
(19) United States
US 2006O173956A1

(12) Patent Application Publication (10) Pub. No.: US 2006/0173956A1
Ulrich et al. (43) Pub. Date: Aug. 3, 2006

(54) DIRECTORY INFORMATION FOR
MANAGING DATA IN NETWORK FILE
SYSTEM

(76) Inventors: Thomas R. Ulrich, Rancho Santa
Margarita, CA (US); James R.
Schweitzer, Huntington Beach, CA
(US); Gregory D. Bolstad, Tustin, CA
(US); Jay G. Randall, Newport Beach,
CA (US); John R. Staub, Newport
Beach, CA (US); Wilbur George
Priester, Westminster, CA (US)

Correspondence Address:
KNOBBE MARTENS OLSON & BEAR LLP
2O4O MAN STREET
FOURTEENTH FLOOR
IRVINE, CA 92614 (US)

(21) Appl. No.: 11/388,402

(22) Filed: Mar. 24, 2006

Related U.S. Application Data

(62) Division of application No. 10/060,920, filed on Jan.
29, 2002, now Pat. No. 7,054,927.

(60) Provisional application No. 60/264,671, filed on Jan.
29, 2001. Provisional application No. 60/264,694,
filed on Jan. 29, 2001. Provisional application No.
60/264,672, filed on Jan. 29, 2001. Provisional appli

7/2

R Co

A2

f202

COMMUNICATION FABRIC

cation No. 60/264,673, filed on Jan. 29, 2001. Pro
visional application No. 60/264,670, filed on Jan. 29.
2001. Provisional application No. 60/264,669, filed
on Jan. 29, 2001. Provisional application No. 60/264,
668, filed on Jan. 29, 2001. Provisional application
No. 60/302,424, filed on Jun. 29, 2001.

Publication Classification

(51) Int. Cl.
G06F 5/16 (2006.01)
G06F 7/30 (2006.01)
G06F 7700 (2006.01)

(52) U.S. Cl. .. 709/203; 707/10

(57) ABSTRACT

A computer network file system is described. The computer
network file system includes first metadata, which is man
aged primarily by a first file server that is operably con
nected to a network fabric. The first metadata includes first
file location information, and the first file location informa
tion includes at least one server id. The computer network
file system also includes second metadata, which is managed
primarily by a second file server that is operably connected
to a network fabric. The second metadata includes second
file location information, and the second file location infor
mation includes at least one server id. The first metadata and
the second metadata are configured to allow a requestor to
locate files that are stored by the first file server and files that
are stored by the second file server in a directory structure
that spans the first file server and the second file server.

Patent Application Publication Aug. 3, 2006 Sheet 1 of 46 US 2006/017395.6 A1

f72 CC)

R GCC
CC) CCD CC)

CC) CC)
CC) CCD

722

COMMUNICATION FABRIC

?32 735
732 737) /32 733

O SP GS) SZO C<C
D<- C O O 75/7 C -/5/51 S. S. S. S. S3 S3. . . S. S

SNO N23 St Q S.

A67 747

N --
7607

a' 7

FI. 1

|

US 2006/017395.6 A1 Patent Application Publication Aug. 3, 2006 Sheet 2 of 46

Patent Application Publication Aug. 3, 2006 Sheet 3 of 46 US 2006/017395.6 A1

G-NODE TABLE 3.32

CONTAINS
NFORMATION ABOUT

FILE ATTRUTES POINTS TO A G-NODE

322

(SEE FIGURE 6)
GEE TABLE

POINTS CONTAINS
TO A GEES INFORMATION ABOUT
STRING FILE BLOCK LOCATION

FILENAME TABLE

POINTS
CONTAINS TO A (SEE FIGURE 5)

INFORMATION ABOUT CHILD PONTS TO
FILE NAMES THE FILE'S

ISE. GNODE AND TO POINTS TO POINTS TO A
A GEE CACHE NODE THE PARENT'S

G-NODE
(SEE FIGURE4) CACHE NODE TABLE

CONTAINS
INFORMATION ABOUT

POINTS TO CACHED FILE BLOCK
A FLENAME

ENTRY GNID TABLE

(SEE FIGURE 8) CONTAINS
INFORMATION ABOUT
DIRECTORY STRUCTURE

35(2

(SEE FIGURE 7)

G-NODE
TABLES

(FOR CHILD FILES:
STORED ON

OTHER SERVERS)

42 OTHER SERVERS'

L

FI

Patent Application Publication Aug. 3, 2006 Sheet 4 of 46 US 2006/017395.6 A1

//7

ARRAY
INDEX

85

86
87

88

89
90

91
92

93
94 44-44(7
95

96

97

42

422

F4

| En&l=1008 'Z=1NEIXE ‘49=300N9 | 300N0 || Gy

(2),

Patent Application Publication

Patent Application Publication Aug. 3, 2006 Sheet 6 of 46 US 2006/017395.6 A1

ATTRIBUTE DATA

FILE ATRIBUTE-TYPE
FLE ATTRIBUTE-MODE
FILE ATTRIBUTE-LINKS
FLE ATTRIBUTE-UD
FILE ATTRIBUTE-GD
FILE ATTRIBUTE-SIZE
FILE ATTRIBUTE-USED

FLE ATTRIBUTE-FILEID
FLE ATTRIBUTE-ATIME
FILE ATTRIBUTE-MTIME
FILE ATTRIBUTE-CTIME
CHILD GND INDEX
GEE INDEX-LAST USED

AO2

22 GEE OFFSET-LAST USED
632 - CEE INDEX-MIDPOINT
6-CEE OFFSETMIDPOINT
a 127 GEE INDEX-TAL
2. GEE OFFSET-TAL

GEE INDEX-ROOT
a 327 GNODE STATUS

674 - OUICK SHOT STATUS
442 OUICK SHOT LINK

F.

27/Z//Z(7/Z
US 2006/017395.6 A1

~/26/ ~OZZ

062/

Patent Application Publication Aug. 3, 2006 Sheet 7 of 46

Patent Application Publication Aug. 3, 2006 Sheet 8 of 46 US 2006/017395.6 A1

REGENERATED
CACHEBLOCKHADDR
CACHEBLOCKLOADDR

%5-
39(7

DATAGEE
57(7

6/5- PREVPTR
627- NEXTPTR
&25- CACHEBLOCKADDR
552. READCT 52(2

63- CACHETIME 2 CACHEME
CACHEBLOCKHADDR

Fl

62/6?6299° Ç997 6299

US 2006/017395.6 A1

|SIT TWW (JON NO }}}}HMÅNW WO83 EWOO

Patent Application Publication

62,6

US 2006/017395.6 A1

~906

BA|SITTOXE

~prae ~2,5

Aug. 3, 2006 Sheet 10 of 46

zaº

~0,5)

/2026

Patent Application Publication

US 2006/017395.6 A1

[]] '') ||

Aug. 3, 2006 Sheet 11 of 46

67///

OTINBITO (22,7/

Patent Application Publication

6707//
6700/

67/62/

#0267/ ±(20/ 2,267/ /6267/

Patent Application Publication Aug. 3, 2006 Sheet 12 of 46 US 2006/017395.6 A1

A2(22

FR 12

/372

f3/4 f322 ?32

SERVER D
RECOMMENDED OF THE FILE'S GNODE INDEX

PRIMARY
OWNER

A3/ A29 A23 A2

F1

Patent Application Publication Aug. 3, 2006 Sheet 13 of 46 US 2006/017395.6 A1

CLIENT

GNODE TABLE

2 H.H.
o

| |

4 Y
: Y

FIR 14

Patent Application Publication Aug. 3, 2006 Sheet 14 of 46 US 2006/017395.6 A1

CLIENT

GNID TABLE SERVER''123'

O "DE"

742 S3 cache data 7

FIR 14B

Patent Application Publication Aug. 3, 2006 Sheet 15 of 46 US 2006/017395.6 A1

f5/5

CLENT AND
DESIRED FILE'S NO SERVER PERFORM
FLE HANDLE FILE HANDLE LOOK-UP

(SEE FIGURE 16)

CLIENT SENDS FILE ACCESS REOUEST 7,522
TO SERVER INDICATED IN FILE HANDLE

SERVER ACCESSES GNODE /525
NDCATED IN FILE HANDLE

SERVER ACCESSES APPROPRIATE f5507
GEE INDICATED IN GNODE

SERVER CACHES
FILE DATA FROM

DISK
(SEE FIGURE 17)

SERVER ACCESSES CACHE NODE
INDICATED IN GEE

75,207

OR CACHE DATA
2

SERVER MANIPULATES CACHE 725(7
NODES AS NEEDED

SERVER ACCESSES FILE DATA IN CACHE 7.555
LOCATION INDICATED IN CACHE NODE

SERVER PERFORMS DESRED fa2
OPERATION ON FILE DATA

A 572
END

FI. 1

Patent Application Publication Aug. 3, 2006 Sheet 16 of 46 US 2006/017395.6 A1

& START

CLIENT SENDS LOOK-UP
REOUEST TO SERVER

A4/7

SERVER ACCESSES GNODE AAA-5
INDICATED IN LOOK-UP REOUEST

SERVER USERS CHILD GND INDEX
N GNODE TO ACCESS THE
DIRECTORY'S GNID-STRING

A422

SERVER CALCULATES CHECKSUM
AND FELENAME LENGTH FOR

DESRED NEXT PATHNAME COMPONENT
Aa25

SERVER USES FILENAME PTRFIELD Aa32
N GND TO ACCESS FILENAME ENTRY

Aa267

RETURN ERROR MESSAGE
TO CLIENT: FILE

NOT FOUND

IS
CHECKSUM

FROM FILENAME
ENTRY GREATER THAN
CHECKSUM FROM
LOOK UP REOUEST

HECKSUM
AND FILENAME
ENGTHS MATC

p

DO RETURN
FLENAMES FILE HANDLE
MATCH TO CLIENT

NO -/66/7
ACCESS NEXT GND ON

GNID-STRING

END-FILE HANDLE LOOK-UP

FIG 16

Patent Application Publication Aug. 3, 2006 Sheet 17 of 46 US 2006/017395.6 A1

W407

& f725
START

IDENTFY LEAST RECENTLY f7/07
USED CACHE NODE

WRITE ASSOCATED FILE DATA v22.2
FROM CACHE TO DISK

RETURN DATA GEE FROM CACHE f732
NODE TO GEE TABLE

COPY DATA GEE FOR NEW 77/2
DATA INTO CACHE NODE

COPY NEW DATA FROM 725(2
DISK TO CACHE

?/257
END

FR 17

Patent Application Publication Aug. 3, 2006 Sheet 20 of 46 US 2006/017395.6 A1

STATUS

LINKING INFORMATION

2(7/4

2222 128 BYTES

2(2507

GNODE

22402
FILE LOCATION 16K BYTES

DATA

F2D

US 2006/017395.6 A1

Z207,22°(7/6/

Patent Application Publication Aug. 3, 2006 Sheet 21 of 46

Patent Application Publication Aug. 3, 2006 Sheet 22 of 46 US 2006/017395.6 A1

CONVENTIONAL RAID MAPPING
(PRIOR ART)

2/32

DRIVE # u?
O 1 2 3 4 5 6 7 8 9 1 O PARTY

F.21

Patent Application Publication Aug. 3, 2006 Sheet 23 of 46 US 2006/017395.6 A1

W(7/7

COMMUNICATION FABRIC 11
W22

M2

f(2

DSK ARRAY

CUSTER 772

SERV /(707 is
as as
as COMMUNICATION FABRIC -1
SK ARRAY

NT T
WAO2 732 /22

SERVER SERVER

O- s als 2S f52 2S) 28 f3/ f5/
s DISK ARRAY ya 2S

DISK ARRAY /402 3s 2SN-74/
N-- 5-S 5-S

/42 DISK ARRAY DISK ARRAY

N--
ases /42
as OISK ARRAY

DISK ARRAY

N--/

Wa2 F.22B

Patent Application Publication Aug. 3, 2006 Sheet 24 of 46 US 2006/017395.6 A1

2322
23.407

FILEH 1 Fur'
DATA DATA2i. DATA 5DATA 6 DATA7 DATA, DATA2

230- DATA: DATA,4 DATA3 DATA4
232 2335

DATA 1 DATA 2irar -?) \)
2332 DATA 3 (PARITY, 3-4

2.357 'DATA 4

- O 1 2 3 4 5 6 7 8 9

DATA 3 DATA 4 PART3-4

2322

//

it 9
- 2 DATA, DATA2 PARTY -

3 P's
35 4
N4 5 DATA 2 2

8 6 DATA 3
2337 a 7 part at S.

8 DAT all-- 5 g 3| || N ,-E" O
- 11

F23

Patent Application Publication Aug. 3, 2006 Sheet 25 of 46 US 2006/017395.6 A1

24072

CLIENT STORAGE 24/7
REQUEST

DATA-N-24/3

RECEIVE DATA FROM 2422
CLIENT

ANALYZE DATA/ DETERMINE 24.307
BLOCK DISTRIBUTION

PARSE INTO DATA 24407
BLOCK(S)

DETERMINE PARITY 2452
GROUP ARRANGEMENT

CALCULATE PARTY 2462
BLOCKS

DETERMINE BLOCK 24.72
DISTRIBUTION FOR SORAGE

2432
STORE BLOCKS

F24

Patent Application Publication Aug. 3, 2006 Sheet 26 of 46 US 2006/017395.6 A1

24(25.

R
CLIENT STORAGE 24/7

REOUEST

ANALYZE DATA/ DETERMINE BLOCK 24.67
DISTRIBUTION

PARSE INTO DATA 24407

BLOCK(S)

DETERMINE PARITY 245(2
GROUP ARRANGEMENT

DETERMINE BLOCK DISTRIBUTION 2.472
FOR STORAGE

24/5

RECEIVE DATA FROM
CLENT

CALCULATE PARITY 2441
BLOCKS

STORE BLOCKS 243/7

F24

Patent Application Publication Aug. 3, 2006 Sheet 27 of 46 US 2006/017395.6 A1

2322

ge
FILE41 FILE+2

OATA 1;DATA,2: DATA 5DATA 6. DATA 7 DAA, DATA2

2:30- DATA, 3 DATA,4 DATA3 DATA,4

2332 DATA 3 (PARITY, 3-4
25.57 'DATA,4 2352 2337

2325

25/07 S. - ^ 250767
DSK NUMBER y

/-. 1 2 257

Patent Application Publication Aug. 3, 2006 Sheet 28 of 46 US 2006/017395.6 A1

2333

262 2
7

PARITY GROUP A (BLOCK NUMBER=4) 23, 25(22

PARTY GROUP B (BLOCK NUMBER=2)

(DAASH - DAIA, Par
22(25

F2
233

2.357
25(24

23367

2.3507
PARTY GROUP C 2.357

(BLOCK NUMBER=4/BLOCK SIZE= 256K) 29(26
- - -

2355

2.3507
2025 PARTY GROUP C 2.357

(BLOCK NUMBER=4/BLOCK SIZE= 128K) 22(25?

F2B

Patent Application Publication Aug. 3, 2006 Sheet 29 of 46 US 2006/017395.6 A1

232

DISK ARRAY INITIALIZATION USNG GEE TABLE 2
SPACE ALLOCATION

2232 2934 22.36

GNODE EXTENT-2 2
DATA BLOCKS 456,457: DRIVE 13
DATA BLOCKS 667,668: DRIVE 15 22402
DATA BLOCKS 112, 11 3: DRIVE 19
PARTY BLOCKS 554,555: DRIVE 2

GNODE EXTENT=2
DATA BLOCKS 460,461, 462: DRIVE 13
DATA BLOCKS 671,672,673: DRIVE 15 25.407
PARTY BLOCKS 121,122,123: DRIVE 19

GNODE EXTENT=2
DATA BLOCKS 465,464,465: DRIVE 2 25407
DATA BLOCKS 674,675,676: DRIVE 5
PARTY BLOCKS 124,125, 126:DRIVE 13

F27

Patent Application Publication Aug. 3, 2006 Sheet 30 of 46 US 2006/017395.6 A1

24-23

R
ARRAY PREPARATION/ G-TABLE FORMATTING

DETERMINE DISK
CHARACTERISTICS

DETERMINE BLOCK/PARITY
GROUP ALLOTMENT

DETERMINE MAPPING/CREATE
GEE TABLE

259/7

2655

256/7

DATA STORAGE/GEE TABLE
UPDATES

25Z5

F28

Patent Application Publication Aug. 3, 2006 Sheet 31 of 46 US 2006/017395.6 A1

26/23 260207

-FILE 4 — -/

24/7 24/7 2622
26/2 -/

LB-3 PARTY 1-3 -(e- LB-5 LB-6 PARTY4-6 / LB-1 B-2

f - 26/7
LB-8 PARTY7-8 LB-1 O PARITY9-10

26/5 J.
25.32

262 p 2556 -

| s 265 2542 267 FILE
INDEX G-CODE DATA -/ -/ -/ LOGICAL BLOCK

a 45 GNODE GNODE-67,EXTENT=2,ROOT=TRUE
46 DATA - BLOCKS 456,457: DRIVE 13 1
47 DAIA 26/5 BLOCKS 667,668:DRIVE 1526.65 2

25.35 48 DATA BLOCKS 112,113: DRIVE 19 3
49 PARTY BLOCKS 554,555: DRIVE 2 42627
50 2.62 DATA BLOCKS 458,459: DRIVE 13 5
51 DATA BLOCKS 669,670: DRIVE 1526-64 6
52 DATA BLOCKS 114,115: DRIVE 19
53 PARTY BLOCKS 556,557: DRIVE 2

2662 54 LINK INDEX 76

26.6 Z5 GNODE GNODE=67, EXTENT-3, ROOT-FALSE
7. DATA BLOCKS 460,461,462: DRIVE 13
78.262 DATA BLOCKS 671,672,673: DRIVE 15.257 42627
79 PARTY BLOCKS 121, 122, 123: DRIVE 19 8

2667 80 LINK INDEX 88

asa is: GNODE GNODE=67, EXTENT=2, ROOT=FALSE
89 DATA BLOCKS 463,464,465: DRIVE 2 9
90.262 DATA BLOCKS 674,675,676:DRIVE 5:26:54, 2629
91 PARTY BLOCKS 124,125, 126: DRIVE 13

FIG29

Patent Application Publication Aug. 3, 2006 Sheet 32 of 46 US 2006/017395.6 A1

DRIVE FAILURE RECOVERY MECHANISM

LOSS OF D3 RECOVER AND
DATA REDISTRIBUTE

DATA 12

PARITY, 1-2

PARITY, 1-2

DATA1-REC
DATA2

302725, 3 DISK4 d 30272

RECOVER AND
REDISTRIBUTE

DATA 2-REC

DATA -REC

SECOND
DRIVE

FAILURE

PARTY 1-2 PARITY, 1-2

NOMINAL OF ERATION
MANTAINED

Patent Application Publication Aug. 3, 2006 Sheet 33 of 46 US 2006/017395.6 A1

3/22

N
DATA RECOVERY PROCESS

IDENTIFY DATA OR DRIVE FAULT/
DETERMINE AFFECTED BLOCKS

GROUP
DETERMINE ASSOCATED PARTY

IDENTIFY AFFECTED BLOCKS
N G-TABLE

DETERMINE AVAILABLE DISK
SPACE

UPDATE G-TABLE/REBUILD DATA

F1

3/25

37.77

3/79

3/57

37.5/

Patent Application Publication Aug. 3, 2006 Sheet 34 of 46 US 2006/017395.6 A1

—ilt a 6 F32.
FILE #1 W/PARITY-4-BLOCK PARITY GROUP-EXTENT=2 -

5120 BYTES TOTAL/UTILIZATION=100% 2407
N-324.5

O 4096
FILE+1 W/PARITY-3-BLOCK PARITY GROUP-EXTENT=2 2 -32/7

8192 BYTES TOTAL/UTILIZATION=66%

-3.247 - 246

FILE41 W/PARITY-2-BLOCK PARITY GROUP-EXTENT=1 2-3242
6144 BYTES TOTAL/UTILIZATION=100%

DATA DAIA PARITY DATA DAIA PARITY DATA DATAPARITY DATA DATA PARITY

FILE+1 W/PARITY-1-BLOCK PARITY GROUP-EXTENT=1 2-32/3
8192 BYTES TOTAL/UTILIZATION-100%

: : : : : :

DATA PARITY DATAPARTY DATAPARTY DATAPARTY DATAPARTY DATAPART DATA PARTY DATAPARITY

FILE2 FIF2B
O 1024

FILE+2 W/PARITY-4-BLOCK PARITY GROUP-EXTENT=2
5120 BYTES TOTAL/UTILIZATION=25% 2 - 325(7 & -52/5

FILE #2 W/PARITY-3-BLOCK PARITY GROUP-EXTENT=2
4096 BYTES TOTAL/UTILIZATION=35% 2-3257
UNUSED UNUSED DATA PARTY

FILE+2 W/PARITY-2-BLOCK PARITY GROUP-EXTENT= 1
1536 BYTES TOTAL/UTILIZATION=100% 2-3252
O

DATA PARITY

FILE+2 W/PARITY-1-BLOCK PARITY GROUP-EXTENT= 1
2048 BYTES TOTAL/UTILIZATION=100% 2 - 25-y
OO

DATA PARTY DATA PART

Patent Application Publication Aug. 3, 2006 Sheet 35 of 46 US 2006/017395.6 A1

34(2

RECEIVE FILE DATA

ASSESS FILE DATA
CHARACTERSTCS

IDENTIFY AVAILABLE PARTY
GROUP CONFIGURATIONS

SELECT PARTY GROUP
CONFIGURATION BASED ON
UTILIZATION CHARACTESTICS

STORE FILE DATA IN
SELECTED PARTY GROUP

FIRE

a/

33.63

3.325

3327

3.329

Patent Application Publication Aug. 3, 2006 Sheet 36 of 46 US 2006/017395.6 A1

F34 -i/25
34.9/

INTIAL ALLOCATION- sEx
/Jz60 4 BLOCK PANITY 0000 GROUPS 36%

-izé/ DATADATADATAPARTY 5 BLOCK PANITY OOOO GROUPS 28%

DATA DATAPARTY 2 BLOCK PANTY-/4.32 10000 GROUPS 22%

/Jaé- c BOCK PANITY 10000 GROUPS 1.4%

Z27

FIFAB DISK USAGE
Jze -:42 DISK

FREE OCCUPED TOTAL SPACE%

J47 J47- BLOCK PANITY 2500 GROUPS 7500 GROUPS 10000 GROUPS 36%

432. BLOCK PANITY 7500 GROUPS 2500 GROUPS 10000 GROUPS 28%

2 BLOCK PANITY 3500 GROUPS 6500 GROUPS 10000 GROUPS 22%

\, BLOCK PANITY 500 GROUPS 9500 GROUPS 10000 GROUPS 14%

-49/ FI 4. REDISTRIBUTION

Jze 1492 DISK
FREE OCCUPED TOTAL SPACE}.

-767-4 Block PANITY 2500 GROUPS 7500 GROUPS 10000 GROUPS 36%

J48/- BLOCK PANTY -5000 GROUPS 2500 groups 2500 GROUPS 5000 GROUPS 1.4%
OF 3 BLOCK PARITY

4252 PS 22% 2 BLOCKPANY 10000 Groups 3500 GROUPS 6500 GROUPS 1 OOOO GROU %

j46 ' ' ' " Ya 10500 croups 9500 GROUPS 20000 GROUPS 28%
REDISTRIBUTION

Patent Application Publication Aug. 3, 2006 Sheet 37 of 46 US 2006/017395.6 A1

-3500 PARTY GROUP REDISTRIBUTION PROCESSES

F. -1570
PARTY GROUP DSSOLUTION

5-BLOCK PARTY
GROUP 3.5/5

DATA DATA PARTY

size -z:
1 - BLOCK PARTY 3- BLOCK PARTY

GROUP GROUP
DATA PARITY DATA DATA DATA PARITY

OR

-3530 32 2- BLOCK PARITY 2- BLOCK PARITY /
GROUP GROUP

CDAACDATA PARTY DAADAAPARTY

-3520 OR -327 2-3520
1 - BLOCK PARTY 1 - BLOCK PARITY 1 - BLOCK PARTY

GROUP GROUP GROUP
DAA PARITY DAIA PARTY DATA T PARITY

7-3535 -325
PARTY GROUP CONSOLIDATION 3- BLOCK PARTY

GROUP

2- BLOCK PARITY 1 - BLOCK PARITY

DATA

OR

23.5/5
3- BLOCK PARTY GROUP

DATA DATA DATA CIDATAOIDATACPARTY O

Patent Application Publication Aug. 3, 2006 Sheet 38 of 46 US 2006/017395.6 A1

3627

3622
MONITOR PARTY GROUP

AVAILABILITY

DEPLETON
OBSERVED

YES

ASSESS PARTY GROUP
STATISTICS

a29

RED STRIBUTE PARTY GROUPS

FI

226

Patent Application Publication Aug. 3, 2006 Sheet 40 of 46 US 2006/017395.6 A1

36/27

PERFORM 325/ A/
FILE

OPERATONS

3.252

COLLECT RESOURCE
UTILIZATION
STATISTICS

COLLECT FILE
ACCESS

STATISTICS

PRED CT FUTURE FILE AND
RESOURCE UTILIZATION

(WORKLOAD)

WORKLOAD DISTRIBUTION CONTENT DISTRIBUTION

F8

US 2006/017395.6 A1 Aug. 3, 2006 Sheet 41 of 46

| Slºno | Getih

Patent Application Publication

NWTd

SNINOLLISOd ||W|\70 %)NHONWTW78

US 2006/017395.6 A1

„— WEISAS BT|3
67/67/*

OWO 9

SOISIWS
WLWO SNONWIWS

OOOOd
IN
OOOO!

OWN NWOW
?X3W8

LeclèIN

WWOO OON-IN

SX|OW IS ONW

Patent Application Publication Aug. 3, 2006 Sheet 42 of 46

Patent Application Publication Aug. 3, 2006 Sheet 43 of 46 US 2006/017395.6 A1

F3 OBJECT
POSITONING PLAN

OPUSH LF TO F 4-F5 CLUSTER

-- o ISSUE FILE HANDLE FOR LF-STALE
4(225

oIF REOUESTED,
o SEND ACCEPTANCE FOR COPY OF SF TO F1

o CREATE COPY OF SF

e SEND FILE HANDLE OF SF TO F1

F41

US 2006/017395.6 A1

37]|1\/TOA NON 8 WW}} B HOVO

BT]|1\/TOA NON WW}} WIWOWIE W

W WW}} BHOWOWIWOW31SÅS BT1||3
A11HWd/VIVO

Patent Application Publication Aug. 3, 2006 Sheet 44 of 46

US 2006/017395.6 A1 Patent Application Publication Aug. 3, 2006 Sheet 45 of 46

8 ST18 X{}JONALEN

833308 GW3}} 3 HOVO 833308 31]}}M 3HOWO

GTONOO 3HOWO

ONOO GHOWO

W ST18 X{}}ONALEN

US 2006/017395.6 A1 Patent Application Publication Aug. 3, 2006 Sheet 46 of 46

US 2006/017395.6 A1

DIRECTORY INFORMATION FOR MANAGING
DATA IN NETWORK FILE SYSTEM

RELATED APPLICATIONS

0001. This application is a divisional of and claims
priority benefit under 35 U.S.C. S 120 from U.S. application
Ser. No. 10/060,920 filed Jan. 29, 2002, which is hereby
incorporated herein by reference in its entirety, and which
claims priority benefit under 35 U.S.C. S 119(e) from each
of the following U.S. Provisional Applications, each of
which is hereby incorporated herein by reference in its
entirety:

0002 U.S. Provisional Application No. 60/264,671,
filed Jan. 29, 2001, titled “DYNAMICALLY DIS
TRIBUTED FILE SYSTEM”;

0003 U.S. Provisional Application No. 60/264,694,
filed Jan. 29, 2001, titled “A DATA PATH ACCEL
ERATOR ASICFOR HIGH PERFORMANCE STOR
AGE SYSTEMS;

0004 U.S. Provisional Application No. 60/264,672,
filed Jan. 29, 2001, titled “INTEGRATED FILE SYS
TEM/PARITY DATA PROTECTION:

0005 U.S. Provisional Application No. 60/264,673,
filed Jan. 29, 2001, titled “DISTRIBUTED PARITY
DATA PROTECTION:

0006 U.S. Provisional Application No. 60/264,670,
filed Jan. 29, 2001, titled “AUTOMATIC IDENTIFI
CATION AND UTILIZATION OF RESOURCES INA
DISTRIBUTED FILE SERVER:

0007 U.S. Provisional Application No. 60/264,669,
filed Jan. 29, 2001, titled “DATA FLOW CONTROL
LER ARCHITECTURE FOR HIGH PERFOR
MANCE STORAGE SYSTEMS;

0008 U.S. Provisional Application No. 60/264,668,
filed Jan. 29, 2001, titled “ADAPTIVE LOAD BAL
ANCING FOR A DISTRIBUTED FILE SERVER:
and

0009 U.S. Provisional Application No. 60/302.424,
filed Jun. 29, 2001, titled “DYNAMICALLY DIS
TRIBUTED FILE SYSTEM.

FIELD OF THE INVENTION

0010 This invention relates to the field of data storage
and management. More particularly, this invention relates to
high-performance mass storage systems and methods for
data storage, backup, and recovery.

DESCRIPTION OF THE RELATED ART

0011. In modern computer systems, collections of data
are usually organized and stored as files. A file system allows
users to organize, access, and manipulate these files and also
performs administrative tasks Such as communicating with
physical storage components and recovering from failure.
The demand for file systems that provide high-speed, reli
able, concurrent access to vast amounts of data for large
numbers of users has been steadily increasing in recent
years. Often Such systems use a Redundant Array of Inde
pendent Disks (RAID) technology, which distributes the
data across multiple disk drives, but provides an interface

Aug. 3, 2006

that appears to users as one, unified disk drive system,
identified by a single drive letter. In a RAID system that
includes more than one array of disks, each array is often
identified by a unique drive letter, and in order to access a
given file, a user must correctly identify the drive letter for
the disk array on which the file resides. Any transfer of files
from one disk array to another and any addition of new disk
arrays to the system must be made known to users so that
they can continue to correctly access the files.
0012 RAID systems effectively speed up access to data
over single-disk systems, and they allow for the regeneration
of data lost due to a disk failure. However, they do so by
rigidly prescribing the configuration of system hardware and
the block size and location of data stored on the disks.
Demands for increases in storage capacity that are transpar
ent to the users or for hardware upgrades that lack confor
mity with existing system hardware cannot be accommo
dated, especially while the system is in use. In addition, Such
systems commonly suffer from the problem of data frag
mentation, and they lack the flexibility necessary to intelli
gently optimize use of their storage resources.
0013 RAID systems are designed to provide high-capac
ity data storage with built-in reliability mechanisms able to
automatically reconstruct and restore saved data in the event
of a hardware failure or data corruption. In conventional
RAID technology, techniques including spanning, mirror
ing, and duplexing are used to create a data storage device
from a plurality of smaller single disk drives with improved
reliability and storage capacity over conventional disk sys
tems. RAID systems generally incorporate a degree of
redundancy into the storage mechanism to permit saved data
to be reconstructed in the event of single (or sometimes
double) disk failure within the disk array. Saved data is
further stored in a predefined manner that is dependent on a
fixed algorithm to distribute the information across the
drives of the array. The manner of data distribution and data
redundancy within the disk array impacts the performance
and usability of the storage system and may result in
substantial tradeoffs between performance, reliability, and
flexibility.
0014) A number of RAID configurations have been pro
posed to map data across the disks of the disk array. Some
of the more commonly recognized configurations include
RAID-1, RAID-2, RAID-3, RAID-4, and RAID-5.
0015. In most RAID systems, data is sequentially stored
in data stripes and a parity block is created for each data
stripe. The parity block contains information derived from
the sequence and composition of the data stored in the
associated data stripe. RAID arrays can reconstruct infor
mation stored in a particular data stripe using the parity
information, however, this configuration imposes the
requirement that records span across all drives in the array
resulting in a small stripe size relative to the stored record
S17C.

0016 FIG. 21 illustrates the data mapping approach used
in many conventional RAID storage device implementa
tions. Although the diagram corresponds most closely to
RAID-3 or RAID-4 mapping schemas, other RAID configu
rations are organized in a similar manner. As previously
indicated, each RAID configuration uses a striped disk array
2110 that logically combines two or more disk drives 2115
into a single storage unit. The storage space of each drive

US 2006/017395.6 A1

2115 is organized by partitioning the space on the drives into
stripes 2120 that are interleaved so that the available storage
space is distributed evenly across each drive.
0017 Information or files are stored on the disk array
2110. Typically, the writing of data to the disks occurs in a
parallel manner to improve performance. A parity block is
constructed by performing a logical operation (exclusive
OR) on the corresponding blocks of the data stripe to create
a new block of data representative of the result of the logical
operation. The result is termed a parity block and is written
to a separate area 2130 within the disk array. In the event of
data corruption within a particular disk of the array 10, the
parity information is used to reconstruct the data using the
information stored in the parity block in conjunction with
the remaining non-corrupted data blocks.
0018. In the RAID architecture, multiple disks a typically
mapped to a single virtual disk. Consecutive blocks of the
virtual disk are mapped by a strictly defined algorithm to a
set of physical disks with no file level awareness. When the
RAID system is used to host a conventional file system, it is
the file system that maps files to the virtual disk blocks
where they may be mapped in a sequential or non-sequential
order in a RAID stripe. The RAID stripe may contain data
from a single file or data from multiple files if the files are
Small or the file system is highly fragmented.
0019. The aforementioned RAID architecture suffers
from a number of drawbacks that limit its flexibility and
scalability for use in reliable storage systems. One problem
with existing RAID systems is that the data striping is
designed to be used in conjunction with disks of the same
size. Each stripe occupies a fixed amount of disk space and
the total number of stripes allowed in the RAID system is
limited by the capacity of the smallest disk in the array. Any
additional space that may be present on drives having a
capacity larger than the Smallest drive goes unused as the
RAID system lacks the ability to use the additional space.
This further presents a problem in upgrading the storage
capacity of the RAID system, as all of the drives in the array
must be replaced with larger capacity drives if additional
storage space is desired. Therefore, existing RAID systems
are inflexible in terms of their drive composition, increasing
the cost and inconvenience to maintain and upgrade the
Storage System.

0020. A further problem with conventional RAID arrays
resides in the rigid organization of data on the disks of the
RAID array. As previously described, this organization
typically does not use available disk space in an efficient
manner. These systems further utilize a single fixed block
size to store data which is implemented with the restriction
of sequential file storage along each disk stripe. Data storage
in this manner is typically inefficient as regions or gaps of
disk space may go unused due to the file organization
restrictions. Furthermore, the fixed block size of the RAID
array is not able to distinguish between large files, which
benefit from larger block size, and smaller files, which
benefit from smaller block size for more efficient storage and
reduced wasted space.
0021 Although conventional RAID configurations are
characterized as being fault-tolerant, this capability is typi
cally limited to single disk failures. Should more than one
(or two) disk fail or become inoperable within the RAID
array before it can be replaced or repaired there is the

Aug. 3, 2006

potential for data loss. This problem again arises from the
rigid structure of data storage within the array that utilizes
sequential data striping. This problem is further exacerbated
by the lack of ability of the RAID system to flexibly
redistribute data to other disk areas to compensate for drive
faults. Thus, when one drive becomes inoperable within the
array, the likelihood of data loss increases significantly until
the drive is replaced resulting in increased maintenance and
monitoring requirements when using conventional RAID
systems.

0022 With respect to conventional data storage systems
or other computer networks, conventional load balancing
includes a variety of drawbacks. For example, decisions
relating to load balancing are typically centralized in one
governing process, one or more system administrators, or
combinations thereof. Accordingly, such systems have a
single point of failure. Such as the governing process or the
system administrator. Moreover, load balancing occurs only
when the centralized process or system administrator can
organize performance data, make a decision, and then trans
mit that decision throughout the data storage system or
computer network. This often means that the such load
balancing can be slow to react, difficult to optimize for a
particular server, and difficult to scale as the available
resources expand or contract. In addition, conventional load
balancing typically is limited to balancing processing and
communications activity between servers only.

SUMMARY OF THE INVENTION

0023 The present invention solves these and other prob
lems by providing a dynamically distributed file system that
accommodates current demands for high capacity, through
put, and reliability, while presenting to the users a single
file-system interface that appears to include every file in the
system on a single server or drive. In this way, the file system
is free to flexibly, transparently, and on-the-fly distribute and
augment physical storage of the files in any manner that Suits
its needs, across disk drives, and across servers, and users
can freely access any file without having specific knowledge
of the files current physical location.
0024 One embodiment includes a storage device and
architecture which possesses features such as transparent
Scalability where disks of non-identical capacity can be
fully-utilized without the “dead-space' restrictions associ
ated with conventional disk arrays. In one embodiment a
flexible storage space allocation system handles storing
large and Small file types to improve disk space utilization.
In another embodiment an improved method for maintaining
data integrity overcomes the single drive (or double) fault
limitation of conventional systems in order to increase
storage reliability while at the same time reducing mainte
nance and monitoring requirements.
0025. In one embodiment, distributed parity groups
(DPG) are integrated into the distributed file storage system
technology. This architecture provides capabilities for opti
mizing the use of disk resources by moving frequently and
infrequently accessed data blocks between drives so as to
maximize the throughput and capacity utilization of each
drive.

0026. In one embodiment, the architecture supports
incorporation of new disk drives without significant recon
figuration or modification of the exiting distributed file

US 2006/017395.6 A1

storage system to provide improved reliability, flexibility,
and scalability. Additionally, the architecture permits the
removal of arbitrary disk drives from the distributed file
storage system and automatically redistributes the contents
of these drives to other available drives as necessary.
0027. The distributed file storage system can proactively
position objects for initial load balancing, such as, for
example, to determine where to place a particular new
object. Additionally, the distributed file storage system can
continue to proactively position objects, thereby accom
plishing active load balancing for the existing objects
throughout the system. According to one embodiment, one
or more filters may be applied during initial and/or active
load balancing to ensure one or a small set of objects are not
frequently transferred, or churned, throughout the resources
of the system.
0028. As used herein, load balancing can include, among
other things, capacity balancing, throughput balancing, or
both. Capacity balancing seeks balance in storage. Such as
the number of objects, the number of Megabytes, or the like,
stored on particular resources within the distributed file
storage system. Throughput balancing seeks balance in the
number of transactions processed. Such as, the number of
transactions per second, the number of Megabytes per
second, or the like, handled by particular resources within
the distributed file storage system. According to one
embodiment, the distributed file storage system can position
objects to balance capacity, throughput, or both, between
objects on a resource, between resources, between the
servers of a cluster of resources, between the servers of other
clusters of resources, or the like.
0029. The distributed file storage system can comprise
resources, such as servers or clusters, which can seek to
balance the loading across the system by reviewing a
collection of load balancing data from itself, one or more of
the other servers in the system, or the like. The load
balancing data can include object file statistics, server pro
files, predicted file accesses, or the like. A proactive object
positioner associated with a particular server can use the
load balancing data to generate an object positioning plan
designed to move objects, replicate objects, or both, across
other resources in the system. Then, using the object posi
tioning plan, the resource or other resources within the
distributed file storage system can execute the plan in an
efficient manner.

0030. According to one embodiment, each server pushes
objects defined by that server's respective portion of the
object positioning plan to the other servers in the distributed
file storage system. By employing the servers to individually
push objects based on the results of their object positioning
plan, the distributed file storage system provides a server-,
process-, and administrator-independent approach to object
positioning, and thus load balancing, within the distributed
file storage system.

0031. In one embodiment, the network file storage sys
tem includes a first file server operably connected to a
network fabric; a second file server operably connected to
the network fabric: first file system information loaded on
the first file server; and second file system information
loaded on the second file server, the first file system infor
mation and the second file system information configured to
allow a client computer operably connected to the network

Aug. 3, 2006

fabric to locate files stored by the first file server and files
stored by the second file server without prior knowledge as
to which file server stores the files. In one embodiment, the
first file system information includes directory information
that describes a directory structure of a portion of the
network file system whose directories are stored on the first
file server, the directory information includes location infor
mation for a first file, the location information includes a
server id that identifies at least the first file server or the
second file server.

0032. In one embodiment, the network file storage sys
tem loads first file system metadata on a first file server
operably connected to a network fabric; loads second file
system metadata on a second file server connected to the
network fabric, the first file system metadata and the second
file system metadata include information to allow a client
computer operably connected to the network fabric to locate
a file stored by the first file server or stored by the second file
server without prior knowledge as to which file server stores
the file.

0033. In one embodiment, the network file storage sys
tem performs a file handle lookup on a computer network
file system by: sending a root-directory lookup request to a
first file server operably connected to a network fabric;
receiving a first lookup response from the first file server, the
first lookup response includes a server id of a second file
server connected to the network fabric; sending a directory
lookup request to the second file server, and receiving a file
handle from the second file server.

0034. In one embodiment, the network file storage sys
tem allocates space by: receiving a file allocation request in
a first file server, the first file server owning a parent
directory that is to contain a new file, the file allocation
request includes a file handle of the parent directory; deter
mining a selected file server from a plurality of file servers:
sending a file allocation request from the first server to the
selected server; creating metadata entries for the new file in
file system data managed by the selected file server; gener
ating a file handle for the new file; sending the file handle to
the first file server; and creating a directory entry for the new
file in the parent directory.
0035) In one embodiment, the network file storage sys
tem includes: a first file server operably connected to a
network fabric; a second file server operably connected to
the network fabric: first file system information loaded on
the first file server; and second file system information
loaded on the second file server, the first file system infor
mation and the second file system information configured to
allow a client computer operably connected to the network
fabric to locate files owned by the first file server and files
owned by the second file server without prior knowledge as
to which file server owns the files, the first file server
configured to mirror at least a portion of the files owned by
the second file server, the first file server configured to store
information Sufficient to regenerate the second file system
information, and the second file server configured to store
information sufficient to regenerate the first file system
information.

0036). In one embodiment, the network file storage sys
tem: loads first file system metadata on a first file server
operably connected to a network fabric; loads second file
system metadata on a second file server connected to the

US 2006/017395.6 A1

network fabric, the first file system metadata and the second
file system metadata include information to allow a client
computer operably connected to the network fabric to locate
a file stored by the first file server or stored by the second file
server without prior knowledge as to which file server stores
the file; maintains information on the second file server to
enable the second file server to reconstruct an information
content of the first file system metadata; and maintains
information on the first file server to enable the first file
server to reconstruct an information content of the second
file system metadata.

0037. In one embodiment the computer network file
storage system is fault-tolerant and includes: a first file
server operably connected to a network fabric; a second file
server operably connected to the network fabric; a first disk
array operably coupled to the first file server and to the
second file server; a second disk array operably coupled to
the first file server and to the second file server; first file
system information loaded on the first file server, the first file
system information including a first intent log of proposed
changes to the first metadata; second file system information
loaded on the second file server, the second file system
information including a second intent log of proposed
changes to the second metadata, the first file server having
a copy of the second intent log, the second file server
maintaining a copy of the first intent log, thereby allowing
the first file server to access files on the second disk array in
the event of a failure of the second file server.

0038. In one embodiment, a distributed file storage sys
tem provides hot-swapping of file servers by: loading first
file system metadata on a first file server operably connected
to a network fabric, the first file system operably connected
to a first disk drive and a second disk drive; loading second
file system metadata on a second file server connected to the
network fabric, the second file system operably connected to
the first disk drive and to the second disk drive; copying a
first intent log from the first file server to a backup intent log
on the second file server, the first intent log providing
information regarding future changes to information stored
on the first disk drive; and using the backup intent log to
allow the second file server to make changes to the infor
mation stored on the first disk drive.

0039. In one embodiment, a distributed file storage sys
tem includes: a first file server operably connected to a
network fabric; a file system includes first file system
information loaded on the first file server, the file system
configured to create second file system information on a
second file server that comes online sometime after the first
file server has begun servicing file requests, the file system
configured to allow a requester to locate files stored by the
first file server and files stored by the second file server
without prior knowledge as to which file server stores the
files.

0040. In one embodiment, a distributed file storage sys
tem adds servers during ongoing file system operations by:
loading first file system metadata on a first file server
operably connected to a network fabric; creating at least one
new file on a second file server that comes online while the
first file server is servicing file requests, the at least one new
file created in response to a request issued to the first file
server, the distributed file system configured to allow a
requester to locate files stored by the first file server and files

Aug. 3, 2006

stored by the second file server without prior knowledge as
to which file server stores the files.

0041. In one embodiment, a distributed file storage sys
tem includes: first metadata managed primarily by a first file
server operably connected to a network fabric, the first
metadata includes first file location information, the first file
location information includes at least one server id; and
second metadata managed primarily by a second file server
operably connected to the network fabric, the second meta
data includes second file location information, the second
file location information includes at least one server identi
fier, the first metadata and the second metadata configured to
allow a requestor to locate files stored by the first file server
and files stored by the second file server in a directory
structure that spans the first file server and the second file
SeVe.

0042. In one embodiment, a distributed file storage sys
tem stores data by: creating first file system metadata on a
first file server operably connected to a network fabric, the
first file system metadata describing at least files and direc
tories stored by the first file server; creating second file
system metadata on a second file server connected to the
network fabric, the second file system metadata describing
at least files and directories stored by the second file server,
the first file system metadata and the second file system
metadata includes directory information that spans the first
file server and the second file server, the directory informa
tion configured to allow a requestor to find a location of a
first file catalogued in the directory information without
prior knowledge as to a server location of the first file.

0043. In one embodiment, a distributed file storage sys
tem balances the loading of servers and the capacity of
drives associated with the servers, the file system includes:
a first disk drive including a first unused capacity; a second
disk drive including a second unused capacity, wherein the
second unused capacity is Smaller than the first unused
capacity; a first server configured to fill requests from clients
through access to at least the first disk drive; and a second
server configured to fill requests from clients through access
to at least the second disk drive, and configured to select an
infrequently accessed file from the second disk drive and
push the infrequently accessed files to the first disk drive,
thereby improving a balance of unused capacity between the
first and second disk drives without substantially affecting a
loading for each of the first and second servers.
0044) In one embodiment, a distributed file storage sys
tem includes: a first file server operably connected to a
network fabric; a second file server operably connected to
the network fabric: first file system information loaded on
the first file server; and second file system information
loaded on the second file server, the first file system infor
mation and the second file system information configured to
allow a client computer operably connected to the network
fabric to locate files stored by the first file server and files
stored by the second file server without prior knowledge as
to which file server stores the files.

0045. In one embodiment, a data engine offloads data
transfer operations from a server CPU. In one embodiment,
the server CPU queues data operations to the data engine.

0046. In one embodiment, a distributed file storage sys
tem includes: a plurality of disk drives for storing parity

US 2006/017395.6 A1

groups, each parity group includes storage blocks, the Stor
age blocks includes one or more data blocks and a parity
block associated with the one or more data blocks, each of
the storage blocks stored on a separate disk drive such that
no two storage blocks from a given parity set reside on the
same disk drive, wherein file system metadata includes
information to describe the number of data blocks in one or
more parity groups.
0047. In one embodiment, a distributed file storage sys
tem stores data by: determining a size of a parity group in
response to a write request, the size describing a number of
data blocks in the parity group; arranging at least a portion
of data from the write request according to the data blocks;
computing a parity block for the parity group; storing each
of the data blocks on a separate disk drive such that no two
data blocks from the parity group reside on the same disk
drive; and storing each the parity block on a separate disk
drive that does not contain any of the data blocks.
0.048. In one embodiment, a distributed file storage sys
tem includes: a plurality of disk drives for storing parity
groups, each parity group includes storage blocks, the Stor
age blocks includes one or more data blocks and a parity
block associated with the one or more data blocks, each of
the storage blocks stored on a separate disk drive such that
no two storage blocks from a given parity set reside on the
same disk drive; a redistribution module to dynamically
redistribute parity groups by combining some parity groups
to improve storage efficiency.

0049. In one embodiment, a distributed file storage sys
tem stores data by: determining a size of a parity group in
response to a write request, the size describing a number of
data blocks in the parity group; arranging at least a portion
of data from the write request according to the data blocks;
computing a parity block for the parity group; storing each
of the data blocks on a separate disk drive such that no two
data blocks from the parity group reside on the same disk
drive; storing the parity block on a separate disk drive that
does not contain any of the data blocks; and redistributing
the parity groups to improve storage efficiency.

0050. In one embodiment, a distributed file storage sys
tem includes: a plurality of disk drives for storing parity
groups, each parity group includes storage blocks, the Stor
age blocks includes one or more data blocks and a parity
block associated with the one or more data blocks, each of
the storage blocks stored on a separate disk drive such that
no two storage blocks from a given parity set reside on the
same disk drive; and a recovery module to dynamically
recover data lost when at least a portion of one disk drive in
the plurality of disk drives becomes unavailable, the recov
ery module configured to produce a reconstructed block by
using information in the remaining storage blocks of a parity
set corresponding to an unavailable storage block, the recov
ery module further configured to split the parity group
corresponding to an unavailable storage block into two
parity groups if the parity group corresponding to an
unavailable storage block spanned all of the drives in the
plurality of disk drives.
0051. In one embodiment, a distributed file storage sys
tem stores data by: determining a size of a parity group in
response to a write request, the size describing a number of
data blocks in the parity group; arranging at least a portion
of data from the write request according to the data blocks;

Aug. 3, 2006

computing a parity block for the parity group; storing each
of the data blocks on a separate disk drive such that no two
data blocks from the parity group reside on the same disk
drive; storing the parity block on a separate disk drive that
does not contain any of the data blocks; reconstructing lost
data by using information in the remaining storage blocks of
a parity set corresponding to an unavailable storage block to
produce a reconstructed parity group; splitting the recon
structed parity group corresponding to an unavailable stor
age block into two parity groups if the reconstructed parity
group is too large to be stored on the plurality of disk drives.

0052. In one embodiment, a distributed file storage sys
tem integrates parity group information into file system
metadata.

BRIEF DESCRIPTION OF THE DRAWINGS

0053. These and other aspects, advantages, and novel
features of the invention will become apparent upon reading
the following detailed description and upon reference to the
accompanying drawings:

0054 FIG. 1 is a general overview of a distributed file
storage system showing clients, a communication fabric, and
a plurality of servers with associated disk arrays.

0055 FIG. 2 is a block diagram of a server node.
0056 FIG. 3 is a block diagram of five metadata struc
tures and connections between the five metadata structures.

0057 FIG. 4 shows an example portion of a Filename
Table.

0058 FIG. 5 shows an example of a Gee-string stored in
a Gee Table.

0059 FIG. 6 shows one embodiment of the structure of
a G-node.

0060 FIG. 7 shows one embodiment of the structure of
a Gnid-string.

0061 FIG. 8A shows one embodiment of the structure of
a Cache Node.

0062 FIG. 8B shows a conceptual division of a Cache
Node Table into three lists.

0063 FIG. 9 shows a sample portion of a lock string.

0064 FIG. 10 shows one embodiment of Refresh Nodes
configured as a binary tree.

0065 FIG. 11 shows one embodiment of Refresh Nodes
configured as a doubly-linked list.

0066 FIG. 12 shows one embodiment of the structure of
an Intent Log Entry.

0067 FIG. 13 shows one embodiment of the structure of
a file handle.

0068 FIG. 14A is a block diagram depicting one
embodiment of a file handle look-up process.
0069 FIG. 14B is a block diagram depicting one
embodiment of a file access process.
0070 FIG. 15 is a flow chart depicting one embodiment
of performing a file access.

US 2006/017395.6 A1

0071 FIG. 16 is a flow chart depicting one embodiment
of performing a file handle look-up.
0072 FIG. 17 is a flow chart depicting one embodiment
of caching file data.
0.073 FIG. 18 is a flow chart depicting one embodiment
of file allocation.

0074)
0075 FIG. 20A shows one embodiment of a Super
G-node.

0076 FIG. 20B shows one embodiment of a scheme to
use Super G-nodes to hold metadata for files of widely
varying sizes.
0.077 FIG. 21 illustrates a conventional disk array that
incrementally stripes data in a RAID mapping architecture.
0078 FIG. 22A illustrates one embodiment of a distrib
uted file storage system.
0079 FIG. 22B illustrates another embodiment of a
distributed file storage system having built in data redun
dancy.

FIG. 19 shows one embodiment of Super G-nodes.

0080 FIG. 23 illustrates a distributed file storage mecha
nism.

0081 FIG. 24A illustrates a data and parity information
storage method.
0082 FIG. 24B illustrates another data and parity infor
mation storage method.
0083 FIG. 25 illustrates another embodiment of a dis
tributed file storage system having a variable capacity disk
array.

0084 FIG. 26A illustrates an embodiment of variable
block number parity groups.

0085 FIG. 26B illustrates an embodiment of variable
size parity groups.

0.086 FIG. 27 illustrates one embodiment of a G-table
used to determine parity group mapping.
0087 FIG. 28 illustrates a method for storing data in the
distributed file storage system.

0088 FIG. 29 illustrates another embodiment of a
G-table mapping structure.
0089 FIG. 30 illustrates one embodiment of a fault
tolerant restoration process.
0090 FIG. 31 illustrates a method for recovering cor
rupted or lost data in the distributed file storage system.
0091 FIG. 32A illustrates one embodiment of a variably
sized parity group used to store files.
0092 FIG. 32B illustrates another embodiment of a
variably sized parity group used to store files.
0093 FIG. 33 illustrates a data storage process used by
the distributed file storage system.
0094 FIGS. 34A-C illustrate a parity set redistribution
process.

0.095 FIG. 35A illustrates one embodiment of a parity
group dissolution process.

Aug. 3, 2006

0.096 FIG. 35B illustrates one embodiment of a parity
group consolidation process.
0097 FIG. 36 illustrates a parity group monitoring pro
CCSS,

0098 FIG. 37 illustrates a parity group optimization/de
fragmentation process.

0099 FIG. 38 illustrates a load balancing method used
by the distributed file storage system.
0.100 FIG. 39 depicts a block diagram of an exemplary
embodiment of servers and disk arrays of a distributed file
storage system, which highlights the proactive object posi
tioning of aspects of an exemplary embodiment of the
invention.

0101 FIG. 40 depicts a block diagram of an exemplary
server of FIG. 39, according to aspects of an exemplary
embodiment of the invention.

0102 FIG. 41 depicts an object positioning plan for
Server F3 of FIG. 39, according to aspects of an exemplary
embodiment of the invention.

0.103 FIG. 42 is a block diagram of a server that provides
efficient processing of data transfers between one or more
client computers and one or more disk drives.
0.104)
0105 FIG. 44 is a map of data fields in a 64-bit data
transfer instruction to the data engine for use with a 64-bit
PCI buS.

FIG. 43 is a block diagram of a data engine.

DETAILED DESCRIPTION

Introduction

0106 AS data storage requirements increase, it is desir
able to be able to easily increase the data storage capacity
and/or performance of a data storage system. That is, it is
desirable to be able to increase the available capacity and
performance of a storage system without modifying the
configuration of the clients accessing the system. For
example, in a typical Personal Computer (PC) network
environment, if a database accesses a network drive “M”, it
is desirable to be able to add storage to this drive, all the
while still calling the drive “M”, as opposed to adding, say,
drives N. “O'”, and “P” as storage requirements increase. In
some cases, having to switch from a single drive “M” to four
drives, “M”, “N”, “O'”, “P” is a mere nuisance. However, in
Some cases Such a change requires significant reconfigura
tion of client configurations. In other cases, such a change
requires modification of existing application Software, and
in some instances such a change simply will not work with
the application being used.
0.107 The objective for more capacity can be met in some
storage systems by adding additional disk drives to the
system. However, this may not result in increasing perfor
mance. In fact, adding additional drives may cause a sig
nificant decrease in performance. This is because: (1) if
more ports are not added to the system when new drives are
added, the performance decreases because now more data is
available (and presumably being accessed) through the same
performance ports; and (2) the controller managing the file
system metadata has more operations to perform and can
become a bottleneck. Adding drives to existing systems may

US 2006/017395.6 A1

also limited by physical form factors. That is to say, that
Some systems have physical limits to how many drives can
be added.

0108. In one embodiment, the system described herein
provides a Distributed File Storage System (DFSS) that can
scale disk capacity, Scale data throughput (e.g., megabytes
per second of data delivery); and scale transaction process
ing throughput (e.g., processing of file system metadata). In
one embodiment, the system also provides load balancing
such that the scaled components handle the workload with
improved efficiency.
0109) In one embodiment, the DFSS is dynamically
distributed. In one embodiment, the DFSS allows the inte
gration of multiple servers so that the aggregation of servers
appears to a client as a single storage device. With the DFSS,
multiple servers can access and control the same disk array,
separate disk arrays, or both simultaneously. The DFSS is
designed so that each server can continue to read and write
data to the drives it controls even when other controllers in
the DFSS fail. The DFSS also provides a mechanism for
balancing the load on the controllers and the drives.
0110. In one embodiment, the DFSS is designed such that
when multiple controllers are controlling a single array of
disk drives (also called a drive array), some or all of the
servers connected to the drive array have valid copies of the
file system metadata describing the data on that drive array.
This means that each server has direct access to all of the file
system metadata for one or more of the drive arrays it can
access. Thus: (1) a server can continue to operate normally
if the other servers in the system fail; and (2) there is little
or no performance degradation due to one server polling
another server regarding location of data on drive arrays.
The DFSS provides inter-server communication to main
tains synchronization of the file system metadata. The DFSS
is designed such that a server can read from more than one
drive array and can read from drive arrays maintained by
another server. In one embodiment, only one controller
attached to a particular drive array has write privileges for
that particular drive array at a given time.
0111. The DFSS maintains a description of which servers
have read and write privileges to a file represented by a file
handle passed to the client. When the client looks up a file
handle, the client is informed of its options regarding which
servers it may read the data from (which is typically several)
and which one server it needs to use to write data. In
addition, since the servers typically have multiple network
interface cards (ports) to the client network, the file handle
also includes data which suggests to the client which port is
likely to be the least utilized.
0112 The DFSS is also designed such that when there are
multiple servers, which are not sharing the same drive
arrays, the drive arrays are seamlessly integrated. For
example, Suppose a system has 4 servers (numbered S1, S2,
S3, and S4) and two drive arrays, numbered (A1, and A2).
Further suppose that S1 and S2 control A1 and that S3 and
S4 control A2. The DFSS allows for a directory on A1 to
have children on A2. In fact, the file system keeps track of
usage statistics, and if A2 is less utilized than A1, the file
system will automatically create the next files on A2 instead
of A1. The DFSS provides coordination between the servers
to allow this level of integration.
0113 Because each server has a complete set of metadata
for each drive array it can access, a particular server can

Aug. 3, 2006

continue to operate even if other servers fail. The DFSS
includes a mechanism for determining if a controller has
failed and a mechanism for transferring write privileges in
such cases. Clearly if all controllers attached to a given drive
array fail, the data on that drive array will become inacces
sible. However, the capability to support multiple controllers
for each drive array greatly reduces the likelihood of such an
event. If all such controllers for a drive array fail, read and
write operations on the remaining controller/drive arrays
continue unhindered.

0114. The DFSS can perform load balancing at three
levels. First, when a directory lookup is performed, the file
system encodes within the file handle the lesser-used net
work interface to provide balancing of network interface
resources. Second, when a new file is created, it is created
on lesser-used drives and owned by a lesser-used server.
Third, dynamic analysis of loading conditions is performed
to identify under-utilized and over-utilized drives. In
response, the file system in some cases redistributes the
parity groups across the drives in the existing drive array for
more optimum usage of parity checking, and in other cases
the file system moves files to lesser used drive arrays.
0115 Many data storage systems are designed with the
twin goals of providing fast access to data and providing
protection against loss of data due to the failure of physical
storage media. Prior art solutions typically relied on Redun
dant Arrays of Independent Disks (RAID). By having the
data striped across multiple drives, the data can be accessed
faster because the slow process of retrieving data from disk
is done in parallel, with multiple drives accessing their data
at the same time. By allocating an additional disk for storing
parity information, if any one disk fails, the data in the Stripe
can be regenerated from the remaining drives in the stripe.
0116 While this approach has proven effective in many
applications, it does have a few fundamental limitations, one
of this is that there is a rigid algorithm for mapping
addresses from the file system to addresses on the drives in
the array. Hence stripes are created and maintained in a rigid
manner, according to a predetermined equation. An unfor
tunate side effect results from this limitation. There is no
mechanism from keeping data from a particular file from
becoming highly fragmented, meaning that although the
data could actually fit in a single stripe, the data could
actually be located in many of stripes (this situation can be
particularly acute when multiple clients are writing to a file
system).

0.117) In one embodiment, the DFSS abandons the notion
of having a rigidalgorithm to map from addresses in the file
system to drive addresses. Instead, DFSS uses Distributed
Parity Groups (DPGs) to perform the mapping. Data blocks
in the DPGs are mapped via a mapping table (or a list of
tables) rather than a fixed algorithm, and the blocks are
linked together via a table of linked lists. As discussed
below, the DPG mapping can be maintained separately or
can be integrated into the file system metadata.
0118. Initially the mapping is somewhat arbitrary and is
based on the expectation that the drives will be accessed
evenly. However, the system keeps track of drive usage
frequency. As patterns of usage are established, blocks are
copied from frequently accessed drives to infrequently
accessed drives. Once the copy is complete, the blocks are
remapped to point to the new copies.

US 2006/017395.6 A1

0119) The disk drives are viewed as consisting of a
collection of blocks. The block size is typically an integer
multiple of the drive sector size. The drive sector size is a
characteristic of the drives, and is the minimum size of data
that can be written to the drives. For most Fibre Channel
drives, the sector size is 512 bytes.
0120 In one embodiment, the blocks are grouped via a
G-Table. The G-table is a collection of Gees, which repre
sent the individual blocks and their linkage. Each Gee
contains a code that identifies what that the Gee's purpose is
(e.g., linkage or representing data). Gees for a DPG Strung
together into a G-group. The entire G-table is cached, either
in whole or in part, in Random Access Memory (RAM).
Individual Gees are modified in cache to indicate when a
specific block of data is in cache. This provides a straight
forward way to be assured that if any client has caused disk
data to be cached, any other client seeking that same data
will be directed to the already cached data.
0121 RAID systems are implemented independently
from the file system. That is, from the file system's point of
view, the array looks like one big disk. Hence stripes are
created and maintained without any knowledge of the data
they contain. Two unfortunate side effects result from this
limitation. First, there is no mechanism from keeping data
from a particular file from becoming highly fragmented,
meaning that although the data could actually fit in a single
stripe, the data could actually be located many stripes (this
situation can be particularly acute when multiple clients are
writing to files). The can result in each drive doing hundreds
of seeks, while a Smarter system could do just one. This is
significant because the seek is the slowest operation related
to accessing data on disks.
0122 Second, when a drive fails, the data on that drive
must be regenerated on a replacement drive exactly as it was
on the failed drive. This means that if, for example, a server
that has only 10% of its disk space currently used, can only
regenerate the data onto a replacement drive (or a hot spare)
even though there is more than enough disk space to
regenerate the data onto the other disks. For remote instal
lations, if a hot spare is used, once one failure occurs, the hot
spare is used and the system can no longer tolerate another
failure until the bad drive is replaced. Of curse this could be
lessened by the usage of multiple hot spares, but that
significantly increases the amount of disk storage that is not
being used and merely “waiting in the wings'.

0123. In one embodiment, the DFSS management of the
DPGs is integrated into the file system, thus making the file
system “aware” of the DPGs and how data blocks from a file
are collected into parity groups. Making the file system
aware of the DPGs allows the file servers in the DFSS to
more intelligently use the disk arrays than a RAID system
would. With the DPG system, the file system has knowledge
of the drive arrays and therefore reduces the kind of frag
menting that is typical of RAID systems.

0124 Furthermore, in the event of a failure of one drive
in the DFSS, the data from the failed drive can be redistrib
uted across the remaining drives in a disk array. For
example, Suppose a file contained a DPG having a length
(also known as a “span) of 9 (data spread across 9 drives,
where 8 drives contain the data blocks and the ninth drive
contains the parity block). When one drive fails, the data can
be regenerated and redistributed using a DPG of span 8.

Aug. 3, 2006

Note that without knowledge of which blocks are associated
with which files, this redistribution is not possible, because
the file must still have the same number of total blocks, but
when the span is reduced from 9 to 8, there is an orphan
block of 1 which must be still associated with the file. This
orphan is associated with another DPG in the same file. This
association is not possible without knowledge of the file.
Alternatively, if there are at least ten disks in the disk array,
the data can be regenerated and redistributed using a DPG
span of 9, omitting the failed drive. Thus, the integration of
DPG management into the file system provides flexibility
not available in a conventional RAID system.
0.125 Sine the DFSS has full knowledge of the file
system, the DFSS has knowledge of which blocks on the
disks are not used. This allows the DFSS to identify heavily
used disks and redistribute data from heavily-used disks to
unused blocks on lesser-used blocks.

0.126 Storage system capability is typically measured in
capacity, bandwidth, and the number of operations per
second that can be processed. It is desirable to be able to
easily scale a storage system, that is, to be able to easily
increase the storage capacity, the bandwidth, or the opera
tions per second capacity of the storage system. Storage
system capacity is scaled by adding disk drives or to replace
disk drive with drives having greater capacity. To increase
storage system bandwidth or transactions per second capac
ity, it is typically necessary to add servers. It is desirable to
be able to add and utilize these resources with little or no
user intervention or configuration.
0127. In one embodiment, the DFSS can automatically
identify and utilize available resources, including disk drives
and servers. Two features are used realize this: 1) detecting
the addition of disk drives and/or servers; and 2) a auto
matically initializing and incorporating newly added disk
drives and/or servers. The same mechanisms that are used to
detect newly-added resources can also be used to Support the
deletion of resources.

0128. With regard to detection of new resources, modern,
high performance networking technologies such as Fibre
Channel and Gigabit Ethernet supply methods for determin
ing what devices are connected to the network. By storing
the device map, and periodically querying the network for an
updated device map, the presence of new devices can be
determined. New devices are added to the appropriate server
resource map.

0129. In one embodiment, a resource manager in the
DFSS provides the capability to incorporate the new
resources automatically. The resource manager keeps track
of available disk resources, as measured in available disk
devices and the available free blocks on each disk. The
resource manager keeps track of the available servers and
the unutilized capacity, in terms of bandwidth and transac
tions per second, of each server. When new resources are
added to the DFSS, the resource manager incorporates the
additions into a resource database.

0.130. The resource manager works in conjunction with
aspects of the DFSS to dynamically allocate storage and
controller resources to files. When the DFSS needs to create
a new file, or extend an already created file, it coordinates
with the resource manager to create a DPG of the appropri
ate size. A similar approach is followed by the DFSS in the
selection of which server to use in the creation of a new file.

US 2006/017395.6 A1

0131 The resource manager approach also supports a
load balancing capability. Load balancing is useful in a
distributed file system to spread the workload relatively
uniformly across all of the available resources (e.g., across
disks, network interfaces, and servers). The ability to pro
actively relocate file data is a tool that can be used to Support
load balancing by moving file data from over-utilized
resources to under-utilized resources. In one embodiment,
the resource manager Supports load balancing by incorpo
rating resource usage predictions.
0132) In the DFSS, the server workload includes com
munication with client machines, reading and writing files
from disks, managing file metadata, and managing server
resources Such as storage capacity. The workload is divided
up among the server hardware resources. If the workload is
evenly divided, the resulting performance will be improved.
Thus, one key to performance is intelligent resource man
agement. In one embodiment, resource management
involves adaptive load balancing of server workloads. Prior
art distributed file system technologies do not offer an
effective method of performing load balancing in the face of
a dynamic load environment and thus cannot provide opti
mum performance.
0133. In one embodiment adaptive load balancing is
based on the implementation of two mechanisms. First, a
mechanism is provided to predict the future server work
load. Second, a mechanism is provided to reallocate distrib
uted server resources in response to the predicted workload.
0134 Prediction of the future workload has several
aspects. The first of these aspects is the past history of server
workload, in terms if file access statistics, server utilization
statistics, and network utilization statistics. The loading
prediction mechanism uses these statistics (with an appro
priate filter applied) to generate predictions for future load
ing. As a very simple example, a file that has experienced
heavy sequential read activity in the past few minutes will
likely continue to experience heavy sequential read access
for the next few minutes.

0135 The predictions for future workload can be used to
proactively manage resources to improve performance and
capacity usage. One mechanism used to reallocate server
workload is the movement and replication of content (files)
Such that server and storage utilization is balanced and the
direction of client accesses to available servers is balanced.
Some degree of cooperation from client machines can be
used to provide more effective load balancing, but client
cooperation is not strictly required.
0136. A file server contains a number of hardware
resources, including controllers, storage elements (disks),
and network elements. In the configuration used by the
DFSS, multiple client machines are connected through a
(possibly redundant) client network to one or more server
clusters. Each server cluster has one or more servers and a
disk storage pool.
0137 Software resident on each server collects statistics
regarding file accesses and server resource utilization. This
includes information regarding the access frequency, access
bandwidth and access locality for the individual files, the
loading of each disk controller and disk storage element in
terms of CPU utilization, data transfer bandwidth, transac
tions per second, and the loading of each network element
in terms of network latency and data transfer bandwidth.

Aug. 3, 2006

0.138. The collected statistics are subjected to various
filter operations, which results in a prediction of future file
and resource utilization (i.e., workload). This prediction can
also be modified by server configuration data which has
been provided in advance by a system administrator, and
explicit "hints' regarding future file and/or resource usage
which can be provided directly from a client machine.
0.139. The predicted workload is then used to develop a
plan that where to move content (files) between storage
elements and where to direct client accesses to controllers in
such a manner that the overall workload is distributed as
evenly as possible, resulting in best overall load balance and
distributed server performance. The predicted workload can
be used to perform the following specific types of load
balancing:

0140) 1) Client Network Load Balancing, which includes
managing client requests to the extent possible Such that
the client load presented to the servers in a cluster, and the
load present to the network ports within each cluster is
evenly balanced.

0.141) 2) Intra-Cluster Storage Load Balancing, which
includes of the movement of data between the disks
connected to a controller cluster such that the disk band
width loading among each of the drives in an array, and
the network bandwidth among network connecting disk
arrays to servers is balanced. There are two goals. The
first goal is to achieve relatively uniform bandwidth
loading for each storage sub-network. The second goal is
to achieve relatively uniform bandwidth loading for each
individual disk drive. This is accomplished by moving
relatively infrequently accessed material to drives with
frequently accessed material.

0.142 3) Inter-Node Storage Load Balancing, which
includes the movement of data between drives connected
to different clusters to equalize disk access load between
clusters. This is done at a higher cost than Intra-Node
Drive Load Balancing, as file data must actually be copied
between controllers over the client network.

0.143 4) Intra-Node Storage Capacity Balancing, which
includes movement of data between the disks connected
to a server (or servers in a cluster) to balance disk storage
utilization among each of the drives.

0.144 5) Inter-Node Storage Capacity Balancing, which
includes movement of data between drives connected to
different servers to equalize overall disk storage utiliza
tion among the different servers. This is done at a higher
cost than Intra-Node Drive Capacity Balancing, as file
data must actually be copied between controllers over the
network.

0145 6) File Replication Load Balancing, which includes
load balancing though file replication. This is an extension
of Inter-Node Drive Load Balancing. High usage files are
replicated so that multiple controller clusters have one or
more that one local (read-only) copy. This allows the
workload associated with these heavily-accessed files to
be distributed across a larger set of disks and servers.

0146 Disks and servers in the DFSS can be “hot
swapped' and “hot added” (meaning they can be replaced or
added while the DFSS is online and servicing file requests.
Disks in a disk array need not match in capacity or through

US 2006/017395.6 A1

put. Extra capacity is automatically detected, configured,
and used. Data is redistributed in the background (both
across servers and across DPGs) to improve system perfor
mance. Hot adding of servers allows for increased file
operations per second and file system capacity. Hot-added
servers are automatically configured and used.
0147 In one embodiment, servers are arranged in clusters
that operate as redundant groups (typically as redundant
pairs). In normal operation, the servers in a cluster operate
in parallel. Each acts as a primary server for a portion of the
file system. Each server in a cluster maintains a secondary
copy of the metadata and intent log of the other's primary
file system metadata and intent log. The intent log tracks
differences between metadata stored in memory (e.g., meta
data in a metadata cache) and metadata stored on disk. Upon
failure of a server in the cluster, the server remaining server
(or servers) will pick up the workload of the failed server
with no loss of metadata or transactions.

0148 Each server in a high-performance data storage
system includes storage controller hardware and storage
controller software to manage an array of disk drives.
Typically, a large number of disk drives are used in a high
performance storage system, and the storage system in turn
is accessed by a large number of client machines. This places
a large workload on the server hardware and server software.
It is therefore important that the servers operate in an
efficient manner so that they do not become a bottleneck in
the storage system. In one embodiment, a high-performance
data path is provided in the server so that data can efficiently
be moved between the client machines and disks with a
minimum amount of Software intervention.

0149 Prior art approaches for server and storage control
lers tend to be software intensive. Specifically, a program
mable CPU in the server becomes involved in the movement
of data between the client and the disks in the disk array.
This limits the performance of the storage system because
the server CPU becomes a bottleneck. While current
approaches may have a certain degree of hardware accel
eration, Such as XOR parity operations associated with
RAID, these minimal acceleration techniques do not
adequately offload the server CPU.
0150. In one embodiment, the DFSS uses a server archi
tecture that largely separates the data path from the control
message path. Control messages (e.g. file read/write com
mands from clients) are routed to a host CPU in the server.
The host CPU processes the commands, and sets up the
network and storage interfaces as required to complete the
data transfer operations associated with the commands. The
data transfer operations, once scheduled with the network
and storage interfaces can be completed without further
CPU involvement, thus significantly offloading the host
CPU. In one embodiment, a data flow architecture packages
instructions with data as it flows between the network
interfaces and data cache memories.

0151. The server hardware and software perform the
functions of interfacing with client via the network inter
faces, servicing client file operation requests, setting up disk
read and write operations needed to service these requests,
and updating the file metadata as necessary to manage the
files stored on disk.

0152 The controller hardware provides a control flow
path from the network and storage interfaces to the host

Aug. 3, 2006

CPU. The host CPU is responsible for controlling these
interfaces and dealing with the high level protocols neces
sary for client communications. The host CPU also has a
non-volatile metadata cache for storing file system metadata.
0153. A separate path for data flow is provided that
connects the network and storage interfaces with a non
Volatile data cache. In one embodiment, the separate path for
data flow is provided by a data engine. The data path is used
for bulk data transfer between the network and storage
interfaces. As an example of the data path operation, con
sider a client file read operation. A client read request is
received on one of the network interfaces and is routed to the
host CPU. The host CPU validates the request, and deter
mines from the request which data is desired. The request
will typically specify a file to be read, and the particular
section of data within the file. The host CPU will use file
metadata to determine if the data is already present in the
data cache memory, or if it must be retrieved from the disks.
If the data is in the data cache, the CPU will queue a transfer
with the network interface to transfer the data directly from
the data cache to the requesting client, with no further CPU
intervention required. If the data is not in the data cache, the
CPU will queue one or more transfers with the storage
interfaces to move the data from disk to the data cache, again
without any further CPU intervention. When the data is in
the data cache, the CPU will queue a transfer on the network
interface to move the data to the requesting client, again with
no further CPU intervention.

0154) One aspect of this autonomous operation is that the
CPU schedules data movement operations by merely writing
an entry onto a network or storage interface queue. The data
engine and the network and storage interfaces are connected
by busses that include address and data buses. In one
embodiment, the network or storage interface does the actual
data movement (or sequence of data movements) indepen
dently of the CPU by encoding an instruction code in the
address bus that connects the data engine to the interface.
The instruction code is set up by the host CPU when the
transfer is queued, and can specify that data is to be written
or read to one or both of the cache memories. In addition, it
can specify that an operation Such as a parity XOR operation
or a data conversion operation be performed on the data
while it is in transit. Because instructions are queued with
the data transfers, the host CPU can queue hundreds or
thousands of instructions in advance with each interface, and
all of these can be can be completed asynchronously and
autonomously. The data flow architecture described above
can also be used as a bridge between different networking
protocols.

0.155. As described above, the data engine offloads the
host CPU direct involvement in the movement of data from
the client to the disks and Vice-versa. The data engine can be
a general purpose processor, digital signal processor, pro
grammable FPGA, other forms of soft or hard program
mable logic, or a fully custom ASIC.
0156 The data engine provides the capability for autono
mous movement of data between client network interfaces
and data cache memory, and between disk network inter
faces and cache memory. The server CPU involvement is
merely in initializing the desired transfer operations. The
data engine Supports this autonomy by combining an asyn
chronous data flow architecture, a high-performance data

US 2006/017395.6 A1

path than can operate independently of the server CPU data
paths, and a data cache memory Subsystem. The data engine
also implements the parity generation functions required to
Support a RAID-style data protection scheme.

0157 The data engine is data-flow driven. That is, the
instructions for the parallel processing elements are embed
ded in data packets that are fed to the data engine and to the
various functional blocks within the data engine.
0158. In one embodiment, the data engine has four prin
cipal interfaces: two data cache RAM interfaces, and two
external bus interfaces. Other versions of the data engine can
have a different number of interfaces depending on perfor
mance goals.

0159. A data path exits between each network interface
and each cache interface. In each of these data path is a
processing engine that controls data movement between the
interfaces as well as operations that can be performed on the
data as it moves between the interfaces. These processing
engines are data-flow driven as described above.
0160 The processing engine components that are used to
perform these functions include an external bus write buffer,
a feedback buffer, a cache read buffer, a cache write buffer,
a parity engine, and the associated controller logic that
controls these elements. The buffer elements are memories
of appropriate sizes that smooth the data flow between the
external interfaces, the parity engines, and the caches.
0161 The data engine is used to provide a data path
between client network interface and storage network inter
face controllers. The network interface controllers may
support Fibre Channel, Ethernet, Infiniband, or other high
performance networking protocols. One or more host CPUs
schedule network transfers by queuing the data transfer
operations on the network interfaces controllers. The net
work interface controllers then communicate directly with
the data engine to perform the data transfer operations,
completely autonomously from any additional CPU involve
ment. The data transfer operations may require only the
movement of data, or they may combine the movement of
data with other operations that must be performed on the
data in transit.

0162 The processing engines in the data engine can
perform five principal operations, as well as a variety of
Support operations. The principal operations are: read from
cache; write to cache; XOR write to cache; write to one
cache with XOR write to other cache; write to both caches.

0163 The data-flow control structure of the data engine
reduces the loading placed on the server CPU. Once data
operations are queued, the server CPU does not need to be
directly involved in the movement of data, in the operations
that are performed on data, or the management of a data
transfer.

0164 FIG. 1 shows a general overview of a Distributed
File Storage System (DFSS) 100 that operates on a computer
network architecture. One or more clients 110 operating on
one or more different platforms are connected to a plurality
of servers 130, 131, 132, 133134, 135, by way of a com
munication fabric 120. In one embodiment, the communi
cation fabric 120 is a Local Area Network (LAN). In one
embodiment, the communication fabric 120 is a Wide Area
Network (WAN) using a communication protocol such as,

Aug. 3, 2006

for example, Ethernet, Fibre Channel, Asynchronous Trans
fer Mode (ATM), or other appropriate protocol. The com
munication fabric 120 provides a way for a client 110 to
connect to one or more servers 130-135.

0.165. The number of servers included in the DFSS 100 is
variable. However, for the purposes of this description, their
structure, configuration, and functions are similar enough
that the description of one server 130 is to be understood to
apply to all 130-135. In the descriptions of other elements of
the figure that are similarly duplicated in the DFSS 100, a
description of one instance of an element is similarly to be
understood to apply to all instances.
0166 The server 130 is connected to a disk array 140 that
stores a portion of the files of the distributed file storage
system. Together, the server-disk array pair 130,140 can be
considered to be one server node 150. The disks in the disk
array 140 can be Integrated Drive Electronics (IDE) disks,
Fibre Channel disks, Small Computer Systems Interface
(SCSI) disks, InfiniBand disks, etc. The present disclosure
refers to disks in the disk array 140 by way of example and
not by way of limitation. Thus, for example the “disks’ can
be many types of information storage devices, including, for
example, disk drives, tape drives, backup devices, memo
ries, other computers, computer networks, etc.

0.167 In one embodiment, one or more server nodes 150,
151 are grouped into a cluster 160 of server nodes. In one
embodiment, each server 130 in the cluster 160 is connected
not only to its own disk array 140, but also to the disk
array(s) 141 of the other server(s) 131 of the cluster 160.
Among other advantages conferred by this redundant con
nection is the provision of alternate server paths for reading
a popular file or a file on a busy server node. Additionally,
allowing servers 130, 131 to access all disk arrays 140, 141
of a cluster 160 provides the assurance that if one server 130
of a cluster 160 should fail, access to the files on its
associated disk array 140 is not lost, but can be provided
seamlessly by the other servers 131 of the cluster 160.

0.168. In one embodiment, files that are stored on the disk
array 140 of one server node 150 are mirrored on the disk
array(s) 141 of each server node 151 in the cluster 160. In
such an embodiment, if the disk array 140 should become
unusable, the associated server 130 will still be able to
access copies of its files on the other disk array(s) 141 of the
cluster 160.

0169. As shown in FIG. 1, the server 130 is associated
with the disk array 140 that can include multiple disk drives
of various sizes and capacities. Thus, the DFSS 100 allows
for much more flexibility than many conventional multi-disk
file storage systems that require strict conformity amongst
the disk arrays of the system. Among other advantages
conferred by this flexibility is the ability to upgrade portions
of the system hardware without having to upgrade all
portions uniformly and simultaneously.

0170 In many conventional networked storage systems,
a user on a client needs to know and to specify the server that
holds a desired file. In the DFSS 100 described in FIG. 1,
although the files of the file system can be distributed across
a plurality of server nodes, this distribution does not require
a user on a client system 110 to know a priori which server
has a given file. That is, to a user, it appears as if all files of
the system 100 exist on a single server. One advantage of

US 2006/017395.6 A1

this type of system is that new clusters 160 and/or server
nodes 150 can be added to the DFSS 100 while still
maintaining the appearance of a single file system.
0171 FIG. 2 is a block diagram showing one embodi
ment 200 of the server node 150 in the DFSS 100. As in
FIG. 1, the server node 150 includes the server 130 and the
disk array 140 or other data storage device.
0172. The server 130 includes a server software module
205. The server Software module 205 includes server inter
face (SI) software 240 for handling communications to and
from clients 110, file system (FS) software 250 for managing
access, storage, and manipulation of the files, and a JBOD
(Just a Bunch of Disks) interface (JI) 260 for handling
communications with the disk array 140 and with other disk
arrays of the cluster 160. Communications between the
server interface 240 and the file system 250 take place using
a Client Server Object 245. Communications between the
file system 250 and the JBOD interface 260 take place using
a Disk Service Object 255. In one embodiment, as depicted
in FIG. 2, the software of the file system 250 resides
principally on the servers 130, 131, while the file data is
stored on standard persistent storage on the disk arrays 140,
141 of the DFSS 100.

0173 The server software module 205 also includes a
polling module 270 for polling clients 110 of the DFSS 100
and a polling module 280 for polling disk arrays 140 of the
DFSS 100.

0.174. In the embodiment 200 shown in FIG. 2, the server
130 includes a Fibre Channel Application Programming
Interface (FC-API) 210 with two Fibre Channel ports 211
for communicating via the fabric 120 with the client 110 and
with other server(s) 151 of the cluster 160. The FC-API 210
also communicates with the server interface 240 and with
the client polling module 270 in the server software module
2O5.

0.175. The server 130 includes an FC-API 220 with two
Fibre Channel ports 221 for communicating with the disk
array 140 and with other disk arrays of its cluster 160. The
FC-API 220 may communicate with the disk array 140 via
a communication fabric 222, as shown in FIG. 2. The
FC-API 220 may also communicate with the disk array 140
directly. The FC-API 220 also communicates with the JBOD
interface 260 and with the disk polling module 280 in the
server software module 205.

0176) The server 130 includes an Ethernet interface 230
with two Ethernet ports 231, 232 configured to handle
Gigabit Ethernet or 10/100T Ethernet. The Ethernet inter
face 230 communicates with the server interface 240 in the
server software module 205. In FIG. 2, the Gigabit Ethernet
port 231 communicates with one or more Ethernet clients
285 of the DFSS 100. The Ethernet clients 285 include an
installable client interface software component 286 that
communicates with the client's operating system and with
the Ethernet interface 230 of the server node 150. In FIG. 2,
the Ethernet port 232 communicates with an administrative
interface system 290.
0177 To improve performance for certain implementa
tions, a small file system Software layer may also exist on
clients 110, as shown in the embodiment 200 shown in FIG.
2, where the client system 110 includes an installable
software component called the Client Interface (CI) 201 that

Aug. 3, 2006

communicates with both the client's operating system and,
via the communication fabric 120, with a server node 150 of
the DFSS 100.

0.178 The functions of the FC-API modules 210, 220 and
the Ethernet interface 230 may alternatively be handled by
other communication protocols.
0179. Overview of Metadata Structures
0180. In order to perform normal file system operations,
Such as, for example, creating and deleting files, allowing
clients to read and write files, caching file data, and keeping
track of file permissions, while also providing the flexibility
mentioned above, a cluster 160 maintains metadata about
the files stored on its disk arrays 140, 141. The metadata
comprises information about file attributes, file directory
structures, physical storage locations of the file data, admin
istrative information regarding the files, as well as other
types of information. In various embodiments, the file
metadata can be stored in a variety of data structures that are
configured in a variety of interconnected configurations,
without departing from the spirit of the distributed file
system. FIG. 3 is a block diagram that shows one embodi
ment of a configuration comprising five metadata structures
and connections between them. Each of these structures, the
data they hold, and how the structures are used are described
in greater detail below.
0181 Referring to FIG.3, a FilenameTable 310 includes
a collection of filenames for both files stored on the server
node 150 as well as files that are children of directories
stored on the server node 150.

0182. A G-node Table 330 includes a collection of
G-nodes, where each G-node contains data related to
attributes of a file. A one-to-one correspondence exists
between the G-nodes and files stored on the server node 150.

0183) A Gee Table 320 holds data about the physical
locations of the file blocks on the disk array 140. The Gee
Table 320 additionally includes pointers to each associated
G-node in the G-node Table 330, and each G-node in the
G-node Table 330 includes a pointer to an associated portion
of the Gee Table 320.

0184) A Gnid Table 340 on the server node 150 includes
Gnid-strings that hold data describing the directory structure
of that portion of the file system 250 whose directories are
stored on the server node 150. A one-to-one correspondence
exists between the Gnid-strings and directory files stored on
the server node 150. Gnid-strings are collections of Gnids,
which hold information about individual files that exist
within a given directory. The file system 250 allows files
within a directory to be stored on a cluster that is different
from the cluster on which the parent directory is stored.
Therefore, Gnids within a Gnid-string on the server node
150 can represent files that are stored on clusters other than
the current cluster 160.

0185. Each Gnid includes several pointers. A Gnid in the
Gnid Table 340 includes a pointer to an associated filename
for the file represented by the Gnid. Because the Filename
Table 310 includes filenames for both files stored on the
server node 150 as well as files that are children of direc
tories stored on the server node 150, all Gnids on the server
node 150 point to the Filename Table 310 on the server node
150.

US 2006/017395.6 A1

0186 A Gnid in the Gnid Table 340 includes a pointer to
its parent directory's G-node in the G-node Table 330, and
a parent directory's G-node includes a pointer to the begin
ning of its associated Gnid-string in the Gnid Table 340.
0187 Each Gnid also includes a pointer to its own
G-node. Since a Gnid can represent a file that is stored on
another cluster 160 of the file system 250, a pointer to the
Gnid's own G-node can point to the G-node Table 330 on
another server node of the file system 250.
0188 A Cache Node Table 350 includes the Cache Nodes
that hold information about the physical locations of file
blocks that have been cached, including a pointer to a cache
location as well as a pointer to a non-volatile location of the
data on the disk array 140. A pointer to a Cache Node exists
in the Gee Table 320 for every associated data block that has
been cached. Similarly, a pointer exists in the Cache Node
to a location in the Gee Table 320 associated with a disk
storage location for an associated data block.
0189 Mirroring of Metadata Structures
0190. To review the description from FIG. 1, in one
embodiment, the servers 130, 131 of a cluster 160 are able
to access files stored on all the disk array(s) 140, 141 of the
cluster 160. In one embodiment, all server nodes 150, 151 of
a cluster 160 have copies of the same Filename Table 310,
Gee Table 320, G-node Table 330, and Gnid Table 340.
0191 In embodiments where files, as well as metadata,
are mirrored across the server nodes 150, 151 of a cluster
160, a different Gee Table 320 exists for each disk array 140,
141 within a cluster 160, since the Gee Table 320 holds
information about the physical storage locations of the files
on a given disk array, and since the disk arrays 140, 141
within a given cluster 160 are not constrained to being
identical in capacity or configuration. In Such an embodi
ment, the servers 130, 131 within the cluster 160 have copies
of both the Gee Table 320 for a first disk array 140 and the
Gee Table 320 for each additional disk array 141 of the
cluster.

0192 In one embodiment, in order to enhance both the
security of the metadata and efficient access to the metadata,
each server node 150, 151 stores a copy of the Filename
Table 310, the G-node Table 330, the Gnid Table 340, and
the Gee Table 320 in both non-volatile memory (for secu
rity) and in Volatile memory (for fast access). Changes made
to the volatile versions of the metadata structures 310,320,
330,340 are periodically sent to the non-volatile versions for
update.

0193 In one embodiment, the server nodes 150, 151 in
the cluster 160 do not have access to one another's cache
memory. Therefore, unlike the four metadata structures 310,
320, 330, and 340 already described, the Cache Node Table
350 is not replicated across the server nodes 150, 151 of the
cluster 160. Instead, the Cache Node Table 350 stored in
volatile memory on a first server 130 refers to the file blocks
cached on the first the server 130, and the Cache Node Table
350 stored in volatile memory on a second server 131 refers
to file blocks cached on the second server 131.

0194 Division of Metadata Ownership
0.195. In one embodiment, the metadata structures
described in FIG. 3 are duplicated across the server nodes
150, 151 of the cluster 160, allowing access to a set of shared

Aug. 3, 2006

files and associated metadata to all servers in the cluster 160.
All of the server nodes 150, 151 in the cluster 160 can access
the files stored within the cluster 160, and all are considered
to be "owners' of the files. Various schemes can be
employed in order to prevent two or more servers 130, 131
from altering the same file simultaneously. For example, in
embodiments where the cluster 160 includes two server
nodes 150 and 151, one such scheme is to conceptually
divide each of the duplicated metadata structures in half and
to assign write privileges (or "primary ownership') for one
half of each structure to each server node 150, 151 of the
cluster 160. Only the server node 150 that that is primary
owner of the metadata for a particular file has write privi
leges for the file. The other server node(s) 151 of the cluster
160 are known as “secondary owners' of the file, and they
are allowed to access the file for read operations.
0196) In a failure situation, when the server 130 deter
mines that its counterpart 131 is not functional, the server
130 can assume primary ownership of all portions of the
metadata structures 310, 320, 330, 340 and all associated
files owned by the server 131, thus allowing operation of the
file system 250 to continue without interruption. In one
embodiment, if a server in cluster 160 having more than two
servers experiences a failure, then primary ownership of the
failed server's files and metadata can be divided amongst the
remaining servers of the cluster.
0.197 Filename Table
0198 FIG. 4 shows a sample portion of the Filename
Table 310. In one embodiment, the Filename Table 310 on
the server 130 contains Filename Entries 410, 420, 430, 440
for files which are either stored in the disk array 140 or are
parented by a directory file in the disk array 140. In one
embodiment, the FilenameTable 310 is stored as an array. In
FIG. 4, a Start of String (SOS) marker 411 marks the
beginning of the Filename Entry 410, and a character string
414 holds characters of the filename, “Doe.” In one embodi
ment, a checksum 412 for the string 414 is also included in
the Filename Entry 410. In one embodiment, a filename
length count 413 representing the length of the string 414,
shown in FIG. 4 to have a value of '3' is included in the
Filename Entry 410. The checksum 412 and the filename
length count 413 advantageously allow for an expedited
Search of the Filename Table 310.

0199 A Start of String (SOS) marker 421 marks the
beginning of the Filename Entry 420 with a checksum 422,
a filename length count 423 of “6,” and a character string
424 holding the filename “Thomas.”
0200) A Deleted String (DS) marker 431 marks the
beginning of the Filename Entry 430 with a checksum 432,
a filename length count 433 of “4” and a character string
434 holding the filename “Frog.
0201 A Start of String (SOS) marker 441 marks the
beginning of the Filename Entry 440 with a checksum 442,
a filename length count 443 of '2.’ and a character string
444 holding the filename “It.”
0202 Comparing the checksums 412,422, 432, 442 and
the filename length counts 413, 423, 433, 443 of each
Filename Entry 410, 420, 430,440 to those calculated for a
desired filename provides a quick way to eliminate most
Filename Entries in the FilenameTable 310 before having to
make a character-by-character comparison of the character
strings 414, 424, 434, 444.

US 2006/017395.6 A1

0203 Another advantage of including the filename length
counts 413, 423, 433,443 applies when deleting a Filename
Entry 410, 420, 430, 440 from the Filename Table 310.
Replacing the Start of String (SOS) marker 411, 421, 441
with a Deleted String (DS) marker 431, as in the Filename
Entry 430, signals that the corresponding file is no longer
stored on the disk array 140, even if the remainder of the
Filename Entry 432-434 remains unchanged. The filename
length 433 accurately represents the length of the “deleted
string 434, and when a new filename of the same length (or
shorter) is to be added to the table 310, the new name and
checksum (and filename length count, if necessary) can be
added into the slot left by the previous filename.

0204 Gee Table
0205 The file system 250 divides files into one or more

file logical blocks for storage. Each file logical block is
stored in a cluster of one or more disk logical blocks on the
disk array 140. Although the file system 250 retains many of
the advantages of a conventional file system implemented on
RAID (Redundant Array of Independent Disks), including
the distribution of files across multiple disk drives and the
use of parity blocks to enhance error checking and error
correcting, unlike many RAID systems, the file system 250
does not restrict file logical blocks to one uniform size. File
logical blocks of data and parity logical blocks can be the
size of any integer multiple of a disk logical block. This
variability of file logical block size allows for flexibility in
allocating disk space and, thus, for optimized use of System
SOUCS.

0206. In the file system 250, the size of a file logical block
is described by its integer multiple, called its extent, in disk
logical blocks. For example, a file logical block with an
extent of 3 is stored in a cluster of 3 disk logical blocks on
the disk array 140.

0207. The Gee Table 320 stores metadata describing the
disk logical block locations on the disk array 140 for each
file logical block of the files.

0208 FIG. 5 shows one embodiment of a Gee Table 320
that is implemented as a flat array. Each indexed row
510-529 of the Gee Table 320 is called a Gee. In FIG. 5,
Gees 510-528 relate to a single file that is divided into ten
file logical blocks. Such a set of Gees 510-528, which
together describe the logical location of a single file on the
disk array 140, is known as a Gee-string 500. A Gee-string
is made up of one or more Gee-groups. Each Gee-group is
a set of contiguous Gees that all relate to a single file. In
FIG. 5, the Gee-string 500 includes three Gee-groups, 550,
551, and 552. The Gee 529 relates to a separate file, as will
be explained in more detail below.

0209. In one embodiment, the Gees 510-529 include a
G-code field 590 and a Data field 591. The G-code field 590
in the Gees 510-529 indicates the type of data that is
included in the Data field 591. In FIG. 5, four types of
G-codes 590 are depicted: “G-NODE,”“DATA,”“PARITY,”
and “LINK.

0210. In one embodiment, the G-code 590 of “G-NODE”
indicates that the Gee is a first Gee of a Gee-group. For
example, the first Gee of the Gee-group 550 is a G-NODE
Gee 510. Similarly, the first Gee of the Gee-groups 551 and
552 are also G-NODE Gees 520, 525.

Aug. 3, 2006

0211) The Data field 591 of a G-NODE Gee can include
a pointer to the file's G-node in the G-node Table 330 and
information about whether this is the first (or Root)
G-NODE Gee of the file's Gee-string 500. The Data field
591 of a G-NODE Gee can also include information about
the extent, or size, of the logical disk block clusters for the
file logical blocks of the Gee-group, as will be described in
greater detail below.

0212. In FIG. 5, the Data fields 591 of the G-NODE Gees
510,520, and 525 contain a reference to G-node index “67,
indicating that they all relate to the file associated with the
G-node at index “67” of the G-node Table 330. That is, they
all relate to portions of the same file. The Data field 591 of
the Gee 529 refers to the G-node index “43, indicating that
it relates to a different file.

0213) Of the G-NODE Gees 510,520, 525, only the first
Gee 510 contains an indication that it is a Root Gee, meaning
that it is the first Gee of the Gee-string 500. The Gee 529 is
a G-NODE Gee, indicating that it is a first Gee of a
Gee-group (the remainder of which is not shown), and the
Data field 591 of the Gee 529 also indicates that the Gee 529
is not a Root Gee for its Gee-string.
0214. Following the G-NODE Gee in a Gee-group are
Gees representing one or more Distributed Parity Groups
(DPGs) 560, 561, 52, 563. A DPG is set of one or more
contiguous DATA Gees followed by an associated PARITY
Gee. A DATA Gee is a Gee with a G-code 590 of “DATA
that lists disk logical block(s) where a file logical block is
stored. For example, in FIG. 5, the Gees 511-513,515-517,
521-522, and 526-527 are all DATA Gees, and each is
associated with one file logical block 592.
0215) A PARITY Gee is a Gee with a G-code 590 of
“PARITY.' Each PARITY Gee lists disk logical block
location(s) for a special type of file logical block that
contains redundant parity data used for error checking and
error correcting one or more associated file logical blocks. A
PARITY Gee is associated with the contiguous DATA Gees
that immediately precede the PARITY Gee. A set of con
tiguous DATA Gees and the PARITY Gee that follows them
are known collectively as a Distributed Parity Group 560,
561, 562, 563.

0216) For example, in FIG. 5, the PARITY Gee 514 is
associated with the DATA Gees 510-513, and together they
form the Distributed Parity Group 560. Similarly, the PAR
ITY Gee 518 is associated with the DATA Gees 515-517,
and together they form the Distributed Parity Group 561.
The PARITY Gee 523 is associated with the DATA Gees
521-522, which together form the Distributed Parity Group
562, and the PARITY Gee 528 is associated with the DATA
Gees 526-527, which together form the Distributed Parity
Group 563.

0217. The size of a disk logical block cluster described by
a DATA Gee or a PARITY Gee, as measured in number of
disk logical blocks, matches the extent listed in the previous
G-NODE Gee. In the example of FIG. 5, the G-NODE Gee
510 defines an extent size of 2, and each DATA and PARITY
Gee 511-518 of the two Distributed Parity Groups 560,561
of the Gee-group 550 lists two disk logical block locations.
Similarly, G-NODE Gee 520 of the second Gee-group 551
defines an extent size of 3, and each DATA and PARITY Gee
521-523 of the Gee-group 551 lists three disk logical block

US 2006/017395.6 A1

locations. G-NODE Gee 525 of the third Gee-group 552
defines an extent size of 3, and each DATA and PARITY Gee
526-528 of the Gee-group 552 lists three disk logical block
locations.

0218 If a Gee-group is not the last Gee-group in its
Gee-string, then a mechanism exists to logically link the last
Gee in the Gee-group to the next Gee-group of the Gee
string. LINK Gees 519, 524 have the G-code 590 of “LINK
and a listing in their respective Data fields 591 that provides
the index of the next Gee-group of the Gee-string 500. For
example, the Gee 519 is the last Gee of Gee-group 550, and
its Data field 591 includes the starting index “76” of the next
Gee-group 551 of the Gee-string 500. The Gee 524 is the last
Gee of Gee-group 551, and its Data field 591 includes the
starting index '88 of the next Gee-group 552 of the
Gee-string 500. Since the Gee-group 552 does not include a
LINK Gee, it is understood that Gee-group 552 is the last
Gee-group of the Gee-string 500.

0219) A G-code 590 of “FREE (not shown in FIG. 5)
indicates that the Gee has never yet been allocated and has
not been associated with any disk logical location(s) for
storing a file logical block. A G-code 590 of “AVAIL (not
shown in FIG. 5) indicates that the Gee has been previously
allocated to a cluster of disk logical block(s) for storing a file
logical block, but that the Gee is now free to accept a new
assignment. Two situations in which a Gee is assigned the
G-code of “AVAIL') are: after the deletion of the associated
file logical block; and after transfer of the file to another
server in order to optimize load balance for the file system
250.

0220 A G-code of “CACHE DATA’ indicates that the
disk logical block cluster associated with the Gee (which
was previously a DATA Gee) has been cached. A G-code of
“CACHE PARITY” indicates that the disk logical block
cluster associated with this Gee (which was previously a
PARITY Gee) has been cached. The CACHE DATA and
CACHE PARITY G-codes will be described in greater detail
when Cache Nodes and the Cache Node Table are described
in connection with FIG. 8A below.

0221) G-Node Table

0222. The G-node Table 330 is a collection of G-nodes,
where each G-node includes attribute information relating to
one file. Attribute information can include, but is not
restricted to: information about physical properties of the file
(such as, for example, its size and physical location on disk);
information about the file’s relationships to other files and
systems (such as, for example, permissions associated with
the file and server identification numbers for the primary and
secondary owners of the file); and information about access
patterns associated with the file (such as, for example, time
of the last file access and time of the last file modification).

0223) In addition to file attribute information, a G-node
provides links to the root Gee and a midpoint Gee of the
file's Gee-string in the Gee Table 320. If the file is a
directory file, its G-node also contains a pointer to the
beginning of the Gnid-string that describes the files con
tained in the directory, as will be explained with reference to
FIG. 7 below.

Aug. 3, 2006

0224. In one embodiment, the G-node Table 330 is imple
mented as a flat array.

0225 FIG. 6 shows one embodiment of information that
can be included in a G-node 600. A File Attribute-type field
602 designates a file as belonging to a Supported file type.
For example, in one embodiment, NFNON indicates that the
G-node is not currently associated with a file, NFREG
indicates that the associated file is a regular file, NFDIR
indicates that the associated file is a directory, NFLINK
indicates that an associated file is a symbolic link that points
to another file.

0226. A File Attribute-mode field 604 gives information
regarding access permissions for the file.

0227) A File Attribute-links field 606 designates the num
ber of directory entries for a file in the file system 250. This
number can be greater than one if the file is the child of more
than one directory, or if the file is known by different names
within the same directory.

0228) A File Attribute-uid field 608 designates a user ID
for a file’s user/owner.

0229. A File Attribute-gid field 610 designates a group ID
of a file's user/owner.

0230. A File Attribute-size field 612 designates a size in
bytes of a given file.

0231. A File Attribute-used field 614 designates an
amount of disk space used by a file.

0232 A File Attribute-fileId field 620 designates a file ID.
0233. A File Attribute-atime field 622 designates the time
of the last access to the file.

0234. A File Attribute-mtime field 624 designates the
time of the last modification to the file.

0235 A File Attribute-ctime field 626 designates the time
of the last modification to a G-node (excluding updates to
the atime field 622 and to the mtime field 624).
0236. If a file is a directory file rather than a data file, then

its Child Gnid Index field 628 is an index for the oldest child
in an associated Gnid-string (to be described in greater detail
with reference to FIG. 7 below); otherwise, this field is not
used.

0237) A Gee Index-Last Used field 630 and a Gee Offset
Last Used field 631 together designate a location of a most
recently accessed Gee 510 for a given file. These attributes
can be used to expedite sequential reading of blocks of a file.

0238 A Gee Index-Midpoint field 632 and a Gee Offset
Midpoint field 633 together point to a middle Gee 510 of the
Gee-string 500. Searching for a Gee for a given file block
can be expedited using these two fields in the following way:
if a desired block number is greater than the block number
of the midpoint Gee, then sequential searching can begin at
the midpoint of the Gee-string 500 rather than at its begin
n1ng.

0239). A Gee Index-Tail field 634 and a Gee Offset-Tail
field 635 together point to the last Gee 528 of the Gee-string
500. New data can easily be appended to the end of a file
using the pointers 634 and 635.

US 2006/017395.6 A1

0240 A Gee Index-Root field 636 is an index of the root
Gee 510 of a Gee-string for an associated file.
0241) A G-node Status field 638 indicates whether the
G-node is being used or is free for allocation.
0242 A Quick Shot Status field 640 and a Quick Shot
Link field 642 are used when a “snapshot' of the file system
250 is taken to allow for online updates and/or verification
of the system that does not interrupt client access to the files.
During a 'snapshot, copies of Some portions of the system
are made in order to keep a record of the system's state at
one point in time, without interfering with the operation of
the system. In some embodiments, more than one Quickshot
can be maintained at a given time. The Quick Shot Status
field 640 indicates whether the G-node was in use at the time
of the “snapshot' and, therefore, if it has been included in
the “snapshot.” If the G-node has been included in the
“snapshot, the Quick Shot Link field 642 provides a link to
the newly allocated copy of the G-node.
0243 In one embodiment, a bit-mask is associated with
each element with the file system 250 identifying any of a
number of Quickshot instances to which the element
belongs. When a Quickshot is requested, a task can set the
bit for every element, holding the file system at bay for a
minimum amount of time. Thus, capturing the state of a file
system comprises identifying elements in the file system as
being protected, rather than actually copying any elements at
the time of the Quickshot.
0244. In one embodiment, the file system uses a copy
on-write mechanism so that data is not overwritten; new
blocks are used for new data, and the metadata is updated to
point to the new data. Thus, a minimum of overhead is
required to maintain a Quickshot. If a block is being written
and the file system element being modified has a bit set
indicating that it is protected by a Quickshot, the metadata
is copied to provide a Quickshot version of the metadata,
which is distinct from the main operating system. Then, the
write operation continues normally.

0245 Gnid Table
0246 Files in the file system 250 are distributed across a
plurality of server nodes 150 while still appearing to clients
110 as a single file system. According to different embodi
ments, files can be distributed in a variety of ways. Files can
be distributed randomly, or according to a fixed distribution
algorithm, or in a manner that enhances load balancing
across the system, or in other ways.

0247. In one embodiment, the files of a given directory
need not be stored physically within the same cluster as the
cluster that stores the directory file itself. Nor does one large
table or other data structure exist which contains all direc
tory structure information for the entire file system 250.
Instead, directory structure information is distributed
throughout the file system 250, and each server node 150 is
responsible for storing information about the directories that
it stores and about the child files of those directories.

0248. In one embodiment, server nodes of the DFSS 100
hold directory structure information for only the directory
files that are stored on the server node and for the child files
of those directories, that is, the files one level down from the
parent directory. In another embodiment, server nodes of the
DFSS 100 hold directory structure information for each

Aug. 3, 2006

directory file stored on the server node and for files from a
specified number of additional levels below the parent
directory in the file systems directory structure.

0249. In one embodiment, an exception to the division of
responsibility described above is made for the directory
structure information for a “root directory of the file system
250. The “root directory is a directory that contains every
directory as a sub-directory and, thus, every file in the file
system 250. In this case, every server in the file system 250
can have a copy of the directory structure information for the
“root directory as well as for its own directories, so that a
search for any file of unknown location can be initiated at the
“root” directory level by any server of the file system 250.
In another embodiment, the directory structure information
for the “root' directory is stored only in the cluster that
stores the “root directory, and other clusters include only a
pointer to the “root directory.

0250) The Gnid Table 340 on the server node 150 defines
a structure for directory files that reside on the server node
150. The Gnid Table 340 comprises Gnid-strings, which, in
one embodiment, are linked lists implemented within a flat
array. In one embodiment, a Gnid-string exists for each
directory file on the server node 150. Individual elements of
a Gnid-string are called Gnids, and a Gnid represents a child
file of a given parent directory.

0251 FIG. 7 shows the structure of one embodiment of
a Gnid-string 700. In this embodiment, the Gnid-string 700
for a directory file is a linked list of Gnids 710-713, where
each Gnid represents one file in the directory. In one
embodiment, in order to expedite searching the Gnid-string
700 for a given Gnid, the Gnids are kept in ascending order
of the checksums 412,422, 442 of the files filenames 410,
420, 440, such that the Gnid with the smallest checksum is
first in the Gnid-string 700. When a new file is added to a
directory, a Gnid for the newly added file is inserted into the
appropriate location in the Gnid-string 700. Search algo
rithms that increase the efficiency of a search can exploit this
sorted arrangement of Gnids 710-713 within a Gnid-string
700.

0252 Since Gnids share a common structure, a descrip
tion of one Gnid 710 is to be understood to describe the
Structure of all other Gnids 711–713 as well.

0253) The Gnid 710 includes, but is not restricted to,
seven fields 720, 730, 740, 750, 760, 770, and 780. A Status
field 720 indicates whether the Gnid 710 is a first Gnid
(GNID OLDEST) in the Gnid-string 700, a last Gnid
(GNID YOUNGEST) in the Gnid-string 700, a Gnid that is
neither first nor last (GNID SIBLING) in the Gnid-string
700, or a Gnid that is not currently in use (GNID FREE).

0254) A Parent G-node Ptr field 730 is a pointer to the
G-node for the file’s parent directory in the G-node Table
33O.

0255) A Sibling Gnid Ptrfield 740 is a pointer to the next
Gnid 711 on the Gnid-string 700. In the embodiment
described above, the Sibling Gnid Ptrfield 740 points to the
Gnid within the Gnid-string 700 that has the next largest
checksum 412, 422, 442 value. A NULL value for the
Sibling Gnid Ptrfield 740 indicates that the Gnid is the last
Gnid of the Gnid-string 700.

US 2006/017395.6 A1

0256 A G-node Ptr field 750 is a pointer to the file's
G-node 600, indicating both the server node that is primary
owner of the file and the file’s index into the G-node Table
330 on that server node.

0257) A Filename Ptr field 760 is a pointer to the file's
Filename Entry in the Filename Table 310.
0258) A ForBiGnid Ptr field 770 is a pointer used for
skipping ahead in the Gnid-string 700, and a BckBiGnid Ptr
field 780 is a pointer for skipping backward in the Gnid
string 700. In one embodiment, the fields 770 and 780 can
be used to link the Gnids into a binary tree structure, or one
of its variants, also based on checksum size, thus allowing
for fast searching of the Gnid-string 700.

0259 Cache Node Table
0260 The Cache Node Table 350 stores metadata regard
ing which data blocks are currently cached as well as which
data blocks have been most recently accessed. The Cache
Node Table 350 is integrated with the file system 250 by way
of a special type of Gee 510 in the Gee Table 320. When a
data block is cached, a copy of its associated DATA Gee
511-513, 515-517,521-522, 526-527, which describes the
location of the data on the disk array 140, is sent to the
Cache Node Table 350, where it is held until the associated
data is released from the cache. Meanwhile, the DATA Gee
511-513,515-517,521-522,526-527 in the Gee Table 320 is
modified to become a CACHE DATA Gee; its G-Code 590
is changed from DATA to CACHE DATA, and instead of
listing a data block's location on disk 140, the Data field 591
of the Gee now indicates a location in the Cache Node Table
350 where a copy of the original DATA Gee 511-513,
515-517,521-522,526-527 was sent and where information
about the data block's current location in cache can be
found.

0261). In one embodiment, the Cache Node Table 350 is
implemented as a list of fixed length Cache Nodes, where a
Cache Node is associated with each Gee 511-513,515-517,
521-522, 526-527 whose data has been cached. The struc
ture of one embodiment of a Cache Node 800 is described
in FIG. 8A.

0262 Referring to FIG. 8A, the Cache Node 800 is
shown to include nine fields. A Data Gee field 810 is a copy
of the DATA Gee 511-513,515-517,521-522,526-527 from
the Gee Table 320 that allows disk location information to
be copied back into the Gee Table 320 when the associated
data block is released from cache. A PrevPtr field 815 holds
a pointer to the previous Cache Node in the Cache Node
Table 350. A NextPtr field 820 holds a pointer to the next
Cache Node in the Cache Node Table 350. In one embodi
ment, the Cache Node Table 350 is implemented as a flat
array, in which case the PrevPtr 815 and NextPtr 820 fields
can hold indices of a previous and a next item in the table.
A CacheBlock Addr field 825 holds a pointer to a location in
cache where the associated data has been cached. A ReadCt
field 830 is a counter of the number of clients currently
reading the associated data block. A CacheTime field 835
holds a time that the associated cache contents were last
updated. A Regenerated field 840 holds a flag indicating that
the associated cache contents have been regenerated. A
Cache BlockHiAddr field 845 and a Cache BlockLOAddr
field 850 hold a “high water mark” and “low water mark” of
the data in a cache block. These “water marks' can be used

Aug. 3, 2006

to demarcate a range of bytes within a cache block so that
if a write operation has been performed on a subset of a
cache blocks bytes, then when the new data is being written
to disk, it is possible to copy only relevant or necessary bytes
to the disk.

0263. In one embodiment, the Cache Node Table 350 is
conceptually divided into three lists, as depicted in FIG. 8B.
A Normal List 860 includes all the Cache Nodes 800 in the
Cache Node Table 350 which are associated with cached
data that is not currently in use. A Write List 865 holds the
Cache Nodes 800 of data blocks that have been modified and
that are waiting to be written to disk. A Read List 870 holds
the Cache Nodes 800 of data blocks that are currently being
read by one or more clients.
0264. When existing cached data is needed for a write or
a read operation, the associated Cache Node 800 can be
“removed from the Normal List 860 and “linked to the
Write List 865 or the Read List 870, as appropriate. The
Cache Nodes 800 in each of the lists 860, 865, 870 can be
linked by using the PrevPtr 815 and NextPtr 820 fields. The
Cache Nodes 800 of data blocks that are being written to can
be “moved from the Normal List 860 to the Write List 865
until an associated data block stored on the disk array 140 is
updated. The Cache Nodes 800 of data blocks that are being
read can be similarly “moved to the Read list by resetting
the links of the PrevPtr 815 and NextPtr 820 fields.

0265). The Cache Nodes 800 of data blocks that are being
read can additionally have their ReadCt field 830 incre
mented, so that a count may be kept of the number of clients
currently reading a given data block. If additional clients
simultaneously read the same file, the server 130 increments
the Cache Node's ReadCt field 830 and the Cache Node 800
can stay in the Read List 870. As each client finishes reading,
the ReadCt 830 is appropriately decremented. When all
clients have finished reading the file block and the ReadCt
field 830 has been decremented back to a starting value, such
as 0, then the Cache Node 800 is returned to the Normal List
860.

0266. In one embodiment, the server 130 that wishes to
access an existing Cache Node 800 for a read or a write
operation can “take the desired Cache Node 800 from any
position in the Normal List 860, as needed. The Cache
Nodes 800 from the Write List 865 whose-associated data
have already been written to disk are returned to a “top”
position 875 of the Normal List 860. Similarly, when no
clients are currently reading the cached data associated with
a given the Cache Node 800 on the Read List 870, the Cache
Node 800 is returned to the “top” position 875 of the Normal
List 860. In this way, a most recently accessed Cache Node
800 amongst the Cache Nodes 800 on the Normal List 860
will be at the “top” position 875, and a least recently
accessed the Cache Node 800 will beat a “bottom position
880.

0267 In one embodiment, if space in the cache is needed
for a new data block when all of the Cache Nodes 800 have
been assigned, then the Cache Node 800 in the “bottom’
position 880 is selected to be replaced. To do so, the cached
data associated with the “bottom Cache Node 880 can be
written to a disk location specified in the DataGee field 810
of the “bottom Cache Node 880, and the DataGee 810 from
the “bottom Cache Node 880 is returned to its location in
the Gee Table 320. The “bottom Cache Node 880 can then
be overwritten by data for a new data block.

US 2006/017395.6 A1

0268. In one embodiment, the server nodes 150, 151 in
the cluster 160 do not have access to one another's cache
memory. Therefore, unlike the metadata structures described
in FIGS. 4-7, the Cache Node Table 350 is not replicated
across the servers 130, 131 of the cluster 160.

0269 Lock Nodes and Refresh Nodes

0270. In addition to the metadata structures described
above in connection with FIGS. 3-8, other metadata struc
tures can be used to enhance the security and the efficiency
of the file system 250. Two metadata structures, a Lock
Node Table and a Refresh Node Table, assist with the
management of “shares' and “locks' placed on the files of
the server node 150. A share or a lock represents a clients
request to limit access by other clients to a given file or a
portion of a file. Depending on its settings, as will be
described in greater detail below, a share or a lock prevents
other client processes from obtaining or changing the file, or
some portion of the file, while the share or lock is in force.
When a client requests a share or a lock, it can either be
granted, or, if it conflicts with a previously granted share or
lock, it can be given a “pending status until the original
share or lock is completed.

0271 Information about current shares and locks placed
on a server node's files is stored in a Lock Node Table. A
Lock Node Table includes Lock Strings, where each Lock
String describes the current and pending shares and locks for
a given file.

0272 FIG. 9 shows the structure of one embodiment of
a Lock String 900. The Lock String 900 includes five nodes
911,912,921,922, and 923. The first two nodes 911 and 912
are Share Nodes 910. The next three nodes 921-923 are Lock
Nodes 920. As shown in FIG. 9, in one embodiment, Share
Nodes 910 precede Lock Nodes 920 in the Lock String 900.

0273) The Share Nodes 910 have eight fields 930-937,
and the Lock Nodes 920 have ten fields 930-933 and
938-943. In FIG. 9, the first four fields of both the Share
Nodes 910 and the Lock Nodes 920 are the same, and as
Such, a description of one shall be understood to apply to
both Share Nodes and Lock Nodes.

0274) A lockStatus field 930 indicates whether the node
is of type SHARE or LOCK, or if it is currently an unused
FREE node. A SHARE node represents a current or pending
share request. A share applies to an entire file, and, if
granted, it specifies the read and write permissions for both
a requesting client and for all other clients in the system. A
LOCK node represents a current or pending lock request. A
lock applies to a specified byte range within a file, and, if
granted, it guarantees that no other client process will be
able to access the same range to write, read or read/write,
depending on the values in the other fields, while the lock is
in effect.

0275 A timeoutCt field 931 helps to ensure that locks and
shares are not inadvertently left in effect past their intended
time, due to error, failure of a requesting client process, or
other reason. Locks automatically “time out after a given
length of time unless they are “refreshed periodically.

0276 A next field 932 points to the next node in the Lock
String 900. A pending field 933 indicates whether the lock
or share represented by the node is active or pending.

Aug. 3, 2006

0277. The fields 934-937 of FIG. 9 contain additional
information useful to the Share Nodes 910. An access field
935 indicates the kind of access to the file that the client
desires. In one embodiment, the access field 935 may take on
one of four possible values: 0 indicates that no access to the
file is required; 1 indicates that read only access is required;
2 indicates that only write access is required; and 3 indicates
that read and write access to the file are both required.
0278 A mode field 934 indicates the level of access to the
file that another client process will be permitted while the
share is in effect. In one embodiment, the mode field 934 can
take on one of four possible values: 0 indicates that all
access by other client processes is permitted; 1 indicates that
access to read the file is denied to other client processes; 2
indicates that access to write to the file is denied to other
client processes; and 3 indicates that both read and write
access are denied to other client processes.
0279 A clientID field 936 identifies the client that
requested the share. A uid field 937 identifies the user on the
client that has requested the share or lock.
0280 Fields 938-943 of FIG. 9 contain additional infor
mation useful to Lock Nodes 920. An offset field 938
indicates the starting point of the byte range within the file
where the lock is in effect. A length field 939 indicates the
length of the segment (beginning at the offset point) that is
affected by the lock. In one embodiment, Lock Nodes 920
are kept ordered within the Lock String 900 according to
their Offset field 938.

0281 An exclusive field 940 indicates whether the lock is
exclusive or non-exclusive. An exclusive lock, sometimes
called a write lock, is used to guarantee that the requesting
process is the only process with access to that part of the file
for either reading or writing. A non-exclusive lock, often
called a read lock, is used to guarantee that no one else may
write to the byte range while the requesting the process is
using it, although reading the file is permitted to other
clients.

0282. A clientID field 941 identifies the client that
requested the lock. A uid field 942 identifies the user on the
client that is requesting the lock. Asvid field 943 identifies
the process that is requesting the lock.

0283. In one embodiment, a Refresh Node Table is used
to detect clients who hold locks or shares on files and who
are no longer in communication with the DFSS 100. A
Refresh Node is created for each client that registers a lock
or share. FIGS. 10 and 11 depict examples of how Refresh
Nodes can be configured as a binary tree and as a doubly
linked list, respectively. Based on the task at hand and on the
links used for traversal, both structures can exist simulta
neously for the same set of Refresh Nodes, as will be
explained in greater detail below.
0284. Referring to FIG. 10, six Refresh Nodes 1000,
1010, 1020, 1030, 1040, and 1050 are shown configured as
a binary tree. The structure of each Refresh Node is the
same, and it is to be understood that a detailed description
of one Refresh Node 1000 applies also to the other Refresh
Nodes 1010, 1020, 1030, 1040 of FIG. 10. In one embodi
ment, the Refresh Node 1000 includes six fields. A clientID
field 1001 identifies a client who has registered at least one
current lock or share. A counter field 1002 maintains a
counter that, in one embodiment, is originally set to a given

US 2006/017395.6 A1

start value and is periodically decremented until a “refresh'
command comes from the client to request that the counter
be returned to its full original value. If the counter field 1002
is allowed to decrement to a specified minimum value before
a “refresh' command is received from the identified client
1001, then all locks and shares associated with the client
1001 are considered to have “timed out,” and they are
removed from their respective Lock Strings 900.

0285) In one embodiment, Refresh Nodes are allocated
from a flat array of Refresh Nodes. The Refresh Nodes can
be linked and accessed in a variety of ways, depending on
the task at hand, with the help of pointer fields located in
each node. For example, when a “refresh” command arrives
from the client 110, it is advantageous to be able to quickly
locate the Refresh Node 1000 with the associated clientId
field 1001 in order to reset its counter field 1002. A binary
tree structure, as shown in the example of FIG. 10, can allow
for efficient location of the Refresh Node 1000 with the
given clientID field 1001 value if the nodes of the tree are
organized based on the clientID field 1001 values. In such a
case, a left link field 1003 (1tLink) and a right link field 1004
(rtLink), pointing to the Refresh Node's left and right child,
respectively, provide links for traversal of the tree using
conventional algorithms for traversing a binary tree.

0286. In one embodiment, unused Refresh Nodes 1100,
1110, 1120, 1130 in the flat array are kept in a doubly-linked
Free List, such as the one depicted in FIG. 11, for ease of
allocation and de-allocation. In one embodiment, used
Refresh Nodes are kept in a doubly-linked list, called a Used
List. With this structure, decrementing the counter field 1002
of each Refresh Node that is currently in use can be carried
out efficiently. In FIG. 11, a stackNext field 1105 and a
stackPrev field 1106 of the Refresh Node 110 together allow
for doubly-linked traversal of the Refresh Nodes of the Free
List and the Used List. When a new Refresh Node is needed,
it can be removed from the Free List and linked to both the
Used List and the binary tree by the appropriate setting of
the link fields 1003, 1004, 1105, and 1106.

0287)

0288. In one embodiment, the Filename Table 310, the
G-node Table 330, the Gee Table 320 and the Gnid Table
340 are cached as well as being stored on the disk array 140.
In one embodiment, when the server 130 changes a portion
of the metadata in cache, an entry is made into an Intent Log
in non-volatile memory, such as flash memory or battery
backed RAM. The Intent Log Entry documents the intention
to update both the version of the metadata stored on the disk
array 140 and any mirrored version(s) of the metadata on
other server nodes 151 of the cluster 160. The Intent Log
provides protection against inconsistencies resulting from a
power loss before or during an update.

Intent Log

0289. The following is a list of steps that show the
general use of the Intent Log:

0290) 1. Cached metadata is updated at the time of the
original change.

0291 2. An intention to update the disk version of the
metadata is put into the Intent Log.

0292) 3. A copy of the intention is transmitted to other
server nodes of the cluster.

Aug. 3, 2006

0293 4. The intention to write metadata to disk on the
first server node is executed.

0294 5. The intention to write metadata to disk on the
other server nodes is executed.

0295) 6. The Intent Log Entry on the first server is
deleted.

0296 7. Notice of the first server's Intent Log Entry is
sent to the other server nodes.

0297 FIG. 12 shows the structure of an Intent Log Entry
1200. In one embodiment, the Entry 1200 includes seven
fields. A status field 1210 designates whether the intention is
FREE, WAITING, or ACTIVE. An intentType field 1220
designates the type of metadata that is to be updated. For
example, the update may apply to a G-node, a Gnid, a Gee,
a Filename Entry, or to a file's last access time (aTime). A
goalBufferIndex field 1230 points to an entry in a Goal
Buffer that is used to verify the update. Field 1240 is a spare
field that helps align the fields to a 64 bit boundary. A
driveSector field 1250 and a drive field 1260 identify the
location on disk where the update is to be made. An
intentData field 1270 holds the data of the update.
0298 File Handle
0299. A file handle is provided to clients by the DFSS 100
for use when requesting access to a file. Each file handle
uniquely identifies one file. The DFSS 100 treats both
normal data files and directories as files, and provides file
handles for both. In the description that follows, the term
“file' may apply to either a data file or a directory file, unless
specifically limited in the text.
0300 FIG. 13 shows the structure of one embodiment of
a file handle 1300 as a 32-bit number with three fields. A
Recommended NIC field 1310 indicates which of a server's
Network Interface Connections (NICs) is recommended for
accessing the file associated with the file handle 1300. Fibre
Channel typically provides two ports per server, accord
ingly, in one embodiment, the Recommended NIC field
1310 is one bit in size.

0301 A ServerID field 1320 identifies, by means of a
server identification number (ServerID), the primary owner
of the associated file. The inclusion of the file owner's
ServerID 1320 in the file handle 1300 enables a user on the
client 110 to access a file in the distributed file system 250
without needing to knowing explicitly which server node is
holding the desired file. Using the file handle 1300 to request
a file from the file system software 250 allows the file system
software 250 to direct the request to the appropriate server.
By contrast, conventional UNIX file handles do not include
information regarding the server storing a file, and they are
therefore not able to accommodate the level of transparent
file access provided in the file system software 250.
0302) In one embodiment, clusters 160 include only two
server nodes 150, 151, and the ServerID of the file’s
secondary owner can be obtained by “flipping the least
significant bit of the field 1320. This ability is useful when
the primary owner 150 is very busy and must issue a “retry
later response to a client's request to read a file. In return,
the client 110 can temporarily change the ServerID in the
file's file handle 1300 and re-send the read request to the
file's secondary owner 151. Similar accommodations can be
made for clusters of more than two server nodes.

US 2006/017395.6 A1

0303) A G-node Index field 1330 provides an index into
the file's G-node in the G-node Table 330 on the server
identified in the ServerID field 1320.

0304. In one embodiment, the file handle for a given file
does not change unless the file is moved to another server
node or unless its G-node location is changed. Thus, the file
handle is relatively persistent over time, and clients can
advantageously store the file handles of previously accessed
files for use in Subsequent accesses.
0305 File Handle Look-Up
0306 In order to access a desired file, the client 110 sends
the file's file handle 1300 and a request for file access to the
file system 250. As was illustrated in the embodiment shown
in FIG. 13, the file handle 1300 of a given file comprises
information to identify the server that stores the file and the
location of the file's G-node 600 in the G-node Table 330.
With the information found in the G-node 600, as described
in the example of FIG. 6, the desired file can be located and
accessed.

0307 The file handle 1300 for a given file remains
relatively static over time, and, typically, the client 110
stores the file handles 1300 of files that it has already
accessed for use in Subsequent access requests. If the client
110 does not have a desired file's file handle 1300, the client
110 can request a file handle look-up from the file system
250 to determine the needed file handle 1300.

0308. In one embodiment of a file handle look-up pro
cess, the DFSS 100 accepts the file handle 1300 of a parent
directory along with the filename of a desired child file, and
the DFSS 100 returns the file handle 1300 for the desired
child file. If the client 110 does not know the file handle 1300
for the desired file’s parent directory, then the client 110 can
use the file handle 1300 for any directory along the path
name of the desired file and can request a file handle look-up
for the next component on the desired pathname. The client
110 can then iteratively request a file handle look-up for each
next component of the pathname, until the desired file's file
handle 1300 is returned.

0309 For example, if the client 110 desires the file handle
1300 for a file whose pathname is “root/WorkFiles/Paten
tApps/DesiredFile' and if the client 110 has the file handle
1300 for the parent “Patent Apps' directory, then the client
110 can send the look-up request with the “PatentApps' file
handle 1300 to get the “DesiredFile' file handle 1300. If the
client initially has no file handle 1300 for the parent "Pat
entApps' directory, but does have the file handle 1300 for
the “WorkFiles' directory, then the client 110 can send a first
look-up request with the known “WorkFiles' file handle
1300 together with the filename for the “PatentApps' direc
tory. The DFSS 100 returns the file handle for the “Paten
tApps' directory. Since the client 110 still does not have the
needed “DesiredFile' file handle 1300, the client 110 can
send a second file handle look-up request, this time using the
newly received “PatentApps' file handle and the “Desired
File' filename. In response, the file system 250 returns the
“DesiredFile' file handle 1300. In this way, beginning with
the file handle 1300 for any file along the pathname of a
desired file, the file handle 1300 for the desired file can
eventually be ascertained.
0310. In one embodiment, when the client 110 first
accesses the file system 250, the client 110 is provided with

20
Aug. 3, 2006

one file handle 1300, namely the file handle for a “root”
directory. The “root directory is the directory that contains
all other directories, and is therefore the first component on
the pathname of every file in the system. Thus, if need be,
the client 110 can begin the look-up process for any file's file
handle 1300 with a look-up request that comprises the “root
file handle and the filename of the next component of the
desired file’s pathname. The final file handle returned will
provide the client with the information needed to accurately
locate the desired file.

0311 FIG. 14A shows an example of the file handle
look-up procedure in which the client 110 has a file handle
1300 for a desired file’s parent directory and needs a file
handle for the desired file itself. The client 110 initiates a
look-up for the desired file handle by sending a look-up
request 1410 that comprises a filename 1420 of the desired
file and the file handle 1300 of the parent directory. The
ServerId field 1320 in the file handle 1300 identifies the
server 130 of the node 150 where the parent directory is
stored, and the file system software 250 directs the look-up
request 1410 to the identified server 130. The G-node index
field 1330 stores an index for the parent directory's G-node
in the G-node Table 330 on the identified server.

0312. In this example, the filename 1420 of the desired
file is “AAAAA. The ServerID field 1320 indicates that the
parent directory is stored on the server 130 with ServerID
“123, and the G-node index field 1330 shows that a G-node
for the parent directory can be found at index location “1”
in the G-node Table 330.

0313 When the server 130 receives the look-up request
1410, the server 130 uses information in the G-node index
field 1330 of the file handle 1300 to access a G-node 1432
at index location “1.”

0314. As described above, the G-node 600 acts as a
repository of general information regarding a file. In the
example illustrated in FIG. 14A, the File Attribute-type field
602 of the G-node 1432, namely “NFDIR,” indicates that the
file associated with the G-node 1432 is a directory, not a
regular data file.

0315. As described earlier, the Gnid-string 700 holds
information about the children files of a given directory. The
Child Gnid Index 628 in G-node 1432 points to a first Gnid
1436 in the directory’s Gnid-string 700. The server 130
searches for the desired data file amongst the children files
of the parent directory by searching the corresponding Gnids
on the directory's Gnid-string. The server 130 uses the
Filename Ptr fields 760 of each Gnid 710 to access the
associated file's filename entry 410 for comparison with the
filename 1420 of the desired file.

0316) In FIG. 14A, the Child Gnid Index field 628 of
G-node 1432 indicates a value of “3, and the server 130
accesses the Gnid 1436 at index location '3' in the Gnid
Table 340. To determine a filename associated with the Gnid
1436, the server 130 uses the Filename Ptr field 760 to
access the Filename Entry 1438 associated with the Gnid
1436 at index “3.” To ascertain if the filename stored at the
Filename Entry 1438 matches the filename 1420 in the
look-up request 1410, the server 130 first compares the
checksum and filename length count of the filename 1420 in
the look-up request 1410 with the checksum 412 and the
filename length count 413 stored in the Filename Entry 1438

US 2006/017395.6 A1

in the Filename Table 310. (Note: These checksums and
filename lengths are not shown explicitly in FIGS. 14A and
14B.) If the aforementioned checksums and filename length
counts match, the server 130 proceeds with a character-by
character comparison of the character string 1420 in the
look-up request 1410 and the filename 414 in the Filename
Entry 1438.

0317) If a mismatch is encountered during the compari
sons, as is the case in FIG. 14A, where the Filename Entry
1438 holds a filename of “ABCD and length “4” while the
desired filename of “AAAAA' has a length of “5,” then the
current Gnid is eliminated from consideration. After encoun
tering a mismatch for the Gnid 1436 at index “3, the server
130 continues to traverse the Gnid-string 700 by using the
Sibling Gnid Ptr field 740 in the current Gnid 1436 as an
index pointer.

0318. The Sibling Gnid Ptr field 740 of the Gnid 1436
holds a value of “4” indicating that a next Gnid 1440 can be
found at index location “4” of the Gnid Table 340. When the
checksum and name length for the desired filename 1420 do
not match those from a Filename Entry 1442"DE' found at
index location “0” of the Filename Table 310, the server 130
again eliminates the current Gnid from consideration.
0319. The server 130 again uses the Sibling Gnid Ptrfield
740 as a pointer, this time from the Gnid 1440 at index
location “4” to a Gnid 1444 at index location “6” in the Gnid
Table 340. Following the Filename Ptr 760 of the Gnid 1444
to Filename Entry 1446 and performing the aforementioned
checksum, filename length, and filename comparisons
reveals that the desired filename 1420 and Filename Entry
filename 1446 do match. The server 130 therefore deter
mines that this Gnid 1444 is associated with the desired file.

0320 In order to send the desired file handle 1300, which
comprises the ServerID 1320 and G-node Table index 1330
for the desired file, to the requesting client 110, the server
130 accesses the G-node Ptr field 750 of the current Gnid
1444. The G-node 600 of a file is stored on the server node
150 where the file is stored, which is not necessarily the
same server node that holds its parent directory. The G-node
Ptrfield 750 provides both the ServerID of the server that is
the file’s primary owner and an index that identifies the file's
G-node 1448 in the primary owner's G-node Table 330.
0321) In the example of FIG. 14A, the contents of the
G-node Ptr field 750 show that the desired G-node 1448
exists at location '9' in the G-node table 330 on the same
server 130, namely the server with ServerID “123.” How
ever, it would also be possible for the G-node Ptr field 750
to contain an index to a G-node Table 330 on another server
132, in which case, the file handle 1300 would include the
ServerID of the server 132 holding the file and its G-node
600. (This possibility is indicated by the dotted arrow 1460
pointing from the G-node Ptrfield 750 to another server 132
of the DFSS 100.) Thus, the information in the G-node Ptr
field 750 allows the server 130 to provide the client 110 with
both a ServerID 1320 and with the G-node Index 1330
needed to create the file handle 1300 for the desired file. The
file handle 1300 for the desired file can be sent back to the
client 110 for use in future access of the desired file, and the
process of file handle look-up is complete.

0322 FIG. 14B shows one example of a file access
operation, illustrated using the same context as was used in

Aug. 3, 2006

FIG. 14A. Here, the client 110 already has a file handle 1301
for the desired file, so an access request 1411 can be sent
directly to the file system 250. As previously disclosed, the
user on the client 110 has no need to be aware of the specific
server node 150 that will be accessed. This information is
embedded in the desired file’s file handle 1301.

0323) The server 130, indicated in a ServerID field 1321,
accesses the G-node 1448 at index '9' as indicated in a
G-node index field 1331 of the file handle 1301.

0324. As disclosed above, the Gee Table 320 holds
information about the physical storage locations of a file’s
data and parity blocks on the disk array 140. The Gee Table
320 also holds information that helps locate blocks of data
that have been copied to cache. A Gee holds storage location
information about one block of data. Gees for a given file are
linked together to form the gee-string 500. A first Gee of the
gee-string 500 is called the root of the gee-string 500.
0325 The Gee Index-Root field 636 of the G-node 1448
provides an index to a root Gee 1450 in the Gee Table 320.
Reading the data field 591 of the Gee 1450 confirms that this
Gee is a root Gee and that it is associated with the G-node
1448 at index location “9. The server 130 continues reading
the gee-string at the next contiguous Gee 1452 in the Gee
Table 320. Reading the G-code 590 of the Gee 1452 with its
value of “CACHE DATA reveals that this Gee represents
data that has been cached.

0326. As disclosed above, the Cache Node Table 350
holds information that allows the server 130 to access a file
block's location in cache 1456. Reading the Data Field 591
of a next Gee 1452 provides a pointer to an appropriate
cache node 1454 of the Cache Node Table 350. The cache
node 1454 holds the Cache Block Addr field 825 which
points to a location 1458 in cache 1456 of the data associated
with the Gee 1452. The cache node 1454 also holds a copy
of the associated Gee 1452 from the Gee Table 320 in the
Data Gee field 810 until the associated data block 1458 is no
longer stored in cache. The Data Gee field 810 also provides
a pointer to the location of the associated file data stored on
the server node's disk array 140. By following the pointers
from the file handle 1301 to the G-node 1448 at index
location “9, on to the Gees 1450 and 1452 at index
locations “2 and “3, on to the Cache Node 1454 at index
location “7,” and finally on to cache location “w” 1458, the
data originally requested by the client 110 can be accessed
for reading, writing, or other operations, and the process of
file access is complete.

0327 FIGS. 15-17 present a set of interrelated flow
charts that illustrate the process of file access, including file
handle look-up, if necessary.
0328. Referring to FIG. 15, a process 1500 of accessing
a file is described, beginning with the request for a file
handle look-up, through the use of the file system's metadata
structures, to final access of the file data in cache.

0329 Beginning at a start state 1505, the process 1500
moves to a state 1510 where the client 110 determines
whether it has the file handle 1300 for a file that it wishes to
aCCCSS,

0330) If the client 110 does not have the desired file
handle 1300, the process 1500 moves to a state 1515, where
the client 110 and one or more servers of the DFSS 100

US 2006/017395.6 A1

perform a file handle look-up, as will be described in greater
detail with reference to FIG. 16.

0331 Returning to the state 1510, if the client 110
determines that it does have the desired file handle 1300,
then the process 1500 moves on to a state 1520 where the
client 110 sends the file access request 1411 to the server 130
indicated in the file handle 1300.

0332 From state 1520, the process 1500 moves to a state
1525 where the server 130 accesses a G-node 600 indicated
in the file handle 1300.

0333 Moving on to a state 1530, the server 130 uses a
pointer in the G-node 600 to access an appropriate Gee in the
Gee Table 320. Several possibilities exist for appropriate
gees, depending on the current access needs of the server
130. For example, in the embodiment of the G-node 600
described in FIG. 6, seven fields 630-636 relate to pointers
to the Gee Table 320. The Gee Index Root field 636 is an
index to the root Gee, which can be used, for example, when
reading from the beginning of a file is desired. Fields 634
and 635 together point to the last Gee of a file, which can be
used, for example, when appending new data to the end of
a file. Fields 630 and 631 together point to a most recently
used Gee for the file, which can be used, for example, for
sequential access to the gees of a file. Fields 632 and 633
together point to a middle Gee for the gee-string 500 which
can be used, for example, when access to the middle, or
second half of the file is desired.

0334. After accessing an appropriate Gee in the state
1530, the process 1500 moves on to a state 1535 where the
server 130 reads the G-code field 590 in order to determine
if the data represented by the Gee has already been cached.
If the G-code 590 holds a value other than “CACHE DATA
or “CACHE PARITY, the server 130 assumes that the
desired data has not yet been cached, and the process 1500
moves to a state 1540 where the desired data is sent to cache.
The state 1540 is described in greater detail in connection
with FIG. 17 below.

0335) Returning to the state 1535, if the server 130
determines that the G-code 590 holds a value of “CACHE
DATA or “CACHE PARITY, the server 130 assumes that
the desired data has already been cached. The process 1500
then moves on to a state 1545 where the server 130 accesses
the cache node 800 indicated in the gee's data field 591.
0336. From the state 1545, the process 1500 moves on to
a state 1550 where the server 130 manipulates the accessed
cache node 800 as needed according to the description of
FIG. 8B. For example, if the cache node 800 is currently on
the Normal List 860, and the client 110 has requested to read
the data block, the server 130 can increment the cache
node's ReadCt field 830 and move it to the Read List 870.

0337. Once the Cache Node 800 is properly updated, the
process 1500 moves from the state 1550 to a state 1555
where the server 130 accesses the file block data in the cache
location indicated in the Cache Node 800. From here, the
process 1500 moves on to a state 1560 where the server 130
performs a desired operation on the cached data block. From
the state 1560, the process 1500 moves on to a state 1570
where accessing the file is complete.

0338. In FIG. 15, the process 1500 reaches the state 1515
only if the client 110 does not have a file handle 1300 for the

22
Aug. 3, 2006

desired file. Referring to the embodiment of the file handle
1300 illustrated in FIG. 13, the file handle 1300 for a given
file comprises, among other possible fields, a ServerID field
1320 identifying the server 130 that stores the data and
metadata for a file, as well as a G-node Index field 1330 that
indicates the G-node 600 of the given file on that identified
Server 130.

0339 FIG. 16 is a flow chart that describes in more detail
how the process of the state 1515 carries out a file handle
look-up. The look-up process 1515 begins with a look-up
request that comprises the file handle 1300 for a directory on
the pathname of the desired file and continues on through
each component of the pathname, retrieving a file handle for
each, until a file handle for the desired file itself is returned
to the client 110.

0340. The “root” directory is the first component of the
pathname for every file in the file system, and, if necessary,
the client 110 can begin the process of file handle look-up
1515 with the file handle of the “root” directory. In one
embodiment, every client has at least the file handle 1300 for
a “root' directory for the file system 250. For example, the
“root directory can be known to reside on the server 130
with ServerID number 0, and its G-node 600 can be known
to reside at index 0 of the G-node Table 330 on Server 0.
However, it may also be that at the beginning of the look-up
process 1515, the client 110 has the file handle 1300 for the
desired file’s parent directory or for another directory on the
pathname of the file, and that by beginning with one of these
directories “closer to the file itself, the look-up process may
be shortened.

0341 Beginning at a start state 1605, the process 1515
moves to a state 1610 where the client 110 sends the look-up
request 1410 comprising the file handle 1300 for a directory
and the filename 1420 of a desired next component. The
look-up request 1410 is sent to a server 1300 indicated in the
file handle 1300 field of the look-up request 1410. The
process 1515 next moves to a state 1615, where the server
130 accesses a G-node 600 indicated in the file handle 1300
of the look-up request 1410.
0342 Moving on to a state 1620, the server 130 uses the
ChildGnidIndex field 628 in the G-node 600 to access a first
Gnid 710 in the directory's Gnid-string 700. As described in
connection with the embodiment shown in FIG. 7, the
Gnid-string 700 is a linked list of Gnids 710, with one Gnid
710 for each child file in a parent directory.
0343 Moving on to a state 1625, the server 130 calcu
lates a checksum and filename length for the filename 1420
of the next desired pathname component that was sent by the
client 110 in the look-up request 1410. Having a checksum
and filename length for a desired file allows the server 130
to expedite searching for a matching Filename Entry
because comparison of checksums and comparison of file
name lengths can be accomplished much more quickly than
a character-by-character comparison of the filenames them
selves. Performing the first two types of comparisons before
embarking on the character-by-character comparison allows
the server 130 to eliminate any Filename Entries whose
checksum and filename length do not match, before per
forming the more costly character-by-character filename
comparison.
0344) Moving on to a state 1630, the server 130 uses the
FilenamePtrfield 760 of the currently accessed Gnid 710 to

US 2006/017395.6 A1

locate the associated Filename Entry 410 in the Filename
Table 310. Moving on to a state 1635, the server 130
determines if the checksum 412 stored in the currently
accessed Filename Entry 410 is greater than the checksum
calculated in the state 1625.

0345 As described in connection with FIG. 7, in one
embodiment, Gnids 710 are stored in the Gnid-string 700 in
order of checksum 412 values calculated for their associated
character strings 414, with the Gnid 710 having the smallest
checksum 412 value coming first. This ordering of Gnids
710 by checksum 412 value allows the server 130 to
determine whether a desired filename may still exist on the
given Gnid-string 700. In this embodiment, if, in the state
1635, the server 130 determines that the checksum 412
found in the currently accessed Filename Entry 410 is
greater than the checksum calculated in the state 1625, then
a Gnid 710 for the desired file (with the lower checksum)
cannot exist on the currently accessed Gnid-string 700. In
this case, the process 1515 moves on to a state 1640, where
it reports a File-Not-Found Error to the client 110.
0346) Returning to the state 1635, if the server 130
determines that a checksum found in a currently accessed
Filename Entry is greater than the checksum calculated in
state 1625, then the process 1515 moves on to a state 1645.

0347 In the state 1645, the server 130 determines if the
checksums and the filename lengths from the two sources
match. If either the checksums or the filename lengths (or
both) do not match, then this Filename Entry can be ascer
tained not to be associated with the client’s desired file, and
the process 1515 moves on to a state 1660. In the state 1660,
the server 130 uses the SiblingGnidPtr 740 in the current
Gnid 710 to access the next Gnid in the current Gnid-string.

0348 Returning to the state 1645, if the server 130
determines that the checksums and filename lengths do
match, then this Filename Entry 410 cannot yet be elimi
nated, and the process 1645 moves on to a state 1650, where
the server 130 performs a character-by-character compari
son of the two filenames.

0349) If, in the state 1650, the server 130 determines that
the two filenames do not match, then, as was the case in State
1645, this Filename Entry can be ascertained not to be
associated with the client’s desired file. In this case, the
process 1515 moves on to a state 1660, where the server 130
uses a SiblingGnidPtr 740 in the current Gnid to access a
next Gnid 711 in the current Gnid-string 700.

0350. From the state 1660, the process 1515 returns to the
state 1630, and the server 130 uses the Filename Ptrfield 760
of the newly accessed Gnid 711 to access an associated
Filename Entry in the File Table 310. This loop through the
states 1630, 1635, 1645, 1660 (and possibly 1650) continues
until a Filename Entry and associated Gnid for the desired
file is found or until an error is encountered.

0351) If, in the state 1650, the server 130 determines that
the filenames do match, then the process 1515 has identified
a Filename Entry and an associated Gnid that corresponds to
the desired file. In this case, the process 1515 moves on to
a state 1655, where the server 130 sends the desired file
handle 1300 information back to the client 110. Moving on
to a state 1665, the file handle look-up process 1515 is
complete. The process 1500 from FIG. 15 then proceeds

Aug. 3, 2006

from the state 1515 back to the state 1510 and continues as
described in the explanation of FIG. 15.
0352 FIG. 17 presents a more detailed description of the
state 1540 from FIG. 15, in which uncached data that has
been requested for access by the client 110 is copied into
cache memory. The process 1540 of caching file data begins
in a start state 1705 and proceeds from there to a state 1710,
where the server 130 identifies the least recently used cache
node 880. In one embodiment of the file system 250, when
the three-list scheme described in FIG.8B is used, the server
130 can easily identify the least recently used cache node
880 because it is a “last’ cache node on the Normal List 860
of the scheme.

0353 Moving on to a state 1720, the server 130 writes the
associated file data from its Volatile location in cache to its
non-volatile location on disk array 140, which is indicated in
the DataGee field 810 of the cache node 800.

0354 Moving on to a state 1730, the server 130 copies
the DataGee field 810 from the cache node 800 back to its
original position in the Gee Table 320, changing the G-code
590 back from “CACHE DATA to “DATA or from
“CACHE PARITY” to “PARITY” indicating that the asso
ciated data is no longer cached.
0355 Moving on to a state 1740, the server 130 over
writes the DataGee field 810 in the cache node 800 with a
Gee from the Gee Table 320 that is associated with a new file
block to be cached.

0356) Moving on to a state 1750, the server 130 caches
the new file block from disk to a cache location associated
with the cache node.

0357 Moving on to a state 1760, the process 1540 of
caching file data is complete, and the process 1500 in FIG.
15 can proceed from the state 1540 on to the state 1545 to
continue the task of accessing a file.
0358 Referring to FIG. 18, a process of file allocation
1800 is shown in flowchart form. The process 1800 begins
in a start state 1805 and moves to a state 1810 where the
client 110 send a file allocation request that includes a
filename for a new file and a file handle for the new file’s
parent directory.

0359 The process 1800 moves to the state 1815, and the
server node 150 indicated in the parent directory's file
handle receives the file allocation request. For the purposes
of the description of this figure, this server node 150 will be
known as the “parent server.
0360. The process 1800 moves to the state 1820, and the
“parent server 150 uses workload statistics received from
the other server nodes of the DFSS 100 to decide if the file
will be “owned' by the “parent” server node 150 or by
another server node.

0361) If the “parent” server node 150 decides that it will
be the owner of the new file, then the process 1800 moves
to a state 1830, where the “parent server creates a new file,
makes an appropriate new Filename Entry 410 in the File
nameTable 310, and allocates a new G-node 600 for the new
file. At this point, the “parent server node 150 has enough
information to create the file handle 1300 for the new file.

0362) Returning to the state 1820, if the “parent” server
node 150 decides that another server node should own the

US 2006/017395.6 A1

new file, the process 1800 moves to a state 1850, where the
“parent server 150 sends a file allocation request to another
server of the DFSS 100. For the purposes of describing this
figure, the other server will be known as the “second server.
0363 From the state 1850, the process 1800 moves to a
state 1855 where the “second server creates a new file,
makes the appropriate new Filename Entry 410 in the
Filename Table 310, and allocates the new G-node 600 for
the new file. At this point, the “second server has enough
information to create the file handle 1300 for the new file.

0364. From the state 1855, the process 1800 moves on to
a state 1860, where the “second server sends the file handle
1300 for the new file to the “parent” server node 150.
0365 At this point, when the “parent” server node 150
has the file handle 1300 for the new file, the process 1800
moves on to a state 1835.

0366) The state 1835 can also be reached from state 1830
in the case where the “parent” server 150 decided to be the
owner of the file. As disclosed above, in state 1830 the
“parent server 150 also had the information to create a file
handle 1300 for the new file, and the process 1800 also
moves on to a state 1835.

0367 For either case, in state 1835, the “parent” server
node 150, as owner of the new file's parent directory,
allocates a Gnid 710 for the new file, adds it to the appro
priate Gnid-string 700, and, if one does not already exist, the
“parent” server node 150 makes an appropriate new File
name Entry 410 in the Filename Table 310.
0368 From state 1835, the process 1800 moves on to a
state 1840, where the “parent” server node 150 sends the file
handle 1300 for the new file to the requesting client 110.
0369. The process 1800 moves on to a state 1845 where
the process of file allocation is now complete. The request
ing client 110 can access the new file using the newly
received file handle 1300, and since the file handle 1300
contains identification for the server that owns the new file,
any access request can be automatically routed to the
appropriate server node.

0370 Redirectors
0371. In various embodiments, the DFSS 100 can be
configured to store and manage a very large number of files
of widely varying sizes. In some embodiments, it can be
advantageous to store all of the file metadata on disk, while
copies of the metadata for only some of the most recently
used files are additionally cached in volatile memory. In
Some embodiments, memory for metadata structures can be
dynamically allocated as new metadata structures are
brought from disk to volatile memory.

0372 FIG. 19 depicts one embodiment of a scheme to
allow for efficient access to file metadata when not all
metadata is kept in Volatile memory. In the embodiment
shown in FIG. 19, a G-node Redirector (GNR) array 1900
in volatile memory holds a G-node Redirector (GNR) 1910
per file. The G-node Redirector (GNR) is a small data
structure that comprises information for locating the G-node
600 of a desired file, including information regarding
whether the file's G-node 600 is currently in cache 1920. In
the embodiment shown in FIG. 19, a client 110 requesting
access to a given file sends a file handle 1300 that includes

24
Aug. 3, 2006

an index for the desired G-node Redirector (GNR) 1910 in
the G-node Redirector (GNR) array 1900, which references
the G-node 600 of the desired file. In one embodiment, when
a desired G-node 600 is not currently cached, a least recently
used G-node 600 in cache 1920 can be removed from cache
1920, and a copy of the desired G-node 600 can be brought
from the disk array to the cache 1920.

0373) Super G-Nodes
0374. In one embodiment, the file system 250 can be
advantageously configured to store file metadata in a data
structure called a Super G-node (SG) that comprises the
file's G-node, other file information, and information that
allows the file system 250 to locate the physical storage
locations of the file's data blocks, as will be described in
greater detail below.

0375 FIG. 20A shows one embodiment of a Super
G-node 2000 structure offixed size that can provide location
information for files of a wide variety of sizes. As shown in
FIG. 20A, a Status field 2010 in the Super G-node 2000 can
be used to indicate a type of Super G-node that corresponds
to a category of associated file sizes, as will be described in
greater detail with reference to FIG. 20B. A Linking Infor
mation field 2020 can be used to interconnect Super G-nodes
2000 into one or more linked lists or other structures. A
G-node field 2030 comprises attribute and other information
about a corresponding file that is similar to the information
stored in the G-node 600 embodiment described with ref
erence to FIG. 6. A File Location Data field 2040 in the
Super G-node 2000 allows the file system 250 to locate a
file's data, as will be described in greater detail below.

0376. In the embodiment shown in FIG. 20A, the Super
G-node 2000 comprises 16 Kbytes of memory. The Status
2010, Linking Information 2020, and G-node 2030 fields
together comprise 128 Bytes of the Super G-node 2000, and
the remainder of the Super G-node can be used to store the
File Location Data 2040.

0377 FIG. 20B depicts one embodiment of a scheme
that uses Super G-nodes 2000 of a fixed size to hold
information about files of widely differing sizes. In the
embodiment shown in FIG. 20A, four types 2001-2004 of
Super G-node 2000 are depicted.

0378 A Super G-node 2000 of type Super G-node Data
(SGD) 2001 can be used for a file that is small enough that
its data 2005 can fit entirely within the File Location Data
2040 field of the SGD 2001. For the embodiment described
with reference to FIG. 20A, a small file refers to a file that
is 16.256 Bytes, or smaller. When a file’s Super G-node
2000 is of type SGD 2001, locating the file's data simply
means reading it from the File Location Data 2040 field of
the SGD 2001.

0379. In the embodiment shown in FIG. 20B, a Super
G-node 2000 of type Super G-node Gee (SGG) 2002 can be
used for medium files, that is, files of sizes up to approxi
mately 700 MegaBytes of data that are too large to fit into
an SGD 2001. In an SGG 2002, the File Location Data 2040
field is used to hold a Gee String Packet (GSP) 2007 that
comprises information very similar to that of the Gee-String
500 described with reference to FIG. 5. As with the Gee
String 500, the Gee String Packet 2007 comprises Gees 2006
that point to the physical locations of the file's data 2005.

US 2006/017395.6 A1

0380 A Super G-node 2000 of type Super G-node List
(SGL) 2003 can be used for large files whose Gee-String 500
is too large to be described by a Gee String Packet 2007 that
fits within the SGL's 2003 File Location Data 2040 field.
Instead, the SGL's 2003 File Location Data 2040 field is
used to hold a Gee String Packet Block (GSPB) 2008, which
is a list of pointers to a plurality of Gee String Packets 2007
that together describe the Gees 2006 that point to the
locations of the file's data 2005. In one embodiment, an SGL
2003 can reference files of sizes up to approximately 490
GigaBytes.

0381 A Super G-node 2000 of type Super G-node List of
Lists (SGLL) 2004 can be used for very large files. Here, the
File Location Data 2040 field of the SGLL 2004 comprises
a Gee String Packet List Block 2009 that comprises pointers
to a plurality of Gee String Packet Blocks 2008 that point to
a plurality of Gee String Packets 2007 that points to a
plurality of Gees 2006 that point to a plurality of storage
locations that hold the desired data 2005.

0382. In one embodiment, Gee String Packet List Blocks
2009, Gee String Packet Blocks 2008, and Gee String
Packets 2007 are implemented in structures that are equiva
lent in size and organization to the Super G-node 2000
described with reference to FIG. 20A, except that the
G-node field 2030 is not used.

Parity Groups

0383) The foregoing description of a distributed file stor
age system addresses the need for a fault tolerant storage
system with improved reliability and scalability character
istics. This system features a flexible disk array architecture
that accommodates the integration of variably sized disk
drives into the disk array and provides mechanisms to permit
each drive's capacity to be more fully utilized than prior art
systems. In one embodiment, variably sized data and parity
blocks are distributed across the available space of the disk
array. Furthermore, the system provides methods of redis
tributing data across the disk array to improve data storage
and retrieval, as well as, provide for improved fault-toler
ance. Another benefit of the data redistribution characteris
tics of the system is that it continues to provide fault-tolerant
data access in situations where many drives of the disk array
have failed. This feature is a notable improvement over
conventional RAID systems that typically only provide
fault-tolerance for single (or at most two) drive failures.
0384 FIG. 22A shows a file storage system 100 having
the server node 150 that operates within a computer network
architecture to provide data and file storage. The computer
network comprises one or more clients 110 that exchange
information with the server node 150 through the commu
nications medium or fabric 120 to store and retrieve desired
data from the server node 150. In one aspect, the clients 110
include one or more computing devices that exchange
information with the server node 150 through the commu
nications medium 120.

0385) The communications medium 120 can be any of a
number of different networking architectures including, for
example, Local Area Networks (LAN), Wide Area Networks
(WAN), and wireless networks which may operate using
Ethernet, Fibre Channel, Asynchronous Transfer Mode
(ATM), and Token Ring, etc. Furthermore, any of a number
of different protocols can be used within the communica

Aug. 3, 2006

tions medium 120 to provide networking connectivity and
information exchange capabilities between the clients 110
and the server node 150, including, for example, TCP/IP
protocols, Bluetooth protocols, wireless local area network
ing protocols (WLAN), or other suitable communications
protocols.

0386 The server node 150 includes the server 130 that
serves as a front end to the disk array 140. The server 130
receives information and requests from the clients 110 and
processes these requests to store and retrieve information
from the disk array 140. In one aspect, the server 130
maintains at least a portion of an instruction set or file
system that determines how data and information are stored
and retrieved from the disk array 140.
0387 Although the server node 150 is illustrated as a
single entity in FIG. 22A, it will be appreciated that many
server nodes 150 can be connected to the communications
medium 120. Thus, a plurality of server nodes 150 can be
connected to the communications medium 120 and acces
sible to the clients 110 for the purposes of information
storage and retrieval. Furthermore, the server nodes 150 can
operate independently of one another or be configured to
transparently present a single disk image to each client 110
thus creating a unified storage area that facilitates end user
interaction with the server nodes 150. In one aspect, the
server nodes 150 incorporate functionality for maintaining
the single disk image through the use of the file system
present in each of the servers 130 which provides commu
nication and organization to create the single disk image.
0388 FIG. 22B illustrates another embodiment of a file
storage system comprising a distributed file storage system
architecture. In this embodiment, two or more server nodes
150, 151 are physically or logically interconnected to form
the cluster 160. File data stored on any server node is
accessible to any other server in the cluster 160. The cluster
160 may also provide metadata and transaction mirroring.
Furthermore, stored files may be replicated across at least
two server nodes 150, 151 within the distributed file storage
system 100 to provide increased redundancy or data mir
roring capabilities.

0389. One advantage achieved by the aforementioned
distributed configurations is that they may provide increased
data protection and/or fault tolerance. For example, if the
replicated server node 150 fails or becomes unavailable, the
second replicated server node 151 can handle client requests
without service interruption. Another advantage achieved by
using this interconnected arrangement is that alternative
server node access paths 165 can be created where identical
data can be read simultaneously from the two or more
interconnected server nodes 150, 151. Thus, if one server
node 150 in the cluster is busy and unavailable, another
redundant server node 151 can service client requests to
increase data throughput and accessibility. As with the single
server node configuration, a plurality of clusters 160 may be
present and accessible to the clients 1110. Similarly, the
clusters 160 can be configured to present a single disk image
to the clients 110 to facilitate interaction by the end users of
the distributed file storage system 100.
0390. As shown in FIG.22B, each disk array 140,141 in
the server nodes 150, 151 can include a variable number of
disks where each server node 150, 151 has a different disk
array configuration. Each disk within the disk array 140,141

US 2006/017395.6 A1

can have a different storage capacity. These features of the
distributed file storage system 100 contribute to improved
flexibility and scalability in configuring the server nodes
150, 151.

0391 The variable disk configuration of the distributed
file storage system 100 overcomes a limitation present in
many conventional storage systems which require that
upgrades to the storage system be performed in a coordi
nated manner where all disks in each disk array 140, 141 are
replaced in unison. Additionally, many conventional storage
systems, including RAID architectures, require strict con
formity amongst the disk arrays within the system, as well
as, conformity in disk capacity within individual disk arrays.
The distributed file storage system 100 of the present
invention is not limited by the restriction of uniform disk
upgrades or conformity in disk capacity and can accommo
date replacement or upgrades of one or more drives within
each server node with drives of differing capacity. To
maintain data integrity and knowledge of available storage
space within the distributed file storage system 100, one of
the functions of the aforementioned file system present in
the servers 130, 131 is to accommodate differences in disk
array capacity and disk number between the server nodes.
0392 FIG. 23 illustrates the use of a distributed file
storage mechanism within the disk array 140 to improve
space utilization and flexibility of data placement. A space
mapping configuration 2300 is illustrated for the disk array
140 where each disk 2305 is subdivided into a plurality of
logical blocks or clusters 2310. For the purposes of this
illustration the cluster size is shown to be fixed across all
disks 2305 of the array 140, although, as will be illustrated
in greater detail in Subsequent figures, the cluster size can be
variable within each disk 2305 and across disks 2305 within
the array 140.
0393 A first file 2320 having data to be stored on the disk
array 140 is subdivided into one or more data blocks. The
determination of the data block size, number, and distribu
tion is calculated by the file system as data storage requests
are received from the clients 110. Each data block 2330 is
mapped or assigned to a location within the disk array 140
that corresponds to the particular disk 2305 and logical
block 2310 within the disk 2305. Unlike conventional disk
arrays, the block size used for data storage is variable from
one block to the next within the file.

0394 The server 130 organizes and distributes informa
tion to the disk array 140 by dividing a file into one or more
data blocks 2330 that are distributed between one or more
parity groups 2335. Each parity group 2335 includes a
discrete number of data blocks 2330 and further includes a
parity block 2337 containing parity information calculated
for the data blocks 2330 contained within the particular
parity group 2335. Unlike conventional systems, the size of
the data blocks 2330 and parity blocks 2337 is not singularly
fixed throughout the disk array 140. The collection of data
blocks 2330 and parity blocks 2337 can include a number of
different sizes and configurations resulting in more flexible
storage of data within the disk array 140.
0395. Using File #1 in FIG. 23 as an example, the
information contained in the file is distributed in 7 data
blocks corresponding to DATA 1-DATA 7. Each data block,
DATA 1-DATA 7is distributed between 3 parity groups
wherein the first parity group contains DATA 1-DATA2the

26
Aug. 3, 2006

second parity group contains DATA3-DATA4and the third
parity group contains DATA 5-DATA 7. Furthermore, 3
parity blocks PARITY 1-2, PARITY 3-4, and PARITY 5-7
are formed, one for each parity group.
0396 The parity groups 2335 are determined by the
server 130 which assesses the incoming data to be stored in
the disk array 140 and determines how the data is distributed
into discrete data blocks 2330 and furthermore how the data
blocks 2330 are distributed into parity groups 2335. After
determining the data block and parity group distribution, the
server 140 calculates the parity information for the data
blocks 2330 in each parity group 2335 and associates the
parity block 2337 containing this information with the
appropriate parity group 2335.

0397) The server 130 then determines how the informa
tion for each parity group 2335 is stored within the disk
array 140. Each data block 2330 and parity block 2337 is
distributed within the disk array 140 in an arrangement
where no blocks 2330, 2337 originating from the same
parity group 2335 are stored on the same disk of the disk
array 140. The non-overlapping storage of data blocks 2330
and parity blocks 2337 derived from the same parity group
2335 creates the fault-tolerant data storage arrangement
where any block 2330, 2337 within a parity group 2335 can
be reconstructed using the information contained in the other
remaining blocks of the parity group 2335. This arrangement
where blocks 2330, 2337 associated with the same parity
group 2335 are not be stored on the same disk 140 is
important in case of a disk failure within the array 140 to
insure that that lost data can be reconstructed. Otherwise, if
two or more blocks associated with the same parity group
2335 are stored on the same drive, then in the event of a disk
failure, data recovery can not be assured.
0398. An example distribution of data blocks 2330 and
parity blocks 2337 within the disk array 140 is shown in
FIG. 23. The 7 data blocks and 3 parity blocks correspond
ing to the File #1 are distributed along disk numbers
0.18.3.7.2 and 2110 respectively. In a similar manner, a
second file 2340 is divided into 4 data blocks (and 2 parity
groups) that are distributed along disk numbers 0.2.4, and 5
respectively. The size, order, and placement of the data
blocks is pre-determined by the server 130 which assigns
regions of each disk 2305, corresponding to particular
logical blocks, to store data blocks of designated sizes. The
parity blocks 2337 of the parity groups 2335 associated with
the first file 2320 are further stored on disks 9,6,11 with the
parity blocks 2337 of the second file 2340 stored on disks 3,
9.

0399. The data blocks 2330 and the parity blocks 2337
need not be sequentially stored but rather can be distributed
throughout the disk array 140. Using this arrangement, the
distributed file storage system 100 permits the non-sequen
tial assignment and storage of parity group information in a
flexible manner that is not limited by a rigid order or
placement schema. Flexible block placement in the afore
mentioned manner improves disk utilization within the disk
array 140 and provides for accommodating variable disk
capacities as will be shown in greater detail in Subsequent
figures.

0400 FIG. 24A illustrates a process 2400 for the storage
of data and parity information within the distributed file
storage system 100. The process 2400 commences with a

US 2006/017395.6 A1

data storage request 2410 issued by the client 110 to the
server node 150. During this time the client 110 sends or
transmits data 2415 to the server node 150 which receives
and prepares the data 2420 for Subsequent processing and
storage. In one embodiment, the server node 150 includes
hardware and/or software functionality to perform opera
tions such as error checking, data buffering, and re-trans
mission requests, as needed, to insure that the data 2415 is
received by the server 130 in an uncorrupted manner.
Furthermore, the server node 150 is able to process simul
taneous requests from a plurality of clients 110 to improve
performance and alleviate bandwidth limitations in storage
and retrieval operations. In one aspect, the data 2415 is
transmitted through the communications fabric 120 in the
form of a plurality of data packets that are automatically
processed by the server node 150 to generate the data 2415
that is to be desirably stored within the disk array 140.
04.01 Upon receiving the data 2420, the server 130
analyzes the characteristics of the data 2430 to determine
how the data 2415 will be distributed into one or more data
blocks 2330. In one aspect, the data analysis 2430 includes
identifying the content or type of data that has been sent,
Such as, for example, multimedia data, textual data, or other
data types. Using one or more of the plurality of available
disk blocks sizes, the server 130 identifies desirable block
sizes and distribution mappings that are used to group the
data 2415 and organize it into the data blocks 2330.

0402. The data 2415 is then parsed into blocks 2440
according to the data analysis 2430 and the resulting blocks
are further arranged into one or more parity groups 2450.
The parity group arrangement determination 2450 distrib
utes the data blocks 2330 between the parity groups 2335
and dictates the size of the parity blocks 2337 that will be
associated with each parity group 2335. For example, a
parity group composed of 3 data blocks having sizes of
128K, 64K, and 256K respectively will have a different
associated parity block size than and parity group composed
of 2 data blocks having sizes of 128K and 256K. The server
130 can therefore vary the block size as well as the parity
group size in a number of different ways to achieve
improved storage and distribution characteristics within the
disk array 140.

0403. In one aspect, the distributed file storage system
100 is an improvement over conventional systems by allow
ing both data and parity blocks to be assigned to physical
disk blocks. Furthermore, the mapping of the data and parity
blocks to the physical disk(s) may be performed either
before or after the parity calculations thus improving storage
flexibility.

04.04. Upon determining the parity group arrangement
2450, the server 130 calculates the parity blocks 2460 for
each parity group 2335. As previously described, the parity
block calculation 2450 creates a fault-tolerant information
block which is associated with each group of data blocks
2330 within the parity group 2335. The parity block is
calculated 2460 by selecting all data blocks 2330 in a parity
group 2335 and performing a logical operation on the data
2415 contained therein to compute error correction infor
mation. In one embodiment, the error-correction information
is determined using the logical operation, exclusive OR to
generate the parity information. Using this error-correcting
information the parity block 2337 can be used to restore the

27
Aug. 3, 2006

information contained in a particular data block 2330 or
parity group 2335 that may become corrupted. Furthermore,
the parity information can be used to restore the contents of
entire disks 2305 within the disk array using the error
correction information in conjunction with other non-cor
rupted data.

04.05) When the parity groups 2335 have been formed,
the server 130 then determines how the data blocks 2330 and
parity block 2337 for each parity group 2335 will be
distributed 2470 in the disk array. Although, the data 2415
can be striped sequentially across the disks 2305 of the disk
array 140, it is typically more efficient to map and distribute
the blocks 2335, 2337 throughout the disk array 140 in a
non-sequential manner (See FIG. 23). Mapping the data
blocks 2330 in this manner requires knowledge of how the
data blocks 2330 are positioned and ordered within the disk
array 140. Detailed knowledge of the mapping for each data
block 2330 is maintained by the server 130 using a file
storage mapping structure. This structure will be discussed
below in connection with FIGS. 7 and 9. Using the mapping
schema determined by the server 130, the blocks 2330, 2337
of each parity group 2335 are stored 2480 in the disk array
140.

0406 As previously indicated, the distributed file storage
system 100 employs a variable parity approach where the
size of the parity block 2337 is not necessarily constant. The
server 130 creates parity blocks 2337 by selecting one of
more data blocks 2330 for which error correction informa
tion will be computed. The size of the parity block 2337 is
dependent upon the number of data blocks 2330 whose error
correction information is computed and is determined by the
server 130. In one aspect, the server 130 selects a parity
block size that is convenient and efficient to store within the
existing space of the disk array 140. The server 130 also
provides for distributed placement of the parity blocks 2337
in a manner similar to that of the data blocks 2330. Thus,
both data blocks 2330 and parity blocks 2337 are desirably
mapped throughout the disk array 140 with the server 130
maintaining a record of the mapping.

0407. The server 130 insures that both data blocks 2330
and parity blocks 2337 are appropriately positioned within
the disk array 140 to insure some level of fault tolerance.
Therefore, the server 130 desirably distributes selected data
blocks and parity blocks containing error correction infor
mation for the selected data blocks on non-overlapping disks
(e.g. all blocks of a parity group are on separate disks). This
insures that if a disk failure does occur, that the corrupted
information can be recovered using the remaining data/
parity information for each parity group. Upon calculating
the appropriate parity information and distribution mapping
2470, the parity blocks 2337 are stored in the disk array 2480
in a manner designated by the server 130.

0408 FIG. 24B illustrates another embodiment of a
process 2405 for the storage of data and parity information
within the distributed file storage system 100. As with the
aforementioned data and parity information storage method
2400, the process begins with the data storage request 2410
issued by the client 110 to the server node 150. Subse
quently, an analysis of the characteristics of the data 2430 is
performed to determine how the data 2415 will be distrib
uted into the one or more data blocks 2330. The data 2415
is then parsed into blocks 2440 according to the data analysis

US 2006/017395.6 A1

2430 and the resulting blocks are further arranged into one
or more parity groups 2450. The server 130 then determines
how the data blocks 2330 and parity block 2337 for each
parity group 2335 will be distributed 2470 in the disk array.
At this point the client 110 sends or transmits data 2415 to
the server node 150, which receives and prepares the data
2420 for Subsequent processing and storage. After receiving
the data 2420, the server 130 calculates the parity blocks
2460 for each parity group 2335. Once the data blocks 2330
and parity blocks 2337 have been obtained they are stored in
the disk array 2480 in a manner similar to that described
with reference to FIG. 24A above.

04.09. In either method of data and parity information
storage 2400, 2405, the transfer of information from the
client 110 may comprise both a parametric component and
a data component. The parametric component defines a
number of parameters used in the storage of information to
the disk array 2480 and may include for example: operation
definitions, file handles, offsets, and data lengths. When
using the aforementioned storage methods 2400, 2405 the
parameters and data need not necessarily be transferred at
the same time. For example, the parameters may be trans
ferred during the client storage request 2410 and the data
may be transferred anytime thereafter in a Subsequent stage
of the method 2400, 2405. In one aspect, transfer of infor
mation using the parametric and data components desirably
allows the distributed file storage system 100 to make
decisions about how to process the incoming data prior to
the actual data transfer to thereby improve the flexibility and
functionality of the system.

0410 FIG. 25 illustrates another embodiment of the
distributed file storage system 100 using a variable capacity
disk array. The variable capacity disk array incorporates a
plurality of disks 2305 with potentially non-identical sizes
whose space can be addressed and used for storing data
blocks 2330 and parity blocks 2337. Unlike conventional
RAID storage systems that are limited by the capacity of the
smallest drive within the disk array, the variable capacity
disk array can contain any number or combination of disks
and is not limited to accessing an address space boundary
2490 denoted by the smallest drive in the array. Using
similar methods as described previously in conjunction with
FIGS. 23 and 24, the server 130 receives files 2320, 2340
and determines a parity group distribution for each file Such
that a plurality of data blocks 2330 and parity blocks 2337
are created. The data blocks 2330 and parity blocks 2337 are
then distributed throughout the disk array 140 in such a
manner so as to avoid storing more than one block 2330.
2337 from the same parity group 2335 on a single disk 2305.
The server 130 stores of these blocks 2330, 2337 across all
of the available disk space, and thus is able to access disk
space that lies beyond the boundary 2490 defined by the
Smallest disk capacity (a typical storage boundary which
limits conventional systems). As shown in FIG. 25, the
distributed file storage system 100 stores both data blocks
2330 and parity blocks 2337 throughout the address space of
each disk 2305 without boundary limitations imposed by
other disks within the array 140.
0411. In addition to improved space utilization, a number
of other important features arise from the aforementioned
flexible distribution of the blocks 2330, 2337. In one aspect,
using variable capacity disks 2305 within the array 140
contributes to improved scalability and upgradeability of the

28
Aug. 3, 2006

distributed file storage system 100. For example, if the
unused storage space within the array 140 fails below a
desired level, one or more of the disks within the array 140
can be readily replaced by higher capacity disks. The
distributed file storage system 100 implements an on-the-fly
or “hot-swap” capability in which existing disks within the
array 140 can be easily removed and replaced by other disks.
Since each server in a cluster maintains a copy of the
metadata for other servers in the cluster, servers can also be
hot-swapped. Using this feature, a new higher capacity disk
can be inserted into the array 140 in place of a lower capacity
disk. The server 140 is designed to automatically incorporate
the disk space of the newly inserted drive and can further
restore data to the new drive that resided on the former
smaller capacity drive. This feature of the distributed file
storage system 100 provides for seamless integration of new
disks into the array 140 and facilitates disk maintenance and
upgrade requirements.

0412. In addition to exchanging or swapping existing
disks 2305 within the array 140, the server 130 can accom
modate the addition of new disks directly into the array 140.
For example, the disk array 140 containing the fixed number
of disks 2305 can be upgraded to include one or more
additional disks such that the total number of disk in the
array is increased. The server 140 recognizes the additional
disks and incorporates these disks into the addressable space
of the distributed file storage system 100 to provide another
way for upgrading each disk array 140.

0413. In the examples shown above, both the swapping
of disks to increase storage space and the incorporation of
additional disks into the array is facilitated by the flexible
block placement and addressing of disk space within the
array 140. Unlike conventional systems that have a rigid
architecture where the number of disks within each array is
fixed and the addressable disk space is dictated by the
smallest disk within the array, the distributed file storage
system 100 accommodates many different disk array con
figurations. This flexibility is due, in part, to the manner in
which the disk space is formatted, as well as, how the data
is arranged and processed by the server 130.

0414. In one aspect, the flexibility of the distributed file
storage system 100 is improved through the use of parity
groups 2335. In order to accommodate files with different
characteristics, as well as, improve how information is
distributed throughout the disk array 140, parity groups
2335 are formed with variable block numbers. The block
number of the parity group is defined by the number of
blocks 2330, 2337 within the group. For example, a parity
group containing 4 data blocks is characterized as having a
block number of 4. In a similar manner, a parity group
containing a single data block is characterized as having a
block number of 1. The block number of the parity group is
one factor that determines the size of the parity group and
additionally determines the information that will be used to
form the parity block.

0415 FIG. 26A illustrates the formation of variable
block number parity groups in the distributed file storage
system 100. In the illustrated embodiment, exemplary parity
groups 2502, 2504 are shown with different extents having
4 and 2 data blocks respectively. The server 130 determines
the number of data blocks 2330 associated with each group
2502,2504 and furthermore determines the distribution of

US 2006/017395.6 A1

each type of parity group having specific block numbers that
make up the total parity group distribution in the disk array
140. This feature of the distributed file storage system 100
is discussed in connection with FIGS. 29 and 34.

0416) Data organization and management by the server
130 is maintained using one or more data structures that
contain information which identifies the size and ordering of
the data blocks 2330 within each parity group 2502, 2504.
In one embodiment, the ordering or sequence of the blocks
2330, 2337 is maintained through a linked list organizational
schema. The linked list contains one or more pointers that
act as links 2505 between each block 2330, 2337 within the
parity group 2335. The links 2505 therefore allow the server
130 to maintain knowledge of the order of the blocks 2330.
2337 as they are distributed throughout the disk array 140.
As blocks are written to or read from the disk array 140, the
server 130 uses the links 2505 to identify the order of the
blocks 2502, 2504 used for each parity group 2335.
0417. As shown in FIG. 26B, the distributed file storage
system 100 can also allocate parity groups 2335 on the basis
of block size. In the illustrated embodiment, exemplary
parity groups 2506, 2508 are shown having the same block
number of 4 with differing block sizes of 256K and 128K
respectively. The feature of variable block size allocation
within each parity group 2335 provides yet another way by
which the server 130 can distribute data and information
within the disk array 140 in a highly flexible and adaptable
a.

0418. The implementation of parity groups having a
plurality of different block numbers, as well as allowing for
the use of different block sizes within each block, improves
the ability of the server 130 to utilize available disk space
within the array 140. Furthermore, using combinations of
different data block and parity group characteristics allows
the server to select combinations that are best Suited for
particular data types.
0419 For example, large data files such as multimedia
Video or Sound are well Suited for storage using large parity
groups that contain large block sizes. On the other hand,
smaller files such as short text files do not have the same
space requirements as the larger file types and thus do not
significantly benefit from storage in a similar block size. In
fact, when small files are stored in large blocks, there is the
potential for wasted space, as the Smaller file does not use all
of the space allocated to the block. Therefore, the distributed
file storage system 100, benefits from the ability to create
data blocks 2330 and parity groups 2335 of variable sizes to
accommodate different data types and permit their storage in
a space-efficient manner.
0420. As discussed in connection with FIG. 14, the
distributed file storage system 100 further improves the
utilization of space within the disk array 140 by implement
ing a mechanism for reorganizing the allocation of data
blocks as needed to accommodate data stored to the disk
array 140. Furthermore, a redistribution function (shown in
FIG. 36) can alter the composition or distribution of blocks
2330, 2337 or parity groups 2335 within the array 140 to
make better use of available space and improve performance
by reorganizing information previously written to the array
140.

0421. In order to maintain coherence in the data stored to
the disk array 140, knowledge of the size and ordering of

29
Aug. 3, 2006

each block within the parity group 2335 is maintained by the
server 130. Prior to writing of data to the disk array 140, the
server 130 creates a disk map that allocates all of the
available space in the disk array 140 for storing particular
blocks sizes and/or parity group arrangements. Space allo
cation information is maintained by the server 140 in a
metadata structure known as a Gee Table. The Gee Table
contains information used to identify the mapping and
distribution of blocks within the disk array 140 and is
updated as data is stored to the disks 2305.
0422 The Gee Table stores informational groups which
interrelate and reference disk blocks or other discrete space
allocation components of the disk array 140. These infor
mational groups, referred to as Gee-strings, contain disk
space allocation information and uniquely define the loca
tion of files in the disk array 140. Each Gee-string is
subdivided into one or more Gee-groups which is further
divided into one or more Gees containing the physical disk
space allocation information. The Gee-strings and compo
nents thereof are interpreted by the server 130 to define the
mapping of parity groups 2335 in the disk array 140 which
store information and files as will be discussed in greater
detail hereinbelow.

0423 Based on the available space within the disk array
140, the server 130 determines the type and number of parity
groups 2335 that will be allocated in the array 140. The
initial parity group allocation prior to data storage forms the
Gee Table and directs the storage of databased on available
parity groups. The Gee Table therefore serves as a map of the
disk space and is updated as data is stored within the blocks
2330, 2337 of the array 140 to provide away for determining
the file allocation characteristics of the array 140. The server
130 retrieves stored files from the disk array 140 using the
Gee Table as an index that directs the server 130 to the
blocks 2330 where the data is stored so that they may be
retrieved in a rapid and efficient manner.
0424 FIG. 27 illustrates a portion of a Gee Table used to
determine the mapping of parity groups 2335 in the disk
array 140. For additional details of this architecture the
reader is directed to sections which relate specifically to the
implementation of the file system.

0425. In one embodiment, space allocation in the disk
array 140 is achieved using a Gee Table 2530 containing an
index field 2532, a G-code field 2534, and a data field 2536.
The index field 2532 is a value that is associated with a row
of information or Gee 2538 within the Gee Table 2530 and
is used as an index or a pointer into the array or list
comprising the Gee Table 2530. Additionally, the index field
2532 uniquely identifies each Gee 2538 within the Gee Table
2530 so that it can be referenced and accessed as needed.

0426) The G-Code field 2534 indicates the type of data
that is stored in the disk space associated with each Gee
2538 and is further used to identify space allocation char
acteristics of the Gees 2538. During initialization of the disk
array, the server 140 assigns all of the disk space within the
array 140 to various parity groups 2335. These parity groups
2335 are defined by the block size for data and parity blocks
2330, 2337 and the number of data blocks within the group
2335. Identifiers in the G-Code field 2534 correspond to
flags including “FREE, “AVAIL”, “SPARE”, “G-NODE,
“DATA”, “PARITY”, “LINK”, “CACHE-DATA, or
CACHE-PARITY”.

US 2006/017395.6 A1

0427. The data field 2536 stores data and information
interpreted by the server 130 in a specific manner depending
upon the G-code field identifier 2534. For example, this field
can contain numerical values representing one or more
physical disk addresses defining the location of particular
blocks 2330, 2337 of the parity groups 2335. Additionally,
the data field 2536 may contain other information that
defines the structure, characteristics, or order of the parity
blocks 2335. As will be described in greater detail herein
below, the information contained in the G-table 2530 is
accessed by the server 130 and used to store and retrieve
information from the disk array 140.

0428. In one embodiment, the fields 2532, 2534,2536 of
the G-table 2530 map out how space will be utilized
throughout the entire disk array 140 by associating each
physical block address with the designated Gee 2538. Parity
groups 2335 are defined by sets of contiguous Gees 2538
that are headed by the first Gee 2538 containing information
that defines the characteristics of the parity group 2335. The
G-Code field identifier “G-NODE instructs the server 130
to interpret information in the data field 2536 of a particular
Gee 2538 having the “G-NODE” identifier as defining the
characteristics of a parity block 2335 that is defined by a
G-group 2540.

0429 Acharacteristic defined in the data field 2536 of the
Gee 2538 having a “G-NODE” identifier includes an extent
value 2542. The extent value 2542 represents the extent or
size of the blocks 2330, 2337 associated with each Gee 2538
in a particular G-group 2540. The extent value 2542 further
indicates the number of logical disk blocks associated with
each file logical block 2330, 2337. For example, the Gee
with an index of “45’ contains the G-Code identifier
“G-NODE and has a value of '2' associated with the extent
value. This extent value 2542 indicates to the server 130 that
all subsequent data blocks and parity blocks defined in the
parity group 2335 and represented by the G-group 2540 will
have a size of 2 logical disk blocks. Thus, as indicated in
FIG. 27, the Gees having indexes “46'-'49” are each
associated with two logical addresses for drive blocks within
the array 140. In a similar manner, the Gee 2538 with an
index of '76 contains the G-Code identifier “G-NODE
and has an extent value of '3”. This value indicates to the
server 130 that the subsequent Gees “77-79” of the parity
group are each associated with 3 physical drive block
addresses.

0430. In the preceding discussion of FIG. 27, informa
tion is organized into a single G-table however it will be
appreciated that there are a number of different ways for
storing the information to improve system flexibility includ
ing the use of multiple tables or data structures. The exact
manner in which this information is stored is desirably
designed to insure that it may be efficiently accessed. For
example, in one embodiment nodes of the Gee Table 2530
can be utilized as a common storage vehicle for multiple
types of metadata, including file names, identifiers
(GNIDS), Gees, etc.

0431. As discussed in connection with FIG. 29, other
G-code identifiers are used during the storage and retrieval
of information from the disk array 140. For example,
another G-code identifier, “DATA, signifies that the data
field 2536 of a particular Gee 2538 is associated with the
physical address for one or more drive blocks that will store

30
Aug. 3, 2006

data. Likewise, the G-code identifier, “PARITY”, signifies
that the data field 2536 of a particular Gee is associated with
the physical address for one or more drive blocks that store
parity information. The parity information stored in the data
blocks referenced by the “PARITY” Gee is calculated based
upon the preceding “DATA’ Gees as defined by the
“G-NODE' Gee. Thus, as shown in the FIG. 27, the Gee
2538 having an index of "79 will store the physical address
of disk blocks that contain parity information for data blocks
specified by Gees having indexes “77-78.

0432 FIG. 28 illustrates a process 2448 used by the
server 130 to prepare the disk array 140 for data storage.
Preparation of the disk array 140 commences with the server
130 identifying the characteristics 2550 of each disk 2305
within the array 140 to determine the quantity of space
available. In one embodiment, the server 130 identifies
physical characteristics for the drives 2305 within the array
140. These characteristics can include: total drive number,
individual drive size, sectors per disk, as well as other drive
characteristics useful in determining the available space of
the disk array 140. To facilitate the configuration of the array
140, the server 130 can automatically detect and recognize
the presence of each disk 2305 within the array 140 and can
electronically probe each disk 2305 to determine the drive
characteristics. Alternatively, the server 130 can be pro
grammed with information describing the array composition
and drive characteristics without automatically determining
this information from the array 140.
0433 Upon acquiring the necessary information describ
ing the array composition, the server 130 determines a parity
group allotment 2555 to be used in conjunction with the
available disk space. The parity group allotment 2555
describes a pool of available parity groups 2335 that are
available for data storage within the array 140. The parity
group allotment further describes a plurality of different
block and/or parity group configurations each of which is
Suited for storing particular data and file types (i.e. large
files, Small files, multimedia, text, etc). During data storage,
the server 130 selects from the available pool of parity
groups 2335 to store data in a space-efficient manner that
reduces wasted space and improves data access efficiency.

0434 In one embodiment, the parity group allotment is
determined automatically by the server 130 based on pre
programmed parity group distribution percentages in con
junction with available disk space within the array 140.
Alternatively, the server 130 can be configured to use a
specified parity group allotment 2555 that is provided to the
server 130 directly. In another aspect, the parity groups can
be allocated dynamically by the server based on file char
acteristics such as file size, access size, file type, etc.

0435 Based on the allotment information and the disk
space available in the array 140, the server 130 performs a
mapping operation 2560 to determine how the parity groups
2335 of the allotment will be mapped to physical block
addresses of drives 2305 within the array 140. The mapping
operation 2560 comprises determining a desirable distribu
tion of parity groups 2335 on the basis of their size and the
available space and characteristics of the disk array 140. As
the distribution of parity groups 2335 is determined by the
server 130, the G-table 2530 is created and populated with
Gees 2538 which associate each available parity group 2335
with the physical block addresses defining their location on

US 2006/017395.6 A1

one or more disks 2305 in the disk array 140. Initially, the
G-table 2530 describes parity groups 2335 that contain free
or available space, however, as data is stored to the disk
2575, the G-table is updated to reflect the contents of the
physical disk blocks that are pointed to by the Gees 2538.
0436. During operation of the distributed file storage
system 100, the G-table 2530 is accessed by the server 130
to determine the logical addresses of files and information
stored within the disk array 140. Furthermore, server 130
continually updates the G-table 2530 as information is saved
to the disk array 140 to maintain knowledge of the physical
location of the information as defined by the logical block
addresses. The dynamically updated characteristics of the
G-Table 2530 data structure therefore define and maintain
the mapping of data and information in the disk array 140.
0437. In addition to the aforementioned a priori method
of parity group allocation other methods of disk preparation
may also be utilized. For example, another method of disk
preparation can use a set of free disk block maps to allow
dynamic allocation of the parity groups. This method addi
tionally provides mechanisms for dynamic extension of
existing parity groups and includes logic to ensure that the
disk does not become highly fragmented. In some instances,
fragmentation of the disk is undesirable because it reduces
the ability to use long parity groups when mapping and
storing information to the disk.
0438 FIG. 29 illustrates one embodiment of a file stor
age schema 2600 that uses the aforementioned parity group
arrangements 2335 and G-table 2530 to store information
contained in an exemplary file 2605. The file 2605 contains
information coded by an electronic byte pattern that is
received by the server 130 during client storage requests. In
the storage schema 2600, the file 2605 is divided into one or
more file logical blocks 2610 for storage. Each file logical
block 2610 is stored in a cluster of one or more disk logical
blocks 2615 in the disk array 140. As previously indicated,
the distributed file storage system 100 retains many of the
advantages of conventional storage systems, including the
distribution of files across multiple disk drives and the use
of parity blocks to enhance error checking and fault toler
ance. However, unlike many conventional systems, the
distributed file storage system 100 does not restrict file
logical blocks to one uniform size. File logical blocks of data
and parity logical blocks can be the size of any integer
multiple of a disk logical block. This variability of file
logical block size increases the flexibility of allocating disk
space and thus improves the use of system resources.
0439 Referring to FIG. 29, the file 2605 is divided into
a plurality of file logical blocks 2610, each of which contains
a portion of the information represented in the file 2605. The
number, size, and distribution of the file logical blocks 2610
is determined by the server 130 by selecting available disk
logical blocks 2615 designated in the G-table 2530. The
information contained in each file logical block 2610 is
stored within the disk logical blocks 2615 and mapped using
the G-table 2530. In the distributed file storage system 100,
the size of each file logical block 2610 is described by the
extent value 2542 which is an integer multiple in disk logical
blocks 2615. For example, the logical block designated
“LB-1 comprises two disk logical blocks 2615 and has an
extent value of 2. In a similar manner, the logical block
designated “LB-7 comprises three disk logical blocks 2615
and has an extent value of 3.

Aug. 3, 2006

0440 The server 130 forms parity groups 2335 using one
or more file logical blocks 2615 and the associated parity
block 2337. For each file 2605, one or more parity groups
2335 are associated with one another and ordered through
logical linkages 2617 (typically defined by pointers) used to
determine the proper ordering of the parity groups 2335 to
store and retrieve the information contained in the file 2605.
As shown in the illustrated embodiment, the file 2605 is
defined by a parity string 2620 containing four parity groups
2610. The four parity groups are further linked by three
logical linkages 2617 to designate the ordering of the logical
blocks “LB-1 through “LB-10 which make up the file
2605.

0441 The G-table 2530 stores the information defining
the G-string 2620 using a plurality of indexed rows defining
Gees 2538. The Gees 2538 define the characteristics of the
G-strings 2620 and further describe the logical location of
the associated file 2605 in the disk array 140. In the G-table
2530, the G-string 2620 is made up of the one or more
Gee-groups. Each G-group is a set of contiguous Gees 2538
that all relate to a single file. For example, in the illustrated
embodiment, the Gee-string 2620 includes three Gee-groups
2627, 2628, and 2629.
0442. The first Gee in each G-group 2627-2629 is iden

tified by the G-Code field identifier “G-NODE and the data
field 2536 of this Gee contains information that defines the
characteristics of a subsequent Gee 2632 within the Gee
group 2627-2629. The data field 2536 of the first Gee in each
G-group 2627-2629 further contains information that deter
mines the ordering of the Gee-groups 2627-2629 with
respect to one another. Some of the information typically
found in the data field 2536 of the first Gee in each G-group
2627-2629 includes: A G-NODE reference 2635 that relates
the current G-group with a file associated with a G-node at
a particular index (“67 in the illustration) in the G-table
2530; the extent value 2542 that defines the size of each file
logical block 2610 in terms of disk logical blocks 2615; and
a root identifier 2637 that indicates if the G-group is the first
G-group in the G-string. Of a plurality of G-NODE Gees
2630, 2640, 2650, only the first Gee 2630 contains an
indication that it is a Root Gee, meaning that it is the first
Gee of the Gee-string 2620.
0443) Following the G-NODE Gee in a Gee-group are
Gees representing one or more distributed parity groups
2655-2658. A distributed parity group is set of one or more
contiguous DATA Gees followed by an associated PARITY
Gee. ADATA Gee is a Gee with the G-code 2534 of “DATA
that lists disk logical block(s) where a file logical block is
stored. For example, in FIG. 29, the Gees with indexes of
46-47, 50-52, 77-79 and 89-90 are all DATA Gees, and each
is associated with one file logical block 2610.
0444) A PARITY Gee is a Gee with the G-code 2534 of
“PARITY.' Each PARITY Gee lists disk logical block
location(s) for a special type of file logical block that
contains redundant parity data used for error checking and
error correcting one or more associated file logical blocks
2610. A PARITY Gee is associated with the contiguous
DATA Gees that immediately precede the PARITY Gee. The
sets of contiguous DATA Gees and the PARITY Gees that
follow them are known collectively as distributed parity
groups 2655-2658.
0445 For example, in FIG. 29, the PARITY Gee at index
49 is associated with the DATA Gees at indexes 4648, and

US 2006/017395.6 A1

together they form the distributed parity group 2655. Simi
larly, the PARITY Gee at index 53 is associated with the
DATA Gees at indexes 50-52, and together they form the
distributed parity group 2656. The PARITY Gee at index 79
is associated with the DATA Gees at indexes 77-78, which
together form the distributed parity group 2657, and the
PARITY Gee at index 91 is associated with the DATA Gees
at indexes 89-90, which together form the distributed parity
group 2658.

0446. The size of a disk logical block cluster described by
a DATA Gee or a PARITY Gee matches the extent listed in
the previous G-NODE Gee. In the example of FIG. 29, the
G-NODE Gee 2630 of the first Gee-group 2.627 defines an
extent size of 2, and each DATA and PARITY Gee of the two
distributed parity groups 2655, 2656 of the Gee-group 2627
lists two disk logical block locations. Similarly, G-NODE
Gee 2640 of the second Gee-group 2628 defines an extent
size of 3, and each DATA and PARITY Gee of the Gee
group 2628 lists three disk logical block locations. G-NODE
Gee 2650 of the third Gee-group 2629 defines an extent size
of 3, and each DATA and PARITY Gee of the Gee-group
2629 lists three disk logical block locations.
0447. If a Gee-group is not the last Gee-group in its
Gee-string, then a mechanism exists to link the last Gee in
the Gee-group to the next Gee-group of the Gee-string using
the logical linkages 2617. LINK Gees 2660, 2661 both have
the G-code 2534 of “LINK' and a listing in their respective
Data fields 2536 that provides the index of the next Gee
group of the Gee-string 2620. For example, the Gee with an
index of 54 is the last Gee of Gee-group 2.627, and its Data
field 2536 includes the starting index “76” of the next
Gee-group 2628 of the Gee-string 2620. The Gee with an
index of 80 is the last Gee of Gee-group 2628, and its Data
field 2536 includes the starting index “88” of the next
Gee-group 2629 of the Gee-string 2620. Since the Gee
group 2629 does not include a LINK Gee, it is understood
that Gee-group 2629 is the last Gee-group of the Gee-string
2620.

0448. As previously indicated, the G-code 2534 of
“FREE (not shown in FIG. 29) indicates that the Gee has
never yet been allocated and has not been associated with
any disk logical location(s) for storing a file logical block.
The G-code 2534 of “AVAIL (not shown in FIG. 29)
indicates that the Gee has been previously allocated to a
cluster of disk logical block(s) for storing a file logical
block, but that the Gee is now free to accept a new
assignment. Two situations in which a Gee is assigned the
G-code of “AVAIL are: after the deletion of the associated
file logical block; and after transfer of the file to another
server in order to optimize load balance for the distributed
file storage system 100.

0449 FIG. 30 illustrates a fault recovery mechanism 700
used by the distributed file storage system 100 to maintain
data consistency and integrity when a data fault occurs. Data
faults are characterized by corruption or loss of data or
information stored in one or more logical blocks 2330 of the
array 140. Each data fault can be further characterized as a
catastrophic event, where an entire disk 2305 fails requiring
all data on the failed disk to be reconstructed. Alternatively,
the data fault can be characterized as a localized event,
where the disk 2305 maintains operability but one or more
physical disk sectors or logical blocks become corrupted or

32
Aug. 3, 2006

damaged. In either instance of the data fault, the distributed
file storage system 100 uses a fault-tolerant restoration
process to maintain data integrity.

0450 FIG. 30 illustrates one embodiment of a fault
tolerant restoration process used to maintain data integrity in
the distributed file storage system 100. As an example of
how the process operates, a loss of integrity in a data block
for a single parity group is shown. It will be appreciated that
this loss of integrity and Subsequent recovery methodology
can be applied to both instances of complete drive failure or
localized data corruption. Thus, the restoration of informa
tion contained in a plurality of logical blocks can be accom
plished using this process (i.e. restoring all data stored on a
failed disk). Additionally, in instances where parity blocks
become corrupted or lost, the information from each parity
block can be restored in a similar manner to the restoration
process for data blocks using the remaining non-corrupted
blocks of the parity group.

0451. In the illustrated embodiment the parity group 2335
includes two data blocks “DATA 1 and “DATA2 and an
associated parity block “PARITY 1-2 and are shown stored
on “DISK 2, “DISK 8, and “DISK 11 respectively.
Knowledge of the logical disk addresses for each of these
blocks is maintained by the server 130 using the aforemen
tioned G-table 2530. As previously discussed, the G-table
maintains mapping and structural information for each par
ity group defined by the plurality of Gees 2538. The Gees
further contain information including; the file descriptor
associated with the blocks of the parity group 2335, the size
and extent of the blocks of the parity group 2335, and the
mapping to the logical disk space for each block of the parity
group 2335. During routine operation, the server accesses
data in the disks of the array using the G-table 2530 to
determine the appropriate logical disk blocks to access.

0452. As shown in FIG. 30, a complete disk failure is
exemplified where a loss of data integrity 3072 results in the
logical blocks on “DISK 8” becoming inaccessible or cor
rupted. During the fault tolerant restoration process the
server 130 determines that the data block “DATA2 is
among the one or more blocks that must be recovered 3074.
Using conventional data/parity block recovery methods, the
server 130 recovers the compromised data block “DATA2
using the remaining blocks “DATA 1 and “PARITY 1-2
of the associated parity group 2335. The recovered data
block “DATA2-REC is then stored to the disk array 140
and contains the identical information that was originally
contained in “DATA2. Using the existing G-table mapping
as a reference, the server 130 identifies a new region of disk
space that is available for storing the recovered data block
and writes the information contained in “DATA2-REC to
this region. In one embodiment, space for a new parity group
is allocated and the reconstructed parity group is stored in
the new space. In another embodiment, the “old” parity
group having 1 parity block and N data blocks where one
data block is bas, is entered onto the free list as a parity
group having N-1 data blocks. The server 130 further
updates the G-table 2530 to reflect the change in logical disk
mapping (if any) of the recovered data block “DATA2
REC to preserve file and data integrity in the disk array 140.

0453) One desirable feature of the distributed file storage
system 100 is that the recovered data block need not be
restored to the same logical disk address on the same disk

US 2006/017395.6 A1

where the data failure occurred. For example, the recovered
data block “DATA2-REC can be stored to “DISK3' and
the G-table updated to reflect this change in block position.
An important benefit resulting from this flexibility in data
recovery is that the disk array 140 can recover and redis
tribute data from a failed drive across other available space
within the disk array 140. Therefore, a portion of a disk or
even an entire disk can be lost in the distributed file storage
system 100 and the data contained therein can be recovered
and moved to other locations in the disk array 140. Upon
restoring the data to other available disk space, the server
130 restores the integrity of the parity group 2335 resulting
in the preservation of fault-tolerance through multiple losses
in data integrity even within the same parity group without
the need for immediate repair or replacement of the faulted
drive to restore fault-tolerance.

0454. As an example of the preservation of fault toler
ance through more than one data fault, a second drive failure
3076 is shown to occur on “DISK 2 and affects the same
parity group 2335. This disk failure occurs subsequent to the
previous disk failure in which “DISK 8” is illustrated as
non-operational. The second disk failure further results in
the loss of data integrity for the block “DATA 1. Using the
method of data recovery similar to that described above, the
information contained in the data block “DATA 1 can be
recovered and redistributed 3078 to another logical address
within the disk array 140. The recovered data block
“DATA1-REC is illustrated as being saved to available
disk space located on “DISK 5” and is stored in a disk region
free of corruption of data fault. Thus, fault tolerance is
preserved by continuous data restoration and storage in
available non-corrupted disk space.
0455 The fault tolerant data recovery process demon
strates an example of how the distributed file storage system
100 handles data errors or corruption in the disk array 140.
An important distinction between this system 100 and
conventional storage systems is that the aforementioned data
recovery process can automatically redistribute data or par
ity blocks in a dynamic and adaptable manner. Using block
redistribution processes described above results in the dis
tributed file storage system 100 having a greater degree of
fault-tolerance compared to conventional storage systems.
In one aspect, the increase in fault tolerance results from the
system’s ability to continue normal operation even when one
or more drives experience a data loss or become inoperable.
0456. In conventional storage systems, when a single
disk failure occurs, the storage system's fault tolerant char
acteristics are compromised until the drive can be repaired
or replaced. The lack of ability of conventional systems to
redistribute data stored on the faulted drive to other regions
of the array is one reason for their limited fault tolerance. In
these conventional systems, the occurrence of a second drive
failure (similar to that shown in FIG. 30) will likely result
in the loss or corruption of data that was striped across both
of the failed drives. The distributed file storage system 100
overcomes this limitation by redistributing the data that was
previously stored on the faulted drive to a new disk area and
updating the G-table which stores the mapping information
associated with the data to reflect its new position. As a
result, the distributed file storage system 100 is rendered less
susceptible to sequential drive faults even if it occurs within
the same parity group. Thus, the process of recovery and
redistribution restores the fault-tolerant characteristics of the

Aug. 3, 2006

distributed file storage system 100 and beneficially accom
modates further drive failures within the array 140.
0457. Another feature of the distributed file storage sys
tem 100 relates to the flexible placement of recovered data.
In one aspect, a recovered data block may be stored any
where in the DFSS through a modification of the parity
group associated with the data. It will be appreciated that
placement of recovered data in this manner is relatively
simple and efficient promoting improved performance over
conventional systems.
0458 In one embodiment, this feature of tolerance to
multiple disk failures results in an improved “hands-off or
“maintenance-free data storage system where multiple
drive failures are tolerated. Furthermore, the distributed file
storage system 100 can be configured with the anticipation
that if data corruption or a drive failure does occur, the
system 100 will have enough available space within the
array 140 to restore and redistribute the information as
necessary. This improved fault tolerance feature of the
distributed file storage system 100 reduces maintenance
requirements associated with replacing or repairing drives
within the array. Additionally, the mean time between failure
(MTBF) characteristics of the system 100 are improved as
the system 100 has reduced susceptibility to sequential drive
failure or data corruption.
0459. In one embodiment the distributed file storage
system is desirably configured to operate in a “hands-off
environment where the disk array incorporates additional
space to be tolerant of periodic data corruption or drive
failures without the need for maintenance for such occur
rences. Configuration of the system 100 in this manner can
be more convenient and economical for a number of reasons
Such as: reduced future maintenance costs, reduced concern
for replacement drive availability, and reduced downtime
required for maintenance.
0460. In one aspect, the fact that parity groups may be
integrated with the file metadata provides a way for priori
tizing recovery of the data. For example, when some file or
set of files is designated as highly important, or is frequently
accessed, a background recovery process can be performed
on those designated files first. In the case where the file is
frequently accessed, this feature may improve system per
formance by avoiding the need for time-consuming on
demand regeneration when a client attempts to access the
file. In the case where the file is highly important, this
feature reduces the amount of time where a second drive
failure might cause unrecoverable data loss.
0461 FIG. 31 illustrates one embodiment of a method
3172 for recovering corrupted or lost data resulting from one
or more data faults. As discussed above and shown the
previous figure, data corruption can occur as a result of a
complete drive failure or data corruption can be localized
and affect only a limited Subset of logical storage blocks
within the array. The distributed storage system identifies the
presence of data corruption in a number of ways. In one
aspect, the server recognizes corrupted data during Storage
or retrieval operations in which the one or more of the disks
of the array are accessed. These operations employ error
checking routines that verify the integrity of the data being
stored to or retrieved from the array. These error checking
routines typically determine checksum values for the data
while performing the read/write operation to insure that the

US 2006/017395.6 A1

data has been Stored or retrieved in a non-corrupted manner.
In cases where the read/write operation fails to generate a
valid checksum value, the read/write operation may be
repeated to determine if the error was spurious in nature
(oftentimes due to cable noise or the like) or due to a hard
error where the logical disk space where the data is stored
has become corrupted.
0462 Data corruption may further be detected by the
server 130 when one or more disks 2305 within the array
140 become inaccessible. Inaccessibility of the disks 2305
can arise for a number of reasons, such as component failure
within the drive or wiring malfunction between the drive and
the server. In these instances where one or more disks within
the array are no longer accessible, the server 130 identifies
the data associated with the inaccessible drive(s) as being
corrupted or lost and requiring restoration.
0463. During the identification of the data fault 3175, the
number and location of the affected logical blocks within the
disk array 140 is determined. For each logical block iden
tified as corrupted or lost, the server 130 determines the
parity group associated with the corrupted data 3177. Iden
tification of the associated parity group 2335 allows the
server 130 to implement restoration procedures to recon
struct the corrupted data using the non-corrupted data and
parity blocks 2330, 2337 within the same parity group 2335.
Furthermore, the logical storage block or disk space asso
ciated with the corrupted data is identified 3179 in the
G-table 2530 to prevent further attempts to use the corrupted
disk space.
0464) In one embodiment, the server 130 identifies the
“bad” or corrupted logical blocks mapped within the G-table
2530 and removes the associated Gees from their respective
parity groups thereby making the parity group shorter.
Additionally, the server 130 can identify corrupted logical
blocks mapped within the G-table 2530 and remap the
associated parity groups to exclude the corrupted logical
blocks.

0465 Prior to restoring the information contained in the
affected logical blocks, the server 130 determines the num
ber and type of parity groups that are required to contain the
data 3180 that will subsequently be restored. This determi
nation 3180 is made by accessing the G-table 2530 and
identifying a suitable available region within the disk array
140 based on parity group allocation that can be used to store
the reconstructed data. When an available parity group is
found, the server 130 updates the G-table 2530 to reflect the
location where the reconstructed data will be stored. Addi
tionally, the mapping structure of the array 140 is preserved
by updating the links or references contained in Gees 2538
of the G-table 2530 to reflect the position and where the
reconstructed data will be stored in relation to other parity
groups of the parity string. Data is then restored 3181 to the
logical disk address pointed to by the updated Gee using the
remaining non-corrupted blocks of the parity group to
provide the information needed for data restoration.
0466 As previously discussed, one feature of the distrib
uted file storage system 100 is the use of variable length
and/or variable extent parity groups. Unlike conventional
storage systems that use only a fixed block size and con
figuration when storing and striping data to a disk array, the
system 100 of the present invention can store data in
numerous different configurations defined by the parity

34
Aug. 3, 2006

group characteristics. In one embodiment, by using a plu
rality of different parity group configurations, the distributed
file storage system 100 can improve the efficiency of data
storage and reduce the inefficient use of disk space.

0467 FIGS. 32A, B illustrate a simplified example of the
use of variably sized parity groups to store files with
different characteristics. As shown in FIG. 32A, File #1
comprises a 4096 byte string that is stored in the disk array
140. As previously discussed, the server 130, selects space
from the plurality of parity groups 2335 having different
structural characteristics to store the data contained in File
#1. In the illustrated embodiment, 4 exemplary parity strings
3240-3243 are considered for storing File #1. Each of the
parity strings 3240-3243 comprises one or more parity
groups 2335 that have a designated extent based on a logical
disk block size of 512 bytes. The parity groups 2335 of each
parity string 3240-3243 are further associated using the
G-table 2530 which link the information in the parity groups
2335 to encode the data contained in File #1.

0468. The first parity string 3240 comprises a single
4-block parity group having 1024-byte data and parity
blocks. The total size of the first parity string 3240 including
all data and parity blocks is 5120 bytes and has an extent
value of 2. The second parity string 3241 comprises two
3-block parity groups having 1024-byte data and parity
blocks. The total size of the second parity string 3241
including the data and parity blocks is 8192 bytes and has an
extent value of 2. The third parity string 3242 comprises four
2-block parity groups having 512-byte data and parity
blocks. The total size of the third parity string 3242 includ
ing the data and parity blocks is 6144 bytes and has and
extent value of 1. The fourth parity string 3243 comprises
nine 1-block parity groups having 512-byte data and parity
blocks. The total size of the fourth parity string 3243
including the data and parity blocks is 8192 bytes and has an
extent of 1.

0469 Each of the parity strings 3240-3243 represent the
minimum number of parity groups 2335 of a particular type
or composition that can be used to fully store the information
contained in File #1. One reason for the difference in parity
group composition results from the different numbers of
total bytes required to store the data contained in File #1.
The differences in total byte numbers further result from the
number and size of the parity blocks 2337 associated with
each parity group 2335.

0470 A utilization value 3245 is shown for each parity
string 3240-3242 used to store File #1. The utilization value
3245 is one metric that can be used to measure the relative
efficiency of storage of the data of File #1. The utilization
value 3245 is determined by the total number of bytes in the
parity string 3240-3242 that are used to store the data of File
#1 compared to the number of bytes that are not needed to
store the data. For example, in the second parity string 3241,
one parity group 3247 is completely occupied with data
associated with File #1 while another parity group 3246 is
only partially utilized. In one aspect, the remainder of space
left in this parity group 3246 is unavailable for further data
storage due to the composition of the parity group 3246. The
utilization value is calculated by dividing the file-occupying
or used byte number by the total byte number to determine
a percentage representative of how efficiently the data is
stored in the parity string 3240-3243. Thus, the utilization

US 2006/017395.6 A1

values for the first, second, third, and fourth parity strings
3240-3243 are 100%. 66%, 100%, and 100% respectively.
0471. In one embodiment, the server 130 determines how
to store data based on the composition of the file and the
availability of the different types of parity groups. As shown
in FIG. 32A, of the different choices for storing File #1, the
first parity string 3240 is most efficient as it has the lowest
total bytes required for storage (5120 bytes total), as well as,
a high utilization value (100%). Each of the other parity
strings 3241-3243 are less desirable for storing the data in
File #1 due to greater space requirements (larger number of
total bytes) and in some cases reduced storage efficiency
(lower utilization value).
0472 FIG. 32B illustrates another simplified example of
the use of variably sized parity groups to store files of
differing sizes. In the illustrated embodiment the storage
characteristics of a plurality of four parity strings 3250-3253
are compared for a small file comprising a single 1024 byte
string. The parity strings comprise: The first parity string
3250 composed of the single parity group 2335 having 4
data blocks 2330 and 1 parity block 2337, each 1024 bytes
in length; The second parity string 3251 composed of the
single parity group 2335 having 3 data blocks 2330 and 1
parity block 2337, each 1024 bytes in length; The third
parity string 3251 composed of the single parity group 2335
having 2 data blocks 2330 and 1 parity block 2337, each 512
bytes in length; and The fourth parity string 3253 having two
parity groups 2335 each composed of the single 512-byte
data block 2330 and the parity block 2337.
0473 When storing the byte pattern contained in File #2
different storage characteristics are obtained for each parity
string 3250-3253. For example, the first parity string 3250 is
only partially occupied by the data of File #2 resulting in the
utilization value 3245 of 25%. Similarly, the second parity
string 3251 is also partially occupied resulting in the utili
zation value 3245 of 33%. Conversely, the third and fourth
parity strings 3252-3253 demonstrate complete utilization of
the available space in the parity group (100% percent
utilization). Based on the exemplary parity group character
istics given above, the most efficient storage of File #2 is
achieved using the third parity string 3252 where a total of
1536 bytes are allocated to the parity string with complete
(100%) utilization.
0474 The aforementioned examples demonstrate how
files with differing sizes can be stored in one or more parity
group configurations. In each of the above examples, the
unused blocks or partially filled blocks remaining in the
parity group are “Zero-filled or “one-filled to complete the
formation of the parity group and encode the desired infor
mation from the file. Furthermore, by providing a plurality
of parity group configurations, improved storage efficiency
can be achieved for different file sizes where less space is
left unutilized within the disk array 140. It will be appreci
ated by one of skill in the art that many possible parity group
configurations can be formed in a manner similar to those
described in FIGS. 32A, B. Examples of characteristics
which may influence the parity group configuration include:
logical block size, extent, parity group size, parity group
number, among other characteristics of the distributed file
storage system 100. Therefore, each of the possible varia
tions in parity group characteristics and distribution should
be considered but other embodiments of the present inven
tion.

Aug. 3, 2006

0475 Typically, one or more selected parity groups of the
available configurations of parity groups provide improved
storage efficiency for particular file types. Therefore, in
order to maintain storage efficiency across each different file
configuration a plurality of parity group configuration are
desirably maintained by the server. One feature of the
distributed file storage system 100 is to identify desirable
parity group configurations based on individual file charac
teristics that lead to improved efficiency in data storage.
0476 FIG. 33 illustrates one embodiment of a data
storage process 3360 used by the distributed file storage
system 100 to store data. This process 3360 desirably
improves the efficiency of storing data to the disk array 140
by selecting parity group configurations that have improved
utilization characteristics and reduce unused or lost space. In
this process 3360 the server 130 receives files 3361 from the
clients 110 that are to be stored in the disk array 140. The
server 130 then assesses the file’s characteristics 3363 to
determine Suitable parity string configurations that can be
used to encode the information contained in the file. During
the file assessment 3363, the server 130 can identify char
acteristics such as the size of the file, the nature of the data
contained in the file, the relationship of the file to other files
presently stored in the disk array, and other characteristics
that are used to determine how the file will be stored in the
disk array 140. Using the G-table 2530 as a reference, the
server 130 then identifies 3365 available (free) parity groups
that can be used to store the file to the disk array 140.
0477 Typically, a plurality of parity group configurations
are available and contain the requisite amount of space for
storing the file. Using an analysis methodology similar to
that described in FIGS. 32A, B, the server 130 assesses the
utilization characteristics for each parity group configuration
that can be used to store the file. Based on the available
configurations and their relative storage efficiency, the server
130 selects a desirable parity group configuration 3367 to be
used for file storage. In one embodiment, a desirable parity
group configuration is identified on the basis of the high
utilization value 3245 that is indicative of little or no wasted
space (non-file encoding space) within the parity groups.
Furthermore, a desirable parity group configuration stores
the file in the parity string 2335 comprising the least number
of total bytes in the parity String. Using these two parameters
as a metric, the server 130 selects the desirable parity group
configuration 3367 and stores the data contained in the file
3369. During file storage 3369, the G-table 2530 is updated
to indicate how the file is mapped to the disk array 140 and
characteristics of the G-string 2530 used to store the file are
encoded in the appropriate Gees of the G-table 2530. Fur
thermore, the one or more Gees corresponding to the logical
disk blocks where the data from the file is stored are updated
to reflect their now occupied status (i.e. removed from pool
of available or free disk space).
0478. In another embodiment the distributed file storage
system 100 provides a flexible method for redistributing the
parity groups 2335 of the disk array 140. As discussed
previously, prior to storage of information in the disk array
140 the distributed file storage system 100 creates the
G-table 2530 containing a complete map of the logical
blocks of each disk 2305 of the disk array 140. Each logical
block is allocated to a particular parity group type and may
be subsequently accessed during data storage processes
when the group type is requested for data storage. During

US 2006/017395.6 A1

initialization of the disk array 140, the server 130 allocates
all available disk space to parity groups 2335 of various
lengths or sizes which are Subsequently used to store data
and information. As files are stored to the disk array 140, the
parity groups 2335 are accessed as determined by the server
130 and the availability of each parity group type changes.

0479. Using the plurality of different sizes and configu
rations of parity groups 2335 allows the server 130 to select
particular parity group configurations whose characteristics
permit the storage of a wide variety of file types with
increased efficiency. In instances where a file is larger than
the largest available parity group, the server 130 can break
down the file and distribute its contents across multiple
parity groups. The G-table 2530 maps the breakdown of file
information across the parity groups over which it is dis
tributed and is used by the server 130 to determine the order
of the parity groups should be accessed to reconstruct the
file. Using this method, the server 140 can accommodate
virtually any file size and efficiently store its information
within the disk array 140.
0480. When a large quantity of structurally similar data is
stored to the disk array 140, a preferential parity group
length can be associated with the data due to its size or other
characteristics. The resulting storage in the preferential
parity group length reduces the availability of this particular
parity group and may exhaust the Supply allocated by the
server 130. Additionally, other parity group lengths can
become underutilized, as the data stored to the disk array
140 does not utilize these other parity group types in a
balanced manner. In one embodiment the distributed file
storage system 100 monitors the parity set distribution and
occupation characteristics within the disk array 140 and can
alter the initial parity set distribution to meet the needs of
client data storage requests on an ongoing basis and to
maintain a balanced distribution of available parity group
types. The parity group monitoring process can further be
performed as a background process or thread to maintain
data throughput and reduce administrative overhead in the
system 100.

0481 FIGS. 34A-C illustrate a simplified parity set redis
tribution process useful in maintaining availability of parity
groups 2335 within the disk array 140. Redistribution is
handled by the server 130, which can update sets of Gees of
the G-table 2530 to alter their association with a first parity
group into an association with a second parity group. Fur
thermore, other characteristics of the data and parity blocks
within a parity group can be modified, for example, to
change the size or extent of each block. By updating the
G-table 2530, the server 140 provides a parity group bal
ancing functionality to insure that each type or configuration
of parity group is available within the disk array 140.

0482 FIG. 34A illustrates an exemplary parity group
distribution for the disk array 140 prior to storage of data
from clients 110. The parity group distribution comprises
four types of parity groups corresponding to a 4-block parity
group 3480, a 3-block parity group 3481, a 2-block parity
group 3482, and a 1-block parity group 3483. In configuring
the distributed file storage system 100 there is an initial
allocation 3491 of each type of parity group 3480-3483. For
example, in the illustrated embodiment, 10000 groups are
allocated for each type of parity group 3480-3483. Each
parity group 3480-3483 further occupies a calculable per

36
Aug. 3, 2006

centage of a total disk space 3485 within the disk array 140
based on the size of the parity group. Although the parity
group distribution is illustrated as containing four types of
parity groups, it will be appreciated by one of skill in the art
that numerous other sizes and configurations of parity
groups are possible. (e.g. 8, 10, 16, etc.) In one embodiment,
the number of blocks within the parity group 2335 can be
any number less than or equal to the number of disks within
the disk array 140. Furthermore, the parity groups 2335 may
be distributed across more than one disk array 140 thus
allowing for even larger parity group block numbers that are
not limited by the total number of disks within the single
disk array 140.

0483 As disk usage occurs 3487, parity groups 3480
3483 become occupied with data 3490 and, of the total
initial allocation of parity groups 3491, a lesser amount
remain as free or available parity groups 3492. FIG. 34B
illustrates parity group data occupation statistics where of
the original initially allocated parity groups 3491 for each
parity type, a fraction remain as free or available 3492 for
data storage. More specifically: The occupation statistics for
the 4-block parity group comprise 2500 free vs. 7500
occupied parity groups, the occupation characteristics for
the 3-block parity group comprise 7500 free vs. 2500
occupied parity groups, the occupation characteristics for
the 2-block parity group comprise 3500 free vs. 6500
occupied parity groups, and the occupation characteristics
for the 1-block parity group comprise 500 free vs. 9500
occupied parity groups.

0484. During operation of the distributed file storage
system 100, free parity groups can become unevenly dis
tributed such that there are a greater proportion of free parity
groups in one parity group length and a lesser proportion of
free parity groups in another parity group length. While this
disparity in distribution does not necessarily impact the
performance or effectiveness of storing data to the disk array
140, the server 130 monitors the availability of each parity
group 3480-3483 to insure that no single parity group type
becomes completely depleted. Depletion of a parity group is
undesirable as it reduces the choices available to the server
130 for storing data and can potentially affect the efficiency
of data storage. As shown in FIG. 34B, the 3-block parity
group 3481 possess a greater number of free parity groups
3492 compared to any of the other parity groups 3480, 3482,
3483 while the 1-block parity group 3483 possess the
Smaller number of free parity groups and may be subject to
complete depletion should data storage continue with a
similar parity group distribution characteristics.
0485 To prevent parity group depletion, the server 130
can redistribute or convert 3494 at least a portion of one
parity group into other parity group lengths. As shown in
FIG. 34C, the server 130 converts a portion of the 3-block
parity group 3481 into the 1-block parity group 3483. The
resulting conversion redistributes the number of parity
groups within the disk array 140 by reducing the number of
parity groups of a first parity group type (3-block parity) and
generates an additional quantity of parity groups of the
second parity group type (1-block parity). Redistribution in
this manner beneficially prevents the complete depletion of
any parity group and thus preserves the efficiency of data
storage by insuring that each parity group is available for
data storage.

US 2006/017395.6 A1

the disk array 140 enabling the information contained
therein to be accessed more efficiently.
0496 FIG. 37 illustrates one embodiment of a parity
group optimization/de-fragmentation routine used to re
configure data within the disk array 140. Parity group
occupation statistics are shown for different parity lengths
including: a 1-block parity group having 2800 free parity
groups and 7200 occupied parity groups, a 2-block parity
group having 1800 free parity groups and 8200 occupied
parity groups, a 3-block parity group having 800 free parity
groups and 9200 occupied parity groups, and a 4-block
parity group having 2300 free parity groups and 7700
occupied parity groups.
0497. When the server 130 performs an optimization
routine 3785, one or more of the parity groups can be
re-configured into another type of parity group. For
example, as shown in the illustration, a portion of the
1-block parity groups corresponding to 3200 groups can be
consolidated into 2000 groups of 4-block parity. In the
consolidated parity groups, the original information con
tained in the 1-block parity group is retained in a more
compact form in the 4-block parity groups. The resulting
4-block parity groups require less parity information to
maintain data integrity compared to an equivalent quantity
of information stored in a 1-block parity configuration. In
the illustrated embodiment, the residual space left over from
the optimization routine corresponds to approximately 1200
groups of 1-block parity and can be readily converted into
any desirable type of parity group using G-table updating
methods.

0498. The aforementioned optimization routine can
therefore beneficially re-allocate occupied logical disk
blocks into different parity group configurations to reclaim
disk space that might otherwise be lost or rendered inacces
sible due to the manner in which the data is stored in the
parity groups. As with other parity group manipulation
methods provided by the distributed file storage system 100,
the process of optimizing parity groups is readily accom
plished by rearrangement of the mapping assignments main
tained by the G-table 2530 and provides a substantial
improvement in performance compared to conventional
storage systems. In conventional systems, data restriping is
a time consuming and computationally expensive process
that reduces data throughput and can render the storage
device unavailable while the restriping takes place.
0499. Like conventional storage systems, the distributed

file storage system 100 provides complete functionality for
performing routine data and disk optimization routines Such
as de-fragmentation of logical block assignments and opti
mization of data placement to improve access times to
frequently accessed data. These processes are efficiently
handled by the system 100, which can use redundant data
access to insure availability of data disk optimization rou
tines take place.
0500) The distributed file storage system 100 further
provides adaptive load balancing characteristics that
improve the use of resources including servers 130 and disk
arrays 140. By balancing the load between available
resources, improved data throughput can be achieved where
client requests are routed to less busy servers 130 and
associated disk arrays 140. Load-dependent routing in this
manner reduces congestion due to frequent accessing of a

Aug. 3, 2006

single server or group of servers. Additional details of these
features can be found in those discussions relating to adap
tive load balancing and proactive control of the DFSS 100.

0501. In one embodiment, frequently accessed data or
files are automatically replicated Such that simultaneous
requests for the same information can be serviced more
efficiently. Frequently accessed data is identified by the
servers 130 of the distributed file storage system 100, which
maintain statistics on resource usage throughout the net
work. Furthermore, the servers 130 can use the resource
usage statistics in conjunction with predictive algorithms to
“learn' content access patterns. Based on these access
patterns frequently accessed content can be automatically
moved to server nodes 150 that have high bandwidth capaci
ties capable of serving high numbers of client requests.
Additionally, less frequently accessed material can be
moved to server nodes 150 that have higher storage capaci
ties or greater available storage space where the data or files
can be conveniently stored in areas without significant
bandwidth limitations.

0502 FIG. 38 illustrates one embodiment of a load
balancing method 3800 used in conjunction with the dis
tributed file storage system 100 to provide improved read/
write performance. In the load balancing method 3800, file
operations are performed 3851 and file access statistics are
continuously collected 3852 by the servers 130. These
statistics include information describing file access frequen
cies, file size characteristics, file type characteristics, among
other information. Resource utilization statistics are also
collected 3854 and contain information that characterize
how data is stored within the distributed file storage system
100. The resource utilization statistics identify how each
disk array 140 is used within the system 100 and may
contain statistics that reflect the amount of free space within
the array, the amount of used space within the array, the
frequency of access of a particular disk within the disk array,
the speed of servicing client requests, the amount of band
width consumed servicing client requests and other statistics
that characterize the function of each disk array 140 within
the distributed file storage system 100. The resource utili
Zation statistics can also be used to evaluate the statistics
across multiple disk arrays to determine how each disk array
compares to other disk arrays within the distributed file
storage system 100. This information is useful in identifying
bandwidth limitations, bottlenecks, disk arrays overloads,
and disk array under utilization.

0503. Using either the resource utilization statistics 3854,
the file access statistics 3852, or a combination thereof, the
one or more servers 130 of the distributed file storage system
100 predict future file and resource utilization characteristics
3856. In one embodiment, the future file and resource
utilization characteristics 3856 describe a predicted work
load for each of the disk arrays within the distributed file
storage system 100. The predicted workload serves as a
basis for determining how to best distribute the workload
3858 among available servers and disk arrays to improve
access times and reduce bandwidth limitations. Further
more, the predicted workload can be used to distribute files
or content 3860 across the available disk arrays to balance
future workloads.

0504 An additional feature of the distributed file storage
system 100 is the ability to perform “hot upgrades' to the

US 2006/017395.6 A1

disk array 140. This process can involve “hot-swapping
operations where an existing disk within the array is
replaced (typically to replace a faulted or non-operational
drive). Additionally, the “hot upgrade process can be per
formed to add a new disk to the existing array of disks
without concomitant disk replacement. The addition of the
new disk in this manner increases the storage capacity of the
disk array 140 automatically and eliminates the need to
restrict access to the disk array 140 during the upgrade
process in order to reconfigure the system 100. In one
embodiment, the server 130 incorporates the additional
space provided by the newly incorporated disk(s) by map
ping the disk space into existing unused/available parity
groups. For example, when a new drive is added to the disk
array 140, the server 130 can extend the length or extent of
each available parity group by one. Subsequently, parity
group redistribution processes can be invoked to optimize
and distribute the newly acquired space in a more efficient
manner as determined by the server 130. In one embodi
ment, when there are more newly added logical disk blocks
than can be accommodated by addition to the unused parity
groups, at least some of the unused parity groups are split
apart by the dissolution process to create enough unused
parity groups to incorporate the newly added logical disk
blocks.

Load Balancing
0505 One approach to adaptive or active load balancing
includes two mechanisms. A first mechanism predicts the
future server workload, and a second mechanism reallocates
resources in response to the predicted workload. Workload
prediction can have several aspects. For example, one aspect
includes past server workload, such as, for example, file
access statistics and controller and network utilization sta
tistics. The loading prediction mechanism can use these
statistics (with an appropriate filter applied) to generate
predictions for future loading. For example, a straightfor
ward prediction can include recognizing that a file that has
experienced heavy sequential read activity in the past few
minutes will likely continue to experience heavy sequential
read access for the next few minutes.

0506 Predictions for future workload can be used to
proactively manage resources to optimize loading. Mecha
nisms that can be used to reallocate server workload include
the movement and replication of content (files or objects)
between the available storage elements such that controller
and storage utilization is balanced, and include the direction
of client accesses to available controllers such that controller
and network utilization is balanced. In one embodiment,
Some degree of cooperation from client machines can pro
vide effective load balancing, but client cooperation is not
strictly needed.

0507 Embodiments of the invention include a distributed
file server (or servers) comprising a number of hardware
resources, including controllers, storage elements such as
disks, network elements, and the like. Multiple client
machines can be connected through a client network or
communication fabric to one or more server clusters, each of
which includes of one or more controllers and a disk storage
pool.

0508 File system software resident on each controller
can collect statistics regarding file accesses and server
resource utilization. This includes information of the access

39
Aug. 3, 2006

frequency, access bandwidth and access locality for the
individual objects stored in the distributed file, the loading
of each controller and disk storage element in terms of CPU
utilization, data transfer bandwidth, and transactions per
second, and the loading of each network element in terms of
network latency and data transfer bandwidth.
0509. The collected statistics can be subjected to various

filter operations, which can result in a prediction of future
file and resource utilization (i.e. workload). The prediction
can also be modified by server configuration data which has
been provided in advance, for example, by a system admin
istrator, and explicit indications regarding future file and/or
resource usage which may be provided directly from a client
machine.

0510) The predicted workload can then be used to move
content (files, objects, or the like) between storage elements
and to direct client accesses to controllers in Such a manner
that the overall workload is distributed as evenly as possible,
resulting in best overall load balance across the distributed
file storage system and the best system performance.

0511. The predicted workload can be employed to per
form client network load balancing, intra-cluster storage
load balancing, inter-node storage load balancing, intra-node
storage capacity balancing, inter-node storage capacity bal
ancing, file replication load balancing, or the like.

0512 Client network load balancing includes managing
client requests to the extent possible such that the client load
presented to the several controllers comprising a server
cluster, and the load presented to the several client network
ports within each is evenly balanced. Intra-cluster storage
load balancing includes the movement of data between the
disks connected to a controller cluster such that the disk
bandwidth loading among each of the drives in an array, and
the network bandwidth among network connecting disk
arrays to controllers is balanced. For example, intra-cluster
storage load balancing can be accomplished by moving
relatively infrequently accessed files or objects. Intra-cluster
storage load balancing advantageously achieves uniform
bandwidth load for each storage sub-network, while also
achieving uniform bandwidth loading for each individual
disk drive.

0513 Inter-node storage load balancing comprises the
movement of data between drives connected to different
controller clusters to equalize disk access load between
controllers. This can often cost more than intra-node drive
load balancing, as file data is actually copied between
controllers over the client network. Intra-node storage
capacity balancing comprises movement of data between the
disks connected to a controller (or controller pair) to balance
disk storage utilization among each of the drives.
0514 Inter-node storage capacity balancing comprises
movement of data between drives connected to different
controllers to equalize overall disk storage utilization among
the different controllers. This can often cost more than
intra-node drive capacity balancing, as file data is actually be
copied between controllers over the network. File replica
tion load balancing comprises load balancing through file
replication as an extension of inter-node drive load balanc
ing. For example, high usage files are replicated so that
multiple controller clusters include one or more that one
local (read only) copy. This allows the workload associated

US 2006/017395.6 A1

with these heavily accessed files to be distributed across a
larger set of disks and controllers.
0515 Based on the foregoing, embodiments of the
present invention include a distributed file storage system
that proactively positions objects to balance resource load
ing across the same. As used herein, load balancing can
include, among other things, capacity balancing, throughput
balancing, or both. Capacity balancing seeks balance in
storage. Such as the number of objects, the number of
Megabytes, or the like, stored on particular resources within
the distributed file storage system. Throughput balancing
seeks balance in the number of transactions processed. Such
as, the number of transactions per second, the number of
Megabytes per second, or the like, handled by particular
resources within the distributed file storage system. Accord
ing to one embodiment, the distributed file storage system
can position objects to balance capacity, throughput, or both,
between objects on a resource, between resources, between
the servers of a cluster of resources, between the servers of
other clusters of resources, or the like.
0516. The distributed file storage system can proactively
position objects for initial load balancing, for example, to
determine where to place a particular new object. While
existing server loading is a factor used in the determination,
other data can be used to help predict the access frequency
of the new object, such as, for example, file extensions, DV
access attributes, or the like. For example, a file extension
indicating a streaming media file can be used to predict a
likely sequential access to the same.
0517. The distributed file storage system actively contin
ues load balancing for the existing objects throughout the
system using load balancing data. For capacity load balanc
ing, large objects predicted to be infrequently accessed, can
be moved to servers, which for example, have the lower total
percent capacity utilizations. Movement of Such files advan
tageously avoids disrupting throughput balancing by mov
ing predominantly infrequently accessed files. For through
put balancing, objects predicted to be frequently accessed
can be moved to servers, which for example, have the lower
total percent transaction utilizations. In one embodiment,
Smaller objects predicted to be frequently accessed can be
moved in favor of larger objects predicted to be frequently
accessed, thereby advantageously avoiding the disruption of
capacity balancing.
0518. According to one embodiment, one or more filters
may be applied during initial and/or active load balancing to
ensure one or a small set of objects are not frequently
transferred, or churned, throughout the resources of the
system.
0519. The distributed file storage system can comprise
resources, such as a server or server, which can seek to
balance the loading across the system by reviewing a
collection of load balancing data from itself, one or more of
the other servers in the system, or the like. The load
balancing data can include object file statistics, server pro
files, predicted file accesses, historical statistics, object pat
terns, or the like. A proactive object positioner associated
with a particular server can use the load balancing data to
generate an object positioning plan designed to move
objects, replicate objects, or both, across other resources in
the system. Then, using the object positioning plan, the
resource or other resources within the distributed file storage
system can execute the plan in an efficient manner.

40
Aug. 3, 2006

0520 According to one embodiment, the generation of
the positioning plan can be very straightforward, such as, for
example, based on object sizes and historical file access
frequencies. Alternatively, the generation of the plan can be
quite complex, based on a large variety of load balancing
information applied to predictive filtering algorithms, the
output of which is a generally more accurate estimate of
future file accesses and resource usage, which results in
more effective object positioning. Another embodiment can
include adaptive algorithms which track the accuracy of
their predictions, using the feedback to tune the algorithms
to more accurately predict future object access frequencies,
thereby generating effective object positioning plans.
0521. According to one embodiment, each server pushes
objects defined by that server's respective portion of the
object positioning plan to the other servers in the distributed
file storage system. By employing the servers to individually
push objects based on the results of their object positioning
plan, the distributed file storage system provides a server-,
process-, and administrator-independent automated
approach to object positioning, and thus load balancing,
within the distributed file storage system.
0522 To facilitate a complete understanding of exem
plary load balancing aspects of the invention, this part of the
detailed description describes the invention with reference to
FIGS. 39-41, wherein like elements are referenced with like
numerals throughout.
0523 FIG. 39 depicts an exemplary embodiment of
servers and disk arrays of a distributed file storage system
(DFSS) 3900, disclosed for the purpose of highlighting the
distributed proactive object positioning aspects of an exem
plary embodiment of the invention. A skilled artisan will
recognize FIG. 39 is not intended to limit the large number
of potential configurations of servers and disk arrays encom
passed by the foregoing distributed file storage system 100
disclosed with reference to FIG.1. As shown in FIG. 39, the
DFSS 3900 comprises five nodes formed into three clusters
3905, 3910, and 3915. Cluster 3905 includes a first node
comprising server F1 and a disk array 3920, and a second
node comprising server F2 and a disk array 3922. Cluster
3910 includes one node comprising server F3 and a disk
array 3924. Additionally, cluster 3915 includes a first node
comprising server F4 and a disk array 3926, and a second
node comprising server F5 and a disk array 3928.
0524. According to one embodiment, each of the servers
F1, F2, F3, F4, and F5 comprises software, hardware, and
communications similar to the servers 130-135 disclosed
with reference to FIGS. 1 and 2. For example, server F1
communicates with each drive of the disk array 3920.
Additionally, server F1 forms part of cluster 3905. Accord
ing to one embodiment, at least some of the objects stored
on a disk array within a cluster, are stored, and are thereby
accessible, on other disk arrays within the cluster. For
example, server F1 can be configured to communicate with
each drive of the disk array 3922. Server F1 also commu
nicates with one or more of the other servers of the DFSS
3900. Moreover, the servers F1, F2, F3, F4, and F5 include
Software and hardware systems which employ some or all of
the features of the distributed file storage system 100, such
as, for example, the disclosed use of metadata structures for
object organization, metadata and data caching, and the like.
0525 FIG. 39 also shows exemplary self-explanatory
attributes of each of the drives of the disk arrays 3920-3928.

US 2006/017395.6 A1

For example, the drives of the disk array 3920 include two
high speed drives having Small storage capacity, e.g.,
“FAST, SMALL. one drive having high speed and average
storage capacity, e.g., “FAST, AVERAGE.” and one drive
having average speed and large storage capacity, e.g.,
“AVERAGE, LARGE.” Additionally, FIG. 39 shows serv
erS F3 and F4 providing access to a resource, such as, for
example, a printer, Scanner, display, memory, or the like. A
skilled artisan will recognize from the disclosure herein that
the speed of a drive includes its ordinary meaning as well as
a measure of the data rate, or the like, of read or write
operations.
0526. According to one embodiment, the DFSS 3900
includes proactive object positioning. For example, each
server F1-F5 of the DFSS 3900 proactively positions
objects, such as files, directories, or the like, based on a
desire to balance or optimize throughput, capacity, or both.
According to one embodiment, the foregoing balancing and
optimization can advantageously occur at multiple levels
within the DFSS 3900. For example, the DFSS 3900 can
advantageously seek to optimize the placement and structure
of objects within and between disks of the disk arrays,
between the servers of a cluster and between servers of other
clusters.

0527. Load Balancing Within and Between the Drives of
the Disk Arrays
0528 Similar to the embodiments disclosed with refer
ence to FIGS. 1 and 5, the DFSS 3900 provides the server
F1 with the ability to adjust the file logical block size and the
distribution of files across multiple drives using, for
example, the Gee Table 320. Thus, the server F1 can adjust
or choose the layout of particular files within a disk, using,
for example, larger file logical block sizes for larger files, or
the like, thereby creating efficient storage of the same.
Moreover, the server F1 can adjust or choose the layout of
particular files across varying numbers of disks, thereby
matching, for example, performance of drives within the
disk array 3920 with attributes of particular files.
0529) For example, FIG. 39 shows the placement of two

files within the DFSS 3900, e.g., streamed file “SF and
large file “LF. According to the exemplary embodiment, file
“SF comprises a file which is to be streamed across
computer networks, such as, for example, the Internet. As
shown in FIG. 39, file SF is stored in the disk array 3920
using a distributed parity group of three blocks, e.g., two
data blocks, “SF, and “SF’ and one parity block “SF.”
Similar to the foregoing description of distributed file stor
age system 100, the DFSS 3900 advantageously allows files
to modify the number of drives in the distributed parity
group for a variety of reasons, including to take advantage
of attributes of a disk array. Thus, when it is determined that
it is desirable to store file SF on only fast disk drives, the
distributed parity group can be chosen such that file SF is
stored on the fastest drives of disk array 3920 in equally
shared portions. A skilled artisan will recognize from the
disclosure herein that the servers advantageously balance the
desire to employ the faster drives of a particular disk array,
against the desire to reduce the overhead associated with
using Smaller parity groups. For example, according to some
embodiments, use of only two disks of five disks means that
half of the data stored is overhead parity data.
0530 FIG. 39 also shows that in the disk array 3922, file
SF', a copy of file SF, can be stored according to the

Aug. 3, 2006

attributes of the disk array 3922, e.g., file SF" is stored using
a distributed parity group of two because the disk array 3922
has only two fast drives. Moreover, FIG. 39 shows file LF
stored in the disk array 3924. According to the exemplary
embodiment, file LF is stored is using distributed parity
groups of three blocks, thereby fully taking advantage of all
three very fast drives.
0531. Thus, the server F1 advantageously and proactively
can adjust the placement and structure of objects, such as
files, within and between drives of the disk array 3920. A
skilled artisan will recognize that such proactive placement
is outside the ability of conventional data storage systems.
For example, as disclosed with reference to FIGS. 14-16,
the DFSS 3900 advantageously includes a directory and file
handle lookup process which allows the clients 110 to find
files without first knowing which server is currently storing
the file. Thus, when one of the servers of the DFSS 3900
repositions an object to balance load, capacity, or the like,
the clients 110 can use the lookup process to find the
repositioned object in its new location.
0532 Load Balancing Between Servers of a Cluster
0533. As disclosed in the foregoing, one embodiment of
the DFSS 3900 seeks to balance the loading and capacity
between servers of a cluster. As disclosed with reference to
the embodiments of FIGS. 1 and 13-14, the clients 110
request data from a file through the use of the file handle
1300, which according to one embodiment, includes the
server identification 1320. Thus, the DFSS 3900 can advan
tageously alter the server identification 1320 of the file
handle 1300 for a particular file, thereby changing the read
or write request from being processed by, for example,
server F1 to, for example, server F2. A skilled artisan will
recognize a wide number of reasons for making the forego
ing alteration of the file handle 1300, including the avail
ability of F1, the load of F1 versus F2, or the like. In
addition, the DFSS3900 can alter the file handle 1300 based
on comparisons of server load balancing data, to set up
read-only copies of heavily accessed files, or the like, as
discussed below.

0534) Load Balancing Between Servers of Other Clusters
0535 Load balancing between servers differs from load
balancing between drives in, among other things, load
balancing between servers involves balancing through the
movement or creation of additional copies of objects, while
load balancing between drives involves the movement of
data blocks.

0536. One embodiment of the DFSS 3900 comprises
servers F1-F5 each having access to load balancing data
from itself and each of the other servers. According to one
embodiment, each server uses the load balancing data to
generate an object positioning plan, and then pushes objects
defined by their respective portion of the plan, to other
servers in the DFSS 3900. The foregoing implementation
provides a distributed and server-independent approach to
object positioning within the DFSS 3900. It will be under
stood by a skilled artisan from the disclosure herein that
resources, or groups of resources, can gather load balancing
data, Such as, for example, each, some, or all clusters, each,
Some, or all servers, or the like.
0537 According to one embodiment, the load balancing
data of a particular server can include a wide variety of

US 2006/017395.6 A1

statistical and attribute data relating to the architecture and
performance of the respective server and disk array. Addi
tional statistical information can be maintained relating to
the historical object access frequencies and patterns. This
statistical information can be applied to a filtering function
to predict future object frequencies and patterns.
0538. The load balancing data can include relatively
static information, such as, for example, the number of
servers for a given cluster and the number of drives con
nected to each server. Moreover, for each server, the load
balancing data can include an indication of the number and
type of interfaces available to the server, performance sta
tistics of the server, amount of available memory, an indi
cation of the health of the server, or the like. For each drive,
the load balancing data can include an indication of the
layout of the drive, such as track information, cylinder
information, or the like, capacity and performance informa
tion, performance statistics, an indication of the health of the
drive, or the like. Additionally, the load balancing data can
include an indication of the performance and the health of
storage network configurations, client network configura
tions, or the like. The relatively static load balancing data
can be considered the “profile' of the resources associated
therewith.

0539. Other relatively static information can include an
indication of the quality of service being demanded by the
clients 110 from a particular server, Such as, for example,
server F1 and its associated disk array 3920 can be config
ured to provide data availability with little or no downtime,
thereby allowing the server to Support Internet hosting
applications or the like. Additionally, the foregoing rela
tively static statistical or attribute information can change
occasionally, such as, for example, when a drive is replaced
or added, a server is reconfigured, the quality of service is
changed, or the like.
0540 According to yet another embodiment, the load
balancing data can also include relatively dynamic informa
tion, such as, for example, throughput information like the
number of read or write input/output operations per second
(IOPS). For example, the dynamic information can include
server throughput for each server, Such as, for example,
client transactions per second, client megabytes per second,
disk transaction per second, disk megabytes per second, or
the like. The foregoing server throughput information can
include read, write, or both operations for each client
interface of the particular server. The server throughput data
also includes dynamic information Such as the cache hit
ration, errors, or the like, of each particular server. The
dynamic information can also include disk throughput for
each disk, such as, for example, an indication of the amount
of metadata capacity that is being utilized, the amount of
data capacity utilized, read, write, or both transactions per
second, read, write, or both megabytes per second, errors or
the like.

0541. In addition to the foregoing data, the load balanc
ing data includes object statistic information, Such as, for
example, the last access time and the access frequency for
each object. According to one embodiment, the measure
ment of access frequency can be filtered using one or more
filtering weights designed to emphasize, for example, more
recent data over more historical data.

0542. According to one embodiment, each server may
include file statistical information in the load balancing data,

42
Aug. 3, 2006

comprising additional information for the more heavily
accessed, and potentially smaller, objects. For example, the
file statistical information can include an indication of
access frequency for, for example, the last ten (10) minutes,
one (1) hour, twenty-four (24) hours, or the like. Moreover,
the file statistical information can include average read block
size, average write block size, access locality, such as a
indication of randomness or sequentialness for a given file,
histogram data of accesses versus day and time, or the like.
According to one embodiment, the indication of randomness
can include randomness rating, Such as, for example, a range
from 0 and 1, where 0 corresponds to primarily randomly
accessed file and one corresponds to a primarily sequentially
accessed file, or vice versa.

0543 Based on the above, the load balancing data for a
given server can include virtually any information, perfor
mance or attribute statistic, or the like that provides insight
into how objects, such as files and directories, should be
created, reconfigure, moved, or the like, within the DFSS
3900. For example, a skilled artisan can include additional
information useful in the prediction of file access frequen
cies, such as, for example, the time of day, the file size, the
file extension, or the like. Moreover, the additional infor
mation can include hints corresponding to dynamic Volume
access attributes. Such as, for example, block size, read/write
information, the foregoing quality of service guarantees or
the randomness/sequentialness of file access.

0544. According to one embodiment, the load balancing
data can include a Least Recently Used (LRU) stack and/or
a Most Recently Used (MRU) stack, advantageously pro
viding insight into which objects can be used for balancing
capacity, throughput, or both, within the DFSS 3900. For
example, according to one embodiment, the LRU stack
tracks the objects that are rarely or infrequently accessed,
thereby providing information to the servers about which
objects can be mostly ignored for purposes of throughput
balancing, and are likely candidates for capacity balancing.
The MRU stack tracks the objects that are more frequently
accessed, thereby providing information to the servers about
which objects are highly relevant for throughput balancing.
According to one embodiment, the servers F1-F5 can
employ the MRU stack to determine the objects, on which
the servers should be tracking additional performance sta
tistics used in more Sophisticated load balancing or sharing
Solutions, as discussed in the foregoing.

0545) A skilled artisan will recognize from the disclosure
herein that the MRU and LRU stacks can be combined into
a single stack or other structure tracking the frequency of
access for some or all of the objects of the servers F1-F5. A
skilled artisan will also recognize from the disclosure herein
that the time frame chosen for determining frequency of use
for a given object affects the throughput and capacity
balancing operations. For example, if the time frame is every
twelve hours, the number of objects considered to be fre
quently accessed may be increased as compared to a time
frame of every half-second. According to one embodiment,
the DFSS 3900 uses an adaptive time frame of ten (10)
minutes to twenty-four (24) hours.

0546 Although the load balancing data is disclosed with
reference to its preferred embodiment, the invention is not
intended to be limited thereby. Rather, a skilled artisan will
recognize from the disclosure herein a wide number of

US 2006/017395.6 A1

alternatives for the same. For example, the load balancing
data can include detailed performance statistics similar to
those disclosed above. On the other hand, the load balancing
data can include only a few data points providing only a
rough sketch of the throughput and capacity on a particular
server. Moreover, the server may track access frequency
using information contained in the G-Node of an object,
Such as, for example, the last access time, or “atime.” field.

0547 FIG. 40 illustrates a block diagram of an exem
plary server 4000, such as the servers F1-F5 of FIG. 39,
according to aspects of an exemplary embodiment of the
invention. As shown in FIG. 40, the server 4000 include a
server interface 4005, a server software or file system 4010,
load balancing data 4020, and an object positioning plan
4025. The server interface 4005 passes data access requests
from, for example, the clients 110, to the file system 4010.
The server interface 4005 includes a server manager 4008,
which collects client access statistics, such as transactions
per second per client, per port, and per server, and mega
bytes per second per client, per port, and per server. The
server system 4010 includes several layers that participate in
statistics collection. For example, the server system 4010
includes a request processing layer 4012, a data/metadata
management layer 4014, and a storage management layer
4016. The request processing layer 4012 collects the statis
tics related to accesses to specific files. The data/metadata
management layer 4014 collects drive resource and capacity
utilization information. The storage management layer 4016
collects statistics related to transactions per second and
megabytes per second for each storage network interface
and drive.

0548 FIG. 40 also shows that each server 4000, such as
the servers F1-F5 of FIG. 39, includes a proactive object
positioner 4018, according to aspects of an exemplary
embodiment of the invention. According to one embodi
ment, the positioner 4018 comprises a set of rules, a software
engine, or the like, employing logic algorithms to Some or all
of the load balancing data 4020 to generate the object
positioning plan 4025.

0549. As disclosed in the foregoing, the servers F1, F2,
F3, F4, and F5, each share their respective load balancing
data with one another. Thus, the load balancing data 4020
comprises load balancing data from the particular server, in
this example, server F3, and the load balancing data from
each of the other servers, F1-F2 and F4-F5. According to one
embodiment, a server transmits its load balancing data at
predetermined time intervals. According to another embodi
ment, each server determines when a significant change or
a time limit has expired since the last broadcast of its load
balancing data, and then broadcasts the same.

0550. As shown in FIG. 40, each server 4000 includes
the proactive object positioner 4018, which accepts as an
input, the load balancing data of the Some or all of the
servers, and generates as an output, the object positioning
plan 4025. According to one embodiment, the proactive
object positioner 4018 for a given server generates a plan for
that server. The server then attempts to push objects found
in the plan to the other servers in the DFSS3900 to balance
throughput, capacity, or both. According to another embodi
ment, the proactive object positioner 4018 for a given server
generates the plan 4025, which is relevant to all servers. In
Such a case, the server attempts to push only its objects from

Aug. 3, 2006

the plan 4025 to other servers. Thus, each server in the DFSS
3900 acts independently to accomplish the plan 4025 of the
entire DFSS 3900, thereby advantageously providing a
distributed and balanced approach that has no single point of
failure and needing, if any, only minimal Supervision.
0551 As discussed in the foregoing, the object positioner
4018 corresponding to each server in the DFSS 3900 can
generate the positioning plan 4025 to position objects to
balance capacity, throughput, or both.
0552. Positioning to Balance Capacity, Such as the Num
ber or Size of Objects
0553 According to one embodiment, the proactive object
positioner 4018 for each server can instruct its server to
balance the number of objects stored on some or each disk
array of the DFSS 3900. For example, as disclosed with
reference to FIG. 5, each server has a predefined amount of
memory for caching the G-nodes of the objects stored on the
disk array associated with that server. By balancing the
number of objects related to a particular server, the DFSS
3900 advantageously avoids having more G-node data for a
server than can be stored in that server's G-node memory
cache.

0554 According to one embodiment, the proactive object
positioner 4018 for each server can instruct its server to
balance the size of objects stored on some or each disk array
of the DFSS 3900. For example, if a particular server is
associated with a disk array having a large number of Small
objects stored therein, the server can exceed that server's
G-node memory cache. Therefore, each proactive object
positioner 4018 can instruct its server to push objects such
that the size of objects accessible by each server is balanced.
For example, the servers can evenly distribute the number of
Small objects, the number of medium-sized objects, and the
number of large objects between servers. By balancing the
size of objects related to a particular server, the DFSS 3900
reduces the chances of having more G-node data for a server
than can be stored in that server's G-node memory cache.
0555 According to yet another embodiment, the proac
tive object positioner 4018 for each server can instruct its
server to optimize the number of free and used data blocks
when the servers in the DFSS 3900 have a large average
object size. In Such case, the number of G-nodes and the
G-node memory cache will not likely be a performance
issue, although number of used versus free data blocks will
likely be an issue. While used versus free data blocks need
not be entirely uniform across servers, maintaining a certain
level of unused block capacity for each server provides
flexibility in throughput balancing and new object creation,
thereby enhancing the performance of the overall DFSS
3900.

0556 Positioning to Balance Throughput, Such as the
Access Frequency of Objects
0557. According to one embodiment, the proactive object
positioner 4018 generates the positioning plan 4025 to
position objects based on, for example, predicted access
frequencies of the same. As discussed above, prediction may
comprise historical data, and may comprise a number of
other data and factors as well. The positioner 4018 can
advantageously use objects predicted to be infrequently
accessed for capacity balancing to avoid upsetting any
throughput balancing already in place. For example, when

US 2006/017395.6 A1

the positioner 4018 determines to balance the capacity
among resources of the DFSS 3900, such as, for example, a
drive, disk array, or server, the positioner 4018 can move
objects that are of little significance to the throughput of the
resource. Such as, for example, those objects predicted to be
least accessed. Thus, as the positioner 4018 balances the
capacity through objects predicted to be, or found to be least
recently accessed, the respective throughput of the resources
will not be substantially affected. According to one embodi
ment, each server tracks the objects predicted to be infre
quently used by maintaining in their load balancing data, an
LRU stack of, for example, pointers to the G-Nodes of the
objects predicted to be infrequently accessed.

0558 Additionally, the positioner 4018 can generate the
positioning plan 4025 to move objects predicted to be
infrequently accessed from faster drives to slower drives.
For example, if the large file LF from FIG. 39 were
predicted to be infrequently accessed, storage of file LF on
the fastest drives of the DFSS 3900, for example, the drives
of the disk array 3924, would be inefficient. Thus, the
proactive object positioner 4018 determines that the large
file LF predicted to be infrequently accessed can be advan
tageously stored on the slow, large drives of the disk array
3926 of server F4. A skilled artisan will recognize that
movement of the file LF to servers F4 is not expected to
substantially affect the throughput of servers F3 and F4.
outside of the processes for moving the file LF.
0559) Additionally, the proactive object positioner 4018
can use the MRU stack in a server's load balancing data to
instruct an overburdened server to take actions to offload
some of the access from itself to those servers with less
throughput. For example, the positioner 4018 can generate
instructions to move the objects predicted to be heavily
accessed to other servers, thereby moving the entire through
put load associated therewith, to the other servers. Also,
positioner 4018 can generate instructions to create copies of
objects predicted to be heavily accessed on other servers,
thereby sharing the throughput load with the other servers

0560 For example, according to one embodiment, the
server F1 includes the streamed file SF predicted to be
heavily accessed, which in this example may include
extremely popular multimedia data, Such as, for example, a
new video or music release, a major news story, or the like,
where many clients are requesting access of the same.
Moreover, according to this embodiment, the server F1 is
being over-utilized, while the server F3 is being under
utilized. Thus, the object positioner 4018 recognizes that the
movement of the file SF to the server F3 may simply
overload the server F3. According to one embodiment, the
proactive object positioner 4018 can instruct the server F1 to
push, for example, read-only copies of the file SF to the
server F3. Moreover, a skilled artisan will recognize from
the disclosure herein that the server F1 can then return to a
requesting client, a file handle 1300 for the file SF desig
nating server F3, and the client will then generate requests
to server F3, instead of server F1. Accordingly, the over
utilization of server F1 is advantageously decreased while
the under utilization of server F3 is advantageously
increased, thereby balancing the throughput across the
DFSS 3900.

0561. According to yet another embodiment, the proac
tive object positioner 4018 can generate instructions to move

44
Aug. 3, 2006

objects to match the attributes of resources available to a
particular server, thereby potentially decreasing the response
time of the DFSS 3900. For example, as illustrated in the
foregoing embodiment, the object positioner 4018 can
instruct the server F1 to push the file SF predicted to be
heavily accessed, to the server F3 having very fast disk
drives, even when the server F1 is not being over-utilized.
Moreover, as discussed above, the positioner 4018 can
instruct the server F3 to store the file in distributed parity
groups matching the number of very fast drives.
0562 According to one embodiment, one or more of the
servers can include specific software and hardware solu
tions, such as dedicated digital signal processors, which can
add additional horse power to the generation of the object
positioning plan 4025. For example, load balancing can be
performed by an external client connected to the DFSS
3900.

0563 FIG. 41 depicts the object positioning plan 4025 of
server F3 of FIG. 39, according to aspects of an exemplary
embodiment of the invention. As shown in FIG. 41, the plan
4025 includes instructions to push an object, and instruc
tions on how to handle Subsequent client requests for access
to that object. According to one embodiment, a server that
pushes an object tells clients seeking access to the object that
the object has been moved. The pushing server can maintain
a cache of objects that it recently pushed, and when feasible,
the pushing server will Supply the requesting client with the
location, or server, where the object was moved, thereby
providing direct access to the object for the client.
0564) As shown in FIG. 41, the plan 4025 calls for server
F3 to push the large file LF to server F4 for storage thereon,
thereby freeing the fastest drives in the DFSS 3900 to store
more objects predicted to be more heavily accessed. More
over, the plan 4025 includes an indication that server F3 will
return an indication of Staleness for any clients still caching
the file handle of file LF designating server F3. The plan
4025 also indicates that if server F1 requests, server F3 will
accept and store a copy of the streamed file SF and return an
indication of file creation to server F1, such as, for example,
the file handle of server F3's copy of file SF. Thus, the DFSS
3900 uses a pushing approach to ensure server independence
in proactively placing objects.

0565 Based on the foregoing disclosure related to FIGS.
39-41, a skilled artisan will recognize the vast scalability of
the DFSS 3900. For example, adding or removing hardware
components such as drives, resources, or even servers,
simply causes updated, or sometimes additional, load bal
ancing information to be broadcast to the other servers. Each
server then can immediately generate new positioning plans
to take full advantage of the new components or configu
ration of the DFSS 3900. Each server then pushes their
respective objects throughout the DFSS 3900, thereby effi
ciently balancing the throughput, capacity, or both, of the
SaC.

0566 Although the foregoing invention has been
described in terms of certain preferred embodiments, other
embodiments will be apparent to those of ordinary skill in
the art from the disclosure herein. For example, the DFSS
3900 may advantageously push new file handles to clients,
Such as, for example, file handles including information on
the location of an object. According to another embodiment,
the DFSS 3900 can advantageously allow servers who have

US 2006/017395.6 A1

pushed objects to other servers, to automatically suggest
new file handles to requesting clients. However, this
approach can have the drawback that the file handle stored
by the old server can itself be outdated, for example, when
the new server Subsequently pushed the same object to yet
another server. Thus, according to one embodiment, servers
return indications of Staleness for objects they not longer
have stored on their respective disk arrays.
0567. In addition, a skilled artisan will recognize from
the disclosure herein that many of the balancing ideas can be
implemented in conventional non-distributed file storage
systems. For example, the method of moving infrequently
accessed files to balance capacity so as not to upset balanced
load can be incorporated into conventional data storage
systems.
Data Flow Architecture

0568 Each server 130-135 in the DFSS 100 includes
storage controller hardware and storage controller Software
to manage an array of disk drives. For example, the servers
130-131 each manage data on the disk arrays 140 and 141.
A large number of disk drives can be used, and the DFSS
100 can be accessed by a large number of client machines
110. This potentially places a large workload on the servers
130-135. It is therefore desirable that the servers 130-135
operate in an efficient manner to reduce the occurrence of
bottlenecks in the storage system.
0569 Prior art approaches for storage servers tend to be
software intensive. Specifically, a programmable CPU in the
server becomes involved in the movement of data between
the client and the disks in the disk array. This limits the
performance of the storage system because the server CPU
becomes a bottleneck. While prior approaches may have a
certain degree of hardware acceleration, such as XOR parity
operations associated with RAID, these minimal accelera
tion techniques do not adequately offload the server CPU.
0570 FIG. 42 shows an architecture for a server, such as
the server 130, that reduces loading on a CPU 4205 of the
server 130. As shown in FIG. 42, the clients 110 commu
nicate (over the network fabric 120, not shown) with one or
more network interfaces 4214. The network interfaces 4214
communicate with a first I/O bus 4201 shown as a network
bus. The network bus communicates with the CPU 4205 and
with a data engine 4210. A first data cache 4218 and a second
data cache 4220 are provided to the data engine 4210. A
metadata cache 4216 is provided to the CPU 4205. The CPU
4205 and the data engine 4210 also communicate with a
second I/O bus 4202 shown as a storage bus. One or more
storage interfaces 4212 also communicate with the second
bus 4202.

0571. The storage interfaces 4212 communicate with the
disks 140,141. In one embodiment, the first I/O bus 4201 is
a PCI bus. In one embodiment, the second I/O bus 4202 is
a PCI bus. In one embodiment, the caches 4216, 4218, and
4220 are non-volatile. In one embodiment, the network
interfaces 4214 are Fibre Channel interfaces. In one embodi
ment, the storage interfaces 4212 are Fibre Channel inter
faces. The data engine 4210 can be a general-purpose
processor, a digital signal processor, a Field Programmable
Gate Array (FPGA), other forms of soft or hard program
mable logic, a custom ASIC, etc. The network interface
controllers 4214, 4212 can support Fibre Channel, Ethernet,
Infiniband, or other high performance networking protocols.

Aug. 3, 2006

0572 The architecture shown in FIG. 42 allows data to
be efficiently moved between the client machines 110 and
disks 140-141 with little or no software intervention by the
CPU 4205. The architecture shown in FIG. 42 separates the
data path from the control message path. The CPU 4205
handles control, file system metadata, and housekeeping
functions (conceptually, the CPU 4205 can be considered as
a control engine). Actual file data passes through the data
engine 4210.
0573 Control messages (e.g. file read/write commands
from clients) are routed to the CPU 4205. The CPU 4205
processes the commands, and queues data transfer opera
tions to the data engine 4210. The data transfer operations,
once scheduled with the data engine 4210 can be completed
without further involvement of the CPU 4205. Data passing
between the disks 140,141 and the clients 110 (either as read
or write operations) is buffered through the data cache 4218
and/or the data cache 4220. In one embodiment, the data
engine 4210 operates using a data flow architecture that
packages instructions with data as the data flows through the
data engine 4210 and its associated data caches.
0574. The data engine 4210 provides a separate path for
data flow by connecting the network interfaces 4214 and the
storage interfaces 4212 with the data caches 4218, 4220. The
data engine 4210 provides file data transfers between the
network interface 4214 and the caches 4218, 4220 and
between the storage interface 4212 and the caches 4218,
4220. As an example of the data path operation, consider a
client file read operation. A client read request is received on
one of the network interfaces 4214 and is routed to the CPU
4205. The CPU 4205 validates the request, and determines
from the request which data is desired. The request will
typically specify a file to be read, and the particular section
of data within the file. The CPU 4205 will use file metadata
in the cache 4216 to determine if the data is already present
in one of the data caches 4218, 4220, or if the data must be
retrieved from the disks 140, 141. If the data is in the data
cache 4218, 4220, the CPU 4205 will queue a transfer with
the network interfaces 4214 to transfer the data directly from
the appropriate data cache 4218, 4220 to the requesting
client 110, with no further intervention by the CPU 4205. If
the data is not in the data caches 4218, 4220, then the CPU
4205 will queue one or more transfers with the storage
interfaces 4212 to move the data from the disks 140, 141 to
the data caches 4218, 4220, again without further interven
tion by the CPU 4205. When the data is in the data caches
4218, 4220, the CPU 4205 will queue a transfer on the
network interfaces 4214 to move the data to the requesting
client 110, again without further intervention by the CPU
42O5.

0575 One aspect of the operation of the data engine 4210
is that the CPU 4205 schedules data movement operations
by writing an entry onto a queue in the network interfaces
4214 or into a queue in the storage interfaces 4212. The data
engine 4210 and the network and storage interfaces 4214,
4212 are connected by busses 42.01, 4202. The busses 42.01,
4202 each include an address bus and a data bus. In one
embodiment, the network or storage interfaces 4214, 4212
perform the actual data movement (or sequence of data
movements) independently of the CPU 4205 by encoding an
instruction code in the address bus that connects the data
engine to the interface. The instruction code is set up by the
host CPU 4205 when the transfer is queued, and can specify

US 2006/017395.6 A1

that data is to be written or read to one or both of the cache
memories 4218, 4220. In addition, the instruction code can
specify that an operation Such as a parity XOR operation or
a data conversion operation be performed on the data while
it is in transit through the data engine 4210. Because
instructions are queued with the data transfers, the host CPU
can queue hundreds or thousands of instructions in advance
with each interface 4214, 4212, and all of these instructions
can be can be completed asynchronously and autonomously.

0576. As described above, once a data movement opera
tion has been queued, the data engine 4210 offloads the CPU
4205 from direct involvement in the actual movement of
data from the clients 110 to the disks 140, 141, and vice
versa. The CPU 4205 schedules network transfers by queu
ing data transfer operations on the network interfaces 4214
and the storage interfaces 4212. The interfaces 4214 and
4212 then communicate directly with the data engine 4210
to perform the data transfer operations. Some data transfer
operations involve the movement of data. Other data transfer
operations combine the movement of data with other opera
tions that are to be performed on the data in transit (e.g.,
parity generation, data recovery, data conversion, etc.).
0577. The processing modules in the data engine 4210
can perform five principal operations, as well as a variety of
Support operations. The principal operations are:

0578) 1) read from cache
0579. 2) write to cache
0580 3) XOR write to cache
0581. 4) write to one cache with XOR write to other
cache

0582 5) write to both caches
0583. A typical client file read operation would proceed
as follows in the server 130:

0584 (1) The file read command is received from the
client

0585 (2) The CPU 4205 authenticates client access
and access permissions. The CPU 4205 also does
metadata lookups to locate the requested data in cache
or on disk.

0586 (3) If data is not in cache, a disk read transaction
is queued by sending instructions to the storage inter
faces 4212.

0587 (4) The storage interfaces 4212 mode data from
disk to the data caches 4218, 4220.

0588 (5) The CPU 4205 queue a data-send transaction
to the network interfaces 4214.

0589 (6) The network interfaces 4214 send the data to
the client, completing the client read operation.

0590 FIG. 43 is a block diagram of the internal structure
of an ASIC 4310 that is one example of a hardware embodi
ment of the data engine 4210. The ASIC 4310 provides the
capability for autonomous movement of data between the
network interfaces 4214 and data caches 4218, 4220, and
between the storage interfaces 4212 and the data caches
4218, 4220. The involvement of the CPU 4205 is often just
queuing the desired transfer operations. The ASIC 4310
Supports this autonomy by combining an asynchronous data

46
Aug. 3, 2006

flow architecture, a high-performance data path than can
operate independently of the data paths of the CPU 4205,
and a data cache memory subsystem. The ASIC 4310 also
implements the parity generation functions used to Support
a RAID-style data protection scheme.
0591. The data ASIC 4310 is a special-purpose parallel
processing system that is data-flow driven. That is, the
instructions for the parallel processing elements are embed
ded in data packets that are fed to the ASIC 4310 and to the
various functional blocks within the ASIC 4310.

0592. In one embodiment, the ASIC 4310 has four prin
cipal interfaces: a first data cache interface 4318, a second
data cache interface 4320, a first bus interface 4301, and a
Second bus interface 4302. Other versions of the ASIC 4310
can have a different number of interfaces depending on
performance goals.

0593) Data from the first data cache interface 4318 is
provided to a cache read buffer 4330, to a feedback buffer
4338, to a feedback buffer 4340 and to a cache read buffer
4348. Data from the second data cache interface 4320 is
provided to a cache read buffer 4331, to a feedback buffer
4339, to a feedback buffer 4341 and to a cache read buffer
4349.

0594) Data is provided from the bus interface 4301
through a write buffer 4336 to a parity engine 4334. Data is
provided from the parity engine 4334 through a cache write
buffer 4332 to the cache interface 4318. Data is provided
from the feedback buffer 4338 to the parity engine 4334.
0595 Data is provided from the bus interface 4302
through a write buffer 4346 to a parity engine 4344.
0596) Data is provided from the parity engine 4344
through a cache write buffer 4342 to the cache interface
4318. Data is provided from the feedback buffer 4340 to the
parity engine 4344.
0597 Data is provided from the bus interface 4301
through a write buffer 4337 to a parity engine 4335. Data is
provided from the parity engine 4335 through a cache write
buffer 4333 to the cache interface 4320. Data is provided
from the feedback buffer 4339 to the parity engine 4335.
0598) Data is provided from the bus interface 4302
through a write buffer 4347 to a parity engine 4345. Data is
provided from the parity engine 4345 through a cache write
buffer 4343 to the cache interface 4320. Data is provided
from the feedback buffer 4341 to the parity engine 4345.
0599 Data is provided from the cache read buffers 4348,
4349 to the bus interface 4202. Data is provided from the
cache read buffers 4330, 4331 to the bus interface 4201.

0600 Data transfer paths are provided between the cache
interface 4218 and the bus interface 4301 and 4302. Simi
larly, data transfer paths are provided between the cache
interface 4220 and the bus interfaces 4301 and 4302. A
control logic 4380 includes, in each of these data path, a
processing engine that controls data movement between the
respective interfaces as well as operations that can be
performed on the data as it moves between the interfaces.
The control logic 4380 is data-flow driven as described
above.

0601. In one embodiment, the bus 42.01 is a PCI bus, the
bus 4202 is a PCI bus, and data-transfer commands for the

US 2006/017395.6 A1

data engine are contained in PCI addresses on the respective
buses. FIG. 44 is a map 4400 of data fields in a 64-bit data
transfer instruction to the data engine for use with a 64-bit
PCI bus. A cache address is coded in bits 0-31. A parity index
is coded in bits 35-50. An opcode is coded in bits 56-58. A
block size is coded in bits 59-61. A PCI device address is
coded in bits 62-63. Bits 32-34 and 51-55 are unused.

0602. The block size is used to select the extent of a block
addressed by the parity index. This is the number of con
secutive 16 kilobyte blocks that make up the parity block
addressed by the parity index. In one embodiment, the block
size is three bits, interpreted as follows:

block size = 0 parity block = 16k
block size = 1 parity block = 32k
block size = 2 parity block = 64k
block size = 3 parity block = 128k
block size = 4 parity block = 256k
block size = 5 parity block = 512k
block size = 6 parity block = 1024k
block size = 7 parity block = 2048k

0603) In one embodiment, the bus interface 4301 is a PCI
interface and the bus interface 4302 is a PCI interface. Each
of these PCI interfaces includes a read control to control
reads from the caches 4218 and 4220. The read control reads
data from the respective output buffers 4330, 4331, 4348,
and 4349 as needed. On completion of a PCI transaction, the
output buffer is cleared. Each PCI interface also includes a
write control to control writes to the input buffers. The write
control adds an address word to the start of a data stream and
control bits to each word written to the input buffer. In the
case where parity is generated and data is saved, the write
control: determines which cache 4218, 4220 gets the data;
assigns parity to the other cache (that is, the cache that does
not receive the data); and adds control bits to the data stream.
Address words are typically identical for the various input
buffers, but added control bits will be different for each input
buffer. For parity generation, or regeneration of lost data, the
data in transit is stored in one of the feedback buffers 4338,
4339, 4341, or 4340. The feedback buffer is cleared on
completion of a data stream operation.
0604 As described above, each data block written to an
input buffer has address and control bits inserted into the
data stream. The control bits are as follows:

0605 bit 0: identifies a word as an address/control word
or a data word

0606 bit 1: set to tag last word in a data stream
0607 bit 2: enable/disable XOR (enable/disable parity
operations)

0608 bit 3: for an address word, specifies type of
addressing as either:

0609)
data)

0610 direct addressing (for normal data)

index addressing (for parity and regeneration

0611 For operations that include an XOR operation, the
XOR destination is a “parity block” in cache (e.g., in the
cache 4218 or the cache 4220). When a parity block is
addressed the address is calculated from a combination of

47
Aug. 3, 2006

the parity index field from the PCI address word; the lower
bits of the PCI address bus (the number depending on the
block size); and the block size field from the PCI address
word. Once the ASIC 4310 calculates the parity block
address for the first PCI data word, this address is incre
mented for each Subsequent data word.

0612 The parity block address can be generated from the
PCI address word using one of two methods. The first
method is to concatenate the parity index with the lower bits
of the PCI address word. The second method is to sum the
parity index with the lower bits of the PCI address word. In
either method, data is typically aligned to a natural boundary
(e.g., 16 k blocks to a 16 k boundary, 32 kblocks to a 32 k
boundary, etc.).

0613) The CPU 4205 queues network transaction
requests to the network interfaces 4214 and storage trans
action requests to the storage interfaces 4212. In one
embodiment, the network bus 42.01 is a memory-mapped
bus having an address word and one or more data words
(such as, for example, a PCI bus) and queuing a storage
transaction request involves sending an address word and
one or more data words to a selected network interface 4214.
In one embodiment, the address word includes opcode bits
and address bits as shown in FIG. 44. The data words
provide information to the selected network interface 4214
regarding what to do with the data at the specified address
(e.g., where to send the data and to notify the CPU 4205
when the data has been sent). In one embodiment, the
selected network interface 4214 views the data engine 4210
(e.g., the ASIC 4310) as simply a memory to use for
retrieving and storing data using addresses in the address
word included in the network transaction request. In Such an
embodiment, the network interface 4214 does not know that
the data engine 4210 is interpreting various bits of the
address word as opcode bits and that the data engine 4210
is performing operations (e.g., parity operations) on the data.

0.614 The storage interfaces 4212 operate with the data
engine 4210 (e.g., the ASIC 4310) in a similar manner. The
storage interfaces 4212 view the data engine 4210 as a
memory (e.g., a simple cache). The storage interfaces 4212
communicate with the disks 140, 141 to retrieve data from
the disks and write data to the disks. The data engine 4210
takes care of assembling parity groups, computing parity,
recovering lost data, etc.

0615) “Hiding the parity calculations in the data engine
4210 offloads the parity workload from the CPU 4205,
thereby giving the CPU 4205 more time for metadata
operations. Moreover, using a portion of the memory
mapped bus address word allows the CPU 4205 to send
commands to the data engine 4210, again offloading data
operations from the CPU 4205. The commands are associ
ated with the data (by virtue of being associated with the
address of the data). The network interfaces 4214 and the
storage interfaces 4212 (which, themselves are typically
network-type interfaces such as Fibre Channel interfaces,
SCSI interfaces, InfiniBand interfaces, etc.) are unaware of
the opcode information buried in the address words. This
allows standard “off-the-shelf interfaces to be used.

0616) In one embodiment, the CPU 4205 keeps track of
the data stored in the data caches 4218 and 4220, thus
allowing the server 130 to service many client requests for

US 2006/017395.6 A1

file data directly from the caches 4218 and 4220 to the
network interfaces 4214, without the overhead of disk
operations.
0617. Although the foregoing description of the inven
tion has shown, described and pointed out novel features of
the invention, it will be understood that various omissions,
substitutions, and changes in the form of the detail of the
apparatus as illustrated, as well as the uses thereof, may be
made by those skilled in the art without departing from the
spirit of the present invention. Consequently the scope of the
invention should not be limited to the foregoing discussion
but should be defined by the appended claims.
What is claimed is:

1. A computer network file system comprising:
a first file server operably connected to a network fabric;
means for creating files stored on the first file server or a

second file server connected to the network fabric; and
means for locating files stored by the first file server and

files stored by the second file server by traversing a
directory structure that spans at least the first file server
and the second file server.

2. The computer network file system of claim 1, further
comprising means for describing parity groups.

3. The computer network file system of claim 1, wherein
the directory structure comprises a hierarchical directory
structure having a common root directory.

4. The computer network file system of claim 1, wherein
the directory structure is further configured to allow a
requestor to find a location of a first file catalogued in the
directory structure without prior knowledge as to a server
location of the first file.

5. The computer network file system of claim 1, further
comprising file system metadata that describes at least one
portion of the directory structure.

6. The computer network file system of claim 5, wherein
the at least one portion of the directory structure relates to
directories stored on the first file server.

7. The computer network file system of claim 5, wherein
the file system metadata comprises at least one Gnid-string.

8. The computer network file system of claim 7, wherein
the file system metadata further comprises:

first file system metadata on the first file server; and
second file system metadata on the second file server.
9. The computer network file system of claim 8, wherein

the second file system metadata describes directories stored
on the first file server.

10. The computer network file system of claim 1, wherein
the network fabric comprises a first Fibre channel network,
and wherein the first file server communicates with one or
more disk drives using a second Fibre channel network.

11. A method for locating data in a computer network, the
method comprising:

storing first files on a first file server operably connected
to a network fabric;

48
Aug. 3, 2006

storing second files on a second file server operably
connected to the network fabric; and

locating the first files stored by the first file server and the
second files stored by the second file server by travers
ing directory information that spans at least the first file
server and the second file server.

12. The method of claim 11, additionally comprising:

creating first file system metadata on the first file server;
and

creating second file system metadata on the second file
Sever.

13. The method of claim 12, wherein the first file system
metadata describes at least the first files stored by the first
file server, and wherein the second file system metadata
describes at least the second files stored by the second file
SeVe.

14. The method of claim 12, wherein the first file system
metadata comprises at least one Gnid-string.

15. The method of claim 14, wherein a correspondence
exists between the Gnid-string and a directory of the first file
SeVe.

16. The method of claim 11, additionally comprising
defining at least one parity group having a first parity group
size, the at least one parity group comprising a parity block
and one or more data blocks.

17. The method of claim 11, wherein said locating is
performed in response to a request for at least one of the first
files, wherein the request does not include information as to
a server location of the at least one of the first files.

18. A file system for managing data in a computer
network, the file system comprising:

first data managed primarily by a first file server operably
connected to a network fabric, wherein the first data
comprises at least one Gnid-string and describes at least
first files and first directories stored by the first file
server, and

second data managed primarily by a second file server
operably connected to the network fabric, wherein the
second data describes at least second files and second
directories stored by the second file server, the first and
second data configured to allow a requestor to locate at
least one first file stored by the first server in a directory
structure that spans the first server and the second
Sever.

19. The file system of claim 18, wherein the first data
further comprises first file location information comprising
a disk identifier.

20. The file system of claim 18, wherein the directory
structure is further configured to allow a requestor to find a
location of the at least one first file without prior knowledge
as to a server location of the at least one first file.

