best
performing parameter in the input data; and, repeating the selecting, repeating and
determining, each repetition adding one of the remaining parameters to the best
performing combination of parameters, until artificial neural network performance is not
improved.

In one application of the method according to an embodiment of the present invention
the parameters may represent genes and the parameter values may represent gene
expression data. In a further application the parameter may represent proteins and the
parameter values may represent activity function.

In other applications of the method according to an embodiment of the present invention
the parameter may represent a meteorological parameter, e.g. temperature or rainfall at
a given location and the parameter value may represent the associated temperature or
rainfall value.

It is however noted that the method according to the present invention may be applied to
any complex system where there are a large number of interacting factors occurring in

different states over time.

According to a second aspect of the present invention there is provided a method of
determining a relationship between input data and one or more conditions comptrising:
receiving input data categorised into one or more predetermined classes of condition;

determining relationships between the input data and the one or more conditions using a
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neural network, the artificial neural network comprising an input layer having one or more
input nodes arranged to receive input data; a hidden layer comprising two or more
hidden nodes, the nodes of the hidden layer being connected to the one or more nodes
of the input layer by connections of adjustable weight, and, an output layer having an
output node arranged to output data related to the one or more conditions, the output
node being connected to the nodes of the hidden layer by connections of adjustable
weight wherein the artificial neural network has a constrained architecture in which (i) the
number of hidden nodes within the hidden layer is constrained; and, (ii} the initial weights
of the connections between nodes are restricted.

According to a third aspect of the present invention there is provided an arfificial neural
network for determining a relationship between input data and one or more conditions
comprising: an input layer having one or more input nodes arranged to receive input data
categorised into one or more predetermined classes of condition;, a hidden layer
comprising two or more hidden nodes, the nodes of the hidden layer being connected to
the one or more nodes of the input layer by connections of adjustable weight; and, an
output layer having an output node arranged to output data related to the one or more
conditions, the output node being connected to the nodes of the hidden layer by
connections of adjustable weight; wherein the artificial neural network has a constrained
architecture in which (i) the number of hidden nodes within the hidden layer is

constrained; and, (i) the initial weights of the connections between nodes are restricted.

The invention extends to a computer system for determining a relationship between input
data and one or more conditions comprising an artificial neural network according to the

third aspect of the present invention.
it will be appreciated that preferred and/or optional features of the first aspect of the
invention may be provided in the second and third aspects of the invention also, either

alone or in appropriate combinations.

Brief Description of the Drawings

in order that the invention may be more readily understood, reference will now be made ,

by way of example, {o the accompanying drawings in which:

Figure 1 shows a representation of a typical (known) artificial neural network,
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Figure 2 illustrates the mechanism of neural network learning;

Figure 3 is a representation of gene expression data to be used in conjunction with an

artificial neural network in accordance with an embodiment of the present invention;

Figure 4 shows an artificial neural network in accordance with an embodiment of the

present invention;

Figure 5 is a flow chart detailing the operation of a system which incorporates an artificial

neural network in accordance with an embodiment of the present invention;

Figure 6 shows how the artificial network in accordance with the present invention

develops as the input data set is used;

Figure 7 (a)-(g) shows screenshot diagrams from the Stepwise ANN modeling software
of the invention. Each diagram (a)-(g} represents a different option screen available

within the software for model building and analysis.

Figure 8 is a graph showing the stepwise summary of ions added at each step of
analysis of digested peptide data; Stage IV melanoma v Conirol. The line marked with ¢
points represents mean squared error value at each step with 95 % confidence intervals
being shown as error bars. The line marked with M points represents median model

accuracy at each step of analysis with inter-quartile ranges being shown as error bars.

Figure 9 is a graph showing an overall summary of stepwise model performance of
diseased groups v control samples

Figure 10 is a graph showing a further overall summary of stepwise model performance

of diseased groups v conirol samples

Figure 11 (a)-(c) are scatterplots showing principal components analysis using ihe
biomarker ions identified by ANN siepwise approaches. Samples groups are
differentiated by point style.

Figure 12 is a bar graph showing mean group intensities of peptide biomarker ions

identified by ANNs. All of the key biomarkers across the different stages are shown
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Figure 13 is a scatterplot of ion 861 against ion 903 for Stage i and Stage Il melanoma.

Squares B indicate stage il samples, whilst circles @ show stage |l samples.

Figure 14 is a graph showing model performance with each input addition over the
course of the analysis. Line with Bl points represents median model accuracy with lower
and upper infer-quartile ranges shown as error bars. The line with ¢ points shows the
mean squared error for the predictions at each step with error bars indicating 95 %

confidence intervals.

Figure 15 (a)-(b} are graphs showing model performance with each input addition over
the course of the analysis for {a) estrogen receptor (ER) status and (b} lymph node (L.N)
status. Line with I points represent median model accuracy with lower and upper inter-
quartile ranges shown as error bars. Line with A points shows the mean squared error

for the predictions at each step with error bars indicating 85 % confidence intervals

Figure 16 (a)-(b) are graphs showing a summary of stepwise analysis for the top ten
genes identified at step 1 for (a) ER and (b) LN status.

Figure 17 is a graph showing the normal distribution of randomly generated models.

Figure 18 (a)-(c) are box graphs showing comparison of performance of a random model

to those generated with the stepwise approach of the invention.

Detailed Description of the Invention

One drawback of traditional linear based ANN models is that they often cannot
generalise well o problems and therefore may only be applicable to the dataset they are
originally applied to. Simulation experiments have shown that stepwise logistic
regression has limited power in selecting important variables in small data sets, and
therefore risks overfitting ( Steyerberg, EW., Eijkemans, M.J. and Habbema, J.D. (1999)
Stepwise selection in small data sets: a simulation study of bias in logistic regression
analysis, J Clin Epidemiol, 52, 935-942.). Additionally the automatic selection procedure
is non- subjective and ighores logical constraints. The applied neural network stepwise
approach of the present invention does not share the limitations of the prior art because

the models have been shown to be applicable to a separate datasets used for validation,
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so are capable of generalisation to new data and as such, overfitting has not been

observed when using this approach.

Figure 1 is a dependency tree style representation of an artificial neural network 1. It can
be seen that the network 1 depicted in the Figure divides into three basic layers: an input
layer 3 which receives input data; a hidden layer 5, and; an output layer 7 which returns
a result. in the example of Figure 1 there are three input level nodes, n hidden layer

nodes (of which only five are shown for clarity) and two output layer nodes.
It is noted that the number of hidden layers may be varied.

The various interconnections between the nodes are indicated in Figure 1 by the
connecting arrows 9. For the first node in the input layer the various weights attributed fo
the connections to the hidden layer nodes are indicated by the weights w4, wa, Wi, Wy and

w,. For clarity the weights on the remaining connections are not shown in this Figure.

The neural network is arranged such that input data is fed into the input layer 3 and is
then multiplied by the interconnection weights as it is passed from the input layer 3 fo the
hidden layer 5. Within the hidden layer 5, the data is summed then processed by a
nonlinear function (for example a hyperbolic tangent function or a sigmoidal transfer
function). As the processed data leaves the hidden layer to the output later 7 it is, again
multiplied by interconnection weights, then summed and processed within the output
layer to produce the neural network output.

One of the most popular training algorithms for multi-layer perceptron and many other
neural networks is an algorithm called backpropagation. With backpropagation, the input
data is repeatedly presented to the neural network, With each presentation the output of
the neural network is compared to the desired output and an error is computed. This
error is then fed back (backpropagated) to the neural network and used to adjust the
weights such that the error decreases with each iteration and the neural model gets

closer and closer to producing the desired output. This process is known as "training".

Figure 2 is a representation of the training of a neural network 1. During training the
network is repeatedly presented with input data 11 (in this case exclusive-or data, Xor
data). Each time the data 11 is presented the error 13 between the network output 15
and the desired output 17 is computed and fed back to the neural network 1. The neural

network 1 uses this error to adjust its weights such that the error will be decreased. This
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sequence of events is usually repeated until an acceptable error has been reached or

until the network no longer appears to be learning.

When training a neural network the learning rate is a parameter found in many learning
algorithms that alters the speed at which the network arrives at the minimum solution. If
the rate is too high then the network can oscillate about the solution or diverge from the

solution. If the rate is too low then the network may take too long to reach the solution.

A further parameter that may be varied during the training of an artificial neural network
is the momentum parameter that is used to prevent the network from converging on a
local minimum or saddle point. An overly high momentum parameter can risk
overshooting the minimum. A momentum parameter that is too low can result in a

network that cannot reliably aveid local minima.

Having discussed the use and training of artificial neural networks, the application of a
neural network in the context of embodiments of the present invention is discussed
below. It is noted that while the example discussed below relates to bicinformatics, the
invention described herein is applicable to other fields of technology, e.g. meteorological

predictions, pollution prediction, environmental prediction efc.

Figure 3 is a highly generalised set of gene and gene expression data across 10
individuals {(samples). For each sample, the same set of genes and their associated
gene expression data are detailed along with a condition or state, in this case “healthy”
or “cancer”. The processing of this data set in the context of the present invention is
described in relation to the flow chart of Figure 5 and the network representations of
Figures 4 and 6.

Figure 4 depicts the initial form of an artificial neural network 20 used in conjunction with
the method of the present invention. As can be seen from the figure, the hidden layer 22
comprises only two nodes {24, 26) as opposed to the 20+ nodes found in prior art
systems. Initially there is a single input node 28 but as described below in relation to
Figures 5 and 6 the number of input nodes will gradually be increased until the

performance of the neural network cannot be improved further.
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As noted above a known problem with neural networks is the fact that they can be over-
trained such that relationships can be derived between the input and output data for

virfually all of the input data parameters.

In the arfificial neural network in accordance with embodiments of the present invention
the network is set up to as to improve the network’s ability to identify the most relevant
input parameters. To this end, the number of nodes within the hidden layer is restricted,
preferably below five nodes and particularly to two nodes. In addition to this the standard
deviation between the initial weights of the interconnections between nodes is also
constrained. Preferably, the standard deviation, @, of the initial weighis of the

interconnections are placed in the range 0.01 to 0.5 with an optimum value of 0.1.

Figure 5 is a flow chart illustrating the method of analysing the data set of Figure 3 in

accordance with an embodiment of the present invention.

In Step 40, the input and output variables to be used in the method of analysis are
identified. In the example of the data set of Figure 3, the input data will be gene
expression data relating 1o a gene and the output data will be condition (i.e. healthy
versus cancerous) data. it is noted that the output node will return a numerical output in
the range “0" to “1” and the system may be set up such that "0” corresponds to healthy

and “1" to cancer.

In Step 42, an input {i.e. a particular gene, for example gene C) is chosen as the input
(input 1) to the ANN shown in Figure 4.

In Step 44, the ANN is trained using random sample cross validation. In other words a
subset of the overall dataset is used fo train the neural network, a “training subset”. In the
context of the dataset of Figure 3, this might mean that gene expression data for the
chosen gene (gene C) from samples 1-3 and 8-10 is used to train the network. During
this training phase the output condition (healthy versus cancer) from the network can be

compared to the true condition.

In Step 46, the performance of the ariificial neural network for input 1 is recorded and
stored.
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In Step 48, a further gene is chosen as the sole input to train the neural network and the
system cycles round to Step 44 again so that the network is frained from its initial state
again using this new data. For example, gene H might be the next input to be chosen
and the gene expression data for gene H from samples 1-3 and 8-10 may then be used
to train the network again.

Steps 44 and 46 are then repeated (indicated via arrow 50) for each input as sole input
to the network (i.e. gene and its associated expression data in the example of Figure 3)

and the network performance is recorded for each input,

Once each input in the training subset has been used as input the system moves to Step
52 in which the various inputs are ranked according to the error from the true outcome

and the best performing input is chosen.

In Step 54 the system moves onto train the network with a pair of inputs, one of which is
the best performing input identified in Step 52 and the other is one of the remaining
inputs from the training subset. The performance of the network with this pair of inputs is
recorded,

The system then repeats this process with each of the remaining inputs from the training
subset in turn (indicated via arrow 56), i.e. each of the remaining inputs is paired in tumn

with the best performing sole input identified in Step 48.

Once each of the remaining inputs has been used, the system identifies, in Step 58, the
best performing pair of inputs.

The system then returns to Step 42 (indicated via arrow 60) and repeats the whole
process, continually adding inputs until no further improvement in the performance of the
artificial neural network is detected (Step 62). At this point, the artificial neural network
has identified the inputs which are most closely related to the outcome. In the case of the
gene/gene expression data example of Figure 3, the system will have identified the
genetic biomarkers for the dataset that point towards the development of cancer in the

sampled individuals.
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Figures 6a-c shows the development of the artificial neural network 20 through the first
few cycles of the flow chart of Figure 5. In Figure 6a, the neural network is as shown in

Figure 4. A single input 28 is provided for the gene expression data related to input 1.

In Figure 6b, the best performing single input has been chosen based on the
performance on an unseen (by the model) validation set (Step 52) and the system has
moved to testing the performance of input pairs. The number of nodes in the input layer
has therefore increased to two nodes (28, 30). The number of nodes in the hidden layer
is still constrained at two and the initial weights of the interconnections are simitarly

constrained (as per the set up of Figure 4) in order to optimise the network performance.

In Figure 6c, the best performing pair of inputs (comprising the best sole input from
Figure 6a plus one other input identified in Figure 6b) has been chosen and the system
has moved onto testing the performance of three inputs {28, 30, 32). The hidden node

and initial weight configurations remain unchanged.

The addition of further input nodes continues until no further improvement in network
performance is identified.

The ANN of the invention shows significant technical utility in analysing complex datasets
generated from diverse sources. In one example of the invention in use, clinical data
from cancer patients is analysed in order to determine diagnostic and prognostic genetic
indicators of cancer. In another example of the invention in use, meteorological
measurements are analysed in order to provide predictions of future weather patterns.
The invention shows further utility in the fields of ocean current measurements, financial
data analysis, epidemiology, climate change prediction, analysis of socio-economic data,

and vehicle traffic movements, to name just a few areas.

Cancer prediction:

Cancer is the second leading cause of death in the United States. An estimated 10.1
million Americans are living with a previous diagnosis of cancer. In 2002, over one
million people were newly diagnosed with cancer in the United States (information from
Centres for Disease Confrol and Prevention, 2004 and 2005, and National Cancer
Institute, 2005). According to Cancer Research UK, in 2005 over 150,000 people died in

the United Kingdom as a result of cancer. Detecting cancer at an early stage in the
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development of the disease is a key factor in enabling the disease to be effectively
treated and prolonging the life of the affected individual. Cancer screening is an attempt
to detect (undiagnosed) cancers in the population, so as to enable early therapeutic
intervention. Screens for detecting and/or predicting cancer are advantageously suitable
for testing large numbers of subjects; are affordable; safe; non-invasive; and accurate

(i.e. exhibiting a low rate of false positives).

At present there are no clinically validated markers for metastatic melanoma. Data has
been obtained from mass spectrometry (MS) proteomic profiing of human serum
samples from patients with melanoma at various stages of disease. Using the stepwise
ANN approaches of the present invention, protein ions have been identified that
distinguish stage IV melanoma patients from healthy controls with an accuracy of over 90
%. Using the same approach to analyse the proteomic profiles of digested peptides, ions
were identified which predicted validation subsets of samples to an accuracy of 100 %.
The groups of ions identified here distinguish stage IV metastatic melanoma from healthy
controls with incredibly high sensitivity and specificity. This is of even greater significance
when it is appreciated that conventional S-100 ELISA typically results in a reported 20%
‘false negative’ rate in patients with detectable metastases by routine clinical and
radicgraphic studies

Potential serum protein melanoma biomarker ions by mass spectrometry using SELDI
chips have been reported previously (Mian et al (2005) Serum proteomic fingerprinting
discriminates between clinical stages and predicts disease progression in melanoma
patients, J Clin Oncol, 23, 5088-5093) where a mass region around 11,700 Da provided
a highly statistically significantly difference in intensity between stage | and stage IV
melanoma samples. In an example of the invention, described in more detail below, a
MALDI MS method was used to generate a more rapid data analysis with higher
resolution. These data were subsequently subjected to stepwise ANN analysis and nine
ions were identified that discriminated between melanoma stage 1V and healthy control
sera. This analysis by ANNs of serum proteins resulted in a median accuracy of 92%
(inter-quartile range 89.4 — 94.8%) in discriminating between sera from stage IV
melanoma and control patients. The top ion at m/z 12000 was able to discriminate
between classes with a median predictive accuracy of 64 % (inter-quartile range 58.7-
69.2 %). This ion is similar in mass to the biomarker ion of m/z 11700 reported using the
SELDI technology also for stage IV metastatic cancer reported previously (Mian, et al,,

2005). The difference may be attributed to the fact that this ion was found to be
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significant when used in discriminating between stage | melanoma versus stage IV
patients whereas here the ion reported at m/z 12000 was identified when classifying
between IV melanoma and unaffected healthy control individuals. Further, in the
manuscript by Mian and colleagues (Mian, et al., 2005) predictive performance was
based primarily on spectra obtained from Ciphergen SELDI chip platform which are
associated with inherent low-resolution read-outs using low-resolution MS equipment
whereas here protein biomarker detection was carried out using a higher resolution
MALDI-MS analyzer, so the m/z value of 11700 may have some variation associated
with it. Although both studies used ANNs the approaches applied were different; here
novel stepwise analysis approaches were used which allow for the identification of
individual mass ions with high predictive performance, whereas the SELDI analysis
(Mian, et al., 2005) used larger mass ranges to identify regions of the profile which were
important in discriminating between groups. Therefore it is important to consider

different data mining techniques may elicit different markers with differing importance.

Bioinformatic sequence analysis of the six predictive peptides identified two peptide ions
belonging to Alpha t-acid glycoprotein (AGP) precursor 1/2 (AAG 1/2) which when used
together in a predictive model could account for 95 % (47/50) of the metastatic
melanoma patients. Additionally, another of the peptide ions was identified and
confirmed to be associated with complement C3 component. Both proteins have been
previously associated with metastatic disease in other types of cancers ( Djukanovic, D
et al (2000) Comparison of $S100 protein and MIA protein as serum marker for malignant
melanoma, Anticancer Res, 20, 2203-2207). This further confirms the value of the
approach taken in the present invention. Other studies have alsc shown that increased
levels of AGP are found in cancer (for example see Duche, J.C. et al (2000} Expression
of the genetic variants of human alpha-1-acid giycoprotein in cancer, Clin Biochem, 33,
197-202). AGP, a highly heterogeneous glycoprotein, is an acute-phase protein
produced mainly in the liver. However, its physiological significance is not yet fully

understood, and as such AGP would not represent an expected melanoma biomarker.

To further assess whether the method of the invention could also be carried over o the
analysis of gene expression data, as opposed to proteomic data, two publicly available
datasets were analysed in accordance with the invention. Both of these datasets are
associated with breast cancer. The first was a dataset published by van't Veer and co-
workers (van 't Veer et al (2002) Gene expression profiling predicts clinical outcome of
breast cancer, Nature, 415, 530-536) and the aims here were to identify subsets of



10

15

20

25

30

35

WO 2010/046697 PCT/GB2009/051412
16

genes which could accurately discriminate between patients who developed distant
metastases within five years and those who did not. The initial analysis by van't Veer
and colleagues (van 't Veer, et al., 2002) used a form of unsupervised clustering and
supervised classification whereby genes were selected by the correlation coefficient of
expression with disease outcome. This approach led to the identification of a 70 gene
classifier which predicted correctly disease outcome to an accuracy of 83 %. The ANN
stepwise approach of the present invention resulted in the identification of twenty genes
which accurately predicted patient prognosis to a median accuracy of 100 % for blind
data over a number of random sample cross validation resampling events. Some of the
genes which constitute this expression signature have previously been associated with
cancer outcome. For example the first gene identified by our model was Carbonic
Anhydrase |X, and was capable of predicting 70 % of the samples correctly by itself.
Carbonic Anhydrase IX (CA IX) has been suggested to be functionally involved in
pathogenesis due to its increased expression and abnormal localization in colorectal
tumors (Saarnio, J., et al (1998) Immunohistochemical study of colorectal tumors for
expression of a novel transmembrane carbonic anhydrase, MN/CA X, with potential
value as a marker of cell proliferation, Am J Pathol, 153, 279-285). CA IX has also been
suggested for use as a diagnostic biomarker due to its expression being related to
cervical cell carcinomas ( Liao, S.Y., et al. (1994) Identification of the MN antigen as a
diagnostic biomarker of cervical intraepithelial squamous and glandular neoplasia and
cervical carcinomas, Am J Pathol, 145, 598-609). Surprisingly, seven of the twenty
genes identified as important by the ANN method of the invention represent expressed
sequence tags (EST’s) and the associated gene is therefore of unknown function.
However, given their new-found predictive capability with regards to survival, further

clinical analysis is now justified.

A further dataset was published by West et al. (West, M., et al.. (2001) Predicting the
clinical status of human breast cancer by using gene expression profiles, Proc Natf Acad
Sci U S A, 98, 11462-11467) and the ANN stepwise approach of the invention was
applied to this dataset in order to identify groups of genes would accurately predict the
estrogen receptor (ER) status and the lymph node (LN) status of the patient. The initial
analysis by West and colleagues used regression models in order to calculate
classification probabilities for the various outcomes. In their study, when analyzing ER
status, a 100 gene classifier was identified which predicted 34 of the 38 samples used in
the training set accurately and with confidence, and which performed well during cross-

validation. Using the same approach, the authors identified a 100 gene classifier which
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could classify a training set of samples according to lymph node status for the samples
used in the training set. However, this approach was less successful in predicting LN
status during cross-validation, where all of the LN+ cases had estimated probabilities at
approximately 0.5, indicating these predictions contained a great deal of uncertainty,
possible due to high levels in variation in the expression profiles of these samples. Using
the stepwise methodology of the present invention, two gene expression signatures were
identified. The first discriminated 100 % of the cases correctly with regards to whether
they were positive or negative for ER, and the second predicted whether the tumour had
spread to the axillary lymph node, again to an accuracy of 100 %. The accuracies
reported here are from mulliple separate validation data splits, with samples treated as

blind data over 50 models with random sample cross validation.

Clearly the stepwise ANN approach of the present invention provides significant
advantages over the techniques used previously not only ion identifying biomarkers with
improved predictive capability, but also in identifying novel biomarkers for use in
diagnostic and prognostic cancer prediction.

Crop Yield prediction

The algorithmic approach of the present invention could also be applied to prediction of
the effect of stresses on the productivity of crops. The natural environment consists of
many interacting factors over time that can have an influence on crop yield. These
include climatic factors such as temperature, light and humidity; soil factors such as
nutrients, pH, salinity, and avaitable water; pollutanis in the air, water and soil; pests and
diseases. This is clearly a complex system with very large number of interacting factors
occurring in different states over time. The factors are also non linear and may interact
with one another. Within this context the ANN approach according to the present
invention could be applied to deconvolute these interactions and their influence on crop

productivity and thus forecast yield under a given set of conditions,
The advantage of the approach described here is that it could identify an optimal subset

of parameters with which vield could be predicted. These parameters could aid in the

application of crop management and yield optimisation.

The invention is further illustrated by the following non-limiting example.
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EXAMPLE

A computational approach was taken to analyze genomic data in order to identify genes,
proteins or gene/protein signatures, which correspond to prognostic cutcome in patients
with cancer. Genotypic, and subsequently phenotypic traits determine cell behaviour
and, in the case of cancer, govern the cells’ susceptibility to treatment. Since tumour
cells are genetically unstable, it was postulated that sub-populations of cells arise that
assume a more aggressive phenotype, capable of satisfying the requirements necessary
for invasion and metastasis. The detection of biomarkers indicative of tumour aggression
should be apparent, and consequently their identification would be of considerable value

for early disease diagnosis, prognosis and response to therapy.

The present inventors have developed a novel method for determination of the optimal
genomic/proteomic signature for predicting cancer within a clinically realistic time period
and not requiring excessive processing power. The approach utilises ANNs and involves
sequentially selecting and adding input neurons to a network to identify an optimum
cancer biomarker subset based on predictive performance and error, in a form similar to

stepwise logistic regression.

Three datasets were used to test and validate method of the invention. The first
interrogates human serum samples with varying stages of melanoma. The samples
were analysed by MALDI-TOF MS at Nottingham Trent University (Nottingham, United
Kingdom) from samples collected by the German Cancer Research Cenire (DKFZ,
Heidelberg, Germany). The remaining two datasets were publicly available datasets

which both originated from gene expression data derived from breast cancer patients.

The first dataset was derived from MALDI MS analysis for melanoma serum samples.
The aims here were to firstly compare healthy control patients with those suffering from
melanoma at the four different clinical stages, |, H, 1l and 1V, in order to identify
biomarker ions indicative of stage. Secondly, adjacent stages were to be analysed
comparatively in the aim of identifying potential biomarkers representative of disease
progression. All developed models were then validated on a second set of sample
profiles generated separately from the first. This dataset contained 24,000 variables per
sample.
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The second dataset, published by van't Veer et al. (van 't Veer, et al.,, 2002), used
microarray technology to analyse primary breast tumour tissue in relation to development
of metastasis. The authors generated data by gene expression analysis in a cohort of
78 breast cancer patients, 34 of which developed distant metastases within five years,
and 44 which remained disease free after at least five years. Each patient had 24,482
carresponding variables specifying the Logs, expression ratio of a single known gene or
expressed sequence tag (EST).

The third dataset publish by West et al. (West, et al., 2001) used microarray technology
to firstly analyse primary breast tumors in relation to estrogen receptor (ER) state and
secondly to assess whether the tumor had spread to the axillary lymph node (LN),
providing information regarding metastatic state. This dataset consisted of 13 ER+/LN+
tumors, 12 ER-/LN+ tumors, 12 ER+/LN- tumors, and 12 ER-/LN- tumors, each sample
having 7,129 corresponding gene expression values. The approach described here was
then validated using a second dataset (Huang, et al., 2003} which was made available by
the same group as the first, and contained a different population of patients, ran on a

different microarray chip.

Stepwise approach methodology
Artificial Neural Network architecture

The ANN modelling used a supervised learning approach, multi-layer perceptron
architecture with a sigmoidal transfer function, where weights were updated by a back
propagation algorithm. Learning rate and momentum were set at 0.1 and 0.5
respectively. Prior to training the data were scaled linearly between 0 and 1 using
minimums and maximums. This architecture utilized two hidden nodes in a single hidden
layer and initial weights were randomized between 0 and 1. This approach has been
previously shown to be a successful method of highlighting the importance of key inputs
within highly dimensional systems such as this, while producing generalized models with
accurate predictions (Ball, et al., 2002)

Artificial Neural Network model development
The same approach was applied across all datasets, with the only differences being the

number of samples and input variables., Here, as an example the methodology as

applied to the van't Veer dataset will be described. Data from the microarray
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experiments was taken in its raw form. This consisted of 78 samples each with 24,482
corresponding variables specifying the expression ratio of each single gene. Prior to
training each model the data was randomly divided into three subsets; 60 % for training,
20% for testing (to assess model performance during the training process) and 20 % for
validation (to independently validate the model on previously unseen data). This process
is known as random sample cross validation and enables the generation of confidence
intervals for the predictions on a separate biind data set, thus producing robust,
generalized models.

Initially, each gene from the microarray dataset was used as an individual input in a
network, thus creating n (24,482) individual models. These n models were then trained
over 50 randomily selected subsets and network predictions and mean squared error
values for these predictions were calculated for each model with regards to the separate
validation set. The inputs were ranked in ascending order based on the mean squared
error values for blind data and the model which performed with the lowest error was
selected for further fraining. Thus 1,224,100 models were trained and tested at each

step of model development.

Next, each of the remaining inpuis were then sequentially added to the previous best
input, creating n-1 models each containing two inputs. Training was repeated and
performance evaluated. The model which showed the best capabilities to model the data
was then selected and the process repeated, creating n-2 models each containing three
inputs. This process was repeated until no significant improvement was gained from the
addition of further inputs resulting in a final model containing the gene expression

signature which most accurately modeled the data.

This process requires the training and testing of potentially millions of medels. To
facilitate this, software to automate the procedure has been created using Microsoft
Visual Basic. Here, the inputs are added automatically, selecting the best contender
biomarkers at each step. Figures 7(a)-(g) shows the software design detailing the
various options available for ANN design and analysis (1t is noted that the screenshots of
Figures 7(a) to 7{(g) are indicative only and the actual layout may vary). The entire

process for running the algorithm can be summarized below:

1. Identify input and output variables

2. Start with input 1 as the first input to the model, input,



10

15

20

25

30

WO 2010/046697 PCT/GB2009/051412
21

3. Train the ANN using random sample cross validation
Record network performance for inputy
Repeat steps 3 and 4 using all inputs; inpuf,...inputs...inputs...input, as sole
inputs in the ANN model

6. Rank inputs in ascending order based on the error on the test data split to
determine best performing input at this step, inpuf
Repeat from step 2, using each input sequentiaily with inputiin an ANN model
Determine the best performing input combination for this step

This whole process was repeated from step 3, continually adding inputs unti no
improvement was gained from the addition of further inputs

Results
Analysis of melanoma dataset

Analysis of control and Stage IV disease samples: Protein and peptide data

Because there are no confirmatory blood markers for metastatic melanoma, we sought to
develop a validated, robust and reproducible MALDI MS methodology using the same
stepwise ANN approach to profile serum protein and ftryptically digested peptides. This
was applied to data derived from MALDI MS analysis representing (i) protein and (ii)
digested peptide data from the control and diseased samples. Various analyses were
carried out on these datasets in order to identify biomarker ions indicative of the classes
shown in Table 1.

Table 1: Summary of analyses conducted (i)

Analysis Class 1 Class 2
Protein ion analysis 1 Healthy Control Stage IV melanoma
Tryptic peptide ion analysis 1 | Healthy Control Stage |V melanoma

Biomarker patterns containing 9 ions from the protein data and 6 ions from the digested
peptides were identified, which when used in combination correctly discriminated
between control and Stage IV samples to a median accuracy of 92.3 % (inter-quartile
range 89.4 — 94.8 %) and 100 % (inter-quartile range 96.7 — 100 %) respectively. Table
2a-b shows the performance for the models at each step of the analysis for the protein

and peptide data. This shows that with the continual addition of key ions, an overall
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improvement in both the error associated with the predictive capabilities of the model for
blind data, and also the median accuracies for samples correctly classified. Nine ions
was determined to be the most effective subset of biomarker ions producing the best
model performance for the protein data as no significant improvement was seen in
predictive performance with the addition of further ions. No further steps were conducted
beyond step 6 for the peptide data because after these step because no significant
improvement in performance could be achieved. Therefore these models were
considered to contain a subset of ions representing either the proteins or digested
peptides, which most accurately modelled the data. Figure 8 shows the error and
performance progression for the peptide data when using the stepwise approach for
biomarker identification.
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Table 2a: Summary of stage IV vs control protein ions identified at each step of the

analysis
Step Protein lon Median Inter-Quartile
Accuracy (%) | Range
1 12000 64.1 58.7-69.2
2 14847 73.2 69.8-75.8
3 1649 80.4 77.4-83.3
4 15477 80 77.9-84
5 13255 82.7 79.1-85.2
6 3031 83.8 79.8-86.1
7 4791 87 83.9-90.4
8 9913 86.6 83.2-89.8
9 4835 92.3 89.4-94.8
10 15269 90.4 87.2-92.6
11 2730 90.3 87.1-92.2
12 9919 80.4 87.3-92.5
13 9971 91.9 88.3-94
14 11735 90.4 87.1-92.5

Table 2b: Summary of stage IV vs control digested peptide ions identified at each

step of the analysis

Step Peptide lon Median Accuracy Inter-Quartile
(%) Range
1 1753 77.8 74.4-83.2
2 1161 93.3 90.2-96.4
3 1505 93.7 92.4-96.7
4 854 96.7 95.8-100
5 1444 100 96.5-100
6 1093 100 96.7-100
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Analysis of digested peptide data: Diseased stages |, Il, 1l and control sampies

Next, because the analysis of the peptide data provides the potential for subsequent
protein identification, it was decided that these peptide MALDI MS profiles would be
analysed in the search for differential biomarker ions which would be representative of
firstly disease stage (by analysing the individual stages against control populations) and
secondly disease progression (by generating predictive models classifying between
adjacent disease stages). The analyses conducted in this part of the study are
summarised in Table 3.

Initially, in order to identify ions which were representative of disease stage, the stepwise
approach was applied to identify subsets of biomarker ions which could predict between
disease stage and conirol samples. This would therefore provide valuable information
concerning which peptide ions were showing differential intensities that were specific to
the disease stage of interest. Table 4 shows the biomarker subsets identified in each
model, and their median performance when predicting validation subsets of data over 50
random sample cross validation resampling events. Figure 9 shows the stepwise
analysis summary across all of the models for each step of analysis. As expected, the
models predicted stage | v control with the least accuracy (80 %), suggesting that
because early stage disease is a non-penetrating skin surface legion, changes occurring
in the serum at the protein level are less significant than at advanced stages of disease.
Nonetheless, the ability to predict incidence of stage | melanoma to accuracies of 80 %
using serum would be viewed as clinically significant. It was interesting to note that of
the biomarker ions identified by this approach, in several instances the same ions were
occurring across different models. lons 1299 and 3430 (3432) were found o differentiate
between both Stage | and Stage Il disease vs control samples. lons 1251 and 1283
(1285) were found to differentiate between Stage |l and Stage il disease vs control,
whilst ion 17563 (1754) was identified in both the Stage Hl and Stage 1V diseased vs
controlled models.

Table 3: Summary of analyses conducted.

Analysis Class 1 Class 2

Tryptic peptide ion analysis 2 | Healthy Control Stage | melanoma

Tryptic peptide ion analysis 3 | Healthy Control Stage Il melanoma
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Tryptic peptide ion analysis 4 | Healthy Control Stage Il melanoma
Tryptic peptide ion analysis 5 | Stage | melanoma Stage |l melanoma
Tryptic peptide ion analysis 6 | Stage Il melanoma Stage Il melanoma
Tryptic peptide ion analysis 7 | Stage lil melanoma Stage [V melanoma

Considering that 3500 individual ions are trained and tested at each step of analysis over
50 random sample cross validation resampling events, it seems uniikely that their
consistent identification as the most important ions at a given step would be a
consequence of chance, providing confidence that these ions are representing proteins

which are showing a true change in intensity in patients with disease at differing stages.

Analysis of adjacent diseased groups

Once biomarker ions representative of individual disease stage had been determined, it
was decided important to analyse adjacent group stages of disease, which would
potentially identify biomarker ions which would represent those responding differently as
disease progressed, and would be predictive and indicative of disease stage. Table &
shows the biomarker subsets identified in each model, and their median performance
when predicting validation subsets of data over 50 random sample cross validation
resampling events. |t was interesting to find that subsets of ions could be identified
which were able to predict between stages to extremely high accuracies; 98 % for stage |
v stage 1l and 100 % for stage Hl v stage Il and stage 1l v stage V. Furthermore, only
two peptide biomarker ions were required in order to perfectly discriminate between
stage Il and stage Ill, with one of these ions, 903, also being important in the
classification of stage Hl v stage 1V, suggesting that this ion is potentially of importance in
disease progression to advanced stages, and appears to be downregulated as
melanoma stage advances from stage ll 1o 1V, which could only be confirmed by further

studies.

Table 4. Summary of overall resuilts from digested peptide analysis. Stages LILIN,
and IV vs Control Peptide ions highlighted in bold represent ions corresponding to
muitiple groups.
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Dataset Modelled ions identified Median Validation | Additionai dataset
Performance (%)} | performance

Stage | v Control 864, 933, 980, :80
1299, 2309,
2886, 2966,
3220, 3430, 3489
Stage li v Control 1251, 1283, | 96.5
1299, 1968,
2244, 2411,
3432, 3443
Stage Il v Control 1251, 1285, | 91.7
1312, 1371,
1754, 2624,
2715, 2999,
3161, 3326
Stage 1V v Control 854, 1093, 1161, | 100

1444, 1505, 1753

Table 5. Summary of overall results from digested peptide analysis. Stages |,I1il},

and IV vs Control

muitiple groups.

Peptide ions highlighted in bold represent ions corresponding to

Dataset Modeiled lons identified Median Validation | Additional dataset
Performance (%) | performance
Stage 1 v Stage |l 1251, 1731, | 98
1825, 1978, 2053
Stage Il v Stage Hi 861, 903 100
Stage il v Stage 1V 877, 903, 1625, : 100 93.4
2064, 2754

The overall summaries for the stepwise analysis conducted here can be seen in Figure

10. For visualization of the feature space that these samples are occupying, and to

understand the decision surface that these models are generating, PCA was conducted

using the subset of ions identified by the ANN stepwise approach. Figure 11 (a)-(c)




10

15

20

25

30

35

WO 2010/046697 PCT/GB2009/051412
27

shows the PCA for the stage | v stage Il, stage H v stage |l and stage lll v stage IV
moedels respectively. 1t is evident that when using the biomarker ions identified by ANNs
the samples can be separated into distinct clusters using PCA, with the clearest
separation being with the stage Il v stage lll model. It is interesting to draw attention to
the samples highlighted by arrows and circles in the stage | v stage || model (figure
11{a)). The first of these samples was identified as a stage | sample, but according to its
profile PCA has placed it more indicative of stage H. Interestingly, the ANN model also
predicted this sample as a stage Il sample, suggesting it has strong features
corresponding more to a stage Il sample than a stage | sample which it was categorized
as by the clinicians. Simitarly, the region of samples highlighted on Figure 11(b) which
appear to be lying on the border of the decision surface were also predicted closely to
the 0.5 decision threshold by the ANNs, again suggesting that these samples are
showing characteristics of both classes according to their proteomic profiles. The
relative closeness in feature space of the stage Il and stage |V samples according to
(Figure 11(c)) suggests that the proteomic profiles of these samples are similar, and
cannot be as clearly separated using the PCA as they are when using the ANN
modelling, therefore requiring a non-linear decision surface to correctly classify this
cohort of samples which are at a more advanced diseased stage. Furthermore, the
mean group intensities of these ions has been analysed, with the summary being shown
in Figure 12. This shows how the biomarker ions identified as most important in the
discrimination of sample groups has changed during the different stages of disease. ltis
clear from this that not all of these biomarker ions are being up regulated as disease
progresses.  All five of the ions identified in the stage | v stage Il analysis show
statistically significant (p= <0.05) increases in intensity. In the stage H v stage Il model,
both biomarker ions appear to be down regulated when disease is more advanced, with
ion 861 significantly so. A scatterplot was produced of the two ions identified in this
model, 861 an 903 (Figure 13) and a clear separation of stage !l and stage 1ll samples is
evident, with the stage i1l samples clearly showing lesser levels of ion 861. This enables
one to derive a hypothetical decision boundary between the two classes. In the stage 1lI
v stage IV model, all ions {except for ion 2754) showed a significant increase or
decrease in intensity as disease progressed, with ion 1625 showing a highly significant

increase in intensity as disease progressed to stage V.
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Model validation

To study the question of stability of this procedure over multiple experiments and to
assess batch to batch reproducibility of the mass spectrometry analysis, both the
proteins and peptides were run by the group on two separate occasions and the results
of the second experiment were used to validate the stepwise methodology. This dataset
was obtained by a different operator and on a different date. The second sample set
was then passed through the developed ANN models fo blindly classify them as a
second order of blind data for class assignment. For the protein data, the model
correctly classified 85 % of these blind samples correctly, with sensitivity and specificity
values of 82 and 88 % respectively, with an AUC value of 0.9 when evaluated with a
ROC curve. For peptides, the model correctly classified 43/47 samples originating from
control patients, and 43/43 samples from cancerous patients. This gave an overall
model accuracy of 95.6 %, with sensitivity and specificity values of 100 and 91.5 %
respectively, with AUC value of 0.98. This suggests that the peptide data was more
reproducible than the protein data for this second batch of mass spectrometry analysis.
The predictive peptide ions were subsequently sequenced and identified by colleagues
using a variety of mass spectrometric techniques leading to the identification of two
proteins; Alpha 1-acid glycoprotein (AGP) precursor 1/2 (AAG 1/2) and complement C3
component.

Analysis of van’t Veer ef al, dataset

The aims of the analysis were to utilise the novel stepwise ANN modelling approach of
the invention in order to identify a gene expression signature which would accurately
predict whether a patient would develop distant metastases within a five year time
period, and thus identifying potential markers and giving an insight into disease
aetiology. Following the rule of parsimony which suggests that the simplest model fitting
the data should be used, an initial analysis was carried out using logistic regression
(Subasi and Ercelebi (2005) Comput Methods Programs Biomed. 78(2):87-99). This
method led to poor predictive performances with a median accuracy of just 53 % (inter-
quartite range 47-61 %). With logistic regression, there is the potential disadvantage of
auto-correlation between the large numbers of independent variables within the dataset,
which is possibly the reason for the poor predictive performance suggesting that this

dataset is not linearly separable.
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The application of this approach resulted in the identification of a gene expression
signature consisting of twenty genes which predicted patient prognosis to a median
accuracy of 100 % (inter-quartile range 100-100%, mean squared error of 0.085), where
samples were treated as blind data over 50 models with random sample cross validation.
The overall screening process assessed over fen million individual models. When
evaluated with a ROC curve the model had an AUC value of 0.971 with sensitivity and
specificity values of 98 % and 94 % respectively. Figure 14 shows the performance for
the models at each step of the analysis. It is evident that the continual addition of key
genes leads to an overall improvement in the predictive capabilities of the model. The
model showed a decrease in performance at steps 10 and 11 which may be due to a
possible interaction between the genes present af these steps with one or more of the
other genes in the model. After this point the model improved further still until step
twenty, so this was considered to contain the genes which most accurately modelled the
data. Further steps were not conducted because no significant improvement in
performance couid be achieved. A summary of the performances of the models at each

step, together with the identity of the gene (where known) are given in Table 6.

Table 6. Summary of twenty genes used in the gene expression signature at each
step of model development.

Step | Gene Name | Gene Description Median % | Inter Mean
Accuracy | Quartile Squared
Range (%) | Error
1 CAQ Carbonic anhydrase 1X 70 66.7-77 0.438
2 EST's 80.5 77.7-87.7 0.383
3 ESTs, Weakly similar to | 83 76.1-85.9 0.377
RL17_HUMAN 605

RIBOSOMAL PROTEIN
L17 [H.sapiens]

4 FLJ13409 ESTs, Weakly similar to | 87 79.6-88.7 0.351
the KIAAD191 gene is
expressed  ubiguitously

[H.sapiens]
5 LCHN LLCHN protein 80 73.9-847 0.397
6 TMEFEF2Z Transmembrane protein | 94.7 89.4-95.3 0.233

with EGF-like and two
follistatin-like domains 2

7 HEC Highly  expressed in | 94.8 89.3-96.7 0.217
cancer, rich in leucine
heptad repeats

8 HSPC333 Homo sapiens HSPC337 | 96 95-100 0171
mRNA, partial cds

g E8T's 98.1 94.6-100 0.154

10 Homo sapiens cDNA: | 95 90.9-95.9 0.23

FLJ22044  fis, clone
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HEPJ9141
11 HUGT1 UbP -~ glucose 782 71.3-83.5 0.393
glycoprotein
glucosyltransferase 1
12 LOC56899 putative 47 kDa protein 85.1 80-91.8 0.322
13 DJ462023.2 | Hypothetical protein | 96.1 94.3-100 0.16
¢J462023.2
14 HSU93243 tbcBp homolog 96.1 95.2-100 0.155
15 NRG2 Neuregulin 2 95.8 94-100 0.174
16 EST's 95,9 90.5-100 0.17
17 EST's 100 95.4-100 0.168
18 EST's 96.1 92.5-100 0.176
19 NPHP1 Nephronophthisis 1,958 92-100 0.165
{juvenile)
20 QDPR Quinoid dihydropteridine | 100 100-100 0.085
reductase

Median accuracy, lower and upper inter-quartile ranges, gene names {(where known) and
descriptions are shown.

To further validate the model, an additional set of 19 samples were selected, as in the
original manuscript (van 't Veer, et al,, 2002). This set consisted of 7 patients who
remained mefasiasis free, and 12 who developed metastases within five years. The 20
gene expression signature that had been identified correctly diagnosed all 19 samples

correctly, further emphasising the present models’ predictive power.

Analysis of West et al dataset

The aims here were to identify a gene expression signature which would accurately
predict between firstly estrogen receptor (ER) status, and secondly to determine whether
it was possible to generate a robust model containing genes which would discriminate
hetween patients based upon lymph node (LN) status. As before, an initial analysis was
carried out using logistic regression which again led io poor predictive performances with
a median accuracy of 78 % (inter-quartile range 67-88 %) for the ER data, and just 56 %
(inter-quartile range 44-67 %) for the LN dataset, which is comparable to the predictions

one would gain from using a random classifier.

Here, using the stepwise methodology, two gene expression signatures were identified.
The first discriminated 100 % of the cases correctly with regards to whether they were
positive or negative for ER, and the second predicted whether metastasis of the tumour

{o the axiilary lymph node had occurred, to an accuracy of 100 %. Again, the accuracies




10

15

20

25

WO 2010/046697 PCT/GB2009/051412
31

reported are from separate validation data splits, with samples treated as blind data over
50 models with random sample cross validation. The overall screening process
assessed over five million individual models. When evaluated with a ROC curve the
model had an area under the curve value of 1.0 with sensitivity and specificity values of
100 % and 100 % respectively for both ER and LN status. Figure 15(a)-(b) shows the
performance for the models at each step of the analysis. It is evident that the continual
addition of key genes leads to an overall improvement in the error associated with the
predictive capabilities of the model for blind data. After steps 8 and 7 for the ER and LN
data respectively, no further steps were conducted because no significant improvement
in performance could be achieved, therefore these models were considered to contain
the genes which most accurately modelled the data. A summary of the performances of
the models at each step, together with the identity of these are given in Table 7 a-b.

The models developed using the gene subsets identified by the approach described
were applied to 88 samples from Huang and colleagues (Huang, et al (2003) Lancet,
361, 1590-1596). These samples were then subjected to classification based upon ER
and LN status as with the first dataset. 88.6 % of the samples could be classified
correctly based on ER siatus, with a sensitivity and specificity of 90.4 and 80 %
respectively. 83 % of samples were correctly classified based upon their LN status, with
a sensitivity of 86.7 % and specificity of 80 %. The ROC curves AUC values were 0.874
and 0.812 for the ER and LN gene subset models respectively. 1t was expected that the
predictive accuracies would be reduced when the models were applied to this additional
dataset, but the accuracies reported here remain extremely encouraging because of the
larger sample size, the differences in sample characteristics and microarray analysis
described above. The ability to predict ER status at a higher rate than that of LN status
suggests that there is a greater level of variation in the gene expression profiles with
respect to LN status compared to that of ER.
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Table 7a-b. Summary genes used in the gene expression signature at each step of

model development for (a) ER status and (b} LN status.

(a)

Step | Gene Gene Description Median % | Inter Quartile ;: Mean
Accession Accuracy | Range (%) Squared
Number Error

1 X58072-at | Human hGATA3 mRNA | 91.7 84.6-93.3 0.291

2 229083-at | H.sapiens 5T4 gene for | 93.3 91.1-100 0.214

5T4 Oncofetal antigen
3 M81758-at | SkM1 mRNA 100 92.4-100 0.138
4 M60748-at | Human histone H1 | 100 100-100 0.087
{H1F4) gene

5 M74093-at | Human cyclin mRNA 100 100-100 0.038

8 U22029-f-at | Human cytochrome | 100 100-100 0.034
P450 mRNA

7 U96131t-at Homo sapiens HPV16 | 100 100-100 0.028
E1

8 MO6982-at | Homo  sapiens U2 | 100 100-100 0.017

snRNP auxiliary factor
small subunit

Median accuracy, lower and upper inter-gquartile ranges, gene accession numbers, gene

descriptions are shown.
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(b)

Step | Gene Gene Description Median Inter Mean Response
Accession % Quartile Squared
Number Accuracy | Range Error

(%)

1 AFFX- Bacteriophage P1 cre | 80 75-86.4 0.384 T
CreX-3-st | recombinase

2 M83221-at | Homo sapiens |-Rel | 88.2 83.7-93.2 | 0.301 *

mMRNA

3 S579862-s- | PSMD5 92.9 87.5-94.4 | 0.252 %
at

4 U38817-at | Human Bloom | 94 92.3-100 0172 T

syndrome protein
{BLM) mRNA

5 U63139-at | Human Rad50 mRNA | 100 100-100 0.085 T

6 M83652-s- | Homo sapiens | 100 100-100 0.062 E
at complement

component properdin
mMRNA

7 U30894-at | Human N-| 100 100-100 0.05 T

sulphoglucosamine
sutphohydrolase
(SGSH) mRNA

Median accuracy, lower and upper inter-quartile ranges, gene accession numbers, gene

descriptions are shown.

ldentification of multiple biomarker subsets

The stepwise methodology described above™ facilitates the identification of subsets of
biomarkers which can accurately model and predict sample class for a given complex
dataset. In order {o facilitate a more rapid biomarker subset analysis, the stepwise
approach described adds only the best performing biomarker each step of analysis.
Although this appears to be an extremely robust method of biomarker identification, the

question remains as to whether there are additional subsets of biomarkers existing within
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the dataset, which are also capable of predicting class to high accuracies. If this is true,
then this would lead to a further understanding of the system being modelled, and if
multiple biomarkers were 1o appear in more than one model subset, then this would
further validate their identification, and enhance the potential of their role in disease

status warranting further investigation.

To achieve these aims, the same West dataset was used as previously (West, et al.,
2001). As can be seen from table 8a-b, in addition to the number one ranked biomarker
at step one (which was subsequently used as the basis for the gene biomarker signature
described earlier), there are several other potential candidate biomarkers which by
themselves are able to classify a significant proportion of the sample population into their
respective classes. Therefore an individual stepwise analysis was conducted on each of
the remaining top ten genes identified in step one of the analysis, for both ER and LN

status.

Results

Table 8a-b. Summary of step 1 analysis for (a) ER and (b) LN status. Table shows
the gene identification and respective predictive performances of the top 10 ranked

genes identified at step 1 of the analysis.

(a)

Rank Gene ID Blind Performance
1 GATA3 89.8
2 ESR1 87.6
3 SLC39A6 85.5
4 EST 85.3
5 HSD1784 83.3
8 EST 842
7 AR 83.0
8 LADA §4.0
9 SCNN1A 84.2
10 MAPT 80.2

(b)
Rank Gene ID Blind Performance

1 EST 80.4
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2 GYPA/B 70.9
3 BLM 7.2
4 ACVR1B 70.4
S EST 64.3
6 WNTSEA 66.7
7 RELB 61.3
8 GK 64.1
9 PDE4B 64.3
10 TLE® 64.7

Figure 16(a)-(b} shows the network performance at each step of analysis for all of these
genes for (a) ER and (b) LN status. It is evident that all of these subsets have the ability
to predict for blind subsets of samples to extremely high accuracies, with no significant
differences between individual models. This suggests that there may be multiple genes
acting in response to disease status, subsequently altering various pathways and altering
the expression levels of many other genes. It is worthwhile o note that some of these
genes were identified in many of the models (Table 9), for example an EST appeared in
seven out of ten models, further highlighting its potential importance in LN status. This
shows that there is not necessarily just one set of biomarkers which are correlates of a
particular disease status of interest, but there may be many, and when one particular
subset of biomarkers are affected in such a way that is indicative of disease status, then
this may consequently have a cascade affect on many other biomarkers, altering their

expression in a similar fashion.
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Table 9. Summary of genes identified in multiple stepwise modelling which occur

in more than one model in {a) ER and (b) LN status

(a)
Gene 1D Actual Gene Name Number of Occurrences
CYP2B6 Cytochrome p450 polypeptide 6 3
CTSC Cathepsinc 3
GATAS3 Gata binding protein 3 2
EST EST 2
CYP2AT Cytochrome p450 polypeptide 7 2
LRRC17 Leucine rich repeat 2
NFKBIE Nuclear factor of kappa 2
COXeC Cytochrome ¢ oxidase 2
HLF Hepatic leukemia factor 2
IGLC Immunoglobulin lambda 2
ZBTB16 Zinc finger 2
RTN1 Reticulon 1 2
(b)
Gene ID Actual Gene Name Number of Occurrences
EST EST 7
BLM Bioom syndrome 6
ACVR1B Activin a receptor 4
GYPA/GYPB Glycophorin a/b 3
AXINT Axin 1 3
RELB V-rel reticuloendotheliosis viral 2
oncogene homoiog b
PSMDS Proteasome (prosome, macropain) 2
SGSH N-sulfoglucosamine sulfohydrolase 2
(sulfamidase)
CTSH Cathepsin h 2
NUP88 Nucleoporin 88kda 2
ENG Endogiin 2
SYBL1 Synaptobrevin-like 1 2
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Stepwise analysis validation

To provide further evidence and confidence that the biomarker subsets identified in all of
the above analyses by the stepwise approach were not random as a consequence of the
high dimensionality of the datasets, two validation exercises were conducted. Firstly, ten
inputs were randomly selected from the datasets and trained over 50 random sample
cross validation events in an ANN model identically as for the stepwise method. This

process was repeated 1,000 times, and the summary results are presented in Table 10.

It is clear from Table 10 that the variation amongst modeis generated with these random
input subsets is small, suggesting that a randomly generated model is able to predict
sample class to accuracies in the region of 64 % for blind data. These models will very
rarely predict significantly higher than this value, which is highlighted in Figure 17, which
details the distribution of the model performance across the various models. The data
follows a normal distribution, and therefore it is unlikely that a random model would
generate a subset of inputs capable of very high classification accuracies, indicating that
the stepwise ANN approach to modelling described here is selecting inputs which are

discriminating between the groups of interest in a biologically relevant manner.

Figure 18(a)(c) highlights the significance between the performance of the randomly
generated models and those developed with the stepwise approach for the van't Veer

and West gene expression datasets (van 't Veer, et al., 2002; West, et al., 2001}.

These results show that a random classifier would indeed as expected lead fo
classification accuracies close to random, and therefore it can be said that the stepwise

approach truly identifies subsets of inputs which predict well on unseen data.

Now it was necessary to investigate whether this stepwise approach would identify the
same inputs if the analysis was run several different occasions, starting over each time
with the same dataset. To achieve this, the stepwise analysis was run and trained on the
van't Veer dataset with samples randomly split into training, test, and validation subsets
10, 20, 50 and 100 times and subsequently trained. This was then repeated five times to
calculate how consistent the ranking of the individual inputs was with regards to model
performance. This consistency was calculated for the top fifty most important inputs, and
was the ratio of actual ranking based upon the average error of the model, o the

average ranking over the multiple runs. These are summarised in Table 11.
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Summary Statistic Validation data accuracy Validation data error
Average 64 % 0.495

Standard Deviation 0.024 0.014

Standard Error 0.0000245 0.0000141

95 % confidence interval 0.0000489 0.0000282

Median 64 % 0.495

Inter Quartile Range 62-66 % 0.485-0.504

Table 11. Summary of the consistency of inputs identified as importance using varying

random sample cross validation data splits in step 1 of the analysis.

Number of RSCV Mean Group 95 % ci
datasplits Consistency

10 0.547 0.009
20 0.708 0.009
50 0.859 0.010
100 0.880 0.013

There was a significant increase in consistency amongst the performance of inputs when
increasing from 10 to 20 (p=0.000), and 20 to 50 RSCV datasplits (p=0.000), but not
from 50 to 100 (p=0.2213).

ranked as first and second every time, with the majority of the variation in rankings

Interestingly, for all analyses, the same two inputs were

appearing towards the bottom of the top 50 list, which accounts for the 14 and 12 %
variability in the 50 and 100 RSCV event models respectively. This showed step 1 {o be

extremely consistent in important input identification across muitiple analyses.

The same procedure was then carried out for step 2, with the input identified as the most
important across all the models in step 1 used to form the basis of this second step.

Table 12 shows the average consistency ratios for step 2.

It is clear that consistency across muitiple repeats of the analysis showed a dramatic
decline, with only the 100 RSCV model retaining its consistency in input identification,

and the improvement in consistent input performance was statistically significant
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(p=0.000) at each increment. The 50 and 100 RSCV models both identified the same
input as number one ranked, and it therefore appears evident that a minimum of 50
RSCV datasplits is preferable to ensure that the same inputs are consistently identified
as important multiple times in 80-80 % of analyses.

Table 12. Summary of the consistency of inputs identified as importance using varying

random sample cross validation data splits in step 2 of the analysis.

Number of RSCV Mean Group 95 % ci
datasplits Consistency

10 0.140 0.004
20 0.487 0.011
50 0.657 0.009
100 0.811 0.009

Conclusions

The present example demonstrates one aspect of the novel siepwise ANN approaches
of the invention as utilised in data mining of biomarker ions representative of disease
status applied to different datasets. This ANN based stepwise approach to data mining
offers the potential for identification of a defined subset of biomarkers with prognostic
and diagnostic potential. These biomarkers are ordinal to each other within the data
space and further markers may be identified by examination of the performance of
models for biomarkers at each step of the development process. In order to assess the
potential of this methodology in biomarker discovery, three datasets were analysed.
These were all from different platforms which generate large amounts of data, namely

mass spectrometry and gene expression microarray data.

The present technology is able to support clinical decision making in the medical arena,
and to improve the care and management of patients on an individual basis (so called
“personalised medicing”). It has also been shown thal gene expression profiles can be
used as a basis for determining the most significant genes capable of discriminating
patients of different status in breast cancer. In agreement with van't Veer et al. (West, et

al., 2001) it has been demonstrated that whiist single genes are capable of discriminating
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between different disease states, multiple genes in combination enhance the predictive
power of these models. In addition to this, the results provide further evidence that ER+
and ER- tumours display gene expression patterns which are significantly different, and
can even be discriminated between without the ER gene itself. This suggests that these
phenotypes are not only explained by the ER gene, but a combination of other genes not
necessarily primarily involved in the response of ER, but which may be interacting with,
and modulating ER expression in some unknown fashion. Unlike some analysis
methods, the present ANN stepwise approach takes each and every gene into account
for analysis, and does not use various cut-off values o determine significant gene
expression, which overcomes previous data analysis limitations. These models can then
form a foundation for future studies using these genes to develop simpler prognostic
tests, or as candidate therapeutic targets for the development of novel therapies, with a
particular focus being the determination of the influence that these genes may have upon
ER expression and development of lymph node metastasis. Given the relevance of the
genes identified by this method and the applicability of these to a wider population this
approach is a valid way of identifying subsets of gene markers associated with disease
characteristics. Confidence in the identified genes is increased further still in that many

of these genes have known associations with cancer.

To conclude, the present example demonstrates that by using novel ANN
methodologies, it is possible to develop a powerful tool to identify subsets of biomarkers
that predict disease status in a variety of analyses. The potential of this approach is
apparent by the high predictive accuracies as a result of using the biomarker subsets
identified. These biomarker subsets were then shown to be capable of high classification
accuracies when used to predict for additional validation datasets, and were even
capable of being applied to predict the ER and LN status of a dataset very different in
origin from the one used in the identification of the important gene subsets. This in
combination with the various validation exercises that have been conducted suggests
that these biomarkers have biological relevance and their selection is not arbitrary or an
artefact of the high dimensionality of the system as they were shown to be robust to cope

with sampling variability and reproducible across different sample studies.

It will be understood that the embodiments described above are given by way of example
only and are not intended to limit the invention, the scope of which is defined in the
appended claims. It will also be understood that the embodiments described may be

used individuaily or in combination.
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CLAIMS

1. A method of determining a relationship between input data and one or more
conditions comprising the steps of:

receiving input data categorised into one or more predetermined classes of
condition;

training an artificial neural network with the input data, the artificial neural network
comprising an input layer having one or more input nodes arranged to receive input data;
a hidden layer comprising two or more hidden nodes, the nodes of the hidden layer being
connected to the one or more nodes of the input layer by connections of adjustabie
weight; and, an output layer having an output node arranged to output data related to the
one or more conditions, the output node being connected to the nodes of the hidden
layer by connections of adjustable weight;

determining relationships between the input data and the one or more conditions
wherein the artificial neural network has a constrained architecture in which

(i) the number of hidden nodes within the hidden layer is constrained; and,

(ii) the initial weights of the connections between nodes are restricted.

2. A method of determining a relationship between input data and one or more
conditions as claimed in Claim 1, wherein the number of nodes in the hidden layer is

in the range two to five.

3. A method of determining a relationship between input data and one or more
conditions as claimed in Claim 2, wherein there are two hidden nodes in the hidden

layer.

4. A method of determining a relationship between input data and one or more
conditions as claimed in any preceding claim, wherein the initial weights of

connections between nodes have a standard deviation in the range 0.01 to 0.5.

5. A method of determining a relationship between input data and one or more
conditions as claimed in Claim 4, wherein the initial weights of connections between

nodes have a standard deviation of 0.1.

6. A method of determining a relationship between input data and one or more

conditions as c¢laimed any preceding claim, wherein the input data comprises data
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pairs, each data pair being categorised into the one or more conditions and

comprising a parameter and associated parameter value.

A method of determining a relationship between input data and one or more
conditions as claimed in Claim 6, wherein the input data is grouped into a plurality of

samples, each sample having an identical selection of data pairs.

A method of determining a relationship between input data and one or more

conditions as claimed in Claim 7, wherein the training step comprises:
(i) selecting in a first selecting step the same parameter in each sample;

(i) training the artificial neural network with the parameter values associated

with the selected parameter;

(iii) recording the artificial neural network performance for the selected

parameter;
(iv) repeating the selecting and recording steps for each parameter in turn,

A method of determining a relationship between input data and one or more

conditions as claimed Claim 8, wherein the determining step further comprises:

(i) ranking the performance of the artificial neural network for each selected

parameter based on their recorded performance, and;
(i) selecting, in a second selecting step, the best performing parameter.

A method of determining a relationship between input data and one or more

conditions as claimed in C!airﬁ 9, wherein the training step further comprises:

(i) selecting, in a further selecting step, a parameter from the remaining
parameters in conjunction with the best performing parameter or

parameters from the previous selecting step;

(i) training the artificial neural network with the parameter values associated

with the selected parameters;

(iif} recording, in a further recording step, the artificial neural network

performance for the selected parameters, and;
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(iv) repeating the further selecting and recording steps for each of the

remaining parameters in turn.

A method of determining a relationship between input data and one or more
conditions as claimed in Claim 10, wherein the training step further comprises
repeating steps (i)-(iv) of Claim 10 until no further substantial performance increase is

gained.

A method of determining a relationship between input data and one or more
conditions as claimed in Claim 10, wherein, prior to the repeating step, the
determining step comprises ranking the performance of the artificial neural network
for each selected parameter arrangement based on their recorded performance and

selecting the best performing parameters.

A method of determining a relationship between input data and one or more
conditions as claimed in any of Claims 10 to 12, wherein each time the number of

input parameters is increased the number of input nodes is increased by one node.

A method of determining a relationship between input data and one or more
conditions as claimed any preceding claim, wherein the input data is grouped into a
plurality of samples, each sample having an identical selection of data pairs, each
data pair being categorised into the one or more conditions and comprising a
parameter and associated parameter value, the training and determining steps

comprising:

(i) selecting a parameter within the input data, training the artificial neural
network with corresponding parameter values and recording artificial

neural network performance;
(ii) repeating for each parameter within the input data;
(iii) determining the best performing parameter in the input data;

(iv) repeating steps (i) to (iii}, each repetition adding one of the remaining
parameters toc the best performing combination of parameters, until

artificial neural network performance is not improved.
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15. A method of determining a relationship between input data and one or more
conditions as claimed in any preceding claim, wherein the parameters represent

genes and the parameter values represent gene expression data.

16. A method of determining a relationship between input data and one or more
conditions as claimed as claimed in any of Claims 1 to 14, wherein the parameters

represent proteins and the parameter values represent activity function.

17. A method of determining a relationship between input data and one or more
conditions comprising:

receiving input data categorised into one or more predetermined classes of
condition;

determining relationships between the input data and the one or more conditions
using a neural network, the artificial neural network comprising an input layer having one
or more input nodes arranged to receive input data; a hidden layer comprising two or
more hidden nodes, the nodes of the hidden layer being connected to the one or more
nodes of the input layer by connections of adjustable weight; and, an output layer having
an output node arranged to output data related to the one or more conditions, the output
node being connected to the nodes of the hidden layer by connections of adjustable
weight

wherein the artificial neural network has a constrained architecture in which

(i) the number of hidden nodes within the hidden layer is constrained; and,

(ii) the initial weights of the connections between nodes are restricted.

18. An artificial neural network for determining a relationship between input data and one
or more conditions comprising:

an input layer having one or more input nodes arranged to receive input data
categorised into one or more predetermined classes of condition;

a hidden layer comprising two or more hidden nodes, the nodes of the hidden
layer being connected to the one or more nodes of the input layer by connections of
adjustable weight; and,

an output layer having an output node arranged to output data related to the one
or more conditions, the output node being connected to the nodes of the hidden layer by
connections of adjustable weight;

wherein the artificial neural network has a constrained architecture in which

(i) the number of hidden ncdes within the hidden layer is constrained; and,
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(ii) the initial weights of the connections between nodes are restricted.

19. A computer system for determining a relationship between input data and one or

more conditions comprising an artificial neural network as claimed in Claim 18.
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