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(57) ABSTRACT 

A computer network file system is described. The computer 
network file system includes first metadata, which is man 
aged primarily by a first file server that is operably con 
nected to a network fabric. The first metadata includes first 
file location information, and the first file location informa 
tion includes at least one server id. The computer network 
file system also includes second metadata, which is managed 
primarily by a second file server that is operably connected 
to a network fabric. The second metadata includes second 
file location information, and the second file location infor 
mation includes at least one server id. The first metadata and 
the second metadata are configured to allow a requestor to 
locate files that are stored by the first file server and files that 
are stored by the second file server in a directory structure 
that spans the first file server and the second file server. 
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ERATOR ASICFOR HIGH PERFORMANCE STOR 
AGE SYSTEMS; 

0004 U.S. Provisional Application No. 60/264,672, 
filed Jan. 29, 2001, titled “INTEGRATED FILE SYS 
TEM/PARITY DATA PROTECTION: 

0005 U.S. Provisional Application No. 60/264,673, 
filed Jan. 29, 2001, titled “DISTRIBUTED PARITY 
DATA PROTECTION: 

0006 U.S. Provisional Application No. 60/264,670, 
filed Jan. 29, 2001, titled “AUTOMATIC IDENTIFI 
CATION AND UTILIZATION OF RESOURCES INA 
DISTRIBUTED FILE SERVER: 

0007 U.S. Provisional Application No. 60/264,669, 
filed Jan. 29, 2001, titled “DATA FLOW CONTROL 
LER ARCHITECTURE FOR HIGH PERFOR 
MANCE STORAGE SYSTEMS; 

0008 U.S. Provisional Application No. 60/264,668, 
filed Jan. 29, 2001, titled “ADAPTIVE LOAD BAL 
ANCING FOR A DISTRIBUTED FILE SERVER: 
and 

0009 U.S. Provisional Application No. 60/302.424, 
filed Jun. 29, 2001, titled “DYNAMICALLY DIS 
TRIBUTED FILE SYSTEM. 

FIELD OF THE INVENTION 

0010 This invention relates to the field of data storage 
and management. More particularly, this invention relates to 
high-performance mass storage systems and methods for 
data storage, backup, and recovery. 

DESCRIPTION OF THE RELATED ART 

0011. In modern computer systems, collections of data 
are usually organized and stored as files. A file system allows 
users to organize, access, and manipulate these files and also 
performs administrative tasks Such as communicating with 
physical storage components and recovering from failure. 
The demand for file systems that provide high-speed, reli 
able, concurrent access to vast amounts of data for large 
numbers of users has been steadily increasing in recent 
years. Often Such systems use a Redundant Array of Inde 
pendent Disks (RAID) technology, which distributes the 
data across multiple disk drives, but provides an interface 
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that appears to users as one, unified disk drive system, 
identified by a single drive letter. In a RAID system that 
includes more than one array of disks, each array is often 
identified by a unique drive letter, and in order to access a 
given file, a user must correctly identify the drive letter for 
the disk array on which the file resides. Any transfer of files 
from one disk array to another and any addition of new disk 
arrays to the system must be made known to users so that 
they can continue to correctly access the files. 
0012 RAID systems effectively speed up access to data 
over single-disk systems, and they allow for the regeneration 
of data lost due to a disk failure. However, they do so by 
rigidly prescribing the configuration of system hardware and 
the block size and location of data stored on the disks. 
Demands for increases in storage capacity that are transpar 
ent to the users or for hardware upgrades that lack confor 
mity with existing system hardware cannot be accommo 
dated, especially while the system is in use. In addition, Such 
systems commonly suffer from the problem of data frag 
mentation, and they lack the flexibility necessary to intelli 
gently optimize use of their storage resources. 
0013 RAID systems are designed to provide high-capac 
ity data storage with built-in reliability mechanisms able to 
automatically reconstruct and restore saved data in the event 
of a hardware failure or data corruption. In conventional 
RAID technology, techniques including spanning, mirror 
ing, and duplexing are used to create a data storage device 
from a plurality of smaller single disk drives with improved 
reliability and storage capacity over conventional disk sys 
tems. RAID systems generally incorporate a degree of 
redundancy into the storage mechanism to permit saved data 
to be reconstructed in the event of single (or sometimes 
double) disk failure within the disk array. Saved data is 
further stored in a predefined manner that is dependent on a 
fixed algorithm to distribute the information across the 
drives of the array. The manner of data distribution and data 
redundancy within the disk array impacts the performance 
and usability of the storage system and may result in 
substantial tradeoffs between performance, reliability, and 
flexibility. 
0014) A number of RAID configurations have been pro 
posed to map data across the disks of the disk array. Some 
of the more commonly recognized configurations include 
RAID-1, RAID-2, RAID-3, RAID-4, and RAID-5. 
0015. In most RAID systems, data is sequentially stored 
in data stripes and a parity block is created for each data 
stripe. The parity block contains information derived from 
the sequence and composition of the data stored in the 
associated data stripe. RAID arrays can reconstruct infor 
mation stored in a particular data stripe using the parity 
information, however, this configuration imposes the 
requirement that records span across all drives in the array 
resulting in a small stripe size relative to the stored record 
S17C. 

0016 FIG. 21 illustrates the data mapping approach used 
in many conventional RAID storage device implementa 
tions. Although the diagram corresponds most closely to 
RAID-3 or RAID-4 mapping schemas, other RAID configu 
rations are organized in a similar manner. As previously 
indicated, each RAID configuration uses a striped disk array 
2110 that logically combines two or more disk drives 2115 
into a single storage unit. The storage space of each drive 
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2115 is organized by partitioning the space on the drives into 
stripes 2120 that are interleaved so that the available storage 
space is distributed evenly across each drive. 
0017 Information or files are stored on the disk array 
2110. Typically, the writing of data to the disks occurs in a 
parallel manner to improve performance. A parity block is 
constructed by performing a logical operation (exclusive 
OR) on the corresponding blocks of the data stripe to create 
a new block of data representative of the result of the logical 
operation. The result is termed a parity block and is written 
to a separate area 2130 within the disk array. In the event of 
data corruption within a particular disk of the array 10, the 
parity information is used to reconstruct the data using the 
information stored in the parity block in conjunction with 
the remaining non-corrupted data blocks. 
0018. In the RAID architecture, multiple disks a typically 
mapped to a single virtual disk. Consecutive blocks of the 
virtual disk are mapped by a strictly defined algorithm to a 
set of physical disks with no file level awareness. When the 
RAID system is used to host a conventional file system, it is 
the file system that maps files to the virtual disk blocks 
where they may be mapped in a sequential or non-sequential 
order in a RAID stripe. The RAID stripe may contain data 
from a single file or data from multiple files if the files are 
Small or the file system is highly fragmented. 
0019. The aforementioned RAID architecture suffers 
from a number of drawbacks that limit its flexibility and 
scalability for use in reliable storage systems. One problem 
with existing RAID systems is that the data striping is 
designed to be used in conjunction with disks of the same 
size. Each stripe occupies a fixed amount of disk space and 
the total number of stripes allowed in the RAID system is 
limited by the capacity of the smallest disk in the array. Any 
additional space that may be present on drives having a 
capacity larger than the Smallest drive goes unused as the 
RAID system lacks the ability to use the additional space. 
This further presents a problem in upgrading the storage 
capacity of the RAID system, as all of the drives in the array 
must be replaced with larger capacity drives if additional 
storage space is desired. Therefore, existing RAID systems 
are inflexible in terms of their drive composition, increasing 
the cost and inconvenience to maintain and upgrade the 
Storage System. 

0020. A further problem with conventional RAID arrays 
resides in the rigid organization of data on the disks of the 
RAID array. As previously described, this organization 
typically does not use available disk space in an efficient 
manner. These systems further utilize a single fixed block 
size to store data which is implemented with the restriction 
of sequential file storage along each disk stripe. Data storage 
in this manner is typically inefficient as regions or gaps of 
disk space may go unused due to the file organization 
restrictions. Furthermore, the fixed block size of the RAID 
array is not able to distinguish between large files, which 
benefit from larger block size, and smaller files, which 
benefit from smaller block size for more efficient storage and 
reduced wasted space. 
0021 Although conventional RAID configurations are 
characterized as being fault-tolerant, this capability is typi 
cally limited to single disk failures. Should more than one 
(or two) disk fail or become inoperable within the RAID 
array before it can be replaced or repaired there is the 
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potential for data loss. This problem again arises from the 
rigid structure of data storage within the array that utilizes 
sequential data striping. This problem is further exacerbated 
by the lack of ability of the RAID system to flexibly 
redistribute data to other disk areas to compensate for drive 
faults. Thus, when one drive becomes inoperable within the 
array, the likelihood of data loss increases significantly until 
the drive is replaced resulting in increased maintenance and 
monitoring requirements when using conventional RAID 
systems. 

0022 With respect to conventional data storage systems 
or other computer networks, conventional load balancing 
includes a variety of drawbacks. For example, decisions 
relating to load balancing are typically centralized in one 
governing process, one or more system administrators, or 
combinations thereof. Accordingly, such systems have a 
single point of failure. Such as the governing process or the 
system administrator. Moreover, load balancing occurs only 
when the centralized process or system administrator can 
organize performance data, make a decision, and then trans 
mit that decision throughout the data storage system or 
computer network. This often means that the such load 
balancing can be slow to react, difficult to optimize for a 
particular server, and difficult to scale as the available 
resources expand or contract. In addition, conventional load 
balancing typically is limited to balancing processing and 
communications activity between servers only. 

SUMMARY OF THE INVENTION 

0023 The present invention solves these and other prob 
lems by providing a dynamically distributed file system that 
accommodates current demands for high capacity, through 
put, and reliability, while presenting to the users a single 
file-system interface that appears to include every file in the 
system on a single server or drive. In this way, the file system 
is free to flexibly, transparently, and on-the-fly distribute and 
augment physical storage of the files in any manner that Suits 
its needs, across disk drives, and across servers, and users 
can freely access any file without having specific knowledge 
of the files current physical location. 
0024 One embodiment includes a storage device and 
architecture which possesses features such as transparent 
Scalability where disks of non-identical capacity can be 
fully-utilized without the “dead-space' restrictions associ 
ated with conventional disk arrays. In one embodiment a 
flexible storage space allocation system handles storing 
large and Small file types to improve disk space utilization. 
In another embodiment an improved method for maintaining 
data integrity overcomes the single drive (or double) fault 
limitation of conventional systems in order to increase 
storage reliability while at the same time reducing mainte 
nance and monitoring requirements. 
0025. In one embodiment, distributed parity groups 
(DPG) are integrated into the distributed file storage system 
technology. This architecture provides capabilities for opti 
mizing the use of disk resources by moving frequently and 
infrequently accessed data blocks between drives so as to 
maximize the throughput and capacity utilization of each 
drive. 

0026. In one embodiment, the architecture supports 
incorporation of new disk drives without significant recon 
figuration or modification of the exiting distributed file 
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storage system to provide improved reliability, flexibility, 
and scalability. Additionally, the architecture permits the 
removal of arbitrary disk drives from the distributed file 
storage system and automatically redistributes the contents 
of these drives to other available drives as necessary. 
0027. The distributed file storage system can proactively 
position objects for initial load balancing, such as, for 
example, to determine where to place a particular new 
object. Additionally, the distributed file storage system can 
continue to proactively position objects, thereby accom 
plishing active load balancing for the existing objects 
throughout the system. According to one embodiment, one 
or more filters may be applied during initial and/or active 
load balancing to ensure one or a small set of objects are not 
frequently transferred, or churned, throughout the resources 
of the system. 
0028. As used herein, load balancing can include, among 
other things, capacity balancing, throughput balancing, or 
both. Capacity balancing seeks balance in storage. Such as 
the number of objects, the number of Megabytes, or the like, 
stored on particular resources within the distributed file 
storage system. Throughput balancing seeks balance in the 
number of transactions processed. Such as, the number of 
transactions per second, the number of Megabytes per 
second, or the like, handled by particular resources within 
the distributed file storage system. According to one 
embodiment, the distributed file storage system can position 
objects to balance capacity, throughput, or both, between 
objects on a resource, between resources, between the 
servers of a cluster of resources, between the servers of other 
clusters of resources, or the like. 
0029. The distributed file storage system can comprise 
resources, such as servers or clusters, which can seek to 
balance the loading across the system by reviewing a 
collection of load balancing data from itself, one or more of 
the other servers in the system, or the like. The load 
balancing data can include object file statistics, server pro 
files, predicted file accesses, or the like. A proactive object 
positioner associated with a particular server can use the 
load balancing data to generate an object positioning plan 
designed to move objects, replicate objects, or both, across 
other resources in the system. Then, using the object posi 
tioning plan, the resource or other resources within the 
distributed file storage system can execute the plan in an 
efficient manner. 

0030. According to one embodiment, each server pushes 
objects defined by that server's respective portion of the 
object positioning plan to the other servers in the distributed 
file storage system. By employing the servers to individually 
push objects based on the results of their object positioning 
plan, the distributed file storage system provides a server-, 
process-, and administrator-independent approach to object 
positioning, and thus load balancing, within the distributed 
file storage system. 

0031. In one embodiment, the network file storage sys 
tem includes a first file server operably connected to a 
network fabric; a second file server operably connected to 
the network fabric: first file system information loaded on 
the first file server; and second file system information 
loaded on the second file server, the first file system infor 
mation and the second file system information configured to 
allow a client computer operably connected to the network 
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fabric to locate files stored by the first file server and files 
stored by the second file server without prior knowledge as 
to which file server stores the files. In one embodiment, the 
first file system information includes directory information 
that describes a directory structure of a portion of the 
network file system whose directories are stored on the first 
file server, the directory information includes location infor 
mation for a first file, the location information includes a 
server id that identifies at least the first file server or the 
second file server. 

0032. In one embodiment, the network file storage sys 
tem loads first file system metadata on a first file server 
operably connected to a network fabric; loads second file 
system metadata on a second file server connected to the 
network fabric, the first file system metadata and the second 
file system metadata include information to allow a client 
computer operably connected to the network fabric to locate 
a file stored by the first file server or stored by the second file 
server without prior knowledge as to which file server stores 
the file. 

0033. In one embodiment, the network file storage sys 
tem performs a file handle lookup on a computer network 
file system by: sending a root-directory lookup request to a 
first file server operably connected to a network fabric; 
receiving a first lookup response from the first file server, the 
first lookup response includes a server id of a second file 
server connected to the network fabric; sending a directory 
lookup request to the second file server, and receiving a file 
handle from the second file server. 

0034. In one embodiment, the network file storage sys 
tem allocates space by: receiving a file allocation request in 
a first file server, the first file server owning a parent 
directory that is to contain a new file, the file allocation 
request includes a file handle of the parent directory; deter 
mining a selected file server from a plurality of file servers: 
sending a file allocation request from the first server to the 
selected server; creating metadata entries for the new file in 
file system data managed by the selected file server; gener 
ating a file handle for the new file; sending the file handle to 
the first file server; and creating a directory entry for the new 
file in the parent directory. 
0035) In one embodiment, the network file storage sys 
tem includes: a first file server operably connected to a 
network fabric; a second file server operably connected to 
the network fabric: first file system information loaded on 
the first file server; and second file system information 
loaded on the second file server, the first file system infor 
mation and the second file system information configured to 
allow a client computer operably connected to the network 
fabric to locate files owned by the first file server and files 
owned by the second file server without prior knowledge as 
to which file server owns the files, the first file server 
configured to mirror at least a portion of the files owned by 
the second file server, the first file server configured to store 
information Sufficient to regenerate the second file system 
information, and the second file server configured to store 
information sufficient to regenerate the first file system 
information. 

0036). In one embodiment, the network file storage sys 
tem: loads first file system metadata on a first file server 
operably connected to a network fabric; loads second file 
system metadata on a second file server connected to the 
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network fabric, the first file system metadata and the second 
file system metadata include information to allow a client 
computer operably connected to the network fabric to locate 
a file stored by the first file server or stored by the second file 
server without prior knowledge as to which file server stores 
the file; maintains information on the second file server to 
enable the second file server to reconstruct an information 
content of the first file system metadata; and maintains 
information on the first file server to enable the first file 
server to reconstruct an information content of the second 
file system metadata. 

0037. In one embodiment the computer network file 
storage system is fault-tolerant and includes: a first file 
server operably connected to a network fabric; a second file 
server operably connected to the network fabric; a first disk 
array operably coupled to the first file server and to the 
second file server; a second disk array operably coupled to 
the first file server and to the second file server; first file 
system information loaded on the first file server, the first file 
system information including a first intent log of proposed 
changes to the first metadata; second file system information 
loaded on the second file server, the second file system 
information including a second intent log of proposed 
changes to the second metadata, the first file server having 
a copy of the second intent log, the second file server 
maintaining a copy of the first intent log, thereby allowing 
the first file server to access files on the second disk array in 
the event of a failure of the second file server. 

0038. In one embodiment, a distributed file storage sys 
tem provides hot-swapping of file servers by: loading first 
file system metadata on a first file server operably connected 
to a network fabric, the first file system operably connected 
to a first disk drive and a second disk drive; loading second 
file system metadata on a second file server connected to the 
network fabric, the second file system operably connected to 
the first disk drive and to the second disk drive; copying a 
first intent log from the first file server to a backup intent log 
on the second file server, the first intent log providing 
information regarding future changes to information stored 
on the first disk drive; and using the backup intent log to 
allow the second file server to make changes to the infor 
mation stored on the first disk drive. 

0039. In one embodiment, a distributed file storage sys 
tem includes: a first file server operably connected to a 
network fabric; a file system includes first file system 
information loaded on the first file server, the file system 
configured to create second file system information on a 
second file server that comes online sometime after the first 
file server has begun servicing file requests, the file system 
configured to allow a requester to locate files stored by the 
first file server and files stored by the second file server 
without prior knowledge as to which file server stores the 
files. 

0040. In one embodiment, a distributed file storage sys 
tem adds servers during ongoing file system operations by: 
loading first file system metadata on a first file server 
operably connected to a network fabric; creating at least one 
new file on a second file server that comes online while the 
first file server is servicing file requests, the at least one new 
file created in response to a request issued to the first file 
server, the distributed file system configured to allow a 
requester to locate files stored by the first file server and files 
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stored by the second file server without prior knowledge as 
to which file server stores the files. 

0041. In one embodiment, a distributed file storage sys 
tem includes: first metadata managed primarily by a first file 
server operably connected to a network fabric, the first 
metadata includes first file location information, the first file 
location information includes at least one server id; and 
second metadata managed primarily by a second file server 
operably connected to the network fabric, the second meta 
data includes second file location information, the second 
file location information includes at least one server identi 
fier, the first metadata and the second metadata configured to 
allow a requestor to locate files stored by the first file server 
and files stored by the second file server in a directory 
structure that spans the first file server and the second file 
SeVe. 

0042. In one embodiment, a distributed file storage sys 
tem stores data by: creating first file system metadata on a 
first file server operably connected to a network fabric, the 
first file system metadata describing at least files and direc 
tories stored by the first file server; creating second file 
system metadata on a second file server connected to the 
network fabric, the second file system metadata describing 
at least files and directories stored by the second file server, 
the first file system metadata and the second file system 
metadata includes directory information that spans the first 
file server and the second file server, the directory informa 
tion configured to allow a requestor to find a location of a 
first file catalogued in the directory information without 
prior knowledge as to a server location of the first file. 

0043. In one embodiment, a distributed file storage sys 
tem balances the loading of servers and the capacity of 
drives associated with the servers, the file system includes: 
a first disk drive including a first unused capacity; a second 
disk drive including a second unused capacity, wherein the 
second unused capacity is Smaller than the first unused 
capacity; a first server configured to fill requests from clients 
through access to at least the first disk drive; and a second 
server configured to fill requests from clients through access 
to at least the second disk drive, and configured to select an 
infrequently accessed file from the second disk drive and 
push the infrequently accessed files to the first disk drive, 
thereby improving a balance of unused capacity between the 
first and second disk drives without substantially affecting a 
loading for each of the first and second servers. 
0044) In one embodiment, a distributed file storage sys 
tem includes: a first file server operably connected to a 
network fabric; a second file server operably connected to 
the network fabric: first file system information loaded on 
the first file server; and second file system information 
loaded on the second file server, the first file system infor 
mation and the second file system information configured to 
allow a client computer operably connected to the network 
fabric to locate files stored by the first file server and files 
stored by the second file server without prior knowledge as 
to which file server stores the files. 

0045. In one embodiment, a data engine offloads data 
transfer operations from a server CPU. In one embodiment, 
the server CPU queues data operations to the data engine. 

0046. In one embodiment, a distributed file storage sys 
tem includes: a plurality of disk drives for storing parity 
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groups, each parity group includes storage blocks, the Stor 
age blocks includes one or more data blocks and a parity 
block associated with the one or more data blocks, each of 
the storage blocks stored on a separate disk drive such that 
no two storage blocks from a given parity set reside on the 
same disk drive, wherein file system metadata includes 
information to describe the number of data blocks in one or 
more parity groups. 
0047. In one embodiment, a distributed file storage sys 
tem stores data by: determining a size of a parity group in 
response to a write request, the size describing a number of 
data blocks in the parity group; arranging at least a portion 
of data from the write request according to the data blocks; 
computing a parity block for the parity group; storing each 
of the data blocks on a separate disk drive such that no two 
data blocks from the parity group reside on the same disk 
drive; and storing each the parity block on a separate disk 
drive that does not contain any of the data blocks. 
0.048. In one embodiment, a distributed file storage sys 
tem includes: a plurality of disk drives for storing parity 
groups, each parity group includes storage blocks, the Stor 
age blocks includes one or more data blocks and a parity 
block associated with the one or more data blocks, each of 
the storage blocks stored on a separate disk drive such that 
no two storage blocks from a given parity set reside on the 
same disk drive; a redistribution module to dynamically 
redistribute parity groups by combining some parity groups 
to improve storage efficiency. 

0049. In one embodiment, a distributed file storage sys 
tem stores data by: determining a size of a parity group in 
response to a write request, the size describing a number of 
data blocks in the parity group; arranging at least a portion 
of data from the write request according to the data blocks; 
computing a parity block for the parity group; storing each 
of the data blocks on a separate disk drive such that no two 
data blocks from the parity group reside on the same disk 
drive; storing the parity block on a separate disk drive that 
does not contain any of the data blocks; and redistributing 
the parity groups to improve storage efficiency. 

0050. In one embodiment, a distributed file storage sys 
tem includes: a plurality of disk drives for storing parity 
groups, each parity group includes storage blocks, the Stor 
age blocks includes one or more data blocks and a parity 
block associated with the one or more data blocks, each of 
the storage blocks stored on a separate disk drive such that 
no two storage blocks from a given parity set reside on the 
same disk drive; and a recovery module to dynamically 
recover data lost when at least a portion of one disk drive in 
the plurality of disk drives becomes unavailable, the recov 
ery module configured to produce a reconstructed block by 
using information in the remaining storage blocks of a parity 
set corresponding to an unavailable storage block, the recov 
ery module further configured to split the parity group 
corresponding to an unavailable storage block into two 
parity groups if the parity group corresponding to an 
unavailable storage block spanned all of the drives in the 
plurality of disk drives. 
0051. In one embodiment, a distributed file storage sys 
tem stores data by: determining a size of a parity group in 
response to a write request, the size describing a number of 
data blocks in the parity group; arranging at least a portion 
of data from the write request according to the data blocks; 
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computing a parity block for the parity group; storing each 
of the data blocks on a separate disk drive such that no two 
data blocks from the parity group reside on the same disk 
drive; storing the parity block on a separate disk drive that 
does not contain any of the data blocks; reconstructing lost 
data by using information in the remaining storage blocks of 
a parity set corresponding to an unavailable storage block to 
produce a reconstructed parity group; splitting the recon 
structed parity group corresponding to an unavailable stor 
age block into two parity groups if the reconstructed parity 
group is too large to be stored on the plurality of disk drives. 

0052. In one embodiment, a distributed file storage sys 
tem integrates parity group information into file system 
metadata. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0053. These and other aspects, advantages, and novel 
features of the invention will become apparent upon reading 
the following detailed description and upon reference to the 
accompanying drawings: 

0054 FIG. 1 is a general overview of a distributed file 
storage system showing clients, a communication fabric, and 
a plurality of servers with associated disk arrays. 

0055 FIG. 2 is a block diagram of a server node. 
0056 FIG. 3 is a block diagram of five metadata struc 
tures and connections between the five metadata structures. 

0057 FIG. 4 shows an example portion of a Filename 
Table. 

0058 FIG. 5 shows an example of a Gee-string stored in 
a Gee Table. 

0059 FIG. 6 shows one embodiment of the structure of 
a G-node. 

0060 FIG. 7 shows one embodiment of the structure of 
a Gnid-string. 

0061 FIG. 8A shows one embodiment of the structure of 
a Cache Node. 

0062 FIG. 8B shows a conceptual division of a Cache 
Node Table into three lists. 

0063 FIG. 9 shows a sample portion of a lock string. 

0064 FIG. 10 shows one embodiment of Refresh Nodes 
configured as a binary tree. 

0065 FIG. 11 shows one embodiment of Refresh Nodes 
configured as a doubly-linked list. 

0066 FIG. 12 shows one embodiment of the structure of 
an Intent Log Entry. 

0067 FIG. 13 shows one embodiment of the structure of 
a file handle. 

0068 FIG. 14A is a block diagram depicting one 
embodiment of a file handle look-up process. 
0069 FIG. 14B is a block diagram depicting one 
embodiment of a file access process. 
0070 FIG. 15 is a flow chart depicting one embodiment 
of performing a file access. 
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0071 FIG. 16 is a flow chart depicting one embodiment 
of performing a file handle look-up. 
0072 FIG. 17 is a flow chart depicting one embodiment 
of caching file data. 
0.073 FIG. 18 is a flow chart depicting one embodiment 
of file allocation. 

0074) 
0075 FIG. 20A shows one embodiment of a Super 
G-node. 

0076 FIG. 20B shows one embodiment of a scheme to 
use Super G-nodes to hold metadata for files of widely 
varying sizes. 
0.077 FIG. 21 illustrates a conventional disk array that 
incrementally stripes data in a RAID mapping architecture. 
0078 FIG. 22A illustrates one embodiment of a distrib 
uted file storage system. 
0079 FIG. 22B illustrates another embodiment of a 
distributed file storage system having built in data redun 
dancy. 

FIG. 19 shows one embodiment of Super G-nodes. 

0080 FIG. 23 illustrates a distributed file storage mecha 
nism. 

0081 FIG. 24A illustrates a data and parity information 
storage method. 
0082 FIG. 24B illustrates another data and parity infor 
mation storage method. 
0083 FIG. 25 illustrates another embodiment of a dis 
tributed file storage system having a variable capacity disk 
array. 

0084 FIG. 26A illustrates an embodiment of variable 
block number parity groups. 

0085 FIG. 26B illustrates an embodiment of variable 
size parity groups. 

0.086 FIG. 27 illustrates one embodiment of a G-table 
used to determine parity group mapping. 
0087 FIG. 28 illustrates a method for storing data in the 
distributed file storage system. 

0088 FIG. 29 illustrates another embodiment of a 
G-table mapping structure. 
0089 FIG. 30 illustrates one embodiment of a fault 
tolerant restoration process. 
0090 FIG. 31 illustrates a method for recovering cor 
rupted or lost data in the distributed file storage system. 
0091 FIG. 32A illustrates one embodiment of a variably 
sized parity group used to store files. 
0092 FIG. 32B illustrates another embodiment of a 
variably sized parity group used to store files. 
0093 FIG. 33 illustrates a data storage process used by 
the distributed file storage system. 
0094 FIGS. 34A-C illustrate a parity set redistribution 
process. 

0.095 FIG. 35A illustrates one embodiment of a parity 
group dissolution process. 
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0.096 FIG. 35B illustrates one embodiment of a parity 
group consolidation process. 
0097 FIG. 36 illustrates a parity group monitoring pro 
CCSS, 

0098 FIG. 37 illustrates a parity group optimization/de 
fragmentation process. 

0099 FIG. 38 illustrates a load balancing method used 
by the distributed file storage system. 
0.100 FIG. 39 depicts a block diagram of an exemplary 
embodiment of servers and disk arrays of a distributed file 
storage system, which highlights the proactive object posi 
tioning of aspects of an exemplary embodiment of the 
invention. 

0101 FIG. 40 depicts a block diagram of an exemplary 
server of FIG. 39, according to aspects of an exemplary 
embodiment of the invention. 

0102 FIG. 41 depicts an object positioning plan for 
Server F3 of FIG. 39, according to aspects of an exemplary 
embodiment of the invention. 

0.103 FIG. 42 is a block diagram of a server that provides 
efficient processing of data transfers between one or more 
client computers and one or more disk drives. 
0.104) 
0105 FIG. 44 is a map of data fields in a 64-bit data 
transfer instruction to the data engine for use with a 64-bit 
PCI buS. 

FIG. 43 is a block diagram of a data engine. 

DETAILED DESCRIPTION 

Introduction 

0106 AS data storage requirements increase, it is desir 
able to be able to easily increase the data storage capacity 
and/or performance of a data storage system. That is, it is 
desirable to be able to increase the available capacity and 
performance of a storage system without modifying the 
configuration of the clients accessing the system. For 
example, in a typical Personal Computer (PC) network 
environment, if a database accesses a network drive “M”, it 
is desirable to be able to add storage to this drive, all the 
while still calling the drive “M”, as opposed to adding, say, 
drives N. “O'”, and “P” as storage requirements increase. In 
some cases, having to switch from a single drive “M” to four 
drives, “M”, “N”, “O'”, “P” is a mere nuisance. However, in 
Some cases Such a change requires significant reconfigura 
tion of client configurations. In other cases, such a change 
requires modification of existing application Software, and 
in some instances such a change simply will not work with 
the application being used. 
0.107 The objective for more capacity can be met in some 
storage systems by adding additional disk drives to the 
system. However, this may not result in increasing perfor 
mance. In fact, adding additional drives may cause a sig 
nificant decrease in performance. This is because: (1) if 
more ports are not added to the system when new drives are 
added, the performance decreases because now more data is 
available (and presumably being accessed) through the same 
performance ports; and (2) the controller managing the file 
system metadata has more operations to perform and can 
become a bottleneck. Adding drives to existing systems may 
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also limited by physical form factors. That is to say, that 
Some systems have physical limits to how many drives can 
be added. 

0108. In one embodiment, the system described herein 
provides a Distributed File Storage System (DFSS) that can 
scale disk capacity, Scale data throughput (e.g., megabytes 
per second of data delivery); and scale transaction process 
ing throughput (e.g., processing of file system metadata). In 
one embodiment, the system also provides load balancing 
such that the scaled components handle the workload with 
improved efficiency. 
0109) In one embodiment, the DFSS is dynamically 
distributed. In one embodiment, the DFSS allows the inte 
gration of multiple servers so that the aggregation of servers 
appears to a client as a single storage device. With the DFSS, 
multiple servers can access and control the same disk array, 
separate disk arrays, or both simultaneously. The DFSS is 
designed so that each server can continue to read and write 
data to the drives it controls even when other controllers in 
the DFSS fail. The DFSS also provides a mechanism for 
balancing the load on the controllers and the drives. 
0110. In one embodiment, the DFSS is designed such that 
when multiple controllers are controlling a single array of 
disk drives (also called a drive array), some or all of the 
servers connected to the drive array have valid copies of the 
file system metadata describing the data on that drive array. 
This means that each server has direct access to all of the file 
system metadata for one or more of the drive arrays it can 
access. Thus: (1) a server can continue to operate normally 
if the other servers in the system fail; and (2) there is little 
or no performance degradation due to one server polling 
another server regarding location of data on drive arrays. 
The DFSS provides inter-server communication to main 
tains synchronization of the file system metadata. The DFSS 
is designed such that a server can read from more than one 
drive array and can read from drive arrays maintained by 
another server. In one embodiment, only one controller 
attached to a particular drive array has write privileges for 
that particular drive array at a given time. 
0111. The DFSS maintains a description of which servers 
have read and write privileges to a file represented by a file 
handle passed to the client. When the client looks up a file 
handle, the client is informed of its options regarding which 
servers it may read the data from (which is typically several) 
and which one server it needs to use to write data. In 
addition, since the servers typically have multiple network 
interface cards (ports) to the client network, the file handle 
also includes data which suggests to the client which port is 
likely to be the least utilized. 
0112 The DFSS is also designed such that when there are 
multiple servers, which are not sharing the same drive 
arrays, the drive arrays are seamlessly integrated. For 
example, Suppose a system has 4 servers (numbered S1, S2, 
S3, and S4) and two drive arrays, numbered (A1, and A2). 
Further suppose that S1 and S2 control A1 and that S3 and 
S4 control A2. The DFSS allows for a directory on A1 to 
have children on A2. In fact, the file system keeps track of 
usage statistics, and if A2 is less utilized than A1, the file 
system will automatically create the next files on A2 instead 
of A1. The DFSS provides coordination between the servers 
to allow this level of integration. 
0113 Because each server has a complete set of metadata 
for each drive array it can access, a particular server can 
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continue to operate even if other servers fail. The DFSS 
includes a mechanism for determining if a controller has 
failed and a mechanism for transferring write privileges in 
such cases. Clearly if all controllers attached to a given drive 
array fail, the data on that drive array will become inacces 
sible. However, the capability to support multiple controllers 
for each drive array greatly reduces the likelihood of such an 
event. If all such controllers for a drive array fail, read and 
write operations on the remaining controller/drive arrays 
continue unhindered. 

0114. The DFSS can perform load balancing at three 
levels. First, when a directory lookup is performed, the file 
system encodes within the file handle the lesser-used net 
work interface to provide balancing of network interface 
resources. Second, when a new file is created, it is created 
on lesser-used drives and owned by a lesser-used server. 
Third, dynamic analysis of loading conditions is performed 
to identify under-utilized and over-utilized drives. In 
response, the file system in some cases redistributes the 
parity groups across the drives in the existing drive array for 
more optimum usage of parity checking, and in other cases 
the file system moves files to lesser used drive arrays. 
0115 Many data storage systems are designed with the 
twin goals of providing fast access to data and providing 
protection against loss of data due to the failure of physical 
storage media. Prior art solutions typically relied on Redun 
dant Arrays of Independent Disks (RAID). By having the 
data striped across multiple drives, the data can be accessed 
faster because the slow process of retrieving data from disk 
is done in parallel, with multiple drives accessing their data 
at the same time. By allocating an additional disk for storing 
parity information, if any one disk fails, the data in the Stripe 
can be regenerated from the remaining drives in the stripe. 
0116 While this approach has proven effective in many 
applications, it does have a few fundamental limitations, one 
of this is that there is a rigid algorithm for mapping 
addresses from the file system to addresses on the drives in 
the array. Hence stripes are created and maintained in a rigid 
manner, according to a predetermined equation. An unfor 
tunate side effect results from this limitation. There is no 
mechanism from keeping data from a particular file from 
becoming highly fragmented, meaning that although the 
data could actually fit in a single stripe, the data could 
actually be located in many of stripes (this situation can be 
particularly acute when multiple clients are writing to a file 
system). 

0.117) In one embodiment, the DFSS abandons the notion 
of having a rigidalgorithm to map from addresses in the file 
system to drive addresses. Instead, DFSS uses Distributed 
Parity Groups (DPGs) to perform the mapping. Data blocks 
in the DPGs are mapped via a mapping table (or a list of 
tables) rather than a fixed algorithm, and the blocks are 
linked together via a table of linked lists. As discussed 
below, the DPG mapping can be maintained separately or 
can be integrated into the file system metadata. 
0118. Initially the mapping is somewhat arbitrary and is 
based on the expectation that the drives will be accessed 
evenly. However, the system keeps track of drive usage 
frequency. As patterns of usage are established, blocks are 
copied from frequently accessed drives to infrequently 
accessed drives. Once the copy is complete, the blocks are 
remapped to point to the new copies. 
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0119) The disk drives are viewed as consisting of a 
collection of blocks. The block size is typically an integer 
multiple of the drive sector size. The drive sector size is a 
characteristic of the drives, and is the minimum size of data 
that can be written to the drives. For most Fibre Channel 
drives, the sector size is 512 bytes. 
0120 In one embodiment, the blocks are grouped via a 
G-Table. The G-table is a collection of Gees, which repre 
sent the individual blocks and their linkage. Each Gee 
contains a code that identifies what that the Gee's purpose is 
(e.g., linkage or representing data). Gees for a DPG Strung 
together into a G-group. The entire G-table is cached, either 
in whole or in part, in Random Access Memory (RAM). 
Individual Gees are modified in cache to indicate when a 
specific block of data is in cache. This provides a straight 
forward way to be assured that if any client has caused disk 
data to be cached, any other client seeking that same data 
will be directed to the already cached data. 
0121 RAID systems are implemented independently 
from the file system. That is, from the file system's point of 
view, the array looks like one big disk. Hence stripes are 
created and maintained without any knowledge of the data 
they contain. Two unfortunate side effects result from this 
limitation. First, there is no mechanism from keeping data 
from a particular file from becoming highly fragmented, 
meaning that although the data could actually fit in a single 
stripe, the data could actually be located many stripes (this 
situation can be particularly acute when multiple clients are 
writing to files). The can result in each drive doing hundreds 
of seeks, while a Smarter system could do just one. This is 
significant because the seek is the slowest operation related 
to accessing data on disks. 
0122 Second, when a drive fails, the data on that drive 
must be regenerated on a replacement drive exactly as it was 
on the failed drive. This means that if, for example, a server 
that has only 10% of its disk space currently used, can only 
regenerate the data onto a replacement drive (or a hot spare) 
even though there is more than enough disk space to 
regenerate the data onto the other disks. For remote instal 
lations, if a hot spare is used, once one failure occurs, the hot 
spare is used and the system can no longer tolerate another 
failure until the bad drive is replaced. Of curse this could be 
lessened by the usage of multiple hot spares, but that 
significantly increases the amount of disk storage that is not 
being used and merely “waiting in the wings'. 

0123. In one embodiment, the DFSS management of the 
DPGs is integrated into the file system, thus making the file 
system “aware” of the DPGs and how data blocks from a file 
are collected into parity groups. Making the file system 
aware of the DPGs allows the file servers in the DFSS to 
more intelligently use the disk arrays than a RAID system 
would. With the DPG system, the file system has knowledge 
of the drive arrays and therefore reduces the kind of frag 
menting that is typical of RAID systems. 

0124 Furthermore, in the event of a failure of one drive 
in the DFSS, the data from the failed drive can be redistrib 
uted across the remaining drives in a disk array. For 
example, Suppose a file contained a DPG having a length 
(also known as a “span) of 9 (data spread across 9 drives, 
where 8 drives contain the data blocks and the ninth drive 
contains the parity block). When one drive fails, the data can 
be regenerated and redistributed using a DPG of span 8. 
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Note that without knowledge of which blocks are associated 
with which files, this redistribution is not possible, because 
the file must still have the same number of total blocks, but 
when the span is reduced from 9 to 8, there is an orphan 
block of 1 which must be still associated with the file. This 
orphan is associated with another DPG in the same file. This 
association is not possible without knowledge of the file. 
Alternatively, if there are at least ten disks in the disk array, 
the data can be regenerated and redistributed using a DPG 
span of 9, omitting the failed drive. Thus, the integration of 
DPG management into the file system provides flexibility 
not available in a conventional RAID system. 
0.125 Sine the DFSS has full knowledge of the file 
system, the DFSS has knowledge of which blocks on the 
disks are not used. This allows the DFSS to identify heavily 
used disks and redistribute data from heavily-used disks to 
unused blocks on lesser-used blocks. 

0.126 Storage system capability is typically measured in 
capacity, bandwidth, and the number of operations per 
second that can be processed. It is desirable to be able to 
easily scale a storage system, that is, to be able to easily 
increase the storage capacity, the bandwidth, or the opera 
tions per second capacity of the storage system. Storage 
system capacity is scaled by adding disk drives or to replace 
disk drive with drives having greater capacity. To increase 
storage system bandwidth or transactions per second capac 
ity, it is typically necessary to add servers. It is desirable to 
be able to add and utilize these resources with little or no 
user intervention or configuration. 
0127. In one embodiment, the DFSS can automatically 
identify and utilize available resources, including disk drives 
and servers. Two features are used realize this: 1) detecting 
the addition of disk drives and/or servers; and 2) a auto 
matically initializing and incorporating newly added disk 
drives and/or servers. The same mechanisms that are used to 
detect newly-added resources can also be used to Support the 
deletion of resources. 

0128. With regard to detection of new resources, modern, 
high performance networking technologies such as Fibre 
Channel and Gigabit Ethernet supply methods for determin 
ing what devices are connected to the network. By storing 
the device map, and periodically querying the network for an 
updated device map, the presence of new devices can be 
determined. New devices are added to the appropriate server 
resource map. 

0129. In one embodiment, a resource manager in the 
DFSS provides the capability to incorporate the new 
resources automatically. The resource manager keeps track 
of available disk resources, as measured in available disk 
devices and the available free blocks on each disk. The 
resource manager keeps track of the available servers and 
the unutilized capacity, in terms of bandwidth and transac 
tions per second, of each server. When new resources are 
added to the DFSS, the resource manager incorporates the 
additions into a resource database. 

0.130. The resource manager works in conjunction with 
aspects of the DFSS to dynamically allocate storage and 
controller resources to files. When the DFSS needs to create 
a new file, or extend an already created file, it coordinates 
with the resource manager to create a DPG of the appropri 
ate size. A similar approach is followed by the DFSS in the 
selection of which server to use in the creation of a new file. 
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0131 The resource manager approach also supports a 
load balancing capability. Load balancing is useful in a 
distributed file system to spread the workload relatively 
uniformly across all of the available resources (e.g., across 
disks, network interfaces, and servers). The ability to pro 
actively relocate file data is a tool that can be used to Support 
load balancing by moving file data from over-utilized 
resources to under-utilized resources. In one embodiment, 
the resource manager Supports load balancing by incorpo 
rating resource usage predictions. 
0132) In the DFSS, the server workload includes com 
munication with client machines, reading and writing files 
from disks, managing file metadata, and managing server 
resources Such as storage capacity. The workload is divided 
up among the server hardware resources. If the workload is 
evenly divided, the resulting performance will be improved. 
Thus, one key to performance is intelligent resource man 
agement. In one embodiment, resource management 
involves adaptive load balancing of server workloads. Prior 
art distributed file system technologies do not offer an 
effective method of performing load balancing in the face of 
a dynamic load environment and thus cannot provide opti 
mum performance. 
0133. In one embodiment adaptive load balancing is 
based on the implementation of two mechanisms. First, a 
mechanism is provided to predict the future server work 
load. Second, a mechanism is provided to reallocate distrib 
uted server resources in response to the predicted workload. 
0134 Prediction of the future workload has several 
aspects. The first of these aspects is the past history of server 
workload, in terms if file access statistics, server utilization 
statistics, and network utilization statistics. The loading 
prediction mechanism uses these statistics (with an appro 
priate filter applied) to generate predictions for future load 
ing. As a very simple example, a file that has experienced 
heavy sequential read activity in the past few minutes will 
likely continue to experience heavy sequential read access 
for the next few minutes. 

0135 The predictions for future workload can be used to 
proactively manage resources to improve performance and 
capacity usage. One mechanism used to reallocate server 
workload is the movement and replication of content (files) 
Such that server and storage utilization is balanced and the 
direction of client accesses to available servers is balanced. 
Some degree of cooperation from client machines can be 
used to provide more effective load balancing, but client 
cooperation is not strictly required. 
0136. A file server contains a number of hardware 
resources, including controllers, storage elements (disks), 
and network elements. In the configuration used by the 
DFSS, multiple client machines are connected through a 
(possibly redundant) client network to one or more server 
clusters. Each server cluster has one or more servers and a 
disk storage pool. 
0137 Software resident on each server collects statistics 
regarding file accesses and server resource utilization. This 
includes information regarding the access frequency, access 
bandwidth and access locality for the individual files, the 
loading of each disk controller and disk storage element in 
terms of CPU utilization, data transfer bandwidth, transac 
tions per second, and the loading of each network element 
in terms of network latency and data transfer bandwidth. 
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0.138. The collected statistics are subjected to various 
filter operations, which results in a prediction of future file 
and resource utilization (i.e., workload). This prediction can 
also be modified by server configuration data which has 
been provided in advance by a system administrator, and 
explicit "hints' regarding future file and/or resource usage 
which can be provided directly from a client machine. 
0.139. The predicted workload is then used to develop a 
plan that where to move content (files) between storage 
elements and where to direct client accesses to controllers in 
such a manner that the overall workload is distributed as 
evenly as possible, resulting in best overall load balance and 
distributed server performance. The predicted workload can 
be used to perform the following specific types of load 
balancing: 

0140) 1) Client Network Load Balancing, which includes 
managing client requests to the extent possible Such that 
the client load presented to the servers in a cluster, and the 
load present to the network ports within each cluster is 
evenly balanced. 

0.141) 2) Intra-Cluster Storage Load Balancing, which 
includes of the movement of data between the disks 
connected to a controller cluster such that the disk band 
width loading among each of the drives in an array, and 
the network bandwidth among network connecting disk 
arrays to servers is balanced. There are two goals. The 
first goal is to achieve relatively uniform bandwidth 
loading for each storage sub-network. The second goal is 
to achieve relatively uniform bandwidth loading for each 
individual disk drive. This is accomplished by moving 
relatively infrequently accessed material to drives with 
frequently accessed material. 

0.142 3) Inter-Node Storage Load Balancing, which 
includes the movement of data between drives connected 
to different clusters to equalize disk access load between 
clusters. This is done at a higher cost than Intra-Node 
Drive Load Balancing, as file data must actually be copied 
between controllers over the client network. 

0.143 4) Intra-Node Storage Capacity Balancing, which 
includes movement of data between the disks connected 
to a server (or servers in a cluster) to balance disk storage 
utilization among each of the drives. 

0.144 5) Inter-Node Storage Capacity Balancing, which 
includes movement of data between drives connected to 
different servers to equalize overall disk storage utiliza 
tion among the different servers. This is done at a higher 
cost than Intra-Node Drive Capacity Balancing, as file 
data must actually be copied between controllers over the 
network. 

0145 6) File Replication Load Balancing, which includes 
load balancing though file replication. This is an extension 
of Inter-Node Drive Load Balancing. High usage files are 
replicated so that multiple controller clusters have one or 
more that one local (read-only) copy. This allows the 
workload associated with these heavily-accessed files to 
be distributed across a larger set of disks and servers. 

0146 Disks and servers in the DFSS can be “hot 
swapped' and “hot added” (meaning they can be replaced or 
added while the DFSS is online and servicing file requests. 
Disks in a disk array need not match in capacity or through 
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put. Extra capacity is automatically detected, configured, 
and used. Data is redistributed in the background (both 
across servers and across DPGs) to improve system perfor 
mance. Hot adding of servers allows for increased file 
operations per second and file system capacity. Hot-added 
servers are automatically configured and used. 
0147 In one embodiment, servers are arranged in clusters 
that operate as redundant groups (typically as redundant 
pairs). In normal operation, the servers in a cluster operate 
in parallel. Each acts as a primary server for a portion of the 
file system. Each server in a cluster maintains a secondary 
copy of the metadata and intent log of the other's primary 
file system metadata and intent log. The intent log tracks 
differences between metadata stored in memory (e.g., meta 
data in a metadata cache) and metadata stored on disk. Upon 
failure of a server in the cluster, the server remaining server 
(or servers) will pick up the workload of the failed server 
with no loss of metadata or transactions. 

0148 Each server in a high-performance data storage 
system includes storage controller hardware and storage 
controller software to manage an array of disk drives. 
Typically, a large number of disk drives are used in a high 
performance storage system, and the storage system in turn 
is accessed by a large number of client machines. This places 
a large workload on the server hardware and server software. 
It is therefore important that the servers operate in an 
efficient manner so that they do not become a bottleneck in 
the storage system. In one embodiment, a high-performance 
data path is provided in the server so that data can efficiently 
be moved between the client machines and disks with a 
minimum amount of Software intervention. 

0149 Prior art approaches for server and storage control 
lers tend to be software intensive. Specifically, a program 
mable CPU in the server becomes involved in the movement 
of data between the client and the disks in the disk array. 
This limits the performance of the storage system because 
the server CPU becomes a bottleneck. While current 
approaches may have a certain degree of hardware accel 
eration, Such as XOR parity operations associated with 
RAID, these minimal acceleration techniques do not 
adequately offload the server CPU. 
0150. In one embodiment, the DFSS uses a server archi 
tecture that largely separates the data path from the control 
message path. Control messages (e.g. file read/write com 
mands from clients) are routed to a host CPU in the server. 
The host CPU processes the commands, and sets up the 
network and storage interfaces as required to complete the 
data transfer operations associated with the commands. The 
data transfer operations, once scheduled with the network 
and storage interfaces can be completed without further 
CPU involvement, thus significantly offloading the host 
CPU. In one embodiment, a data flow architecture packages 
instructions with data as it flows between the network 
interfaces and data cache memories. 

0151. The server hardware and software perform the 
functions of interfacing with client via the network inter 
faces, servicing client file operation requests, setting up disk 
read and write operations needed to service these requests, 
and updating the file metadata as necessary to manage the 
files stored on disk. 

0152 The controller hardware provides a control flow 
path from the network and storage interfaces to the host 
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CPU. The host CPU is responsible for controlling these 
interfaces and dealing with the high level protocols neces 
sary for client communications. The host CPU also has a 
non-volatile metadata cache for storing file system metadata. 
0153. A separate path for data flow is provided that 
connects the network and storage interfaces with a non 
Volatile data cache. In one embodiment, the separate path for 
data flow is provided by a data engine. The data path is used 
for bulk data transfer between the network and storage 
interfaces. As an example of the data path operation, con 
sider a client file read operation. A client read request is 
received on one of the network interfaces and is routed to the 
host CPU. The host CPU validates the request, and deter 
mines from the request which data is desired. The request 
will typically specify a file to be read, and the particular 
section of data within the file. The host CPU will use file 
metadata to determine if the data is already present in the 
data cache memory, or if it must be retrieved from the disks. 
If the data is in the data cache, the CPU will queue a transfer 
with the network interface to transfer the data directly from 
the data cache to the requesting client, with no further CPU 
intervention required. If the data is not in the data cache, the 
CPU will queue one or more transfers with the storage 
interfaces to move the data from disk to the data cache, again 
without any further CPU intervention. When the data is in 
the data cache, the CPU will queue a transfer on the network 
interface to move the data to the requesting client, again with 
no further CPU intervention. 

0154) One aspect of this autonomous operation is that the 
CPU schedules data movement operations by merely writing 
an entry onto a network or storage interface queue. The data 
engine and the network and storage interfaces are connected 
by busses that include address and data buses. In one 
embodiment, the network or storage interface does the actual 
data movement (or sequence of data movements) indepen 
dently of the CPU by encoding an instruction code in the 
address bus that connects the data engine to the interface. 
The instruction code is set up by the host CPU when the 
transfer is queued, and can specify that data is to be written 
or read to one or both of the cache memories. In addition, it 
can specify that an operation Such as a parity XOR operation 
or a data conversion operation be performed on the data 
while it is in transit. Because instructions are queued with 
the data transfers, the host CPU can queue hundreds or 
thousands of instructions in advance with each interface, and 
all of these can be can be completed asynchronously and 
autonomously. The data flow architecture described above 
can also be used as a bridge between different networking 
protocols. 

0.155. As described above, the data engine offloads the 
host CPU direct involvement in the movement of data from 
the client to the disks and Vice-versa. The data engine can be 
a general purpose processor, digital signal processor, pro 
grammable FPGA, other forms of soft or hard program 
mable logic, or a fully custom ASIC. 
0156 The data engine provides the capability for autono 
mous movement of data between client network interfaces 
and data cache memory, and between disk network inter 
faces and cache memory. The server CPU involvement is 
merely in initializing the desired transfer operations. The 
data engine Supports this autonomy by combining an asyn 
chronous data flow architecture, a high-performance data 
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path than can operate independently of the server CPU data 
paths, and a data cache memory Subsystem. The data engine 
also implements the parity generation functions required to 
Support a RAID-style data protection scheme. 

0157 The data engine is data-flow driven. That is, the 
instructions for the parallel processing elements are embed 
ded in data packets that are fed to the data engine and to the 
various functional blocks within the data engine. 
0158. In one embodiment, the data engine has four prin 
cipal interfaces: two data cache RAM interfaces, and two 
external bus interfaces. Other versions of the data engine can 
have a different number of interfaces depending on perfor 
mance goals. 

0159. A data path exits between each network interface 
and each cache interface. In each of these data path is a 
processing engine that controls data movement between the 
interfaces as well as operations that can be performed on the 
data as it moves between the interfaces. These processing 
engines are data-flow driven as described above. 
0160 The processing engine components that are used to 
perform these functions include an external bus write buffer, 
a feedback buffer, a cache read buffer, a cache write buffer, 
a parity engine, and the associated controller logic that 
controls these elements. The buffer elements are memories 
of appropriate sizes that smooth the data flow between the 
external interfaces, the parity engines, and the caches. 
0161 The data engine is used to provide a data path 
between client network interface and storage network inter 
face controllers. The network interface controllers may 
support Fibre Channel, Ethernet, Infiniband, or other high 
performance networking protocols. One or more host CPUs 
schedule network transfers by queuing the data transfer 
operations on the network interfaces controllers. The net 
work interface controllers then communicate directly with 
the data engine to perform the data transfer operations, 
completely autonomously from any additional CPU involve 
ment. The data transfer operations may require only the 
movement of data, or they may combine the movement of 
data with other operations that must be performed on the 
data in transit. 

0162 The processing engines in the data engine can 
perform five principal operations, as well as a variety of 
Support operations. The principal operations are: read from 
cache; write to cache; XOR write to cache; write to one 
cache with XOR write to other cache; write to both caches. 

0163 The data-flow control structure of the data engine 
reduces the loading placed on the server CPU. Once data 
operations are queued, the server CPU does not need to be 
directly involved in the movement of data, in the operations 
that are performed on data, or the management of a data 
transfer. 

0164 FIG. 1 shows a general overview of a Distributed 
File Storage System (DFSS) 100 that operates on a computer 
network architecture. One or more clients 110 operating on 
one or more different platforms are connected to a plurality 
of servers 130, 131, 132, 133134, 135, by way of a com 
munication fabric 120. In one embodiment, the communi 
cation fabric 120 is a Local Area Network (LAN). In one 
embodiment, the communication fabric 120 is a Wide Area 
Network (WAN) using a communication protocol such as, 

Aug. 3, 2006 

for example, Ethernet, Fibre Channel, Asynchronous Trans 
fer Mode (ATM), or other appropriate protocol. The com 
munication fabric 120 provides a way for a client 110 to 
connect to one or more servers 130-135. 

0.165. The number of servers included in the DFSS 100 is 
variable. However, for the purposes of this description, their 
structure, configuration, and functions are similar enough 
that the description of one server 130 is to be understood to 
apply to all 130-135. In the descriptions of other elements of 
the figure that are similarly duplicated in the DFSS 100, a 
description of one instance of an element is similarly to be 
understood to apply to all instances. 
0166 The server 130 is connected to a disk array 140 that 
stores a portion of the files of the distributed file storage 
system. Together, the server-disk array pair 130,140 can be 
considered to be one server node 150. The disks in the disk 
array 140 can be Integrated Drive Electronics (IDE) disks, 
Fibre Channel disks, Small Computer Systems Interface 
(SCSI) disks, InfiniBand disks, etc. The present disclosure 
refers to disks in the disk array 140 by way of example and 
not by way of limitation. Thus, for example the “disks’ can 
be many types of information storage devices, including, for 
example, disk drives, tape drives, backup devices, memo 
ries, other computers, computer networks, etc. 

0.167 In one embodiment, one or more server nodes 150, 
151 are grouped into a cluster 160 of server nodes. In one 
embodiment, each server 130 in the cluster 160 is connected 
not only to its own disk array 140, but also to the disk 
array(s) 141 of the other server(s) 131 of the cluster 160. 
Among other advantages conferred by this redundant con 
nection is the provision of alternate server paths for reading 
a popular file or a file on a busy server node. Additionally, 
allowing servers 130, 131 to access all disk arrays 140, 141 
of a cluster 160 provides the assurance that if one server 130 
of a cluster 160 should fail, access to the files on its 
associated disk array 140 is not lost, but can be provided 
seamlessly by the other servers 131 of the cluster 160. 

0.168. In one embodiment, files that are stored on the disk 
array 140 of one server node 150 are mirrored on the disk 
array(s) 141 of each server node 151 in the cluster 160. In 
such an embodiment, if the disk array 140 should become 
unusable, the associated server 130 will still be able to 
access copies of its files on the other disk array(s) 141 of the 
cluster 160. 

0169. As shown in FIG. 1, the server 130 is associated 
with the disk array 140 that can include multiple disk drives 
of various sizes and capacities. Thus, the DFSS 100 allows 
for much more flexibility than many conventional multi-disk 
file storage systems that require strict conformity amongst 
the disk arrays of the system. Among other advantages 
conferred by this flexibility is the ability to upgrade portions 
of the system hardware without having to upgrade all 
portions uniformly and simultaneously. 

0170 In many conventional networked storage systems, 
a user on a client needs to know and to specify the server that 
holds a desired file. In the DFSS 100 described in FIG. 1, 
although the files of the file system can be distributed across 
a plurality of server nodes, this distribution does not require 
a user on a client system 110 to know a priori which server 
has a given file. That is, to a user, it appears as if all files of 
the system 100 exist on a single server. One advantage of 
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this type of system is that new clusters 160 and/or server 
nodes 150 can be added to the DFSS 100 while still 
maintaining the appearance of a single file system. 
0171 FIG. 2 is a block diagram showing one embodi 
ment 200 of the server node 150 in the DFSS 100. As in 
FIG. 1, the server node 150 includes the server 130 and the 
disk array 140 or other data storage device. 
0172. The server 130 includes a server software module 
205. The server Software module 205 includes server inter 
face (SI) software 240 for handling communications to and 
from clients 110, file system (FS) software 250 for managing 
access, storage, and manipulation of the files, and a JBOD 
(Just a Bunch of Disks) interface (JI) 260 for handling 
communications with the disk array 140 and with other disk 
arrays of the cluster 160. Communications between the 
server interface 240 and the file system 250 take place using 
a Client Server Object 245. Communications between the 
file system 250 and the JBOD interface 260 take place using 
a Disk Service Object 255. In one embodiment, as depicted 
in FIG. 2, the software of the file system 250 resides 
principally on the servers 130, 131, while the file data is 
stored on standard persistent storage on the disk arrays 140, 
141 of the DFSS 100. 

0173 The server software module 205 also includes a 
polling module 270 for polling clients 110 of the DFSS 100 
and a polling module 280 for polling disk arrays 140 of the 
DFSS 100. 

0.174. In the embodiment 200 shown in FIG. 2, the server 
130 includes a Fibre Channel Application Programming 
Interface (FC-API) 210 with two Fibre Channel ports 211 
for communicating via the fabric 120 with the client 110 and 
with other server(s) 151 of the cluster 160. The FC-API 210 
also communicates with the server interface 240 and with 
the client polling module 270 in the server software module 
2O5. 

0.175. The server 130 includes an FC-API 220 with two 
Fibre Channel ports 221 for communicating with the disk 
array 140 and with other disk arrays of its cluster 160. The 
FC-API 220 may communicate with the disk array 140 via 
a communication fabric 222, as shown in FIG. 2. The 
FC-API 220 may also communicate with the disk array 140 
directly. The FC-API 220 also communicates with the JBOD 
interface 260 and with the disk polling module 280 in the 
server software module 205. 

0176) The server 130 includes an Ethernet interface 230 
with two Ethernet ports 231, 232 configured to handle 
Gigabit Ethernet or 10/100T Ethernet. The Ethernet inter 
face 230 communicates with the server interface 240 in the 
server software module 205. In FIG. 2, the Gigabit Ethernet 
port 231 communicates with one or more Ethernet clients 
285 of the DFSS 100. The Ethernet clients 285 include an 
installable client interface software component 286 that 
communicates with the client's operating system and with 
the Ethernet interface 230 of the server node 150. In FIG. 2, 
the Ethernet port 232 communicates with an administrative 
interface system 290. 
0177 To improve performance for certain implementa 
tions, a small file system Software layer may also exist on 
clients 110, as shown in the embodiment 200 shown in FIG. 
2, where the client system 110 includes an installable 
software component called the Client Interface (CI) 201 that 
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communicates with both the client's operating system and, 
via the communication fabric 120, with a server node 150 of 
the DFSS 100. 

0.178 The functions of the FC-API modules 210, 220 and 
the Ethernet interface 230 may alternatively be handled by 
other communication protocols. 
0179. Overview of Metadata Structures 
0180. In order to perform normal file system operations, 
Such as, for example, creating and deleting files, allowing 
clients to read and write files, caching file data, and keeping 
track of file permissions, while also providing the flexibility 
mentioned above, a cluster 160 maintains metadata about 
the files stored on its disk arrays 140, 141. The metadata 
comprises information about file attributes, file directory 
structures, physical storage locations of the file data, admin 
istrative information regarding the files, as well as other 
types of information. In various embodiments, the file 
metadata can be stored in a variety of data structures that are 
configured in a variety of interconnected configurations, 
without departing from the spirit of the distributed file 
system. FIG. 3 is a block diagram that shows one embodi 
ment of a configuration comprising five metadata structures 
and connections between them. Each of these structures, the 
data they hold, and how the structures are used are described 
in greater detail below. 
0181 Referring to FIG.3, a FilenameTable 310 includes 
a collection of filenames for both files stored on the server 
node 150 as well as files that are children of directories 
stored on the server node 150. 

0182. A G-node Table 330 includes a collection of 
G-nodes, where each G-node contains data related to 
attributes of a file. A one-to-one correspondence exists 
between the G-nodes and files stored on the server node 150. 

0183) A Gee Table 320 holds data about the physical 
locations of the file blocks on the disk array 140. The Gee 
Table 320 additionally includes pointers to each associated 
G-node in the G-node Table 330, and each G-node in the 
G-node Table 330 includes a pointer to an associated portion 
of the Gee Table 320. 

0184) A Gnid Table 340 on the server node 150 includes 
Gnid-strings that hold data describing the directory structure 
of that portion of the file system 250 whose directories are 
stored on the server node 150. A one-to-one correspondence 
exists between the Gnid-strings and directory files stored on 
the server node 150. Gnid-strings are collections of Gnids, 
which hold information about individual files that exist 
within a given directory. The file system 250 allows files 
within a directory to be stored on a cluster that is different 
from the cluster on which the parent directory is stored. 
Therefore, Gnids within a Gnid-string on the server node 
150 can represent files that are stored on clusters other than 
the current cluster 160. 

0185. Each Gnid includes several pointers. A Gnid in the 
Gnid Table 340 includes a pointer to an associated filename 
for the file represented by the Gnid. Because the Filename 
Table 310 includes filenames for both files stored on the 
server node 150 as well as files that are children of direc 
tories stored on the server node 150, all Gnids on the server 
node 150 point to the Filename Table 310 on the server node 
150. 
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0186 A Gnid in the Gnid Table 340 includes a pointer to 
its parent directory's G-node in the G-node Table 330, and 
a parent directory's G-node includes a pointer to the begin 
ning of its associated Gnid-string in the Gnid Table 340. 
0187 Each Gnid also includes a pointer to its own 
G-node. Since a Gnid can represent a file that is stored on 
another cluster 160 of the file system 250, a pointer to the 
Gnid's own G-node can point to the G-node Table 330 on 
another server node of the file system 250. 
0188 A Cache Node Table 350 includes the Cache Nodes 
that hold information about the physical locations of file 
blocks that have been cached, including a pointer to a cache 
location as well as a pointer to a non-volatile location of the 
data on the disk array 140. A pointer to a Cache Node exists 
in the Gee Table 320 for every associated data block that has 
been cached. Similarly, a pointer exists in the Cache Node 
to a location in the Gee Table 320 associated with a disk 
storage location for an associated data block. 
0189 Mirroring of Metadata Structures 
0190. To review the description from FIG. 1, in one 
embodiment, the servers 130, 131 of a cluster 160 are able 
to access files stored on all the disk array(s) 140, 141 of the 
cluster 160. In one embodiment, all server nodes 150, 151 of 
a cluster 160 have copies of the same Filename Table 310, 
Gee Table 320, G-node Table 330, and Gnid Table 340. 
0191 In embodiments where files, as well as metadata, 
are mirrored across the server nodes 150, 151 of a cluster 
160, a different Gee Table 320 exists for each disk array 140, 
141 within a cluster 160, since the Gee Table 320 holds 
information about the physical storage locations of the files 
on a given disk array, and since the disk arrays 140, 141 
within a given cluster 160 are not constrained to being 
identical in capacity or configuration. In Such an embodi 
ment, the servers 130, 131 within the cluster 160 have copies 
of both the Gee Table 320 for a first disk array 140 and the 
Gee Table 320 for each additional disk array 141 of the 
cluster. 

0192 In one embodiment, in order to enhance both the 
security of the metadata and efficient access to the metadata, 
each server node 150, 151 stores a copy of the Filename 
Table 310, the G-node Table 330, the Gnid Table 340, and 
the Gee Table 320 in both non-volatile memory (for secu 
rity) and in Volatile memory (for fast access). Changes made 
to the volatile versions of the metadata structures 310,320, 
330,340 are periodically sent to the non-volatile versions for 
update. 

0193 In one embodiment, the server nodes 150, 151 in 
the cluster 160 do not have access to one another's cache 
memory. Therefore, unlike the four metadata structures 310, 
320, 330, and 340 already described, the Cache Node Table 
350 is not replicated across the server nodes 150, 151 of the 
cluster 160. Instead, the Cache Node Table 350 stored in 
volatile memory on a first server 130 refers to the file blocks 
cached on the first the server 130, and the Cache Node Table 
350 stored in volatile memory on a second server 131 refers 
to file blocks cached on the second server 131. 

0194 Division of Metadata Ownership 
0.195. In one embodiment, the metadata structures 
described in FIG. 3 are duplicated across the server nodes 
150, 151 of the cluster 160, allowing access to a set of shared 
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files and associated metadata to all servers in the cluster 160. 
All of the server nodes 150, 151 in the cluster 160 can access 
the files stored within the cluster 160, and all are considered 
to be "owners' of the files. Various schemes can be 
employed in order to prevent two or more servers 130, 131 
from altering the same file simultaneously. For example, in 
embodiments where the cluster 160 includes two server 
nodes 150 and 151, one such scheme is to conceptually 
divide each of the duplicated metadata structures in half and 
to assign write privileges (or "primary ownership') for one 
half of each structure to each server node 150, 151 of the 
cluster 160. Only the server node 150 that that is primary 
owner of the metadata for a particular file has write privi 
leges for the file. The other server node(s) 151 of the cluster 
160 are known as “secondary owners' of the file, and they 
are allowed to access the file for read operations. 
0196) In a failure situation, when the server 130 deter 
mines that its counterpart 131 is not functional, the server 
130 can assume primary ownership of all portions of the 
metadata structures 310, 320, 330, 340 and all associated 
files owned by the server 131, thus allowing operation of the 
file system 250 to continue without interruption. In one 
embodiment, if a server in cluster 160 having more than two 
servers experiences a failure, then primary ownership of the 
failed server's files and metadata can be divided amongst the 
remaining servers of the cluster. 
0.197 Filename Table 
0198 FIG. 4 shows a sample portion of the Filename 
Table 310. In one embodiment, the Filename Table 310 on 
the server 130 contains Filename Entries 410, 420, 430, 440 
for files which are either stored in the disk array 140 or are 
parented by a directory file in the disk array 140. In one 
embodiment, the FilenameTable 310 is stored as an array. In 
FIG. 4, a Start of String (SOS) marker 411 marks the 
beginning of the Filename Entry 410, and a character string 
414 holds characters of the filename, “Doe.” In one embodi 
ment, a checksum 412 for the string 414 is also included in 
the Filename Entry 410. In one embodiment, a filename 
length count 413 representing the length of the string 414, 
shown in FIG. 4 to have a value of '3' is included in the 
Filename Entry 410. The checksum 412 and the filename 
length count 413 advantageously allow for an expedited 
Search of the Filename Table 310. 

0199 A Start of String (SOS) marker 421 marks the 
beginning of the Filename Entry 420 with a checksum 422, 
a filename length count 423 of “6,” and a character string 
424 holding the filename “Thomas.” 
0200) A Deleted String (DS) marker 431 marks the 
beginning of the Filename Entry 430 with a checksum 432, 
a filename length count 433 of “4” and a character string 
434 holding the filename “Frog. 
0201 A Start of String (SOS) marker 441 marks the 
beginning of the Filename Entry 440 with a checksum 442, 
a filename length count 443 of '2.’ and a character string 
444 holding the filename “It.” 
0202 Comparing the checksums 412,422, 432, 442 and 
the filename length counts 413, 423, 433, 443 of each 
Filename Entry 410, 420, 430,440 to those calculated for a 
desired filename provides a quick way to eliminate most 
Filename Entries in the FilenameTable 310 before having to 
make a character-by-character comparison of the character 
strings 414, 424, 434, 444. 



US 2006/017395.6 A1 

0203 Another advantage of including the filename length 
counts 413, 423, 433,443 applies when deleting a Filename 
Entry 410, 420, 430, 440 from the Filename Table 310. 
Replacing the Start of String (SOS) marker 411, 421, 441 
with a Deleted String (DS) marker 431, as in the Filename 
Entry 430, signals that the corresponding file is no longer 
stored on the disk array 140, even if the remainder of the 
Filename Entry 432-434 remains unchanged. The filename 
length 433 accurately represents the length of the “deleted 
string 434, and when a new filename of the same length (or 
shorter) is to be added to the table 310, the new name and 
checksum (and filename length count, if necessary) can be 
added into the slot left by the previous filename. 

0204 Gee Table 
0205 The file system 250 divides files into one or more 

file logical blocks for storage. Each file logical block is 
stored in a cluster of one or more disk logical blocks on the 
disk array 140. Although the file system 250 retains many of 
the advantages of a conventional file system implemented on 
RAID (Redundant Array of Independent Disks), including 
the distribution of files across multiple disk drives and the 
use of parity blocks to enhance error checking and error 
correcting, unlike many RAID systems, the file system 250 
does not restrict file logical blocks to one uniform size. File 
logical blocks of data and parity logical blocks can be the 
size of any integer multiple of a disk logical block. This 
variability of file logical block size allows for flexibility in 
allocating disk space and, thus, for optimized use of System 
SOUCS. 

0206. In the file system 250, the size of a file logical block 
is described by its integer multiple, called its extent, in disk 
logical blocks. For example, a file logical block with an 
extent of 3 is stored in a cluster of 3 disk logical blocks on 
the disk array 140. 

0207. The Gee Table 320 stores metadata describing the 
disk logical block locations on the disk array 140 for each 
file logical block of the files. 

0208 FIG. 5 shows one embodiment of a Gee Table 320 
that is implemented as a flat array. Each indexed row 
510-529 of the Gee Table 320 is called a Gee. In FIG. 5, 
Gees 510-528 relate to a single file that is divided into ten 
file logical blocks. Such a set of Gees 510-528, which 
together describe the logical location of a single file on the 
disk array 140, is known as a Gee-string 500. A Gee-string 
is made up of one or more Gee-groups. Each Gee-group is 
a set of contiguous Gees that all relate to a single file. In 
FIG. 5, the Gee-string 500 includes three Gee-groups, 550, 
551, and 552. The Gee 529 relates to a separate file, as will 
be explained in more detail below. 

0209. In one embodiment, the Gees 510-529 include a 
G-code field 590 and a Data field 591. The G-code field 590 
in the Gees 510-529 indicates the type of data that is 
included in the Data field 591. In FIG. 5, four types of 
G-codes 590 are depicted: “G-NODE,”“DATA,”“PARITY,” 
and “LINK. 

0210. In one embodiment, the G-code 590 of “G-NODE” 
indicates that the Gee is a first Gee of a Gee-group. For 
example, the first Gee of the Gee-group 550 is a G-NODE 
Gee 510. Similarly, the first Gee of the Gee-groups 551 and 
552 are also G-NODE Gees 520, 525. 
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0211) The Data field 591 of a G-NODE Gee can include 
a pointer to the file's G-node in the G-node Table 330 and 
information about whether this is the first (or Root) 
G-NODE Gee of the file's Gee-string 500. The Data field 
591 of a G-NODE Gee can also include information about 
the extent, or size, of the logical disk block clusters for the 
file logical blocks of the Gee-group, as will be described in 
greater detail below. 

0212. In FIG. 5, the Data fields 591 of the G-NODE Gees 
510,520, and 525 contain a reference to G-node index “67, 
indicating that they all relate to the file associated with the 
G-node at index “67” of the G-node Table 330. That is, they 
all relate to portions of the same file. The Data field 591 of 
the Gee 529 refers to the G-node index “43, indicating that 
it relates to a different file. 

0213) Of the G-NODE Gees 510,520, 525, only the first 
Gee 510 contains an indication that it is a Root Gee, meaning 
that it is the first Gee of the Gee-string 500. The Gee 529 is 
a G-NODE Gee, indicating that it is a first Gee of a 
Gee-group (the remainder of which is not shown), and the 
Data field 591 of the Gee 529 also indicates that the Gee 529 
is not a Root Gee for its Gee-string. 
0214. Following the G-NODE Gee in a Gee-group are 
Gees representing one or more Distributed Parity Groups 
(DPGs) 560, 561, 52, 563. A DPG is set of one or more 
contiguous DATA Gees followed by an associated PARITY 
Gee. A DATA Gee is a Gee with a G-code 590 of “DATA 
that lists disk logical block(s) where a file logical block is 
stored. For example, in FIG. 5, the Gees 511-513,515-517, 
521-522, and 526-527 are all DATA Gees, and each is 
associated with one file logical block 592. 
0215) A PARITY Gee is a Gee with a G-code 590 of 
“PARITY.' Each PARITY Gee lists disk logical block 
location(s) for a special type of file logical block that 
contains redundant parity data used for error checking and 
error correcting one or more associated file logical blocks. A 
PARITY Gee is associated with the contiguous DATA Gees 
that immediately precede the PARITY Gee. A set of con 
tiguous DATA Gees and the PARITY Gee that follows them 
are known collectively as a Distributed Parity Group 560, 
561, 562, 563. 

0216) For example, in FIG. 5, the PARITY Gee 514 is 
associated with the DATA Gees 510-513, and together they 
form the Distributed Parity Group 560. Similarly, the PAR 
ITY Gee 518 is associated with the DATA Gees 515-517, 
and together they form the Distributed Parity Group 561. 
The PARITY Gee 523 is associated with the DATA Gees 
521-522, which together form the Distributed Parity Group 
562, and the PARITY Gee 528 is associated with the DATA 
Gees 526-527, which together form the Distributed Parity 
Group 563. 

0217. The size of a disk logical block cluster described by 
a DATA Gee or a PARITY Gee, as measured in number of 
disk logical blocks, matches the extent listed in the previous 
G-NODE Gee. In the example of FIG. 5, the G-NODE Gee 
510 defines an extent size of 2, and each DATA and PARITY 
Gee 511-518 of the two Distributed Parity Groups 560,561 
of the Gee-group 550 lists two disk logical block locations. 
Similarly, G-NODE Gee 520 of the second Gee-group 551 
defines an extent size of 3, and each DATA and PARITY Gee 
521-523 of the Gee-group 551 lists three disk logical block 
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locations. G-NODE Gee 525 of the third Gee-group 552 
defines an extent size of 3, and each DATA and PARITY Gee 
526-528 of the Gee-group 552 lists three disk logical block 
locations. 

0218 If a Gee-group is not the last Gee-group in its 
Gee-string, then a mechanism exists to logically link the last 
Gee in the Gee-group to the next Gee-group of the Gee 
string. LINK Gees 519, 524 have the G-code 590 of “LINK 
and a listing in their respective Data fields 591 that provides 
the index of the next Gee-group of the Gee-string 500. For 
example, the Gee 519 is the last Gee of Gee-group 550, and 
its Data field 591 includes the starting index “76” of the next 
Gee-group 551 of the Gee-string 500. The Gee 524 is the last 
Gee of Gee-group 551, and its Data field 591 includes the 
starting index '88 of the next Gee-group 552 of the 
Gee-string 500. Since the Gee-group 552 does not include a 
LINK Gee, it is understood that Gee-group 552 is the last 
Gee-group of the Gee-string 500. 

0219) A G-code 590 of “FREE (not shown in FIG. 5) 
indicates that the Gee has never yet been allocated and has 
not been associated with any disk logical location(s) for 
storing a file logical block. A G-code 590 of “AVAIL (not 
shown in FIG. 5) indicates that the Gee has been previously 
allocated to a cluster of disk logical block(s) for storing a file 
logical block, but that the Gee is now free to accept a new 
assignment. Two situations in which a Gee is assigned the 
G-code of “AVAIL') are: after the deletion of the associated 
file logical block; and after transfer of the file to another 
server in order to optimize load balance for the file system 
250. 

0220 A G-code of “CACHE DATA’ indicates that the 
disk logical block cluster associated with the Gee (which 
was previously a DATA Gee) has been cached. A G-code of 
“CACHE PARITY” indicates that the disk logical block 
cluster associated with this Gee (which was previously a 
PARITY Gee) has been cached. The CACHE DATA and 
CACHE PARITY G-codes will be described in greater detail 
when Cache Nodes and the Cache Node Table are described 
in connection with FIG. 8A below. 

0221) G-Node Table 

0222. The G-node Table 330 is a collection of G-nodes, 
where each G-node includes attribute information relating to 
one file. Attribute information can include, but is not 
restricted to: information about physical properties of the file 
(such as, for example, its size and physical location on disk); 
information about the file’s relationships to other files and 
systems (such as, for example, permissions associated with 
the file and server identification numbers for the primary and 
secondary owners of the file); and information about access 
patterns associated with the file (such as, for example, time 
of the last file access and time of the last file modification). 

0223) In addition to file attribute information, a G-node 
provides links to the root Gee and a midpoint Gee of the 
file's Gee-string in the Gee Table 320. If the file is a 
directory file, its G-node also contains a pointer to the 
beginning of the Gnid-string that describes the files con 
tained in the directory, as will be explained with reference to 
FIG. 7 below. 
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0224. In one embodiment, the G-node Table 330 is imple 
mented as a flat array. 

0225 FIG. 6 shows one embodiment of information that 
can be included in a G-node 600. A File Attribute-type field 
602 designates a file as belonging to a Supported file type. 
For example, in one embodiment, NFNON indicates that the 
G-node is not currently associated with a file, NFREG 
indicates that the associated file is a regular file, NFDIR 
indicates that the associated file is a directory, NFLINK 
indicates that an associated file is a symbolic link that points 
to another file. 

0226. A File Attribute-mode field 604 gives information 
regarding access permissions for the file. 

0227) A File Attribute-links field 606 designates the num 
ber of directory entries for a file in the file system 250. This 
number can be greater than one if the file is the child of more 
than one directory, or if the file is known by different names 
within the same directory. 

0228) A File Attribute-uid field 608 designates a user ID 
for a file’s user/owner. 

0229. A File Attribute-gid field 610 designates a group ID 
of a file's user/owner. 

0230. A File Attribute-size field 612 designates a size in 
bytes of a given file. 

0231. A File Attribute-used field 614 designates an 
amount of disk space used by a file. 

0232 A File Attribute-fileId field 620 designates a file ID. 
0233. A File Attribute-atime field 622 designates the time 
of the last access to the file. 

0234. A File Attribute-mtime field 624 designates the 
time of the last modification to the file. 

0235 A File Attribute-ctime field 626 designates the time 
of the last modification to a G-node (excluding updates to 
the atime field 622 and to the mtime field 624). 
0236. If a file is a directory file rather than a data file, then 

its Child Gnid Index field 628 is an index for the oldest child 
in an associated Gnid-string (to be described in greater detail 
with reference to FIG. 7 below); otherwise, this field is not 
used. 

0237) A Gee Index-Last Used field 630 and a Gee Offset 
Last Used field 631 together designate a location of a most 
recently accessed Gee 510 for a given file. These attributes 
can be used to expedite sequential reading of blocks of a file. 

0238 A Gee Index-Midpoint field 632 and a Gee Offset 
Midpoint field 633 together point to a middle Gee 510 of the 
Gee-string 500. Searching for a Gee for a given file block 
can be expedited using these two fields in the following way: 
if a desired block number is greater than the block number 
of the midpoint Gee, then sequential searching can begin at 
the midpoint of the Gee-string 500 rather than at its begin 
n1ng. 

0239). A Gee Index-Tail field 634 and a Gee Offset-Tail 
field 635 together point to the last Gee 528 of the Gee-string 
500. New data can easily be appended to the end of a file 
using the pointers 634 and 635. 
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0240 A Gee Index-Root field 636 is an index of the root 
Gee 510 of a Gee-string for an associated file. 
0241) A G-node Status field 638 indicates whether the 
G-node is being used or is free for allocation. 
0242 A Quick Shot Status field 640 and a Quick Shot 
Link field 642 are used when a “snapshot' of the file system 
250 is taken to allow for online updates and/or verification 
of the system that does not interrupt client access to the files. 
During a 'snapshot, copies of Some portions of the system 
are made in order to keep a record of the system's state at 
one point in time, without interfering with the operation of 
the system. In some embodiments, more than one Quickshot 
can be maintained at a given time. The Quick Shot Status 
field 640 indicates whether the G-node was in use at the time 
of the “snapshot' and, therefore, if it has been included in 
the “snapshot.” If the G-node has been included in the 
“snapshot, the Quick Shot Link field 642 provides a link to 
the newly allocated copy of the G-node. 
0243 In one embodiment, a bit-mask is associated with 
each element with the file system 250 identifying any of a 
number of Quickshot instances to which the element 
belongs. When a Quickshot is requested, a task can set the 
bit for every element, holding the file system at bay for a 
minimum amount of time. Thus, capturing the state of a file 
system comprises identifying elements in the file system as 
being protected, rather than actually copying any elements at 
the time of the Quickshot. 
0244. In one embodiment, the file system uses a copy 
on-write mechanism so that data is not overwritten; new 
blocks are used for new data, and the metadata is updated to 
point to the new data. Thus, a minimum of overhead is 
required to maintain a Quickshot. If a block is being written 
and the file system element being modified has a bit set 
indicating that it is protected by a Quickshot, the metadata 
is copied to provide a Quickshot version of the metadata, 
which is distinct from the main operating system. Then, the 
write operation continues normally. 

0245 Gnid Table 
0246 Files in the file system 250 are distributed across a 
plurality of server nodes 150 while still appearing to clients 
110 as a single file system. According to different embodi 
ments, files can be distributed in a variety of ways. Files can 
be distributed randomly, or according to a fixed distribution 
algorithm, or in a manner that enhances load balancing 
across the system, or in other ways. 

0247. In one embodiment, the files of a given directory 
need not be stored physically within the same cluster as the 
cluster that stores the directory file itself. Nor does one large 
table or other data structure exist which contains all direc 
tory structure information for the entire file system 250. 
Instead, directory structure information is distributed 
throughout the file system 250, and each server node 150 is 
responsible for storing information about the directories that 
it stores and about the child files of those directories. 

0248. In one embodiment, server nodes of the DFSS 100 
hold directory structure information for only the directory 
files that are stored on the server node and for the child files 
of those directories, that is, the files one level down from the 
parent directory. In another embodiment, server nodes of the 
DFSS 100 hold directory structure information for each 
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directory file stored on the server node and for files from a 
specified number of additional levels below the parent 
directory in the file systems directory structure. 

0249. In one embodiment, an exception to the division of 
responsibility described above is made for the directory 
structure information for a “root directory of the file system 
250. The “root directory is a directory that contains every 
directory as a sub-directory and, thus, every file in the file 
system 250. In this case, every server in the file system 250 
can have a copy of the directory structure information for the 
“root directory as well as for its own directories, so that a 
search for any file of unknown location can be initiated at the 
“root” directory level by any server of the file system 250. 
In another embodiment, the directory structure information 
for the “root' directory is stored only in the cluster that 
stores the “root directory, and other clusters include only a 
pointer to the “root directory. 

0250) The Gnid Table 340 on the server node 150 defines 
a structure for directory files that reside on the server node 
150. The Gnid Table 340 comprises Gnid-strings, which, in 
one embodiment, are linked lists implemented within a flat 
array. In one embodiment, a Gnid-string exists for each 
directory file on the server node 150. Individual elements of 
a Gnid-string are called Gnids, and a Gnid represents a child 
file of a given parent directory. 

0251 FIG. 7 shows the structure of one embodiment of 
a Gnid-string 700. In this embodiment, the Gnid-string 700 
for a directory file is a linked list of Gnids 710-713, where 
each Gnid represents one file in the directory. In one 
embodiment, in order to expedite searching the Gnid-string 
700 for a given Gnid, the Gnids are kept in ascending order 
of the checksums 412,422, 442 of the files filenames 410, 
420, 440, such that the Gnid with the smallest checksum is 
first in the Gnid-string 700. When a new file is added to a 
directory, a Gnid for the newly added file is inserted into the 
appropriate location in the Gnid-string 700. Search algo 
rithms that increase the efficiency of a search can exploit this 
sorted arrangement of Gnids 710-713 within a Gnid-string 
700. 

0252 Since Gnids share a common structure, a descrip 
tion of one Gnid 710 is to be understood to describe the 
Structure of all other Gnids 711–713 as well. 

0253) The Gnid 710 includes, but is not restricted to, 
seven fields 720, 730, 740, 750, 760, 770, and 780. A Status 
field 720 indicates whether the Gnid 710 is a first Gnid 
(GNID OLDEST) in the Gnid-string 700, a last Gnid 
(GNID YOUNGEST) in the Gnid-string 700, a Gnid that is 
neither first nor last (GNID SIBLING) in the Gnid-string 
700, or a Gnid that is not currently in use (GNID FREE). 

0254) A Parent G-node Ptr field 730 is a pointer to the 
G-node for the file’s parent directory in the G-node Table 
33O. 

0255) A Sibling Gnid Ptrfield 740 is a pointer to the next 
Gnid 711 on the Gnid-string 700. In the embodiment 
described above, the Sibling Gnid Ptrfield 740 points to the 
Gnid within the Gnid-string 700 that has the next largest 
checksum 412, 422, 442 value. A NULL value for the 
Sibling Gnid Ptrfield 740 indicates that the Gnid is the last 
Gnid of the Gnid-string 700. 
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0256 A G-node Ptr field 750 is a pointer to the file's 
G-node 600, indicating both the server node that is primary 
owner of the file and the file’s index into the G-node Table 
330 on that server node. 

0257) A Filename Ptr field 760 is a pointer to the file's 
Filename Entry in the Filename Table 310. 
0258) A ForBiGnid Ptr field 770 is a pointer used for 
skipping ahead in the Gnid-string 700, and a BckBiGnid Ptr 
field 780 is a pointer for skipping backward in the Gnid 
string 700. In one embodiment, the fields 770 and 780 can 
be used to link the Gnids into a binary tree structure, or one 
of its variants, also based on checksum size, thus allowing 
for fast searching of the Gnid-string 700. 

0259 Cache Node Table 
0260 The Cache Node Table 350 stores metadata regard 
ing which data blocks are currently cached as well as which 
data blocks have been most recently accessed. The Cache 
Node Table 350 is integrated with the file system 250 by way 
of a special type of Gee 510 in the Gee Table 320. When a 
data block is cached, a copy of its associated DATA Gee 
511-513, 515-517,521-522, 526-527, which describes the 
location of the data on the disk array 140, is sent to the 
Cache Node Table 350, where it is held until the associated 
data is released from the cache. Meanwhile, the DATA Gee 
511-513,515-517,521-522,526-527 in the Gee Table 320 is 
modified to become a CACHE DATA Gee; its G-Code 590 
is changed from DATA to CACHE DATA, and instead of 
listing a data block's location on disk 140, the Data field 591 
of the Gee now indicates a location in the Cache Node Table 
350 where a copy of the original DATA Gee 511-513, 
515-517,521-522,526-527 was sent and where information 
about the data block's current location in cache can be 
found. 

0261). In one embodiment, the Cache Node Table 350 is 
implemented as a list of fixed length Cache Nodes, where a 
Cache Node is associated with each Gee 511-513,515-517, 
521-522, 526-527 whose data has been cached. The struc 
ture of one embodiment of a Cache Node 800 is described 
in FIG. 8A. 

0262 Referring to FIG. 8A, the Cache Node 800 is 
shown to include nine fields. A Data Gee field 810 is a copy 
of the DATA Gee 511-513,515-517,521-522,526-527 from 
the Gee Table 320 that allows disk location information to 
be copied back into the Gee Table 320 when the associated 
data block is released from cache. A PrevPtr field 815 holds 
a pointer to the previous Cache Node in the Cache Node 
Table 350. A NextPtr field 820 holds a pointer to the next 
Cache Node in the Cache Node Table 350. In one embodi 
ment, the Cache Node Table 350 is implemented as a flat 
array, in which case the PrevPtr 815 and NextPtr 820 fields 
can hold indices of a previous and a next item in the table. 
A CacheBlock Addr field 825 holds a pointer to a location in 
cache where the associated data has been cached. A ReadCt 
field 830 is a counter of the number of clients currently 
reading the associated data block. A CacheTime field 835 
holds a time that the associated cache contents were last 
updated. A Regenerated field 840 holds a flag indicating that 
the associated cache contents have been regenerated. A 
Cache BlockHiAddr field 845 and a Cache BlockLOAddr 
field 850 hold a “high water mark” and “low water mark” of 
the data in a cache block. These “water marks' can be used 
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to demarcate a range of bytes within a cache block so that 
if a write operation has been performed on a subset of a 
cache blocks bytes, then when the new data is being written 
to disk, it is possible to copy only relevant or necessary bytes 
to the disk. 

0263. In one embodiment, the Cache Node Table 350 is 
conceptually divided into three lists, as depicted in FIG. 8B. 
A Normal List 860 includes all the Cache Nodes 800 in the 
Cache Node Table 350 which are associated with cached 
data that is not currently in use. A Write List 865 holds the 
Cache Nodes 800 of data blocks that have been modified and 
that are waiting to be written to disk. A Read List 870 holds 
the Cache Nodes 800 of data blocks that are currently being 
read by one or more clients. 
0264. When existing cached data is needed for a write or 
a read operation, the associated Cache Node 800 can be 
“removed from the Normal List 860 and “linked to the 
Write List 865 or the Read List 870, as appropriate. The 
Cache Nodes 800 in each of the lists 860, 865, 870 can be 
linked by using the PrevPtr 815 and NextPtr 820 fields. The 
Cache Nodes 800 of data blocks that are being written to can 
be “moved from the Normal List 860 to the Write List 865 
until an associated data block stored on the disk array 140 is 
updated. The Cache Nodes 800 of data blocks that are being 
read can be similarly “moved to the Read list by resetting 
the links of the PrevPtr 815 and NextPtr 820 fields. 

0265). The Cache Nodes 800 of data blocks that are being 
read can additionally have their ReadCt field 830 incre 
mented, so that a count may be kept of the number of clients 
currently reading a given data block. If additional clients 
simultaneously read the same file, the server 130 increments 
the Cache Node's ReadCt field 830 and the Cache Node 800 
can stay in the Read List 870. As each client finishes reading, 
the ReadCt 830 is appropriately decremented. When all 
clients have finished reading the file block and the ReadCt 
field 830 has been decremented back to a starting value, such 
as 0, then the Cache Node 800 is returned to the Normal List 
860. 

0266. In one embodiment, the server 130 that wishes to 
access an existing Cache Node 800 for a read or a write 
operation can “take the desired Cache Node 800 from any 
position in the Normal List 860, as needed. The Cache 
Nodes 800 from the Write List 865 whose-associated data 
have already been written to disk are returned to a “top” 
position 875 of the Normal List 860. Similarly, when no 
clients are currently reading the cached data associated with 
a given the Cache Node 800 on the Read List 870, the Cache 
Node 800 is returned to the “top” position 875 of the Normal 
List 860. In this way, a most recently accessed Cache Node 
800 amongst the Cache Nodes 800 on the Normal List 860 
will be at the “top” position 875, and a least recently 
accessed the Cache Node 800 will beat a “bottom position 
880. 

0267 In one embodiment, if space in the cache is needed 
for a new data block when all of the Cache Nodes 800 have 
been assigned, then the Cache Node 800 in the “bottom’ 
position 880 is selected to be replaced. To do so, the cached 
data associated with the “bottom Cache Node 880 can be 
written to a disk location specified in the DataGee field 810 
of the “bottom Cache Node 880, and the DataGee 810 from 
the “bottom Cache Node 880 is returned to its location in 
the Gee Table 320. The “bottom Cache Node 880 can then 
be overwritten by data for a new data block. 
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0268. In one embodiment, the server nodes 150, 151 in 
the cluster 160 do not have access to one another's cache 
memory. Therefore, unlike the metadata structures described 
in FIGS. 4-7, the Cache Node Table 350 is not replicated 
across the servers 130, 131 of the cluster 160. 

0269 Lock Nodes and Refresh Nodes 

0270. In addition to the metadata structures described 
above in connection with FIGS. 3-8, other metadata struc 
tures can be used to enhance the security and the efficiency 
of the file system 250. Two metadata structures, a Lock 
Node Table and a Refresh Node Table, assist with the 
management of “shares' and “locks' placed on the files of 
the server node 150. A share or a lock represents a clients 
request to limit access by other clients to a given file or a 
portion of a file. Depending on its settings, as will be 
described in greater detail below, a share or a lock prevents 
other client processes from obtaining or changing the file, or 
some portion of the file, while the share or lock is in force. 
When a client requests a share or a lock, it can either be 
granted, or, if it conflicts with a previously granted share or 
lock, it can be given a “pending status until the original 
share or lock is completed. 

0271 Information about current shares and locks placed 
on a server node's files is stored in a Lock Node Table. A 
Lock Node Table includes Lock Strings, where each Lock 
String describes the current and pending shares and locks for 
a given file. 

0272 FIG. 9 shows the structure of one embodiment of 
a Lock String 900. The Lock String 900 includes five nodes 
911,912,921,922, and 923. The first two nodes 911 and 912 
are Share Nodes 910. The next three nodes 921-923 are Lock 
Nodes 920. As shown in FIG. 9, in one embodiment, Share 
Nodes 910 precede Lock Nodes 920 in the Lock String 900. 

0273) The Share Nodes 910 have eight fields 930-937, 
and the Lock Nodes 920 have ten fields 930-933 and 
938-943. In FIG. 9, the first four fields of both the Share 
Nodes 910 and the Lock Nodes 920 are the same, and as 
Such, a description of one shall be understood to apply to 
both Share Nodes and Lock Nodes. 

0274) A lockStatus field 930 indicates whether the node 
is of type SHARE or LOCK, or if it is currently an unused 
FREE node. A SHARE node represents a current or pending 
share request. A share applies to an entire file, and, if 
granted, it specifies the read and write permissions for both 
a requesting client and for all other clients in the system. A 
LOCK node represents a current or pending lock request. A 
lock applies to a specified byte range within a file, and, if 
granted, it guarantees that no other client process will be 
able to access the same range to write, read or read/write, 
depending on the values in the other fields, while the lock is 
in effect. 

0275 A timeoutCt field 931 helps to ensure that locks and 
shares are not inadvertently left in effect past their intended 
time, due to error, failure of a requesting client process, or 
other reason. Locks automatically “time out after a given 
length of time unless they are “refreshed periodically. 

0276 A next field 932 points to the next node in the Lock 
String 900. A pending field 933 indicates whether the lock 
or share represented by the node is active or pending. 
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0277. The fields 934-937 of FIG. 9 contain additional 
information useful to the Share Nodes 910. An access field 
935 indicates the kind of access to the file that the client 
desires. In one embodiment, the access field 935 may take on 
one of four possible values: 0 indicates that no access to the 
file is required; 1 indicates that read only access is required; 
2 indicates that only write access is required; and 3 indicates 
that read and write access to the file are both required. 
0278 A mode field 934 indicates the level of access to the 
file that another client process will be permitted while the 
share is in effect. In one embodiment, the mode field 934 can 
take on one of four possible values: 0 indicates that all 
access by other client processes is permitted; 1 indicates that 
access to read the file is denied to other client processes; 2 
indicates that access to write to the file is denied to other 
client processes; and 3 indicates that both read and write 
access are denied to other client processes. 
0279 A clientID field 936 identifies the client that 
requested the share. A uid field 937 identifies the user on the 
client that has requested the share or lock. 
0280 Fields 938-943 of FIG. 9 contain additional infor 
mation useful to Lock Nodes 920. An offset field 938 
indicates the starting point of the byte range within the file 
where the lock is in effect. A length field 939 indicates the 
length of the segment (beginning at the offset point) that is 
affected by the lock. In one embodiment, Lock Nodes 920 
are kept ordered within the Lock String 900 according to 
their Offset field 938. 

0281 An exclusive field 940 indicates whether the lock is 
exclusive or non-exclusive. An exclusive lock, sometimes 
called a write lock, is used to guarantee that the requesting 
process is the only process with access to that part of the file 
for either reading or writing. A non-exclusive lock, often 
called a read lock, is used to guarantee that no one else may 
write to the byte range while the requesting the process is 
using it, although reading the file is permitted to other 
clients. 

0282. A clientID field 941 identifies the client that 
requested the lock. A uid field 942 identifies the user on the 
client that is requesting the lock. Asvid field 943 identifies 
the process that is requesting the lock. 

0283. In one embodiment, a Refresh Node Table is used 
to detect clients who hold locks or shares on files and who 
are no longer in communication with the DFSS 100. A 
Refresh Node is created for each client that registers a lock 
or share. FIGS. 10 and 11 depict examples of how Refresh 
Nodes can be configured as a binary tree and as a doubly 
linked list, respectively. Based on the task at hand and on the 
links used for traversal, both structures can exist simulta 
neously for the same set of Refresh Nodes, as will be 
explained in greater detail below. 
0284. Referring to FIG. 10, six Refresh Nodes 1000, 
1010, 1020, 1030, 1040, and 1050 are shown configured as 
a binary tree. The structure of each Refresh Node is the 
same, and it is to be understood that a detailed description 
of one Refresh Node 1000 applies also to the other Refresh 
Nodes 1010, 1020, 1030, 1040 of FIG. 10. In one embodi 
ment, the Refresh Node 1000 includes six fields. A clientID 
field 1001 identifies a client who has registered at least one 
current lock or share. A counter field 1002 maintains a 
counter that, in one embodiment, is originally set to a given 
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start value and is periodically decremented until a “refresh' 
command comes from the client to request that the counter 
be returned to its full original value. If the counter field 1002 
is allowed to decrement to a specified minimum value before 
a “refresh' command is received from the identified client 
1001, then all locks and shares associated with the client 
1001 are considered to have “timed out,” and they are 
removed from their respective Lock Strings 900. 

0285) In one embodiment, Refresh Nodes are allocated 
from a flat array of Refresh Nodes. The Refresh Nodes can 
be linked and accessed in a variety of ways, depending on 
the task at hand, with the help of pointer fields located in 
each node. For example, when a “refresh” command arrives 
from the client 110, it is advantageous to be able to quickly 
locate the Refresh Node 1000 with the associated clientId 
field 1001 in order to reset its counter field 1002. A binary 
tree structure, as shown in the example of FIG. 10, can allow 
for efficient location of the Refresh Node 1000 with the 
given clientID field 1001 value if the nodes of the tree are 
organized based on the clientID field 1001 values. In such a 
case, a left link field 1003 (1tLink) and a right link field 1004 
(rtLink), pointing to the Refresh Node's left and right child, 
respectively, provide links for traversal of the tree using 
conventional algorithms for traversing a binary tree. 

0286. In one embodiment, unused Refresh Nodes 1100, 
1110, 1120, 1130 in the flat array are kept in a doubly-linked 
Free List, such as the one depicted in FIG. 11, for ease of 
allocation and de-allocation. In one embodiment, used 
Refresh Nodes are kept in a doubly-linked list, called a Used 
List. With this structure, decrementing the counter field 1002 
of each Refresh Node that is currently in use can be carried 
out efficiently. In FIG. 11, a stackNext field 1105 and a 
stackPrev field 1106 of the Refresh Node 110 together allow 
for doubly-linked traversal of the Refresh Nodes of the Free 
List and the Used List. When a new Refresh Node is needed, 
it can be removed from the Free List and linked to both the 
Used List and the binary tree by the appropriate setting of 
the link fields 1003, 1004, 1105, and 1106. 

0287) 

0288. In one embodiment, the Filename Table 310, the 
G-node Table 330, the Gee Table 320 and the Gnid Table 
340 are cached as well as being stored on the disk array 140. 
In one embodiment, when the server 130 changes a portion 
of the metadata in cache, an entry is made into an Intent Log 
in non-volatile memory, such as flash memory or battery 
backed RAM. The Intent Log Entry documents the intention 
to update both the version of the metadata stored on the disk 
array 140 and any mirrored version(s) of the metadata on 
other server nodes 151 of the cluster 160. The Intent Log 
provides protection against inconsistencies resulting from a 
power loss before or during an update. 

Intent Log 

0289. The following is a list of steps that show the 
general use of the Intent Log: 

0290) 1. Cached metadata is updated at the time of the 
original change. 

0291 2. An intention to update the disk version of the 
metadata is put into the Intent Log. 

0292) 3. A copy of the intention is transmitted to other 
server nodes of the cluster. 
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0293 4. The intention to write metadata to disk on the 
first server node is executed. 

0294 5. The intention to write metadata to disk on the 
other server nodes is executed. 

0295) 6. The Intent Log Entry on the first server is 
deleted. 

0296 7. Notice of the first server's Intent Log Entry is 
sent to the other server nodes. 

0297 FIG. 12 shows the structure of an Intent Log Entry 
1200. In one embodiment, the Entry 1200 includes seven 
fields. A status field 1210 designates whether the intention is 
FREE, WAITING, or ACTIVE. An intentType field 1220 
designates the type of metadata that is to be updated. For 
example, the update may apply to a G-node, a Gnid, a Gee, 
a Filename Entry, or to a file's last access time (aTime). A 
goalBufferIndex field 1230 points to an entry in a Goal 
Buffer that is used to verify the update. Field 1240 is a spare 
field that helps align the fields to a 64 bit boundary. A 
driveSector field 1250 and a drive field 1260 identify the 
location on disk where the update is to be made. An 
intentData field 1270 holds the data of the update. 
0298 File Handle 
0299. A file handle is provided to clients by the DFSS 100 
for use when requesting access to a file. Each file handle 
uniquely identifies one file. The DFSS 100 treats both 
normal data files and directories as files, and provides file 
handles for both. In the description that follows, the term 
“file' may apply to either a data file or a directory file, unless 
specifically limited in the text. 
0300 FIG. 13 shows the structure of one embodiment of 
a file handle 1300 as a 32-bit number with three fields. A 
Recommended NIC field 1310 indicates which of a server's 
Network Interface Connections (NICs) is recommended for 
accessing the file associated with the file handle 1300. Fibre 
Channel typically provides two ports per server, accord 
ingly, in one embodiment, the Recommended NIC field 
1310 is one bit in size. 

0301 A ServerID field 1320 identifies, by means of a 
server identification number (ServerID), the primary owner 
of the associated file. The inclusion of the file owner's 
ServerID 1320 in the file handle 1300 enables a user on the 
client 110 to access a file in the distributed file system 250 
without needing to knowing explicitly which server node is 
holding the desired file. Using the file handle 1300 to request 
a file from the file system software 250 allows the file system 
software 250 to direct the request to the appropriate server. 
By contrast, conventional UNIX file handles do not include 
information regarding the server storing a file, and they are 
therefore not able to accommodate the level of transparent 
file access provided in the file system software 250. 
0302) In one embodiment, clusters 160 include only two 
server nodes 150, 151, and the ServerID of the file’s 
secondary owner can be obtained by “flipping the least 
significant bit of the field 1320. This ability is useful when 
the primary owner 150 is very busy and must issue a “retry 
later response to a client's request to read a file. In return, 
the client 110 can temporarily change the ServerID in the 
file's file handle 1300 and re-send the read request to the 
file's secondary owner 151. Similar accommodations can be 
made for clusters of more than two server nodes. 
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0303) A G-node Index field 1330 provides an index into 
the file's G-node in the G-node Table 330 on the server 
identified in the ServerID field 1320. 

0304. In one embodiment, the file handle for a given file 
does not change unless the file is moved to another server 
node or unless its G-node location is changed. Thus, the file 
handle is relatively persistent over time, and clients can 
advantageously store the file handles of previously accessed 
files for use in Subsequent accesses. 
0305 File Handle Look-Up 
0306 In order to access a desired file, the client 110 sends 
the file's file handle 1300 and a request for file access to the 
file system 250. As was illustrated in the embodiment shown 
in FIG. 13, the file handle 1300 of a given file comprises 
information to identify the server that stores the file and the 
location of the file's G-node 600 in the G-node Table 330. 
With the information found in the G-node 600, as described 
in the example of FIG. 6, the desired file can be located and 
accessed. 

0307 The file handle 1300 for a given file remains 
relatively static over time, and, typically, the client 110 
stores the file handles 1300 of files that it has already 
accessed for use in Subsequent access requests. If the client 
110 does not have a desired file's file handle 1300, the client 
110 can request a file handle look-up from the file system 
250 to determine the needed file handle 1300. 

0308. In one embodiment of a file handle look-up pro 
cess, the DFSS 100 accepts the file handle 1300 of a parent 
directory along with the filename of a desired child file, and 
the DFSS 100 returns the file handle 1300 for the desired 
child file. If the client 110 does not know the file handle 1300 
for the desired file’s parent directory, then the client 110 can 
use the file handle 1300 for any directory along the path 
name of the desired file and can request a file handle look-up 
for the next component on the desired pathname. The client 
110 can then iteratively request a file handle look-up for each 
next component of the pathname, until the desired file's file 
handle 1300 is returned. 

0309 For example, if the client 110 desires the file handle 
1300 for a file whose pathname is “root/WorkFiles/Paten 
tApps/DesiredFile' and if the client 110 has the file handle 
1300 for the parent “Patent Apps' directory, then the client 
110 can send the look-up request with the “PatentApps' file 
handle 1300 to get the “DesiredFile' file handle 1300. If the 
client initially has no file handle 1300 for the parent "Pat 
entApps' directory, but does have the file handle 1300 for 
the “WorkFiles' directory, then the client 110 can send a first 
look-up request with the known “WorkFiles' file handle 
1300 together with the filename for the “PatentApps' direc 
tory. The DFSS 100 returns the file handle for the “Paten 
tApps' directory. Since the client 110 still does not have the 
needed “DesiredFile' file handle 1300, the client 110 can 
send a second file handle look-up request, this time using the 
newly received “PatentApps' file handle and the “Desired 
File' filename. In response, the file system 250 returns the 
“DesiredFile' file handle 1300. In this way, beginning with 
the file handle 1300 for any file along the pathname of a 
desired file, the file handle 1300 for the desired file can 
eventually be ascertained. 
0310. In one embodiment, when the client 110 first 
accesses the file system 250, the client 110 is provided with 
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one file handle 1300, namely the file handle for a “root” 
directory. The “root directory is the directory that contains 
all other directories, and is therefore the first component on 
the pathname of every file in the system. Thus, if need be, 
the client 110 can begin the look-up process for any file's file 
handle 1300 with a look-up request that comprises the “root 
file handle and the filename of the next component of the 
desired file’s pathname. The final file handle returned will 
provide the client with the information needed to accurately 
locate the desired file. 

0311 FIG. 14A shows an example of the file handle 
look-up procedure in which the client 110 has a file handle 
1300 for a desired file’s parent directory and needs a file 
handle for the desired file itself. The client 110 initiates a 
look-up for the desired file handle by sending a look-up 
request 1410 that comprises a filename 1420 of the desired 
file and the file handle 1300 of the parent directory. The 
ServerId field 1320 in the file handle 1300 identifies the 
server 130 of the node 150 where the parent directory is 
stored, and the file system software 250 directs the look-up 
request 1410 to the identified server 130. The G-node index 
field 1330 stores an index for the parent directory's G-node 
in the G-node Table 330 on the identified server. 

0312. In this example, the filename 1420 of the desired 
file is “AAAAA. The ServerID field 1320 indicates that the 
parent directory is stored on the server 130 with ServerID 
“123, and the G-node index field 1330 shows that a G-node 
for the parent directory can be found at index location “1” 
in the G-node Table 330. 

0313 When the server 130 receives the look-up request 
1410, the server 130 uses information in the G-node index 
field 1330 of the file handle 1300 to access a G-node 1432 
at index location “1.” 

0314. As described above, the G-node 600 acts as a 
repository of general information regarding a file. In the 
example illustrated in FIG. 14A, the File Attribute-type field 
602 of the G-node 1432, namely “NFDIR,” indicates that the 
file associated with the G-node 1432 is a directory, not a 
regular data file. 

0315. As described earlier, the Gnid-string 700 holds 
information about the children files of a given directory. The 
Child Gnid Index 628 in G-node 1432 points to a first Gnid 
1436 in the directory’s Gnid-string 700. The server 130 
searches for the desired data file amongst the children files 
of the parent directory by searching the corresponding Gnids 
on the directory's Gnid-string. The server 130 uses the 
Filename Ptr fields 760 of each Gnid 710 to access the 
associated file's filename entry 410 for comparison with the 
filename 1420 of the desired file. 

0316) In FIG. 14A, the Child Gnid Index field 628 of 
G-node 1432 indicates a value of “3, and the server 130 
accesses the Gnid 1436 at index location '3' in the Gnid 
Table 340. To determine a filename associated with the Gnid 
1436, the server 130 uses the Filename Ptr field 760 to 
access the Filename Entry 1438 associated with the Gnid 
1436 at index “3.” To ascertain if the filename stored at the 
Filename Entry 1438 matches the filename 1420 in the 
look-up request 1410, the server 130 first compares the 
checksum and filename length count of the filename 1420 in 
the look-up request 1410 with the checksum 412 and the 
filename length count 413 stored in the Filename Entry 1438 
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in the Filename Table 310. (Note: These checksums and 
filename lengths are not shown explicitly in FIGS. 14A and 
14B.) If the aforementioned checksums and filename length 
counts match, the server 130 proceeds with a character-by 
character comparison of the character string 1420 in the 
look-up request 1410 and the filename 414 in the Filename 
Entry 1438. 

0317) If a mismatch is encountered during the compari 
sons, as is the case in FIG. 14A, where the Filename Entry 
1438 holds a filename of “ABCD and length “4” while the 
desired filename of “AAAAA' has a length of “5,” then the 
current Gnid is eliminated from consideration. After encoun 
tering a mismatch for the Gnid 1436 at index “3, the server 
130 continues to traverse the Gnid-string 700 by using the 
Sibling Gnid Ptr field 740 in the current Gnid 1436 as an 
index pointer. 

0318. The Sibling Gnid Ptr field 740 of the Gnid 1436 
holds a value of “4” indicating that a next Gnid 1440 can be 
found at index location “4” of the Gnid Table 340. When the 
checksum and name length for the desired filename 1420 do 
not match those from a Filename Entry 1442"DE' found at 
index location “0” of the Filename Table 310, the server 130 
again eliminates the current Gnid from consideration. 
0319. The server 130 again uses the Sibling Gnid Ptrfield 
740 as a pointer, this time from the Gnid 1440 at index 
location “4” to a Gnid 1444 at index location “6” in the Gnid 
Table 340. Following the Filename Ptr 760 of the Gnid 1444 
to Filename Entry 1446 and performing the aforementioned 
checksum, filename length, and filename comparisons 
reveals that the desired filename 1420 and Filename Entry 
filename 1446 do match. The server 130 therefore deter 
mines that this Gnid 1444 is associated with the desired file. 

0320 In order to send the desired file handle 1300, which 
comprises the ServerID 1320 and G-node Table index 1330 
for the desired file, to the requesting client 110, the server 
130 accesses the G-node Ptr field 750 of the current Gnid 
1444. The G-node 600 of a file is stored on the server node 
150 where the file is stored, which is not necessarily the 
same server node that holds its parent directory. The G-node 
Ptrfield 750 provides both the ServerID of the server that is 
the file’s primary owner and an index that identifies the file's 
G-node 1448 in the primary owner's G-node Table 330. 
0321) In the example of FIG. 14A, the contents of the 
G-node Ptr field 750 show that the desired G-node 1448 
exists at location '9' in the G-node table 330 on the same 
server 130, namely the server with ServerID “123.” How 
ever, it would also be possible for the G-node Ptr field 750 
to contain an index to a G-node Table 330 on another server 
132, in which case, the file handle 1300 would include the 
ServerID of the server 132 holding the file and its G-node 
600. (This possibility is indicated by the dotted arrow 1460 
pointing from the G-node Ptrfield 750 to another server 132 
of the DFSS 100.) Thus, the information in the G-node Ptr 
field 750 allows the server 130 to provide the client 110 with 
both a ServerID 1320 and with the G-node Index 1330 
needed to create the file handle 1300 for the desired file. The 
file handle 1300 for the desired file can be sent back to the 
client 110 for use in future access of the desired file, and the 
process of file handle look-up is complete. 

0322 FIG. 14B shows one example of a file access 
operation, illustrated using the same context as was used in 
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FIG. 14A. Here, the client 110 already has a file handle 1301 
for the desired file, so an access request 1411 can be sent 
directly to the file system 250. As previously disclosed, the 
user on the client 110 has no need to be aware of the specific 
server node 150 that will be accessed. This information is 
embedded in the desired file’s file handle 1301. 

0323) The server 130, indicated in a ServerID field 1321, 
accesses the G-node 1448 at index '9' as indicated in a 
G-node index field 1331 of the file handle 1301. 

0324. As disclosed above, the Gee Table 320 holds 
information about the physical storage locations of a file’s 
data and parity blocks on the disk array 140. The Gee Table 
320 also holds information that helps locate blocks of data 
that have been copied to cache. A Gee holds storage location 
information about one block of data. Gees for a given file are 
linked together to form the gee-string 500. A first Gee of the 
gee-string 500 is called the root of the gee-string 500. 
0325 The Gee Index-Root field 636 of the G-node 1448 
provides an index to a root Gee 1450 in the Gee Table 320. 
Reading the data field 591 of the Gee 1450 confirms that this 
Gee is a root Gee and that it is associated with the G-node 
1448 at index location “9. The server 130 continues reading 
the gee-string at the next contiguous Gee 1452 in the Gee 
Table 320. Reading the G-code 590 of the Gee 1452 with its 
value of “CACHE DATA reveals that this Gee represents 
data that has been cached. 

0326. As disclosed above, the Cache Node Table 350 
holds information that allows the server 130 to access a file 
block's location in cache 1456. Reading the Data Field 591 
of a next Gee 1452 provides a pointer to an appropriate 
cache node 1454 of the Cache Node Table 350. The cache 
node 1454 holds the Cache Block Addr field 825 which 
points to a location 1458 in cache 1456 of the data associated 
with the Gee 1452. The cache node 1454 also holds a copy 
of the associated Gee 1452 from the Gee Table 320 in the 
Data Gee field 810 until the associated data block 1458 is no 
longer stored in cache. The Data Gee field 810 also provides 
a pointer to the location of the associated file data stored on 
the server node's disk array 140. By following the pointers 
from the file handle 1301 to the G-node 1448 at index 
location “9, on to the Gees 1450 and 1452 at index 
locations “2 and “3, on to the Cache Node 1454 at index 
location “7,” and finally on to cache location “w” 1458, the 
data originally requested by the client 110 can be accessed 
for reading, writing, or other operations, and the process of 
file access is complete. 

0327 FIGS. 15-17 present a set of interrelated flow 
charts that illustrate the process of file access, including file 
handle look-up, if necessary. 
0328. Referring to FIG. 15, a process 1500 of accessing 
a file is described, beginning with the request for a file 
handle look-up, through the use of the file system's metadata 
structures, to final access of the file data in cache. 

0329 Beginning at a start state 1505, the process 1500 
moves to a state 1510 where the client 110 determines 
whether it has the file handle 1300 for a file that it wishes to 
aCCCSS, 

0330) If the client 110 does not have the desired file 
handle 1300, the process 1500 moves to a state 1515, where 
the client 110 and one or more servers of the DFSS 100 



US 2006/017395.6 A1 

perform a file handle look-up, as will be described in greater 
detail with reference to FIG. 16. 

0331 Returning to the state 1510, if the client 110 
determines that it does have the desired file handle 1300, 
then the process 1500 moves on to a state 1520 where the 
client 110 sends the file access request 1411 to the server 130 
indicated in the file handle 1300. 

0332 From state 1520, the process 1500 moves to a state 
1525 where the server 130 accesses a G-node 600 indicated 
in the file handle 1300. 

0333 Moving on to a state 1530, the server 130 uses a 
pointer in the G-node 600 to access an appropriate Gee in the 
Gee Table 320. Several possibilities exist for appropriate 
gees, depending on the current access needs of the server 
130. For example, in the embodiment of the G-node 600 
described in FIG. 6, seven fields 630-636 relate to pointers 
to the Gee Table 320. The Gee Index Root field 636 is an 
index to the root Gee, which can be used, for example, when 
reading from the beginning of a file is desired. Fields 634 
and 635 together point to the last Gee of a file, which can be 
used, for example, when appending new data to the end of 
a file. Fields 630 and 631 together point to a most recently 
used Gee for the file, which can be used, for example, for 
sequential access to the gees of a file. Fields 632 and 633 
together point to a middle Gee for the gee-string 500 which 
can be used, for example, when access to the middle, or 
second half of the file is desired. 

0334. After accessing an appropriate Gee in the state 
1530, the process 1500 moves on to a state 1535 where the 
server 130 reads the G-code field 590 in order to determine 
if the data represented by the Gee has already been cached. 
If the G-code 590 holds a value other than “CACHE DATA 
or “CACHE PARITY, the server 130 assumes that the 
desired data has not yet been cached, and the process 1500 
moves to a state 1540 where the desired data is sent to cache. 
The state 1540 is described in greater detail in connection 
with FIG. 17 below. 

0335) Returning to the state 1535, if the server 130 
determines that the G-code 590 holds a value of “CACHE 
DATA or “CACHE PARITY, the server 130 assumes that 
the desired data has already been cached. The process 1500 
then moves on to a state 1545 where the server 130 accesses 
the cache node 800 indicated in the gee's data field 591. 
0336. From the state 1545, the process 1500 moves on to 
a state 1550 where the server 130 manipulates the accessed 
cache node 800 as needed according to the description of 
FIG. 8B. For example, if the cache node 800 is currently on 
the Normal List 860, and the client 110 has requested to read 
the data block, the server 130 can increment the cache 
node's ReadCt field 830 and move it to the Read List 870. 

0337. Once the Cache Node 800 is properly updated, the 
process 1500 moves from the state 1550 to a state 1555 
where the server 130 accesses the file block data in the cache 
location indicated in the Cache Node 800. From here, the 
process 1500 moves on to a state 1560 where the server 130 
performs a desired operation on the cached data block. From 
the state 1560, the process 1500 moves on to a state 1570 
where accessing the file is complete. 

0338. In FIG. 15, the process 1500 reaches the state 1515 
only if the client 110 does not have a file handle 1300 for the 
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desired file. Referring to the embodiment of the file handle 
1300 illustrated in FIG. 13, the file handle 1300 for a given 
file comprises, among other possible fields, a ServerID field 
1320 identifying the server 130 that stores the data and 
metadata for a file, as well as a G-node Index field 1330 that 
indicates the G-node 600 of the given file on that identified 
Server 130. 

0339 FIG. 16 is a flow chart that describes in more detail 
how the process of the state 1515 carries out a file handle 
look-up. The look-up process 1515 begins with a look-up 
request that comprises the file handle 1300 for a directory on 
the pathname of the desired file and continues on through 
each component of the pathname, retrieving a file handle for 
each, until a file handle for the desired file itself is returned 
to the client 110. 

0340. The “root” directory is the first component of the 
pathname for every file in the file system, and, if necessary, 
the client 110 can begin the process of file handle look-up 
1515 with the file handle of the “root” directory. In one 
embodiment, every client has at least the file handle 1300 for 
a “root' directory for the file system 250. For example, the 
“root directory can be known to reside on the server 130 
with ServerID number 0, and its G-node 600 can be known 
to reside at index 0 of the G-node Table 330 on Server 0. 
However, it may also be that at the beginning of the look-up 
process 1515, the client 110 has the file handle 1300 for the 
desired file’s parent directory or for another directory on the 
pathname of the file, and that by beginning with one of these 
directories “closer to the file itself, the look-up process may 
be shortened. 

0341 Beginning at a start state 1605, the process 1515 
moves to a state 1610 where the client 110 sends the look-up 
request 1410 comprising the file handle 1300 for a directory 
and the filename 1420 of a desired next component. The 
look-up request 1410 is sent to a server 1300 indicated in the 
file handle 1300 field of the look-up request 1410. The 
process 1515 next moves to a state 1615, where the server 
130 accesses a G-node 600 indicated in the file handle 1300 
of the look-up request 1410. 
0342 Moving on to a state 1620, the server 130 uses the 
ChildGnidIndex field 628 in the G-node 600 to access a first 
Gnid 710 in the directory's Gnid-string 700. As described in 
connection with the embodiment shown in FIG. 7, the 
Gnid-string 700 is a linked list of Gnids 710, with one Gnid 
710 for each child file in a parent directory. 
0343 Moving on to a state 1625, the server 130 calcu 
lates a checksum and filename length for the filename 1420 
of the next desired pathname component that was sent by the 
client 110 in the look-up request 1410. Having a checksum 
and filename length for a desired file allows the server 130 
to expedite searching for a matching Filename Entry 
because comparison of checksums and comparison of file 
name lengths can be accomplished much more quickly than 
a character-by-character comparison of the filenames them 
selves. Performing the first two types of comparisons before 
embarking on the character-by-character comparison allows 
the server 130 to eliminate any Filename Entries whose 
checksum and filename length do not match, before per 
forming the more costly character-by-character filename 
comparison. 
0344) Moving on to a state 1630, the server 130 uses the 
FilenamePtrfield 760 of the currently accessed Gnid 710 to 
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locate the associated Filename Entry 410 in the Filename 
Table 310. Moving on to a state 1635, the server 130 
determines if the checksum 412 stored in the currently 
accessed Filename Entry 410 is greater than the checksum 
calculated in the state 1625. 

0345 As described in connection with FIG. 7, in one 
embodiment, Gnids 710 are stored in the Gnid-string 700 in 
order of checksum 412 values calculated for their associated 
character strings 414, with the Gnid 710 having the smallest 
checksum 412 value coming first. This ordering of Gnids 
710 by checksum 412 value allows the server 130 to 
determine whether a desired filename may still exist on the 
given Gnid-string 700. In this embodiment, if, in the state 
1635, the server 130 determines that the checksum 412 
found in the currently accessed Filename Entry 410 is 
greater than the checksum calculated in the state 1625, then 
a Gnid 710 for the desired file (with the lower checksum) 
cannot exist on the currently accessed Gnid-string 700. In 
this case, the process 1515 moves on to a state 1640, where 
it reports a File-Not-Found Error to the client 110. 
0346) Returning to the state 1635, if the server 130 
determines that a checksum found in a currently accessed 
Filename Entry is greater than the checksum calculated in 
state 1625, then the process 1515 moves on to a state 1645. 

0347 In the state 1645, the server 130 determines if the 
checksums and the filename lengths from the two sources 
match. If either the checksums or the filename lengths (or 
both) do not match, then this Filename Entry can be ascer 
tained not to be associated with the client’s desired file, and 
the process 1515 moves on to a state 1660. In the state 1660, 
the server 130 uses the SiblingGnidPtr 740 in the current 
Gnid 710 to access the next Gnid in the current Gnid-string. 

0348 Returning to the state 1645, if the server 130 
determines that the checksums and filename lengths do 
match, then this Filename Entry 410 cannot yet be elimi 
nated, and the process 1645 moves on to a state 1650, where 
the server 130 performs a character-by-character compari 
son of the two filenames. 

0349) If, in the state 1650, the server 130 determines that 
the two filenames do not match, then, as was the case in State 
1645, this Filename Entry can be ascertained not to be 
associated with the client’s desired file. In this case, the 
process 1515 moves on to a state 1660, where the server 130 
uses a SiblingGnidPtr 740 in the current Gnid to access a 
next Gnid 711 in the current Gnid-string 700. 

0350. From the state 1660, the process 1515 returns to the 
state 1630, and the server 130 uses the Filename Ptrfield 760 
of the newly accessed Gnid 711 to access an associated 
Filename Entry in the File Table 310. This loop through the 
states 1630, 1635, 1645, 1660 (and possibly 1650) continues 
until a Filename Entry and associated Gnid for the desired 
file is found or until an error is encountered. 

0351) If, in the state 1650, the server 130 determines that 
the filenames do match, then the process 1515 has identified 
a Filename Entry and an associated Gnid that corresponds to 
the desired file. In this case, the process 1515 moves on to 
a state 1655, where the server 130 sends the desired file 
handle 1300 information back to the client 110. Moving on 
to a state 1665, the file handle look-up process 1515 is 
complete. The process 1500 from FIG. 15 then proceeds 
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from the state 1515 back to the state 1510 and continues as 
described in the explanation of FIG. 15. 
0352 FIG. 17 presents a more detailed description of the 
state 1540 from FIG. 15, in which uncached data that has 
been requested for access by the client 110 is copied into 
cache memory. The process 1540 of caching file data begins 
in a start state 1705 and proceeds from there to a state 1710, 
where the server 130 identifies the least recently used cache 
node 880. In one embodiment of the file system 250, when 
the three-list scheme described in FIG.8B is used, the server 
130 can easily identify the least recently used cache node 
880 because it is a “last’ cache node on the Normal List 860 
of the scheme. 

0353 Moving on to a state 1720, the server 130 writes the 
associated file data from its Volatile location in cache to its 
non-volatile location on disk array 140, which is indicated in 
the DataGee field 810 of the cache node 800. 

0354 Moving on to a state 1730, the server 130 copies 
the DataGee field 810 from the cache node 800 back to its 
original position in the Gee Table 320, changing the G-code 
590 back from “CACHE DATA to “DATA or from 
“CACHE PARITY” to “PARITY” indicating that the asso 
ciated data is no longer cached. 
0355 Moving on to a state 1740, the server 130 over 
writes the DataGee field 810 in the cache node 800 with a 
Gee from the Gee Table 320 that is associated with a new file 
block to be cached. 

0356) Moving on to a state 1750, the server 130 caches 
the new file block from disk to a cache location associated 
with the cache node. 

0357 Moving on to a state 1760, the process 1540 of 
caching file data is complete, and the process 1500 in FIG. 
15 can proceed from the state 1540 on to the state 1545 to 
continue the task of accessing a file. 
0358 Referring to FIG. 18, a process of file allocation 
1800 is shown in flowchart form. The process 1800 begins 
in a start state 1805 and moves to a state 1810 where the 
client 110 send a file allocation request that includes a 
filename for a new file and a file handle for the new file’s 
parent directory. 

0359 The process 1800 moves to the state 1815, and the 
server node 150 indicated in the parent directory's file 
handle receives the file allocation request. For the purposes 
of the description of this figure, this server node 150 will be 
known as the “parent server. 
0360. The process 1800 moves to the state 1820, and the 
“parent server 150 uses workload statistics received from 
the other server nodes of the DFSS 100 to decide if the file 
will be “owned' by the “parent” server node 150 or by 
another server node. 

0361) If the “parent” server node 150 decides that it will 
be the owner of the new file, then the process 1800 moves 
to a state 1830, where the “parent server creates a new file, 
makes an appropriate new Filename Entry 410 in the File 
nameTable 310, and allocates a new G-node 600 for the new 
file. At this point, the “parent server node 150 has enough 
information to create the file handle 1300 for the new file. 

0362) Returning to the state 1820, if the “parent” server 
node 150 decides that another server node should own the 
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new file, the process 1800 moves to a state 1850, where the 
“parent server 150 sends a file allocation request to another 
server of the DFSS 100. For the purposes of describing this 
figure, the other server will be known as the “second server. 
0363 From the state 1850, the process 1800 moves to a 
state 1855 where the “second server creates a new file, 
makes the appropriate new Filename Entry 410 in the 
Filename Table 310, and allocates the new G-node 600 for 
the new file. At this point, the “second server has enough 
information to create the file handle 1300 for the new file. 

0364. From the state 1855, the process 1800 moves on to 
a state 1860, where the “second server sends the file handle 
1300 for the new file to the “parent” server node 150. 
0365 At this point, when the “parent” server node 150 
has the file handle 1300 for the new file, the process 1800 
moves on to a state 1835. 

0366) The state 1835 can also be reached from state 1830 
in the case where the “parent” server 150 decided to be the 
owner of the file. As disclosed above, in state 1830 the 
“parent server 150 also had the information to create a file 
handle 1300 for the new file, and the process 1800 also 
moves on to a state 1835. 

0367 For either case, in state 1835, the “parent” server 
node 150, as owner of the new file's parent directory, 
allocates a Gnid 710 for the new file, adds it to the appro 
priate Gnid-string 700, and, if one does not already exist, the 
“parent” server node 150 makes an appropriate new File 
name Entry 410 in the Filename Table 310. 
0368 From state 1835, the process 1800 moves on to a 
state 1840, where the “parent” server node 150 sends the file 
handle 1300 for the new file to the requesting client 110. 
0369. The process 1800 moves on to a state 1845 where 
the process of file allocation is now complete. The request 
ing client 110 can access the new file using the newly 
received file handle 1300, and since the file handle 1300 
contains identification for the server that owns the new file, 
any access request can be automatically routed to the 
appropriate server node. 

0370 Redirectors 
0371. In various embodiments, the DFSS 100 can be 
configured to store and manage a very large number of files 
of widely varying sizes. In some embodiments, it can be 
advantageous to store all of the file metadata on disk, while 
copies of the metadata for only some of the most recently 
used files are additionally cached in volatile memory. In 
Some embodiments, memory for metadata structures can be 
dynamically allocated as new metadata structures are 
brought from disk to volatile memory. 

0372 FIG. 19 depicts one embodiment of a scheme to 
allow for efficient access to file metadata when not all 
metadata is kept in Volatile memory. In the embodiment 
shown in FIG. 19, a G-node Redirector (GNR) array 1900 
in volatile memory holds a G-node Redirector (GNR) 1910 
per file. The G-node Redirector (GNR) is a small data 
structure that comprises information for locating the G-node 
600 of a desired file, including information regarding 
whether the file's G-node 600 is currently in cache 1920. In 
the embodiment shown in FIG. 19, a client 110 requesting 
access to a given file sends a file handle 1300 that includes 
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an index for the desired G-node Redirector (GNR) 1910 in 
the G-node Redirector (GNR) array 1900, which references 
the G-node 600 of the desired file. In one embodiment, when 
a desired G-node 600 is not currently cached, a least recently 
used G-node 600 in cache 1920 can be removed from cache 
1920, and a copy of the desired G-node 600 can be brought 
from the disk array to the cache 1920. 

0373) Super G-Nodes 
0374. In one embodiment, the file system 250 can be 
advantageously configured to store file metadata in a data 
structure called a Super G-node (SG) that comprises the 
file's G-node, other file information, and information that 
allows the file system 250 to locate the physical storage 
locations of the file's data blocks, as will be described in 
greater detail below. 

0375 FIG. 20A shows one embodiment of a Super 
G-node 2000 structure offixed size that can provide location 
information for files of a wide variety of sizes. As shown in 
FIG. 20A, a Status field 2010 in the Super G-node 2000 can 
be used to indicate a type of Super G-node that corresponds 
to a category of associated file sizes, as will be described in 
greater detail with reference to FIG. 20B. A Linking Infor 
mation field 2020 can be used to interconnect Super G-nodes 
2000 into one or more linked lists or other structures. A 
G-node field 2030 comprises attribute and other information 
about a corresponding file that is similar to the information 
stored in the G-node 600 embodiment described with ref 
erence to FIG. 6. A File Location Data field 2040 in the 
Super G-node 2000 allows the file system 250 to locate a 
file's data, as will be described in greater detail below. 

0376. In the embodiment shown in FIG. 20A, the Super 
G-node 2000 comprises 16 Kbytes of memory. The Status 
2010, Linking Information 2020, and G-node 2030 fields 
together comprise 128 Bytes of the Super G-node 2000, and 
the remainder of the Super G-node can be used to store the 
File Location Data 2040. 

0377 FIG. 20B depicts one embodiment of a scheme 
that uses Super G-nodes 2000 of a fixed size to hold 
information about files of widely differing sizes. In the 
embodiment shown in FIG. 20A, four types 2001-2004 of 
Super G-node 2000 are depicted. 

0378 A Super G-node 2000 of type Super G-node Data 
(SGD) 2001 can be used for a file that is small enough that 
its data 2005 can fit entirely within the File Location Data 
2040 field of the SGD 2001. For the embodiment described 
with reference to FIG. 20A, a small file refers to a file that 
is 16.256 Bytes, or smaller. When a file’s Super G-node 
2000 is of type SGD 2001, locating the file's data simply 
means reading it from the File Location Data 2040 field of 
the SGD 2001. 

0379. In the embodiment shown in FIG. 20B, a Super 
G-node 2000 of type Super G-node Gee (SGG) 2002 can be 
used for medium files, that is, files of sizes up to approxi 
mately 700 MegaBytes of data that are too large to fit into 
an SGD 2001. In an SGG 2002, the File Location Data 2040 
field is used to hold a Gee String Packet (GSP) 2007 that 
comprises information very similar to that of the Gee-String 
500 described with reference to FIG. 5. As with the Gee 
String 500, the Gee String Packet 2007 comprises Gees 2006 
that point to the physical locations of the file's data 2005. 
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0380 A Super G-node 2000 of type Super G-node List 
(SGL) 2003 can be used for large files whose Gee-String 500 
is too large to be described by a Gee String Packet 2007 that 
fits within the SGL's 2003 File Location Data 2040 field. 
Instead, the SGL's 2003 File Location Data 2040 field is 
used to hold a Gee String Packet Block (GSPB) 2008, which 
is a list of pointers to a plurality of Gee String Packets 2007 
that together describe the Gees 2006 that point to the 
locations of the file's data 2005. In one embodiment, an SGL 
2003 can reference files of sizes up to approximately 490 
GigaBytes. 

0381 A Super G-node 2000 of type Super G-node List of 
Lists (SGLL) 2004 can be used for very large files. Here, the 
File Location Data 2040 field of the SGLL 2004 comprises 
a Gee String Packet List Block 2009 that comprises pointers 
to a plurality of Gee String Packet Blocks 2008 that point to 
a plurality of Gee String Packets 2007 that points to a 
plurality of Gees 2006 that point to a plurality of storage 
locations that hold the desired data 2005. 

0382. In one embodiment, Gee String Packet List Blocks 
2009, Gee String Packet Blocks 2008, and Gee String 
Packets 2007 are implemented in structures that are equiva 
lent in size and organization to the Super G-node 2000 
described with reference to FIG. 20A, except that the 
G-node field 2030 is not used. 

Parity Groups 

0383) The foregoing description of a distributed file stor 
age system addresses the need for a fault tolerant storage 
system with improved reliability and scalability character 
istics. This system features a flexible disk array architecture 
that accommodates the integration of variably sized disk 
drives into the disk array and provides mechanisms to permit 
each drive's capacity to be more fully utilized than prior art 
systems. In one embodiment, variably sized data and parity 
blocks are distributed across the available space of the disk 
array. Furthermore, the system provides methods of redis 
tributing data across the disk array to improve data storage 
and retrieval, as well as, provide for improved fault-toler 
ance. Another benefit of the data redistribution characteris 
tics of the system is that it continues to provide fault-tolerant 
data access in situations where many drives of the disk array 
have failed. This feature is a notable improvement over 
conventional RAID systems that typically only provide 
fault-tolerance for single (or at most two) drive failures. 
0384 FIG. 22A shows a file storage system 100 having 
the server node 150 that operates within a computer network 
architecture to provide data and file storage. The computer 
network comprises one or more clients 110 that exchange 
information with the server node 150 through the commu 
nications medium or fabric 120 to store and retrieve desired 
data from the server node 150. In one aspect, the clients 110 
include one or more computing devices that exchange 
information with the server node 150 through the commu 
nications medium 120. 

0385) The communications medium 120 can be any of a 
number of different networking architectures including, for 
example, Local Area Networks (LAN), Wide Area Networks 
(WAN), and wireless networks which may operate using 
Ethernet, Fibre Channel, Asynchronous Transfer Mode 
(ATM), and Token Ring, etc. Furthermore, any of a number 
of different protocols can be used within the communica 
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tions medium 120 to provide networking connectivity and 
information exchange capabilities between the clients 110 
and the server node 150, including, for example, TCP/IP 
protocols, Bluetooth protocols, wireless local area network 
ing protocols (WLAN), or other suitable communications 
protocols. 

0386 The server node 150 includes the server 130 that 
serves as a front end to the disk array 140. The server 130 
receives information and requests from the clients 110 and 
processes these requests to store and retrieve information 
from the disk array 140. In one aspect, the server 130 
maintains at least a portion of an instruction set or file 
system that determines how data and information are stored 
and retrieved from the disk array 140. 
0387 Although the server node 150 is illustrated as a 
single entity in FIG. 22A, it will be appreciated that many 
server nodes 150 can be connected to the communications 
medium 120. Thus, a plurality of server nodes 150 can be 
connected to the communications medium 120 and acces 
sible to the clients 110 for the purposes of information 
storage and retrieval. Furthermore, the server nodes 150 can 
operate independently of one another or be configured to 
transparently present a single disk image to each client 110 
thus creating a unified storage area that facilitates end user 
interaction with the server nodes 150. In one aspect, the 
server nodes 150 incorporate functionality for maintaining 
the single disk image through the use of the file system 
present in each of the servers 130 which provides commu 
nication and organization to create the single disk image. 
0388 FIG. 22B illustrates another embodiment of a file 
storage system comprising a distributed file storage system 
architecture. In this embodiment, two or more server nodes 
150, 151 are physically or logically interconnected to form 
the cluster 160. File data stored on any server node is 
accessible to any other server in the cluster 160. The cluster 
160 may also provide metadata and transaction mirroring. 
Furthermore, stored files may be replicated across at least 
two server nodes 150, 151 within the distributed file storage 
system 100 to provide increased redundancy or data mir 
roring capabilities. 

0389. One advantage achieved by the aforementioned 
distributed configurations is that they may provide increased 
data protection and/or fault tolerance. For example, if the 
replicated server node 150 fails or becomes unavailable, the 
second replicated server node 151 can handle client requests 
without service interruption. Another advantage achieved by 
using this interconnected arrangement is that alternative 
server node access paths 165 can be created where identical 
data can be read simultaneously from the two or more 
interconnected server nodes 150, 151. Thus, if one server 
node 150 in the cluster is busy and unavailable, another 
redundant server node 151 can service client requests to 
increase data throughput and accessibility. As with the single 
server node configuration, a plurality of clusters 160 may be 
present and accessible to the clients 1110. Similarly, the 
clusters 160 can be configured to present a single disk image 
to the clients 110 to facilitate interaction by the end users of 
the distributed file storage system 100. 
0390. As shown in FIG.22B, each disk array 140,141 in 
the server nodes 150, 151 can include a variable number of 
disks where each server node 150, 151 has a different disk 
array configuration. Each disk within the disk array 140,141 
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can have a different storage capacity. These features of the 
distributed file storage system 100 contribute to improved 
flexibility and scalability in configuring the server nodes 
150, 151. 

0391 The variable disk configuration of the distributed 
file storage system 100 overcomes a limitation present in 
many conventional storage systems which require that 
upgrades to the storage system be performed in a coordi 
nated manner where all disks in each disk array 140, 141 are 
replaced in unison. Additionally, many conventional storage 
systems, including RAID architectures, require strict con 
formity amongst the disk arrays within the system, as well 
as, conformity in disk capacity within individual disk arrays. 
The distributed file storage system 100 of the present 
invention is not limited by the restriction of uniform disk 
upgrades or conformity in disk capacity and can accommo 
date replacement or upgrades of one or more drives within 
each server node with drives of differing capacity. To 
maintain data integrity and knowledge of available storage 
space within the distributed file storage system 100, one of 
the functions of the aforementioned file system present in 
the servers 130, 131 is to accommodate differences in disk 
array capacity and disk number between the server nodes. 
0392 FIG. 23 illustrates the use of a distributed file 
storage mechanism within the disk array 140 to improve 
space utilization and flexibility of data placement. A space 
mapping configuration 2300 is illustrated for the disk array 
140 where each disk 2305 is subdivided into a plurality of 
logical blocks or clusters 2310. For the purposes of this 
illustration the cluster size is shown to be fixed across all 
disks 2305 of the array 140, although, as will be illustrated 
in greater detail in Subsequent figures, the cluster size can be 
variable within each disk 2305 and across disks 2305 within 
the array 140. 
0393 A first file 2320 having data to be stored on the disk 
array 140 is subdivided into one or more data blocks. The 
determination of the data block size, number, and distribu 
tion is calculated by the file system as data storage requests 
are received from the clients 110. Each data block 2330 is 
mapped or assigned to a location within the disk array 140 
that corresponds to the particular disk 2305 and logical 
block 2310 within the disk 2305. Unlike conventional disk 
arrays, the block size used for data storage is variable from 
one block to the next within the file. 

0394 The server 130 organizes and distributes informa 
tion to the disk array 140 by dividing a file into one or more 
data blocks 2330 that are distributed between one or more 
parity groups 2335. Each parity group 2335 includes a 
discrete number of data blocks 2330 and further includes a 
parity block 2337 containing parity information calculated 
for the data blocks 2330 contained within the particular 
parity group 2335. Unlike conventional systems, the size of 
the data blocks 2330 and parity blocks 2337 is not singularly 
fixed throughout the disk array 140. The collection of data 
blocks 2330 and parity blocks 2337 can include a number of 
different sizes and configurations resulting in more flexible 
storage of data within the disk array 140. 
0395. Using File #1 in FIG. 23 as an example, the 
information contained in the file is distributed in 7 data 
blocks corresponding to DATA 1-DATA 7. Each data block, 
DATA 1-DATA 7is distributed between 3 parity groups 
wherein the first parity group contains DATA 1-DATA2the 
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second parity group contains DATA3-DATA4and the third 
parity group contains DATA 5-DATA 7. Furthermore, 3 
parity blocks PARITY 1-2, PARITY 3-4, and PARITY 5-7 
are formed, one for each parity group. 
0396 The parity groups 2335 are determined by the 
server 130 which assesses the incoming data to be stored in 
the disk array 140 and determines how the data is distributed 
into discrete data blocks 2330 and furthermore how the data 
blocks 2330 are distributed into parity groups 2335. After 
determining the data block and parity group distribution, the 
server 140 calculates the parity information for the data 
blocks 2330 in each parity group 2335 and associates the 
parity block 2337 containing this information with the 
appropriate parity group 2335. 

0397) The server 130 then determines how the informa 
tion for each parity group 2335 is stored within the disk 
array 140. Each data block 2330 and parity block 2337 is 
distributed within the disk array 140 in an arrangement 
where no blocks 2330, 2337 originating from the same 
parity group 2335 are stored on the same disk of the disk 
array 140. The non-overlapping storage of data blocks 2330 
and parity blocks 2337 derived from the same parity group 
2335 creates the fault-tolerant data storage arrangement 
where any block 2330, 2337 within a parity group 2335 can 
be reconstructed using the information contained in the other 
remaining blocks of the parity group 2335. This arrangement 
where blocks 2330, 2337 associated with the same parity 
group 2335 are not be stored on the same disk 140 is 
important in case of a disk failure within the array 140 to 
insure that that lost data can be reconstructed. Otherwise, if 
two or more blocks associated with the same parity group 
2335 are stored on the same drive, then in the event of a disk 
failure, data recovery can not be assured. 
0398. An example distribution of data blocks 2330 and 
parity blocks 2337 within the disk array 140 is shown in 
FIG. 23. The 7 data blocks and 3 parity blocks correspond 
ing to the File #1 are distributed along disk numbers 
0.18.3.7.2 and 2110 respectively. In a similar manner, a 
second file 2340 is divided into 4 data blocks (and 2 parity 
groups) that are distributed along disk numbers 0.2.4, and 5 
respectively. The size, order, and placement of the data 
blocks is pre-determined by the server 130 which assigns 
regions of each disk 2305, corresponding to particular 
logical blocks, to store data blocks of designated sizes. The 
parity blocks 2337 of the parity groups 2335 associated with 
the first file 2320 are further stored on disks 9,6,11 with the 
parity blocks 2337 of the second file 2340 stored on disks 3, 
9. 

0399. The data blocks 2330 and the parity blocks 2337 
need not be sequentially stored but rather can be distributed 
throughout the disk array 140. Using this arrangement, the 
distributed file storage system 100 permits the non-sequen 
tial assignment and storage of parity group information in a 
flexible manner that is not limited by a rigid order or 
placement schema. Flexible block placement in the afore 
mentioned manner improves disk utilization within the disk 
array 140 and provides for accommodating variable disk 
capacities as will be shown in greater detail in Subsequent 
figures. 

0400 FIG. 24A illustrates a process 2400 for the storage 
of data and parity information within the distributed file 
storage system 100. The process 2400 commences with a 
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data storage request 2410 issued by the client 110 to the 
server node 150. During this time the client 110 sends or 
transmits data 2415 to the server node 150 which receives 
and prepares the data 2420 for Subsequent processing and 
storage. In one embodiment, the server node 150 includes 
hardware and/or software functionality to perform opera 
tions such as error checking, data buffering, and re-trans 
mission requests, as needed, to insure that the data 2415 is 
received by the server 130 in an uncorrupted manner. 
Furthermore, the server node 150 is able to process simul 
taneous requests from a plurality of clients 110 to improve 
performance and alleviate bandwidth limitations in storage 
and retrieval operations. In one aspect, the data 2415 is 
transmitted through the communications fabric 120 in the 
form of a plurality of data packets that are automatically 
processed by the server node 150 to generate the data 2415 
that is to be desirably stored within the disk array 140. 
04.01 Upon receiving the data 2420, the server 130 
analyzes the characteristics of the data 2430 to determine 
how the data 2415 will be distributed into one or more data 
blocks 2330. In one aspect, the data analysis 2430 includes 
identifying the content or type of data that has been sent, 
Such as, for example, multimedia data, textual data, or other 
data types. Using one or more of the plurality of available 
disk blocks sizes, the server 130 identifies desirable block 
sizes and distribution mappings that are used to group the 
data 2415 and organize it into the data blocks 2330. 

0402. The data 2415 is then parsed into blocks 2440 
according to the data analysis 2430 and the resulting blocks 
are further arranged into one or more parity groups 2450. 
The parity group arrangement determination 2450 distrib 
utes the data blocks 2330 between the parity groups 2335 
and dictates the size of the parity blocks 2337 that will be 
associated with each parity group 2335. For example, a 
parity group composed of 3 data blocks having sizes of 
128K, 64K, and 256K respectively will have a different 
associated parity block size than and parity group composed 
of 2 data blocks having sizes of 128K and 256K. The server 
130 can therefore vary the block size as well as the parity 
group size in a number of different ways to achieve 
improved storage and distribution characteristics within the 
disk array 140. 

0403. In one aspect, the distributed file storage system 
100 is an improvement over conventional systems by allow 
ing both data and parity blocks to be assigned to physical 
disk blocks. Furthermore, the mapping of the data and parity 
blocks to the physical disk(s) may be performed either 
before or after the parity calculations thus improving storage 
flexibility. 

04.04. Upon determining the parity group arrangement 
2450, the server 130 calculates the parity blocks 2460 for 
each parity group 2335. As previously described, the parity 
block calculation 2450 creates a fault-tolerant information 
block which is associated with each group of data blocks 
2330 within the parity group 2335. The parity block is 
calculated 2460 by selecting all data blocks 2330 in a parity 
group 2335 and performing a logical operation on the data 
2415 contained therein to compute error correction infor 
mation. In one embodiment, the error-correction information 
is determined using the logical operation, exclusive OR to 
generate the parity information. Using this error-correcting 
information the parity block 2337 can be used to restore the 
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information contained in a particular data block 2330 or 
parity group 2335 that may become corrupted. Furthermore, 
the parity information can be used to restore the contents of 
entire disks 2305 within the disk array using the error 
correction information in conjunction with other non-cor 
rupted data. 

04.05) When the parity groups 2335 have been formed, 
the server 130 then determines how the data blocks 2330 and 
parity block 2337 for each parity group 2335 will be 
distributed 2470 in the disk array. Although, the data 2415 
can be striped sequentially across the disks 2305 of the disk 
array 140, it is typically more efficient to map and distribute 
the blocks 2335, 2337 throughout the disk array 140 in a 
non-sequential manner (See FIG. 23). Mapping the data 
blocks 2330 in this manner requires knowledge of how the 
data blocks 2330 are positioned and ordered within the disk 
array 140. Detailed knowledge of the mapping for each data 
block 2330 is maintained by the server 130 using a file 
storage mapping structure. This structure will be discussed 
below in connection with FIGS. 7 and 9. Using the mapping 
schema determined by the server 130, the blocks 2330, 2337 
of each parity group 2335 are stored 2480 in the disk array 
140. 

0406 As previously indicated, the distributed file storage 
system 100 employs a variable parity approach where the 
size of the parity block 2337 is not necessarily constant. The 
server 130 creates parity blocks 2337 by selecting one of 
more data blocks 2330 for which error correction informa 
tion will be computed. The size of the parity block 2337 is 
dependent upon the number of data blocks 2330 whose error 
correction information is computed and is determined by the 
server 130. In one aspect, the server 130 selects a parity 
block size that is convenient and efficient to store within the 
existing space of the disk array 140. The server 130 also 
provides for distributed placement of the parity blocks 2337 
in a manner similar to that of the data blocks 2330. Thus, 
both data blocks 2330 and parity blocks 2337 are desirably 
mapped throughout the disk array 140 with the server 130 
maintaining a record of the mapping. 

0407. The server 130 insures that both data blocks 2330 
and parity blocks 2337 are appropriately positioned within 
the disk array 140 to insure some level of fault tolerance. 
Therefore, the server 130 desirably distributes selected data 
blocks and parity blocks containing error correction infor 
mation for the selected data blocks on non-overlapping disks 
(e.g. all blocks of a parity group are on separate disks). This 
insures that if a disk failure does occur, that the corrupted 
information can be recovered using the remaining data/ 
parity information for each parity group. Upon calculating 
the appropriate parity information and distribution mapping 
2470, the parity blocks 2337 are stored in the disk array 2480 
in a manner designated by the server 130. 

0408 FIG. 24B illustrates another embodiment of a 
process 2405 for the storage of data and parity information 
within the distributed file storage system 100. As with the 
aforementioned data and parity information storage method 
2400, the process begins with the data storage request 2410 
issued by the client 110 to the server node 150. Subse 
quently, an analysis of the characteristics of the data 2430 is 
performed to determine how the data 2415 will be distrib 
uted into the one or more data blocks 2330. The data 2415 
is then parsed into blocks 2440 according to the data analysis 
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2430 and the resulting blocks are further arranged into one 
or more parity groups 2450. The server 130 then determines 
how the data blocks 2330 and parity block 2337 for each 
parity group 2335 will be distributed 2470 in the disk array. 
At this point the client 110 sends or transmits data 2415 to 
the server node 150, which receives and prepares the data 
2420 for Subsequent processing and storage. After receiving 
the data 2420, the server 130 calculates the parity blocks 
2460 for each parity group 2335. Once the data blocks 2330 
and parity blocks 2337 have been obtained they are stored in 
the disk array 2480 in a manner similar to that described 
with reference to FIG. 24A above. 

04.09. In either method of data and parity information 
storage 2400, 2405, the transfer of information from the 
client 110 may comprise both a parametric component and 
a data component. The parametric component defines a 
number of parameters used in the storage of information to 
the disk array 2480 and may include for example: operation 
definitions, file handles, offsets, and data lengths. When 
using the aforementioned storage methods 2400, 2405 the 
parameters and data need not necessarily be transferred at 
the same time. For example, the parameters may be trans 
ferred during the client storage request 2410 and the data 
may be transferred anytime thereafter in a Subsequent stage 
of the method 2400, 2405. In one aspect, transfer of infor 
mation using the parametric and data components desirably 
allows the distributed file storage system 100 to make 
decisions about how to process the incoming data prior to 
the actual data transfer to thereby improve the flexibility and 
functionality of the system. 

0410 FIG. 25 illustrates another embodiment of the 
distributed file storage system 100 using a variable capacity 
disk array. The variable capacity disk array incorporates a 
plurality of disks 2305 with potentially non-identical sizes 
whose space can be addressed and used for storing data 
blocks 2330 and parity blocks 2337. Unlike conventional 
RAID storage systems that are limited by the capacity of the 
smallest drive within the disk array, the variable capacity 
disk array can contain any number or combination of disks 
and is not limited to accessing an address space boundary 
2490 denoted by the smallest drive in the array. Using 
similar methods as described previously in conjunction with 
FIGS. 23 and 24, the server 130 receives files 2320, 2340 
and determines a parity group distribution for each file Such 
that a plurality of data blocks 2330 and parity blocks 2337 
are created. The data blocks 2330 and parity blocks 2337 are 
then distributed throughout the disk array 140 in such a 
manner so as to avoid storing more than one block 2330. 
2337 from the same parity group 2335 on a single disk 2305. 
The server 130 stores of these blocks 2330, 2337 across all 
of the available disk space, and thus is able to access disk 
space that lies beyond the boundary 2490 defined by the 
Smallest disk capacity (a typical storage boundary which 
limits conventional systems). As shown in FIG. 25, the 
distributed file storage system 100 stores both data blocks 
2330 and parity blocks 2337 throughout the address space of 
each disk 2305 without boundary limitations imposed by 
other disks within the array 140. 
0411. In addition to improved space utilization, a number 
of other important features arise from the aforementioned 
flexible distribution of the blocks 2330, 2337. In one aspect, 
using variable capacity disks 2305 within the array 140 
contributes to improved scalability and upgradeability of the 
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distributed file storage system 100. For example, if the 
unused storage space within the array 140 fails below a 
desired level, one or more of the disks within the array 140 
can be readily replaced by higher capacity disks. The 
distributed file storage system 100 implements an on-the-fly 
or “hot-swap” capability in which existing disks within the 
array 140 can be easily removed and replaced by other disks. 
Since each server in a cluster maintains a copy of the 
metadata for other servers in the cluster, servers can also be 
hot-swapped. Using this feature, a new higher capacity disk 
can be inserted into the array 140 in place of a lower capacity 
disk. The server 140 is designed to automatically incorporate 
the disk space of the newly inserted drive and can further 
restore data to the new drive that resided on the former 
smaller capacity drive. This feature of the distributed file 
storage system 100 provides for seamless integration of new 
disks into the array 140 and facilitates disk maintenance and 
upgrade requirements. 

0412. In addition to exchanging or swapping existing 
disks 2305 within the array 140, the server 130 can accom 
modate the addition of new disks directly into the array 140. 
For example, the disk array 140 containing the fixed number 
of disks 2305 can be upgraded to include one or more 
additional disks such that the total number of disk in the 
array is increased. The server 140 recognizes the additional 
disks and incorporates these disks into the addressable space 
of the distributed file storage system 100 to provide another 
way for upgrading each disk array 140. 

0413. In the examples shown above, both the swapping 
of disks to increase storage space and the incorporation of 
additional disks into the array is facilitated by the flexible 
block placement and addressing of disk space within the 
array 140. Unlike conventional systems that have a rigid 
architecture where the number of disks within each array is 
fixed and the addressable disk space is dictated by the 
smallest disk within the array, the distributed file storage 
system 100 accommodates many different disk array con 
figurations. This flexibility is due, in part, to the manner in 
which the disk space is formatted, as well as, how the data 
is arranged and processed by the server 130. 

0414. In one aspect, the flexibility of the distributed file 
storage system 100 is improved through the use of parity 
groups 2335. In order to accommodate files with different 
characteristics, as well as, improve how information is 
distributed throughout the disk array 140, parity groups 
2335 are formed with variable block numbers. The block 
number of the parity group is defined by the number of 
blocks 2330, 2337 within the group. For example, a parity 
group containing 4 data blocks is characterized as having a 
block number of 4. In a similar manner, a parity group 
containing a single data block is characterized as having a 
block number of 1. The block number of the parity group is 
one factor that determines the size of the parity group and 
additionally determines the information that will be used to 
form the parity block. 

0415 FIG. 26A illustrates the formation of variable 
block number parity groups in the distributed file storage 
system 100. In the illustrated embodiment, exemplary parity 
groups 2502, 2504 are shown with different extents having 
4 and 2 data blocks respectively. The server 130 determines 
the number of data blocks 2330 associated with each group 
2502,2504 and furthermore determines the distribution of 
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each type of parity group having specific block numbers that 
make up the total parity group distribution in the disk array 
140. This feature of the distributed file storage system 100 
is discussed in connection with FIGS. 29 and 34. 

0416) Data organization and management by the server 
130 is maintained using one or more data structures that 
contain information which identifies the size and ordering of 
the data blocks 2330 within each parity group 2502, 2504. 
In one embodiment, the ordering or sequence of the blocks 
2330, 2337 is maintained through a linked list organizational 
schema. The linked list contains one or more pointers that 
act as links 2505 between each block 2330, 2337 within the 
parity group 2335. The links 2505 therefore allow the server 
130 to maintain knowledge of the order of the blocks 2330. 
2337 as they are distributed throughout the disk array 140. 
As blocks are written to or read from the disk array 140, the 
server 130 uses the links 2505 to identify the order of the 
blocks 2502, 2504 used for each parity group 2335. 
0417. As shown in FIG. 26B, the distributed file storage 
system 100 can also allocate parity groups 2335 on the basis 
of block size. In the illustrated embodiment, exemplary 
parity groups 2506, 2508 are shown having the same block 
number of 4 with differing block sizes of 256K and 128K 
respectively. The feature of variable block size allocation 
within each parity group 2335 provides yet another way by 
which the server 130 can distribute data and information 
within the disk array 140 in a highly flexible and adaptable 
a. 

0418. The implementation of parity groups having a 
plurality of different block numbers, as well as allowing for 
the use of different block sizes within each block, improves 
the ability of the server 130 to utilize available disk space 
within the array 140. Furthermore, using combinations of 
different data block and parity group characteristics allows 
the server to select combinations that are best Suited for 
particular data types. 
0419 For example, large data files such as multimedia 
Video or Sound are well Suited for storage using large parity 
groups that contain large block sizes. On the other hand, 
smaller files such as short text files do not have the same 
space requirements as the larger file types and thus do not 
significantly benefit from storage in a similar block size. In 
fact, when small files are stored in large blocks, there is the 
potential for wasted space, as the Smaller file does not use all 
of the space allocated to the block. Therefore, the distributed 
file storage system 100, benefits from the ability to create 
data blocks 2330 and parity groups 2335 of variable sizes to 
accommodate different data types and permit their storage in 
a space-efficient manner. 
0420. As discussed in connection with FIG. 14, the 
distributed file storage system 100 further improves the 
utilization of space within the disk array 140 by implement 
ing a mechanism for reorganizing the allocation of data 
blocks as needed to accommodate data stored to the disk 
array 140. Furthermore, a redistribution function (shown in 
FIG. 36) can alter the composition or distribution of blocks 
2330, 2337 or parity groups 2335 within the array 140 to 
make better use of available space and improve performance 
by reorganizing information previously written to the array 
140. 

0421. In order to maintain coherence in the data stored to 
the disk array 140, knowledge of the size and ordering of 
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each block within the parity group 2335 is maintained by the 
server 130. Prior to writing of data to the disk array 140, the 
server 130 creates a disk map that allocates all of the 
available space in the disk array 140 for storing particular 
blocks sizes and/or parity group arrangements. Space allo 
cation information is maintained by the server 140 in a 
metadata structure known as a Gee Table. The Gee Table 
contains information used to identify the mapping and 
distribution of blocks within the disk array 140 and is 
updated as data is stored to the disks 2305. 
0422 The Gee Table stores informational groups which 
interrelate and reference disk blocks or other discrete space 
allocation components of the disk array 140. These infor 
mational groups, referred to as Gee-strings, contain disk 
space allocation information and uniquely define the loca 
tion of files in the disk array 140. Each Gee-string is 
subdivided into one or more Gee-groups which is further 
divided into one or more Gees containing the physical disk 
space allocation information. The Gee-strings and compo 
nents thereof are interpreted by the server 130 to define the 
mapping of parity groups 2335 in the disk array 140 which 
store information and files as will be discussed in greater 
detail hereinbelow. 

0423 Based on the available space within the disk array 
140, the server 130 determines the type and number of parity 
groups 2335 that will be allocated in the array 140. The 
initial parity group allocation prior to data storage forms the 
Gee Table and directs the storage of databased on available 
parity groups. The Gee Table therefore serves as a map of the 
disk space and is updated as data is stored within the blocks 
2330, 2337 of the array 140 to provide away for determining 
the file allocation characteristics of the array 140. The server 
130 retrieves stored files from the disk array 140 using the 
Gee Table as an index that directs the server 130 to the 
blocks 2330 where the data is stored so that they may be 
retrieved in a rapid and efficient manner. 
0424 FIG. 27 illustrates a portion of a Gee Table used to 
determine the mapping of parity groups 2335 in the disk 
array 140. For additional details of this architecture the 
reader is directed to sections which relate specifically to the 
implementation of the file system. 

0425. In one embodiment, space allocation in the disk 
array 140 is achieved using a Gee Table 2530 containing an 
index field 2532, a G-code field 2534, and a data field 2536. 
The index field 2532 is a value that is associated with a row 
of information or Gee 2538 within the Gee Table 2530 and 
is used as an index or a pointer into the array or list 
comprising the Gee Table 2530. Additionally, the index field 
2532 uniquely identifies each Gee 2538 within the Gee Table 
2530 so that it can be referenced and accessed as needed. 

0426) The G-Code field 2534 indicates the type of data 
that is stored in the disk space associated with each Gee 
2538 and is further used to identify space allocation char 
acteristics of the Gees 2538. During initialization of the disk 
array, the server 140 assigns all of the disk space within the 
array 140 to various parity groups 2335. These parity groups 
2335 are defined by the block size for data and parity blocks 
2330, 2337 and the number of data blocks within the group 
2335. Identifiers in the G-Code field 2534 correspond to 
flags including “FREE, “AVAIL”, “SPARE”, “G-NODE, 
“DATA”, “PARITY”, “LINK”, “CACHE-DATA, or 
CACHE-PARITY”. 
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0427. The data field 2536 stores data and information 
interpreted by the server 130 in a specific manner depending 
upon the G-code field identifier 2534. For example, this field 
can contain numerical values representing one or more 
physical disk addresses defining the location of particular 
blocks 2330, 2337 of the parity groups 2335. Additionally, 
the data field 2536 may contain other information that 
defines the structure, characteristics, or order of the parity 
blocks 2335. As will be described in greater detail herein 
below, the information contained in the G-table 2530 is 
accessed by the server 130 and used to store and retrieve 
information from the disk array 140. 

0428. In one embodiment, the fields 2532, 2534,2536 of 
the G-table 2530 map out how space will be utilized 
throughout the entire disk array 140 by associating each 
physical block address with the designated Gee 2538. Parity 
groups 2335 are defined by sets of contiguous Gees 2538 
that are headed by the first Gee 2538 containing information 
that defines the characteristics of the parity group 2335. The 
G-Code field identifier “G-NODE instructs the server 130 
to interpret information in the data field 2536 of a particular 
Gee 2538 having the “G-NODE” identifier as defining the 
characteristics of a parity block 2335 that is defined by a 
G-group 2540. 

0429 Acharacteristic defined in the data field 2536 of the 
Gee 2538 having a “G-NODE” identifier includes an extent 
value 2542. The extent value 2542 represents the extent or 
size of the blocks 2330, 2337 associated with each Gee 2538 
in a particular G-group 2540. The extent value 2542 further 
indicates the number of logical disk blocks associated with 
each file logical block 2330, 2337. For example, the Gee 
with an index of “45’ contains the G-Code identifier 
“G-NODE and has a value of '2' associated with the extent 
value. This extent value 2542 indicates to the server 130 that 
all subsequent data blocks and parity blocks defined in the 
parity group 2335 and represented by the G-group 2540 will 
have a size of 2 logical disk blocks. Thus, as indicated in 
FIG. 27, the Gees having indexes “46'-'49” are each 
associated with two logical addresses for drive blocks within 
the array 140. In a similar manner, the Gee 2538 with an 
index of '76 contains the G-Code identifier “G-NODE 
and has an extent value of '3”. This value indicates to the 
server 130 that the subsequent Gees “77-79” of the parity 
group are each associated with 3 physical drive block 
addresses. 

0430. In the preceding discussion of FIG. 27, informa 
tion is organized into a single G-table however it will be 
appreciated that there are a number of different ways for 
storing the information to improve system flexibility includ 
ing the use of multiple tables or data structures. The exact 
manner in which this information is stored is desirably 
designed to insure that it may be efficiently accessed. For 
example, in one embodiment nodes of the Gee Table 2530 
can be utilized as a common storage vehicle for multiple 
types of metadata, including file names, identifiers 
(GNIDS), Gees, etc. 

0431. As discussed in connection with FIG. 29, other 
G-code identifiers are used during the storage and retrieval 
of information from the disk array 140. For example, 
another G-code identifier, “DATA, signifies that the data 
field 2536 of a particular Gee 2538 is associated with the 
physical address for one or more drive blocks that will store 
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data. Likewise, the G-code identifier, “PARITY”, signifies 
that the data field 2536 of a particular Gee is associated with 
the physical address for one or more drive blocks that store 
parity information. The parity information stored in the data 
blocks referenced by the “PARITY” Gee is calculated based 
upon the preceding “DATA’ Gees as defined by the 
“G-NODE' Gee. Thus, as shown in the FIG. 27, the Gee 
2538 having an index of "79 will store the physical address 
of disk blocks that contain parity information for data blocks 
specified by Gees having indexes “77-78. 

0432 FIG. 28 illustrates a process 2448 used by the 
server 130 to prepare the disk array 140 for data storage. 
Preparation of the disk array 140 commences with the server 
130 identifying the characteristics 2550 of each disk 2305 
within the array 140 to determine the quantity of space 
available. In one embodiment, the server 130 identifies 
physical characteristics for the drives 2305 within the array 
140. These characteristics can include: total drive number, 
individual drive size, sectors per disk, as well as other drive 
characteristics useful in determining the available space of 
the disk array 140. To facilitate the configuration of the array 
140, the server 130 can automatically detect and recognize 
the presence of each disk 2305 within the array 140 and can 
electronically probe each disk 2305 to determine the drive 
characteristics. Alternatively, the server 130 can be pro 
grammed with information describing the array composition 
and drive characteristics without automatically determining 
this information from the array 140. 
0433 Upon acquiring the necessary information describ 
ing the array composition, the server 130 determines a parity 
group allotment 2555 to be used in conjunction with the 
available disk space. The parity group allotment 2555 
describes a pool of available parity groups 2335 that are 
available for data storage within the array 140. The parity 
group allotment further describes a plurality of different 
block and/or parity group configurations each of which is 
Suited for storing particular data and file types (i.e. large 
files, Small files, multimedia, text, etc). During data storage, 
the server 130 selects from the available pool of parity 
groups 2335 to store data in a space-efficient manner that 
reduces wasted space and improves data access efficiency. 

0434 In one embodiment, the parity group allotment is 
determined automatically by the server 130 based on pre 
programmed parity group distribution percentages in con 
junction with available disk space within the array 140. 
Alternatively, the server 130 can be configured to use a 
specified parity group allotment 2555 that is provided to the 
server 130 directly. In another aspect, the parity groups can 
be allocated dynamically by the server based on file char 
acteristics such as file size, access size, file type, etc. 

0435 Based on the allotment information and the disk 
space available in the array 140, the server 130 performs a 
mapping operation 2560 to determine how the parity groups 
2335 of the allotment will be mapped to physical block 
addresses of drives 2305 within the array 140. The mapping 
operation 2560 comprises determining a desirable distribu 
tion of parity groups 2335 on the basis of their size and the 
available space and characteristics of the disk array 140. As 
the distribution of parity groups 2335 is determined by the 
server 130, the G-table 2530 is created and populated with 
Gees 2538 which associate each available parity group 2335 
with the physical block addresses defining their location on 
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one or more disks 2305 in the disk array 140. Initially, the 
G-table 2530 describes parity groups 2335 that contain free 
or available space, however, as data is stored to the disk 
2575, the G-table is updated to reflect the contents of the 
physical disk blocks that are pointed to by the Gees 2538. 
0436. During operation of the distributed file storage 
system 100, the G-table 2530 is accessed by the server 130 
to determine the logical addresses of files and information 
stored within the disk array 140. Furthermore, server 130 
continually updates the G-table 2530 as information is saved 
to the disk array 140 to maintain knowledge of the physical 
location of the information as defined by the logical block 
addresses. The dynamically updated characteristics of the 
G-Table 2530 data structure therefore define and maintain 
the mapping of data and information in the disk array 140. 
0437. In addition to the aforementioned a priori method 
of parity group allocation other methods of disk preparation 
may also be utilized. For example, another method of disk 
preparation can use a set of free disk block maps to allow 
dynamic allocation of the parity groups. This method addi 
tionally provides mechanisms for dynamic extension of 
existing parity groups and includes logic to ensure that the 
disk does not become highly fragmented. In some instances, 
fragmentation of the disk is undesirable because it reduces 
the ability to use long parity groups when mapping and 
storing information to the disk. 
0438 FIG. 29 illustrates one embodiment of a file stor 
age schema 2600 that uses the aforementioned parity group 
arrangements 2335 and G-table 2530 to store information 
contained in an exemplary file 2605. The file 2605 contains 
information coded by an electronic byte pattern that is 
received by the server 130 during client storage requests. In 
the storage schema 2600, the file 2605 is divided into one or 
more file logical blocks 2610 for storage. Each file logical 
block 2610 is stored in a cluster of one or more disk logical 
blocks 2615 in the disk array 140. As previously indicated, 
the distributed file storage system 100 retains many of the 
advantages of conventional storage systems, including the 
distribution of files across multiple disk drives and the use 
of parity blocks to enhance error checking and fault toler 
ance. However, unlike many conventional systems, the 
distributed file storage system 100 does not restrict file 
logical blocks to one uniform size. File logical blocks of data 
and parity logical blocks can be the size of any integer 
multiple of a disk logical block. This variability of file 
logical block size increases the flexibility of allocating disk 
space and thus improves the use of system resources. 
0439 Referring to FIG. 29, the file 2605 is divided into 
a plurality of file logical blocks 2610, each of which contains 
a portion of the information represented in the file 2605. The 
number, size, and distribution of the file logical blocks 2610 
is determined by the server 130 by selecting available disk 
logical blocks 2615 designated in the G-table 2530. The 
information contained in each file logical block 2610 is 
stored within the disk logical blocks 2615 and mapped using 
the G-table 2530. In the distributed file storage system 100, 
the size of each file logical block 2610 is described by the 
extent value 2542 which is an integer multiple in disk logical 
blocks 2615. For example, the logical block designated 
“LB-1 comprises two disk logical blocks 2615 and has an 
extent value of 2. In a similar manner, the logical block 
designated “LB-7 comprises three disk logical blocks 2615 
and has an extent value of 3. 
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0440 The server 130 forms parity groups 2335 using one 
or more file logical blocks 2615 and the associated parity 
block 2337. For each file 2605, one or more parity groups 
2335 are associated with one another and ordered through 
logical linkages 2617 (typically defined by pointers) used to 
determine the proper ordering of the parity groups 2335 to 
store and retrieve the information contained in the file 2605. 
As shown in the illustrated embodiment, the file 2605 is 
defined by a parity string 2620 containing four parity groups 
2610. The four parity groups are further linked by three 
logical linkages 2617 to designate the ordering of the logical 
blocks “LB-1 through “LB-10 which make up the file 
2605. 

0441 The G-table 2530 stores the information defining 
the G-string 2620 using a plurality of indexed rows defining 
Gees 2538. The Gees 2538 define the characteristics of the 
G-strings 2620 and further describe the logical location of 
the associated file 2605 in the disk array 140. In the G-table 
2530, the G-string 2620 is made up of the one or more 
Gee-groups. Each G-group is a set of contiguous Gees 2538 
that all relate to a single file. For example, in the illustrated 
embodiment, the Gee-string 2620 includes three Gee-groups 
2627, 2628, and 2629. 
0442. The first Gee in each G-group 2627-2629 is iden 

tified by the G-Code field identifier “G-NODE and the data 
field 2536 of this Gee contains information that defines the 
characteristics of a subsequent Gee 2632 within the Gee 
group 2627-2629. The data field 2536 of the first Gee in each 
G-group 2627-2629 further contains information that deter 
mines the ordering of the Gee-groups 2627-2629 with 
respect to one another. Some of the information typically 
found in the data field 2536 of the first Gee in each G-group 
2627-2629 includes: A G-NODE reference 2635 that relates 
the current G-group with a file associated with a G-node at 
a particular index (“67 in the illustration) in the G-table 
2530; the extent value 2542 that defines the size of each file 
logical block 2610 in terms of disk logical blocks 2615; and 
a root identifier 2637 that indicates if the G-group is the first 
G-group in the G-string. Of a plurality of G-NODE Gees 
2630, 2640, 2650, only the first Gee 2630 contains an 
indication that it is a Root Gee, meaning that it is the first 
Gee of the Gee-string 2620. 
0443) Following the G-NODE Gee in a Gee-group are 
Gees representing one or more distributed parity groups 
2655-2658. A distributed parity group is set of one or more 
contiguous DATA Gees followed by an associated PARITY 
Gee. ADATA Gee is a Gee with the G-code 2534 of “DATA 
that lists disk logical block(s) where a file logical block is 
stored. For example, in FIG. 29, the Gees with indexes of 
46-47, 50-52, 77-79 and 89-90 are all DATA Gees, and each 
is associated with one file logical block 2610. 
0444) A PARITY Gee is a Gee with the G-code 2534 of 
“PARITY.' Each PARITY Gee lists disk logical block 
location(s) for a special type of file logical block that 
contains redundant parity data used for error checking and 
error correcting one or more associated file logical blocks 
2610. A PARITY Gee is associated with the contiguous 
DATA Gees that immediately precede the PARITY Gee. The 
sets of contiguous DATA Gees and the PARITY Gees that 
follow them are known collectively as distributed parity 
groups 2655-2658. 
0445 For example, in FIG. 29, the PARITY Gee at index 
49 is associated with the DATA Gees at indexes 4648, and 
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together they form the distributed parity group 2655. Simi 
larly, the PARITY Gee at index 53 is associated with the 
DATA Gees at indexes 50-52, and together they form the 
distributed parity group 2656. The PARITY Gee at index 79 
is associated with the DATA Gees at indexes 77-78, which 
together form the distributed parity group 2657, and the 
PARITY Gee at index 91 is associated with the DATA Gees 
at indexes 89-90, which together form the distributed parity 
group 2658. 

0446. The size of a disk logical block cluster described by 
a DATA Gee or a PARITY Gee matches the extent listed in 
the previous G-NODE Gee. In the example of FIG. 29, the 
G-NODE Gee 2630 of the first Gee-group 2.627 defines an 
extent size of 2, and each DATA and PARITY Gee of the two 
distributed parity groups 2655, 2656 of the Gee-group 2627 
lists two disk logical block locations. Similarly, G-NODE 
Gee 2640 of the second Gee-group 2628 defines an extent 
size of 3, and each DATA and PARITY Gee of the Gee 
group 2628 lists three disk logical block locations. G-NODE 
Gee 2650 of the third Gee-group 2629 defines an extent size 
of 3, and each DATA and PARITY Gee of the Gee-group 
2629 lists three disk logical block locations. 
0447. If a Gee-group is not the last Gee-group in its 
Gee-string, then a mechanism exists to link the last Gee in 
the Gee-group to the next Gee-group of the Gee-string using 
the logical linkages 2617. LINK Gees 2660, 2661 both have 
the G-code 2534 of “LINK' and a listing in their respective 
Data fields 2536 that provides the index of the next Gee 
group of the Gee-string 2620. For example, the Gee with an 
index of 54 is the last Gee of Gee-group 2.627, and its Data 
field 2536 includes the starting index “76” of the next 
Gee-group 2628 of the Gee-string 2620. The Gee with an 
index of 80 is the last Gee of Gee-group 2628, and its Data 
field 2536 includes the starting index “88” of the next 
Gee-group 2629 of the Gee-string 2620. Since the Gee 
group 2629 does not include a LINK Gee, it is understood 
that Gee-group 2629 is the last Gee-group of the Gee-string 
2620. 

0448. As previously indicated, the G-code 2534 of 
“FREE (not shown in FIG. 29) indicates that the Gee has 
never yet been allocated and has not been associated with 
any disk logical location(s) for storing a file logical block. 
The G-code 2534 of “AVAIL (not shown in FIG. 29) 
indicates that the Gee has been previously allocated to a 
cluster of disk logical block(s) for storing a file logical 
block, but that the Gee is now free to accept a new 
assignment. Two situations in which a Gee is assigned the 
G-code of “AVAIL are: after the deletion of the associated 
file logical block; and after transfer of the file to another 
server in order to optimize load balance for the distributed 
file storage system 100. 

0449 FIG. 30 illustrates a fault recovery mechanism 700 
used by the distributed file storage system 100 to maintain 
data consistency and integrity when a data fault occurs. Data 
faults are characterized by corruption or loss of data or 
information stored in one or more logical blocks 2330 of the 
array 140. Each data fault can be further characterized as a 
catastrophic event, where an entire disk 2305 fails requiring 
all data on the failed disk to be reconstructed. Alternatively, 
the data fault can be characterized as a localized event, 
where the disk 2305 maintains operability but one or more 
physical disk sectors or logical blocks become corrupted or 
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damaged. In either instance of the data fault, the distributed 
file storage system 100 uses a fault-tolerant restoration 
process to maintain data integrity. 

0450 FIG. 30 illustrates one embodiment of a fault 
tolerant restoration process used to maintain data integrity in 
the distributed file storage system 100. As an example of 
how the process operates, a loss of integrity in a data block 
for a single parity group is shown. It will be appreciated that 
this loss of integrity and Subsequent recovery methodology 
can be applied to both instances of complete drive failure or 
localized data corruption. Thus, the restoration of informa 
tion contained in a plurality of logical blocks can be accom 
plished using this process (i.e. restoring all data stored on a 
failed disk). Additionally, in instances where parity blocks 
become corrupted or lost, the information from each parity 
block can be restored in a similar manner to the restoration 
process for data blocks using the remaining non-corrupted 
blocks of the parity group. 

0451. In the illustrated embodiment the parity group 2335 
includes two data blocks “DATA 1 and “DATA2 and an 
associated parity block “PARITY 1-2 and are shown stored 
on “DISK 2, “DISK 8, and “DISK 11 respectively. 
Knowledge of the logical disk addresses for each of these 
blocks is maintained by the server 130 using the aforemen 
tioned G-table 2530. As previously discussed, the G-table 
maintains mapping and structural information for each par 
ity group defined by the plurality of Gees 2538. The Gees 
further contain information including; the file descriptor 
associated with the blocks of the parity group 2335, the size 
and extent of the blocks of the parity group 2335, and the 
mapping to the logical disk space for each block of the parity 
group 2335. During routine operation, the server accesses 
data in the disks of the array using the G-table 2530 to 
determine the appropriate logical disk blocks to access. 

0452. As shown in FIG. 30, a complete disk failure is 
exemplified where a loss of data integrity 3072 results in the 
logical blocks on “DISK 8” becoming inaccessible or cor 
rupted. During the fault tolerant restoration process the 
server 130 determines that the data block “DATA2 is 
among the one or more blocks that must be recovered 3074. 
Using conventional data/parity block recovery methods, the 
server 130 recovers the compromised data block “DATA2 
using the remaining blocks “DATA 1 and “PARITY 1-2 
of the associated parity group 2335. The recovered data 
block “DATA2-REC is then stored to the disk array 140 
and contains the identical information that was originally 
contained in “DATA2. Using the existing G-table mapping 
as a reference, the server 130 identifies a new region of disk 
space that is available for storing the recovered data block 
and writes the information contained in “DATA2-REC to 
this region. In one embodiment, space for a new parity group 
is allocated and the reconstructed parity group is stored in 
the new space. In another embodiment, the “old” parity 
group having 1 parity block and N data blocks where one 
data block is bas, is entered onto the free list as a parity 
group having N-1 data blocks. The server 130 further 
updates the G-table 2530 to reflect the change in logical disk 
mapping (if any) of the recovered data block “DATA2 
REC to preserve file and data integrity in the disk array 140. 

0453) One desirable feature of the distributed file storage 
system 100 is that the recovered data block need not be 
restored to the same logical disk address on the same disk 



US 2006/017395.6 A1 

where the data failure occurred. For example, the recovered 
data block “DATA2-REC can be stored to “DISK3' and 
the G-table updated to reflect this change in block position. 
An important benefit resulting from this flexibility in data 
recovery is that the disk array 140 can recover and redis 
tribute data from a failed drive across other available space 
within the disk array 140. Therefore, a portion of a disk or 
even an entire disk can be lost in the distributed file storage 
system 100 and the data contained therein can be recovered 
and moved to other locations in the disk array 140. Upon 
restoring the data to other available disk space, the server 
130 restores the integrity of the parity group 2335 resulting 
in the preservation of fault-tolerance through multiple losses 
in data integrity even within the same parity group without 
the need for immediate repair or replacement of the faulted 
drive to restore fault-tolerance. 

0454. As an example of the preservation of fault toler 
ance through more than one data fault, a second drive failure 
3076 is shown to occur on “DISK 2 and affects the same 
parity group 2335. This disk failure occurs subsequent to the 
previous disk failure in which “DISK 8” is illustrated as 
non-operational. The second disk failure further results in 
the loss of data integrity for the block “DATA 1. Using the 
method of data recovery similar to that described above, the 
information contained in the data block “DATA 1 can be 
recovered and redistributed 3078 to another logical address 
within the disk array 140. The recovered data block 
“DATA1-REC is illustrated as being saved to available 
disk space located on “DISK 5” and is stored in a disk region 
free of corruption of data fault. Thus, fault tolerance is 
preserved by continuous data restoration and storage in 
available non-corrupted disk space. 
0455 The fault tolerant data recovery process demon 
strates an example of how the distributed file storage system 
100 handles data errors or corruption in the disk array 140. 
An important distinction between this system 100 and 
conventional storage systems is that the aforementioned data 
recovery process can automatically redistribute data or par 
ity blocks in a dynamic and adaptable manner. Using block 
redistribution processes described above results in the dis 
tributed file storage system 100 having a greater degree of 
fault-tolerance compared to conventional storage systems. 
In one aspect, the increase in fault tolerance results from the 
system’s ability to continue normal operation even when one 
or more drives experience a data loss or become inoperable. 
0456. In conventional storage systems, when a single 
disk failure occurs, the storage system's fault tolerant char 
acteristics are compromised until the drive can be repaired 
or replaced. The lack of ability of conventional systems to 
redistribute data stored on the faulted drive to other regions 
of the array is one reason for their limited fault tolerance. In 
these conventional systems, the occurrence of a second drive 
failure (similar to that shown in FIG. 30) will likely result 
in the loss or corruption of data that was striped across both 
of the failed drives. The distributed file storage system 100 
overcomes this limitation by redistributing the data that was 
previously stored on the faulted drive to a new disk area and 
updating the G-table which stores the mapping information 
associated with the data to reflect its new position. As a 
result, the distributed file storage system 100 is rendered less 
susceptible to sequential drive faults even if it occurs within 
the same parity group. Thus, the process of recovery and 
redistribution restores the fault-tolerant characteristics of the 
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distributed file storage system 100 and beneficially accom 
modates further drive failures within the array 140. 
0457. Another feature of the distributed file storage sys 
tem 100 relates to the flexible placement of recovered data. 
In one aspect, a recovered data block may be stored any 
where in the DFSS through a modification of the parity 
group associated with the data. It will be appreciated that 
placement of recovered data in this manner is relatively 
simple and efficient promoting improved performance over 
conventional systems. 
0458 In one embodiment, this feature of tolerance to 
multiple disk failures results in an improved “hands-off or 
“maintenance-free data storage system where multiple 
drive failures are tolerated. Furthermore, the distributed file 
storage system 100 can be configured with the anticipation 
that if data corruption or a drive failure does occur, the 
system 100 will have enough available space within the 
array 140 to restore and redistribute the information as 
necessary. This improved fault tolerance feature of the 
distributed file storage system 100 reduces maintenance 
requirements associated with replacing or repairing drives 
within the array. Additionally, the mean time between failure 
(MTBF) characteristics of the system 100 are improved as 
the system 100 has reduced susceptibility to sequential drive 
failure or data corruption. 
0459. In one embodiment the distributed file storage 
system is desirably configured to operate in a “hands-off 
environment where the disk array incorporates additional 
space to be tolerant of periodic data corruption or drive 
failures without the need for maintenance for such occur 
rences. Configuration of the system 100 in this manner can 
be more convenient and economical for a number of reasons 
Such as: reduced future maintenance costs, reduced concern 
for replacement drive availability, and reduced downtime 
required for maintenance. 
0460. In one aspect, the fact that parity groups may be 
integrated with the file metadata provides a way for priori 
tizing recovery of the data. For example, when some file or 
set of files is designated as highly important, or is frequently 
accessed, a background recovery process can be performed 
on those designated files first. In the case where the file is 
frequently accessed, this feature may improve system per 
formance by avoiding the need for time-consuming on 
demand regeneration when a client attempts to access the 
file. In the case where the file is highly important, this 
feature reduces the amount of time where a second drive 
failure might cause unrecoverable data loss. 
0461 FIG. 31 illustrates one embodiment of a method 
3172 for recovering corrupted or lost data resulting from one 
or more data faults. As discussed above and shown the 
previous figure, data corruption can occur as a result of a 
complete drive failure or data corruption can be localized 
and affect only a limited Subset of logical storage blocks 
within the array. The distributed storage system identifies the 
presence of data corruption in a number of ways. In one 
aspect, the server recognizes corrupted data during Storage 
or retrieval operations in which the one or more of the disks 
of the array are accessed. These operations employ error 
checking routines that verify the integrity of the data being 
stored to or retrieved from the array. These error checking 
routines typically determine checksum values for the data 
while performing the read/write operation to insure that the 



US 2006/017395.6 A1 

data has been Stored or retrieved in a non-corrupted manner. 
In cases where the read/write operation fails to generate a 
valid checksum value, the read/write operation may be 
repeated to determine if the error was spurious in nature 
(oftentimes due to cable noise or the like) or due to a hard 
error where the logical disk space where the data is stored 
has become corrupted. 
0462 Data corruption may further be detected by the 
server 130 when one or more disks 2305 within the array 
140 become inaccessible. Inaccessibility of the disks 2305 
can arise for a number of reasons, such as component failure 
within the drive or wiring malfunction between the drive and 
the server. In these instances where one or more disks within 
the array are no longer accessible, the server 130 identifies 
the data associated with the inaccessible drive(s) as being 
corrupted or lost and requiring restoration. 
0463. During the identification of the data fault 3175, the 
number and location of the affected logical blocks within the 
disk array 140 is determined. For each logical block iden 
tified as corrupted or lost, the server 130 determines the 
parity group associated with the corrupted data 3177. Iden 
tification of the associated parity group 2335 allows the 
server 130 to implement restoration procedures to recon 
struct the corrupted data using the non-corrupted data and 
parity blocks 2330, 2337 within the same parity group 2335. 
Furthermore, the logical storage block or disk space asso 
ciated with the corrupted data is identified 3179 in the 
G-table 2530 to prevent further attempts to use the corrupted 
disk space. 
0464) In one embodiment, the server 130 identifies the 
“bad” or corrupted logical blocks mapped within the G-table 
2530 and removes the associated Gees from their respective 
parity groups thereby making the parity group shorter. 
Additionally, the server 130 can identify corrupted logical 
blocks mapped within the G-table 2530 and remap the 
associated parity groups to exclude the corrupted logical 
blocks. 

0465 Prior to restoring the information contained in the 
affected logical blocks, the server 130 determines the num 
ber and type of parity groups that are required to contain the 
data 3180 that will subsequently be restored. This determi 
nation 3180 is made by accessing the G-table 2530 and 
identifying a suitable available region within the disk array 
140 based on parity group allocation that can be used to store 
the reconstructed data. When an available parity group is 
found, the server 130 updates the G-table 2530 to reflect the 
location where the reconstructed data will be stored. Addi 
tionally, the mapping structure of the array 140 is preserved 
by updating the links or references contained in Gees 2538 
of the G-table 2530 to reflect the position and where the 
reconstructed data will be stored in relation to other parity 
groups of the parity string. Data is then restored 3181 to the 
logical disk address pointed to by the updated Gee using the 
remaining non-corrupted blocks of the parity group to 
provide the information needed for data restoration. 
0466 As previously discussed, one feature of the distrib 
uted file storage system 100 is the use of variable length 
and/or variable extent parity groups. Unlike conventional 
storage systems that use only a fixed block size and con 
figuration when storing and striping data to a disk array, the 
system 100 of the present invention can store data in 
numerous different configurations defined by the parity 
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group characteristics. In one embodiment, by using a plu 
rality of different parity group configurations, the distributed 
file storage system 100 can improve the efficiency of data 
storage and reduce the inefficient use of disk space. 

0467 FIGS. 32A, B illustrate a simplified example of the 
use of variably sized parity groups to store files with 
different characteristics. As shown in FIG. 32A, File #1 
comprises a 4096 byte string that is stored in the disk array 
140. As previously discussed, the server 130, selects space 
from the plurality of parity groups 2335 having different 
structural characteristics to store the data contained in File 
#1. In the illustrated embodiment, 4 exemplary parity strings 
3240-3243 are considered for storing File #1. Each of the 
parity strings 3240-3243 comprises one or more parity 
groups 2335 that have a designated extent based on a logical 
disk block size of 512 bytes. The parity groups 2335 of each 
parity string 3240-3243 are further associated using the 
G-table 2530 which link the information in the parity groups 
2335 to encode the data contained in File #1. 

0468. The first parity string 3240 comprises a single 
4-block parity group having 1024-byte data and parity 
blocks. The total size of the first parity string 3240 including 
all data and parity blocks is 5120 bytes and has an extent 
value of 2. The second parity string 3241 comprises two 
3-block parity groups having 1024-byte data and parity 
blocks. The total size of the second parity string 3241 
including the data and parity blocks is 8192 bytes and has an 
extent value of 2. The third parity string 3242 comprises four 
2-block parity groups having 512-byte data and parity 
blocks. The total size of the third parity string 3242 includ 
ing the data and parity blocks is 6144 bytes and has and 
extent value of 1. The fourth parity string 3243 comprises 
nine 1-block parity groups having 512-byte data and parity 
blocks. The total size of the fourth parity string 3243 
including the data and parity blocks is 8192 bytes and has an 
extent of 1. 

0469 Each of the parity strings 3240-3243 represent the 
minimum number of parity groups 2335 of a particular type 
or composition that can be used to fully store the information 
contained in File #1. One reason for the difference in parity 
group composition results from the different numbers of 
total bytes required to store the data contained in File #1. 
The differences in total byte numbers further result from the 
number and size of the parity blocks 2337 associated with 
each parity group 2335. 

0470 A utilization value 3245 is shown for each parity 
string 3240-3242 used to store File #1. The utilization value 
3245 is one metric that can be used to measure the relative 
efficiency of storage of the data of File #1. The utilization 
value 3245 is determined by the total number of bytes in the 
parity string 3240-3242 that are used to store the data of File 
#1 compared to the number of bytes that are not needed to 
store the data. For example, in the second parity string 3241, 
one parity group 3247 is completely occupied with data 
associated with File #1 while another parity group 3246 is 
only partially utilized. In one aspect, the remainder of space 
left in this parity group 3246 is unavailable for further data 
storage due to the composition of the parity group 3246. The 
utilization value is calculated by dividing the file-occupying 
or used byte number by the total byte number to determine 
a percentage representative of how efficiently the data is 
stored in the parity string 3240-3243. Thus, the utilization 
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values for the first, second, third, and fourth parity strings 
3240-3243 are 100%. 66%, 100%, and 100% respectively. 
0471. In one embodiment, the server 130 determines how 
to store data based on the composition of the file and the 
availability of the different types of parity groups. As shown 
in FIG. 32A, of the different choices for storing File #1, the 
first parity string 3240 is most efficient as it has the lowest 
total bytes required for storage (5120 bytes total), as well as, 
a high utilization value (100%). Each of the other parity 
strings 3241-3243 are less desirable for storing the data in 
File #1 due to greater space requirements (larger number of 
total bytes) and in some cases reduced storage efficiency 
(lower utilization value). 
0472 FIG. 32B illustrates another simplified example of 
the use of variably sized parity groups to store files of 
differing sizes. In the illustrated embodiment the storage 
characteristics of a plurality of four parity strings 3250-3253 
are compared for a small file comprising a single 1024 byte 
string. The parity strings comprise: The first parity string 
3250 composed of the single parity group 2335 having 4 
data blocks 2330 and 1 parity block 2337, each 1024 bytes 
in length; The second parity string 3251 composed of the 
single parity group 2335 having 3 data blocks 2330 and 1 
parity block 2337, each 1024 bytes in length; The third 
parity string 3251 composed of the single parity group 2335 
having 2 data blocks 2330 and 1 parity block 2337, each 512 
bytes in length; and The fourth parity string 3253 having two 
parity groups 2335 each composed of the single 512-byte 
data block 2330 and the parity block 2337. 
0473 When storing the byte pattern contained in File #2 
different storage characteristics are obtained for each parity 
string 3250-3253. For example, the first parity string 3250 is 
only partially occupied by the data of File #2 resulting in the 
utilization value 3245 of 25%. Similarly, the second parity 
string 3251 is also partially occupied resulting in the utili 
zation value 3245 of 33%. Conversely, the third and fourth 
parity strings 3252-3253 demonstrate complete utilization of 
the available space in the parity group (100% percent 
utilization). Based on the exemplary parity group character 
istics given above, the most efficient storage of File #2 is 
achieved using the third parity string 3252 where a total of 
1536 bytes are allocated to the parity string with complete 
(100%) utilization. 
0474 The aforementioned examples demonstrate how 
files with differing sizes can be stored in one or more parity 
group configurations. In each of the above examples, the 
unused blocks or partially filled blocks remaining in the 
parity group are “Zero-filled or “one-filled to complete the 
formation of the parity group and encode the desired infor 
mation from the file. Furthermore, by providing a plurality 
of parity group configurations, improved storage efficiency 
can be achieved for different file sizes where less space is 
left unutilized within the disk array 140. It will be appreci 
ated by one of skill in the art that many possible parity group 
configurations can be formed in a manner similar to those 
described in FIGS. 32A, B. Examples of characteristics 
which may influence the parity group configuration include: 
logical block size, extent, parity group size, parity group 
number, among other characteristics of the distributed file 
storage system 100. Therefore, each of the possible varia 
tions in parity group characteristics and distribution should 
be considered but other embodiments of the present inven 
tion. 
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0475 Typically, one or more selected parity groups of the 
available configurations of parity groups provide improved 
storage efficiency for particular file types. Therefore, in 
order to maintain storage efficiency across each different file 
configuration a plurality of parity group configuration are 
desirably maintained by the server. One feature of the 
distributed file storage system 100 is to identify desirable 
parity group configurations based on individual file charac 
teristics that lead to improved efficiency in data storage. 
0476 FIG. 33 illustrates one embodiment of a data 
storage process 3360 used by the distributed file storage 
system 100 to store data. This process 3360 desirably 
improves the efficiency of storing data to the disk array 140 
by selecting parity group configurations that have improved 
utilization characteristics and reduce unused or lost space. In 
this process 3360 the server 130 receives files 3361 from the 
clients 110 that are to be stored in the disk array 140. The 
server 130 then assesses the file’s characteristics 3363 to 
determine Suitable parity string configurations that can be 
used to encode the information contained in the file. During 
the file assessment 3363, the server 130 can identify char 
acteristics such as the size of the file, the nature of the data 
contained in the file, the relationship of the file to other files 
presently stored in the disk array, and other characteristics 
that are used to determine how the file will be stored in the 
disk array 140. Using the G-table 2530 as a reference, the 
server 130 then identifies 3365 available (free) parity groups 
that can be used to store the file to the disk array 140. 
0477 Typically, a plurality of parity group configurations 
are available and contain the requisite amount of space for 
storing the file. Using an analysis methodology similar to 
that described in FIGS. 32A, B, the server 130 assesses the 
utilization characteristics for each parity group configuration 
that can be used to store the file. Based on the available 
configurations and their relative storage efficiency, the server 
130 selects a desirable parity group configuration 3367 to be 
used for file storage. In one embodiment, a desirable parity 
group configuration is identified on the basis of the high 
utilization value 3245 that is indicative of little or no wasted 
space (non-file encoding space) within the parity groups. 
Furthermore, a desirable parity group configuration stores 
the file in the parity string 2335 comprising the least number 
of total bytes in the parity String. Using these two parameters 
as a metric, the server 130 selects the desirable parity group 
configuration 3367 and stores the data contained in the file 
3369. During file storage 3369, the G-table 2530 is updated 
to indicate how the file is mapped to the disk array 140 and 
characteristics of the G-string 2530 used to store the file are 
encoded in the appropriate Gees of the G-table 2530. Fur 
thermore, the one or more Gees corresponding to the logical 
disk blocks where the data from the file is stored are updated 
to reflect their now occupied status (i.e. removed from pool 
of available or free disk space). 
0478. In another embodiment the distributed file storage 
system 100 provides a flexible method for redistributing the 
parity groups 2335 of the disk array 140. As discussed 
previously, prior to storage of information in the disk array 
140 the distributed file storage system 100 creates the 
G-table 2530 containing a complete map of the logical 
blocks of each disk 2305 of the disk array 140. Each logical 
block is allocated to a particular parity group type and may 
be subsequently accessed during data storage processes 
when the group type is requested for data storage. During 
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initialization of the disk array 140, the server 130 allocates 
all available disk space to parity groups 2335 of various 
lengths or sizes which are Subsequently used to store data 
and information. As files are stored to the disk array 140, the 
parity groups 2335 are accessed as determined by the server 
130 and the availability of each parity group type changes. 

0479. Using the plurality of different sizes and configu 
rations of parity groups 2335 allows the server 130 to select 
particular parity group configurations whose characteristics 
permit the storage of a wide variety of file types with 
increased efficiency. In instances where a file is larger than 
the largest available parity group, the server 130 can break 
down the file and distribute its contents across multiple 
parity groups. The G-table 2530 maps the breakdown of file 
information across the parity groups over which it is dis 
tributed and is used by the server 130 to determine the order 
of the parity groups should be accessed to reconstruct the 
file. Using this method, the server 140 can accommodate 
virtually any file size and efficiently store its information 
within the disk array 140. 
0480. When a large quantity of structurally similar data is 
stored to the disk array 140, a preferential parity group 
length can be associated with the data due to its size or other 
characteristics. The resulting storage in the preferential 
parity group length reduces the availability of this particular 
parity group and may exhaust the Supply allocated by the 
server 130. Additionally, other parity group lengths can 
become underutilized, as the data stored to the disk array 
140 does not utilize these other parity group types in a 
balanced manner. In one embodiment the distributed file 
storage system 100 monitors the parity set distribution and 
occupation characteristics within the disk array 140 and can 
alter the initial parity set distribution to meet the needs of 
client data storage requests on an ongoing basis and to 
maintain a balanced distribution of available parity group 
types. The parity group monitoring process can further be 
performed as a background process or thread to maintain 
data throughput and reduce administrative overhead in the 
system 100. 

0481 FIGS. 34A-C illustrate a simplified parity set redis 
tribution process useful in maintaining availability of parity 
groups 2335 within the disk array 140. Redistribution is 
handled by the server 130, which can update sets of Gees of 
the G-table 2530 to alter their association with a first parity 
group into an association with a second parity group. Fur 
thermore, other characteristics of the data and parity blocks 
within a parity group can be modified, for example, to 
change the size or extent of each block. By updating the 
G-table 2530, the server 140 provides a parity group bal 
ancing functionality to insure that each type or configuration 
of parity group is available within the disk array 140. 

0482 FIG. 34A illustrates an exemplary parity group 
distribution for the disk array 140 prior to storage of data 
from clients 110. The parity group distribution comprises 
four types of parity groups corresponding to a 4-block parity 
group 3480, a 3-block parity group 3481, a 2-block parity 
group 3482, and a 1-block parity group 3483. In configuring 
the distributed file storage system 100 there is an initial 
allocation 3491 of each type of parity group 3480-3483. For 
example, in the illustrated embodiment, 10000 groups are 
allocated for each type of parity group 3480-3483. Each 
parity group 3480-3483 further occupies a calculable per 
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centage of a total disk space 3485 within the disk array 140 
based on the size of the parity group. Although the parity 
group distribution is illustrated as containing four types of 
parity groups, it will be appreciated by one of skill in the art 
that numerous other sizes and configurations of parity 
groups are possible. (e.g. 8, 10, 16, etc.) In one embodiment, 
the number of blocks within the parity group 2335 can be 
any number less than or equal to the number of disks within 
the disk array 140. Furthermore, the parity groups 2335 may 
be distributed across more than one disk array 140 thus 
allowing for even larger parity group block numbers that are 
not limited by the total number of disks within the single 
disk array 140. 

0483 As disk usage occurs 3487, parity groups 3480 
3483 become occupied with data 3490 and, of the total 
initial allocation of parity groups 3491, a lesser amount 
remain as free or available parity groups 3492. FIG. 34B 
illustrates parity group data occupation statistics where of 
the original initially allocated parity groups 3491 for each 
parity type, a fraction remain as free or available 3492 for 
data storage. More specifically: The occupation statistics for 
the 4-block parity group comprise 2500 free vs. 7500 
occupied parity groups, the occupation characteristics for 
the 3-block parity group comprise 7500 free vs. 2500 
occupied parity groups, the occupation characteristics for 
the 2-block parity group comprise 3500 free vs. 6500 
occupied parity groups, and the occupation characteristics 
for the 1-block parity group comprise 500 free vs. 9500 
occupied parity groups. 

0484. During operation of the distributed file storage 
system 100, free parity groups can become unevenly dis 
tributed such that there are a greater proportion of free parity 
groups in one parity group length and a lesser proportion of 
free parity groups in another parity group length. While this 
disparity in distribution does not necessarily impact the 
performance or effectiveness of storing data to the disk array 
140, the server 130 monitors the availability of each parity 
group 3480-3483 to insure that no single parity group type 
becomes completely depleted. Depletion of a parity group is 
undesirable as it reduces the choices available to the server 
130 for storing data and can potentially affect the efficiency 
of data storage. As shown in FIG. 34B, the 3-block parity 
group 3481 possess a greater number of free parity groups 
3492 compared to any of the other parity groups 3480, 3482, 
3483 while the 1-block parity group 3483 possess the 
Smaller number of free parity groups and may be subject to 
complete depletion should data storage continue with a 
similar parity group distribution characteristics. 
0485 To prevent parity group depletion, the server 130 
can redistribute or convert 3494 at least a portion of one 
parity group into other parity group lengths. As shown in 
FIG. 34C, the server 130 converts a portion of the 3-block 
parity group 3481 into the 1-block parity group 3483. The 
resulting conversion redistributes the number of parity 
groups within the disk array 140 by reducing the number of 
parity groups of a first parity group type (3-block parity) and 
generates an additional quantity of parity groups of the 
second parity group type (1-block parity). Redistribution in 
this manner beneficially prevents the complete depletion of 
any parity group and thus preserves the efficiency of data 
storage by insuring that each parity group is available for 
data storage. 
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the disk array 140 enabling the information contained 
therein to be accessed more efficiently. 
0496 FIG. 37 illustrates one embodiment of a parity 
group optimization/de-fragmentation routine used to re 
configure data within the disk array 140. Parity group 
occupation statistics are shown for different parity lengths 
including: a 1-block parity group having 2800 free parity 
groups and 7200 occupied parity groups, a 2-block parity 
group having 1800 free parity groups and 8200 occupied 
parity groups, a 3-block parity group having 800 free parity 
groups and 9200 occupied parity groups, and a 4-block 
parity group having 2300 free parity groups and 7700 
occupied parity groups. 
0497. When the server 130 performs an optimization 
routine 3785, one or more of the parity groups can be 
re-configured into another type of parity group. For 
example, as shown in the illustration, a portion of the 
1-block parity groups corresponding to 3200 groups can be 
consolidated into 2000 groups of 4-block parity. In the 
consolidated parity groups, the original information con 
tained in the 1-block parity group is retained in a more 
compact form in the 4-block parity groups. The resulting 
4-block parity groups require less parity information to 
maintain data integrity compared to an equivalent quantity 
of information stored in a 1-block parity configuration. In 
the illustrated embodiment, the residual space left over from 
the optimization routine corresponds to approximately 1200 
groups of 1-block parity and can be readily converted into 
any desirable type of parity group using G-table updating 
methods. 

0498. The aforementioned optimization routine can 
therefore beneficially re-allocate occupied logical disk 
blocks into different parity group configurations to reclaim 
disk space that might otherwise be lost or rendered inacces 
sible due to the manner in which the data is stored in the 
parity groups. As with other parity group manipulation 
methods provided by the distributed file storage system 100, 
the process of optimizing parity groups is readily accom 
plished by rearrangement of the mapping assignments main 
tained by the G-table 2530 and provides a substantial 
improvement in performance compared to conventional 
storage systems. In conventional systems, data restriping is 
a time consuming and computationally expensive process 
that reduces data throughput and can render the storage 
device unavailable while the restriping takes place. 
0499. Like conventional storage systems, the distributed 

file storage system 100 provides complete functionality for 
performing routine data and disk optimization routines Such 
as de-fragmentation of logical block assignments and opti 
mization of data placement to improve access times to 
frequently accessed data. These processes are efficiently 
handled by the system 100, which can use redundant data 
access to insure availability of data disk optimization rou 
tines take place. 
0500) The distributed file storage system 100 further 
provides adaptive load balancing characteristics that 
improve the use of resources including servers 130 and disk 
arrays 140. By balancing the load between available 
resources, improved data throughput can be achieved where 
client requests are routed to less busy servers 130 and 
associated disk arrays 140. Load-dependent routing in this 
manner reduces congestion due to frequent accessing of a 
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single server or group of servers. Additional details of these 
features can be found in those discussions relating to adap 
tive load balancing and proactive control of the DFSS 100. 

0501. In one embodiment, frequently accessed data or 
files are automatically replicated Such that simultaneous 
requests for the same information can be serviced more 
efficiently. Frequently accessed data is identified by the 
servers 130 of the distributed file storage system 100, which 
maintain statistics on resource usage throughout the net 
work. Furthermore, the servers 130 can use the resource 
usage statistics in conjunction with predictive algorithms to 
“learn' content access patterns. Based on these access 
patterns frequently accessed content can be automatically 
moved to server nodes 150 that have high bandwidth capaci 
ties capable of serving high numbers of client requests. 
Additionally, less frequently accessed material can be 
moved to server nodes 150 that have higher storage capaci 
ties or greater available storage space where the data or files 
can be conveniently stored in areas without significant 
bandwidth limitations. 

0502 FIG. 38 illustrates one embodiment of a load 
balancing method 3800 used in conjunction with the dis 
tributed file storage system 100 to provide improved read/ 
write performance. In the load balancing method 3800, file 
operations are performed 3851 and file access statistics are 
continuously collected 3852 by the servers 130. These 
statistics include information describing file access frequen 
cies, file size characteristics, file type characteristics, among 
other information. Resource utilization statistics are also 
collected 3854 and contain information that characterize 
how data is stored within the distributed file storage system 
100. The resource utilization statistics identify how each 
disk array 140 is used within the system 100 and may 
contain statistics that reflect the amount of free space within 
the array, the amount of used space within the array, the 
frequency of access of a particular disk within the disk array, 
the speed of servicing client requests, the amount of band 
width consumed servicing client requests and other statistics 
that characterize the function of each disk array 140 within 
the distributed file storage system 100. The resource utili 
Zation statistics can also be used to evaluate the statistics 
across multiple disk arrays to determine how each disk array 
compares to other disk arrays within the distributed file 
storage system 100. This information is useful in identifying 
bandwidth limitations, bottlenecks, disk arrays overloads, 
and disk array under utilization. 

0503. Using either the resource utilization statistics 3854, 
the file access statistics 3852, or a combination thereof, the 
one or more servers 130 of the distributed file storage system 
100 predict future file and resource utilization characteristics 
3856. In one embodiment, the future file and resource 
utilization characteristics 3856 describe a predicted work 
load for each of the disk arrays within the distributed file 
storage system 100. The predicted workload serves as a 
basis for determining how to best distribute the workload 
3858 among available servers and disk arrays to improve 
access times and reduce bandwidth limitations. Further 
more, the predicted workload can be used to distribute files 
or content 3860 across the available disk arrays to balance 
future workloads. 

0504 An additional feature of the distributed file storage 
system 100 is the ability to perform “hot upgrades' to the 
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disk array 140. This process can involve “hot-swapping 
operations where an existing disk within the array is 
replaced (typically to replace a faulted or non-operational 
drive). Additionally, the “hot upgrade process can be per 
formed to add a new disk to the existing array of disks 
without concomitant disk replacement. The addition of the 
new disk in this manner increases the storage capacity of the 
disk array 140 automatically and eliminates the need to 
restrict access to the disk array 140 during the upgrade 
process in order to reconfigure the system 100. In one 
embodiment, the server 130 incorporates the additional 
space provided by the newly incorporated disk(s) by map 
ping the disk space into existing unused/available parity 
groups. For example, when a new drive is added to the disk 
array 140, the server 130 can extend the length or extent of 
each available parity group by one. Subsequently, parity 
group redistribution processes can be invoked to optimize 
and distribute the newly acquired space in a more efficient 
manner as determined by the server 130. In one embodi 
ment, when there are more newly added logical disk blocks 
than can be accommodated by addition to the unused parity 
groups, at least some of the unused parity groups are split 
apart by the dissolution process to create enough unused 
parity groups to incorporate the newly added logical disk 
blocks. 

Load Balancing 
0505 One approach to adaptive or active load balancing 
includes two mechanisms. A first mechanism predicts the 
future server workload, and a second mechanism reallocates 
resources in response to the predicted workload. Workload 
prediction can have several aspects. For example, one aspect 
includes past server workload, such as, for example, file 
access statistics and controller and network utilization sta 
tistics. The loading prediction mechanism can use these 
statistics (with an appropriate filter applied) to generate 
predictions for future loading. For example, a straightfor 
ward prediction can include recognizing that a file that has 
experienced heavy sequential read activity in the past few 
minutes will likely continue to experience heavy sequential 
read access for the next few minutes. 

0506 Predictions for future workload can be used to 
proactively manage resources to optimize loading. Mecha 
nisms that can be used to reallocate server workload include 
the movement and replication of content (files or objects) 
between the available storage elements such that controller 
and storage utilization is balanced, and include the direction 
of client accesses to available controllers such that controller 
and network utilization is balanced. In one embodiment, 
Some degree of cooperation from client machines can pro 
vide effective load balancing, but client cooperation is not 
strictly needed. 

0507 Embodiments of the invention include a distributed 
file server (or servers) comprising a number of hardware 
resources, including controllers, storage elements such as 
disks, network elements, and the like. Multiple client 
machines can be connected through a client network or 
communication fabric to one or more server clusters, each of 
which includes of one or more controllers and a disk storage 
pool. 

0508 File system software resident on each controller 
can collect statistics regarding file accesses and server 
resource utilization. This includes information of the access 
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frequency, access bandwidth and access locality for the 
individual objects stored in the distributed file, the loading 
of each controller and disk storage element in terms of CPU 
utilization, data transfer bandwidth, and transactions per 
second, and the loading of each network element in terms of 
network latency and data transfer bandwidth. 
0509. The collected statistics can be subjected to various 

filter operations, which can result in a prediction of future 
file and resource utilization (i.e. workload). The prediction 
can also be modified by server configuration data which has 
been provided in advance, for example, by a system admin 
istrator, and explicit indications regarding future file and/or 
resource usage which may be provided directly from a client 
machine. 

0510) The predicted workload can then be used to move 
content (files, objects, or the like) between storage elements 
and to direct client accesses to controllers in Such a manner 
that the overall workload is distributed as evenly as possible, 
resulting in best overall load balance across the distributed 
file storage system and the best system performance. 

0511. The predicted workload can be employed to per 
form client network load balancing, intra-cluster storage 
load balancing, inter-node storage load balancing, intra-node 
storage capacity balancing, inter-node storage capacity bal 
ancing, file replication load balancing, or the like. 

0512 Client network load balancing includes managing 
client requests to the extent possible such that the client load 
presented to the several controllers comprising a server 
cluster, and the load presented to the several client network 
ports within each is evenly balanced. Intra-cluster storage 
load balancing includes the movement of data between the 
disks connected to a controller cluster such that the disk 
bandwidth loading among each of the drives in an array, and 
the network bandwidth among network connecting disk 
arrays to controllers is balanced. For example, intra-cluster 
storage load balancing can be accomplished by moving 
relatively infrequently accessed files or objects. Intra-cluster 
storage load balancing advantageously achieves uniform 
bandwidth load for each storage sub-network, while also 
achieving uniform bandwidth loading for each individual 
disk drive. 

0513 Inter-node storage load balancing comprises the 
movement of data between drives connected to different 
controller clusters to equalize disk access load between 
controllers. This can often cost more than intra-node drive 
load balancing, as file data is actually copied between 
controllers over the client network. Intra-node storage 
capacity balancing comprises movement of data between the 
disks connected to a controller (or controller pair) to balance 
disk storage utilization among each of the drives. 
0514 Inter-node storage capacity balancing comprises 
movement of data between drives connected to different 
controllers to equalize overall disk storage utilization among 
the different controllers. This can often cost more than 
intra-node drive capacity balancing, as file data is actually be 
copied between controllers over the network. File replica 
tion load balancing comprises load balancing through file 
replication as an extension of inter-node drive load balanc 
ing. For example, high usage files are replicated so that 
multiple controller clusters include one or more that one 
local (read only) copy. This allows the workload associated 
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with these heavily accessed files to be distributed across a 
larger set of disks and controllers. 
0515 Based on the foregoing, embodiments of the 
present invention include a distributed file storage system 
that proactively positions objects to balance resource load 
ing across the same. As used herein, load balancing can 
include, among other things, capacity balancing, throughput 
balancing, or both. Capacity balancing seeks balance in 
storage. Such as the number of objects, the number of 
Megabytes, or the like, stored on particular resources within 
the distributed file storage system. Throughput balancing 
seeks balance in the number of transactions processed. Such 
as, the number of transactions per second, the number of 
Megabytes per second, or the like, handled by particular 
resources within the distributed file storage system. Accord 
ing to one embodiment, the distributed file storage system 
can position objects to balance capacity, throughput, or both, 
between objects on a resource, between resources, between 
the servers of a cluster of resources, between the servers of 
other clusters of resources, or the like. 
0516. The distributed file storage system can proactively 
position objects for initial load balancing, for example, to 
determine where to place a particular new object. While 
existing server loading is a factor used in the determination, 
other data can be used to help predict the access frequency 
of the new object, such as, for example, file extensions, DV 
access attributes, or the like. For example, a file extension 
indicating a streaming media file can be used to predict a 
likely sequential access to the same. 
0517. The distributed file storage system actively contin 
ues load balancing for the existing objects throughout the 
system using load balancing data. For capacity load balanc 
ing, large objects predicted to be infrequently accessed, can 
be moved to servers, which for example, have the lower total 
percent capacity utilizations. Movement of Such files advan 
tageously avoids disrupting throughput balancing by mov 
ing predominantly infrequently accessed files. For through 
put balancing, objects predicted to be frequently accessed 
can be moved to servers, which for example, have the lower 
total percent transaction utilizations. In one embodiment, 
Smaller objects predicted to be frequently accessed can be 
moved in favor of larger objects predicted to be frequently 
accessed, thereby advantageously avoiding the disruption of 
capacity balancing. 
0518. According to one embodiment, one or more filters 
may be applied during initial and/or active load balancing to 
ensure one or a small set of objects are not frequently 
transferred, or churned, throughout the resources of the 
system. 
0519. The distributed file storage system can comprise 
resources, such as a server or server, which can seek to 
balance the loading across the system by reviewing a 
collection of load balancing data from itself, one or more of 
the other servers in the system, or the like. The load 
balancing data can include object file statistics, server pro 
files, predicted file accesses, historical statistics, object pat 
terns, or the like. A proactive object positioner associated 
with a particular server can use the load balancing data to 
generate an object positioning plan designed to move 
objects, replicate objects, or both, across other resources in 
the system. Then, using the object positioning plan, the 
resource or other resources within the distributed file storage 
system can execute the plan in an efficient manner. 
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0520 According to one embodiment, the generation of 
the positioning plan can be very straightforward, such as, for 
example, based on object sizes and historical file access 
frequencies. Alternatively, the generation of the plan can be 
quite complex, based on a large variety of load balancing 
information applied to predictive filtering algorithms, the 
output of which is a generally more accurate estimate of 
future file accesses and resource usage, which results in 
more effective object positioning. Another embodiment can 
include adaptive algorithms which track the accuracy of 
their predictions, using the feedback to tune the algorithms 
to more accurately predict future object access frequencies, 
thereby generating effective object positioning plans. 
0521. According to one embodiment, each server pushes 
objects defined by that server's respective portion of the 
object positioning plan to the other servers in the distributed 
file storage system. By employing the servers to individually 
push objects based on the results of their object positioning 
plan, the distributed file storage system provides a server-, 
process-, and administrator-independent automated 
approach to object positioning, and thus load balancing, 
within the distributed file storage system. 
0522 To facilitate a complete understanding of exem 
plary load balancing aspects of the invention, this part of the 
detailed description describes the invention with reference to 
FIGS. 39-41, wherein like elements are referenced with like 
numerals throughout. 
0523 FIG. 39 depicts an exemplary embodiment of 
servers and disk arrays of a distributed file storage system 
(DFSS) 3900, disclosed for the purpose of highlighting the 
distributed proactive object positioning aspects of an exem 
plary embodiment of the invention. A skilled artisan will 
recognize FIG. 39 is not intended to limit the large number 
of potential configurations of servers and disk arrays encom 
passed by the foregoing distributed file storage system 100 
disclosed with reference to FIG.1. As shown in FIG. 39, the 
DFSS 3900 comprises five nodes formed into three clusters 
3905, 3910, and 3915. Cluster 3905 includes a first node 
comprising server F1 and a disk array 3920, and a second 
node comprising server F2 and a disk array 3922. Cluster 
3910 includes one node comprising server F3 and a disk 
array 3924. Additionally, cluster 3915 includes a first node 
comprising server F4 and a disk array 3926, and a second 
node comprising server F5 and a disk array 3928. 
0524. According to one embodiment, each of the servers 
F1, F2, F3, F4, and F5 comprises software, hardware, and 
communications similar to the servers 130-135 disclosed 
with reference to FIGS. 1 and 2. For example, server F1 
communicates with each drive of the disk array 3920. 
Additionally, server F1 forms part of cluster 3905. Accord 
ing to one embodiment, at least some of the objects stored 
on a disk array within a cluster, are stored, and are thereby 
accessible, on other disk arrays within the cluster. For 
example, server F1 can be configured to communicate with 
each drive of the disk array 3922. Server F1 also commu 
nicates with one or more of the other servers of the DFSS 
3900. Moreover, the servers F1, F2, F3, F4, and F5 include 
Software and hardware systems which employ some or all of 
the features of the distributed file storage system 100, such 
as, for example, the disclosed use of metadata structures for 
object organization, metadata and data caching, and the like. 
0525 FIG. 39 also shows exemplary self-explanatory 
attributes of each of the drives of the disk arrays 3920-3928. 



US 2006/017395.6 A1 

For example, the drives of the disk array 3920 include two 
high speed drives having Small storage capacity, e.g., 
“FAST, SMALL. one drive having high speed and average 
storage capacity, e.g., “FAST, AVERAGE.” and one drive 
having average speed and large storage capacity, e.g., 
“AVERAGE, LARGE.” Additionally, FIG. 39 shows serv 
erS F3 and F4 providing access to a resource, such as, for 
example, a printer, Scanner, display, memory, or the like. A 
skilled artisan will recognize from the disclosure herein that 
the speed of a drive includes its ordinary meaning as well as 
a measure of the data rate, or the like, of read or write 
operations. 
0526. According to one embodiment, the DFSS 3900 
includes proactive object positioning. For example, each 
server F1-F5 of the DFSS 3900 proactively positions 
objects, such as files, directories, or the like, based on a 
desire to balance or optimize throughput, capacity, or both. 
According to one embodiment, the foregoing balancing and 
optimization can advantageously occur at multiple levels 
within the DFSS 3900. For example, the DFSS 3900 can 
advantageously seek to optimize the placement and structure 
of objects within and between disks of the disk arrays, 
between the servers of a cluster and between servers of other 
clusters. 

0527. Load Balancing Within and Between the Drives of 
the Disk Arrays 
0528 Similar to the embodiments disclosed with refer 
ence to FIGS. 1 and 5, the DFSS 3900 provides the server 
F1 with the ability to adjust the file logical block size and the 
distribution of files across multiple drives using, for 
example, the Gee Table 320. Thus, the server F1 can adjust 
or choose the layout of particular files within a disk, using, 
for example, larger file logical block sizes for larger files, or 
the like, thereby creating efficient storage of the same. 
Moreover, the server F1 can adjust or choose the layout of 
particular files across varying numbers of disks, thereby 
matching, for example, performance of drives within the 
disk array 3920 with attributes of particular files. 
0529) For example, FIG. 39 shows the placement of two 

files within the DFSS 3900, e.g., streamed file “SF and 
large file “LF. According to the exemplary embodiment, file 
“SF comprises a file which is to be streamed across 
computer networks, such as, for example, the Internet. As 
shown in FIG. 39, file SF is stored in the disk array 3920 
using a distributed parity group of three blocks, e.g., two 
data blocks, “SF, and “SF’ and one parity block “SF.” 
Similar to the foregoing description of distributed file stor 
age system 100, the DFSS 3900 advantageously allows files 
to modify the number of drives in the distributed parity 
group for a variety of reasons, including to take advantage 
of attributes of a disk array. Thus, when it is determined that 
it is desirable to store file SF on only fast disk drives, the 
distributed parity group can be chosen such that file SF is 
stored on the fastest drives of disk array 3920 in equally 
shared portions. A skilled artisan will recognize from the 
disclosure herein that the servers advantageously balance the 
desire to employ the faster drives of a particular disk array, 
against the desire to reduce the overhead associated with 
using Smaller parity groups. For example, according to some 
embodiments, use of only two disks of five disks means that 
half of the data stored is overhead parity data. 
0530 FIG. 39 also shows that in the disk array 3922, file 
SF', a copy of file SF, can be stored according to the 
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attributes of the disk array 3922, e.g., file SF" is stored using 
a distributed parity group of two because the disk array 3922 
has only two fast drives. Moreover, FIG. 39 shows file LF 
stored in the disk array 3924. According to the exemplary 
embodiment, file LF is stored is using distributed parity 
groups of three blocks, thereby fully taking advantage of all 
three very fast drives. 
0531. Thus, the server F1 advantageously and proactively 
can adjust the placement and structure of objects, such as 
files, within and between drives of the disk array 3920. A 
skilled artisan will recognize that such proactive placement 
is outside the ability of conventional data storage systems. 
For example, as disclosed with reference to FIGS. 14-16, 
the DFSS 3900 advantageously includes a directory and file 
handle lookup process which allows the clients 110 to find 
files without first knowing which server is currently storing 
the file. Thus, when one of the servers of the DFSS 3900 
repositions an object to balance load, capacity, or the like, 
the clients 110 can use the lookup process to find the 
repositioned object in its new location. 
0532 Load Balancing Between Servers of a Cluster 
0533. As disclosed in the foregoing, one embodiment of 
the DFSS 3900 seeks to balance the loading and capacity 
between servers of a cluster. As disclosed with reference to 
the embodiments of FIGS. 1 and 13-14, the clients 110 
request data from a file through the use of the file handle 
1300, which according to one embodiment, includes the 
server identification 1320. Thus, the DFSS 3900 can advan 
tageously alter the server identification 1320 of the file 
handle 1300 for a particular file, thereby changing the read 
or write request from being processed by, for example, 
server F1 to, for example, server F2. A skilled artisan will 
recognize a wide number of reasons for making the forego 
ing alteration of the file handle 1300, including the avail 
ability of F1, the load of F1 versus F2, or the like. In 
addition, the DFSS3900 can alter the file handle 1300 based 
on comparisons of server load balancing data, to set up 
read-only copies of heavily accessed files, or the like, as 
discussed below. 

0534) Load Balancing Between Servers of Other Clusters 
0535 Load balancing between servers differs from load 
balancing between drives in, among other things, load 
balancing between servers involves balancing through the 
movement or creation of additional copies of objects, while 
load balancing between drives involves the movement of 
data blocks. 

0536. One embodiment of the DFSS 3900 comprises 
servers F1-F5 each having access to load balancing data 
from itself and each of the other servers. According to one 
embodiment, each server uses the load balancing data to 
generate an object positioning plan, and then pushes objects 
defined by their respective portion of the plan, to other 
servers in the DFSS 3900. The foregoing implementation 
provides a distributed and server-independent approach to 
object positioning within the DFSS 3900. It will be under 
stood by a skilled artisan from the disclosure herein that 
resources, or groups of resources, can gather load balancing 
data, Such as, for example, each, some, or all clusters, each, 
Some, or all servers, or the like. 
0537 According to one embodiment, the load balancing 
data of a particular server can include a wide variety of 



US 2006/017395.6 A1 

statistical and attribute data relating to the architecture and 
performance of the respective server and disk array. Addi 
tional statistical information can be maintained relating to 
the historical object access frequencies and patterns. This 
statistical information can be applied to a filtering function 
to predict future object frequencies and patterns. 
0538. The load balancing data can include relatively 
static information, such as, for example, the number of 
servers for a given cluster and the number of drives con 
nected to each server. Moreover, for each server, the load 
balancing data can include an indication of the number and 
type of interfaces available to the server, performance sta 
tistics of the server, amount of available memory, an indi 
cation of the health of the server, or the like. For each drive, 
the load balancing data can include an indication of the 
layout of the drive, such as track information, cylinder 
information, or the like, capacity and performance informa 
tion, performance statistics, an indication of the health of the 
drive, or the like. Additionally, the load balancing data can 
include an indication of the performance and the health of 
storage network configurations, client network configura 
tions, or the like. The relatively static load balancing data 
can be considered the “profile' of the resources associated 
therewith. 

0539. Other relatively static information can include an 
indication of the quality of service being demanded by the 
clients 110 from a particular server, Such as, for example, 
server F1 and its associated disk array 3920 can be config 
ured to provide data availability with little or no downtime, 
thereby allowing the server to Support Internet hosting 
applications or the like. Additionally, the foregoing rela 
tively static statistical or attribute information can change 
occasionally, such as, for example, when a drive is replaced 
or added, a server is reconfigured, the quality of service is 
changed, or the like. 
0540 According to yet another embodiment, the load 
balancing data can also include relatively dynamic informa 
tion, such as, for example, throughput information like the 
number of read or write input/output operations per second 
(IOPS). For example, the dynamic information can include 
server throughput for each server, Such as, for example, 
client transactions per second, client megabytes per second, 
disk transaction per second, disk megabytes per second, or 
the like. The foregoing server throughput information can 
include read, write, or both operations for each client 
interface of the particular server. The server throughput data 
also includes dynamic information Such as the cache hit 
ration, errors, or the like, of each particular server. The 
dynamic information can also include disk throughput for 
each disk, such as, for example, an indication of the amount 
of metadata capacity that is being utilized, the amount of 
data capacity utilized, read, write, or both transactions per 
second, read, write, or both megabytes per second, errors or 
the like. 

0541. In addition to the foregoing data, the load balanc 
ing data includes object statistic information, Such as, for 
example, the last access time and the access frequency for 
each object. According to one embodiment, the measure 
ment of access frequency can be filtered using one or more 
filtering weights designed to emphasize, for example, more 
recent data over more historical data. 

0542. According to one embodiment, each server may 
include file statistical information in the load balancing data, 
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comprising additional information for the more heavily 
accessed, and potentially smaller, objects. For example, the 
file statistical information can include an indication of 
access frequency for, for example, the last ten (10) minutes, 
one (1) hour, twenty-four (24) hours, or the like. Moreover, 
the file statistical information can include average read block 
size, average write block size, access locality, such as a 
indication of randomness or sequentialness for a given file, 
histogram data of accesses versus day and time, or the like. 
According to one embodiment, the indication of randomness 
can include randomness rating, Such as, for example, a range 
from 0 and 1, where 0 corresponds to primarily randomly 
accessed file and one corresponds to a primarily sequentially 
accessed file, or vice versa. 

0543 Based on the above, the load balancing data for a 
given server can include virtually any information, perfor 
mance or attribute statistic, or the like that provides insight 
into how objects, such as files and directories, should be 
created, reconfigure, moved, or the like, within the DFSS 
3900. For example, a skilled artisan can include additional 
information useful in the prediction of file access frequen 
cies, such as, for example, the time of day, the file size, the 
file extension, or the like. Moreover, the additional infor 
mation can include hints corresponding to dynamic Volume 
access attributes. Such as, for example, block size, read/write 
information, the foregoing quality of service guarantees or 
the randomness/sequentialness of file access. 

0544. According to one embodiment, the load balancing 
data can include a Least Recently Used (LRU) stack and/or 
a Most Recently Used (MRU) stack, advantageously pro 
viding insight into which objects can be used for balancing 
capacity, throughput, or both, within the DFSS 3900. For 
example, according to one embodiment, the LRU stack 
tracks the objects that are rarely or infrequently accessed, 
thereby providing information to the servers about which 
objects can be mostly ignored for purposes of throughput 
balancing, and are likely candidates for capacity balancing. 
The MRU stack tracks the objects that are more frequently 
accessed, thereby providing information to the servers about 
which objects are highly relevant for throughput balancing. 
According to one embodiment, the servers F1-F5 can 
employ the MRU stack to determine the objects, on which 
the servers should be tracking additional performance sta 
tistics used in more Sophisticated load balancing or sharing 
Solutions, as discussed in the foregoing. 

0545) A skilled artisan will recognize from the disclosure 
herein that the MRU and LRU stacks can be combined into 
a single stack or other structure tracking the frequency of 
access for some or all of the objects of the servers F1-F5. A 
skilled artisan will also recognize from the disclosure herein 
that the time frame chosen for determining frequency of use 
for a given object affects the throughput and capacity 
balancing operations. For example, if the time frame is every 
twelve hours, the number of objects considered to be fre 
quently accessed may be increased as compared to a time 
frame of every half-second. According to one embodiment, 
the DFSS 3900 uses an adaptive time frame of ten (10) 
minutes to twenty-four (24) hours. 

0546 Although the load balancing data is disclosed with 
reference to its preferred embodiment, the invention is not 
intended to be limited thereby. Rather, a skilled artisan will 
recognize from the disclosure herein a wide number of 
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alternatives for the same. For example, the load balancing 
data can include detailed performance statistics similar to 
those disclosed above. On the other hand, the load balancing 
data can include only a few data points providing only a 
rough sketch of the throughput and capacity on a particular 
server. Moreover, the server may track access frequency 
using information contained in the G-Node of an object, 
Such as, for example, the last access time, or “atime.” field. 

0547 FIG. 40 illustrates a block diagram of an exem 
plary server 4000, such as the servers F1-F5 of FIG. 39, 
according to aspects of an exemplary embodiment of the 
invention. As shown in FIG. 40, the server 4000 include a 
server interface 4005, a server software or file system 4010, 
load balancing data 4020, and an object positioning plan 
4025. The server interface 4005 passes data access requests 
from, for example, the clients 110, to the file system 4010. 
The server interface 4005 includes a server manager 4008, 
which collects client access statistics, such as transactions 
per second per client, per port, and per server, and mega 
bytes per second per client, per port, and per server. The 
server system 4010 includes several layers that participate in 
statistics collection. For example, the server system 4010 
includes a request processing layer 4012, a data/metadata 
management layer 4014, and a storage management layer 
4016. The request processing layer 4012 collects the statis 
tics related to accesses to specific files. The data/metadata 
management layer 4014 collects drive resource and capacity 
utilization information. The storage management layer 4016 
collects statistics related to transactions per second and 
megabytes per second for each storage network interface 
and drive. 

0548 FIG. 40 also shows that each server 4000, such as 
the servers F1-F5 of FIG. 39, includes a proactive object 
positioner 4018, according to aspects of an exemplary 
embodiment of the invention. According to one embodi 
ment, the positioner 4018 comprises a set of rules, a software 
engine, or the like, employing logic algorithms to Some or all 
of the load balancing data 4020 to generate the object 
positioning plan 4025. 

0549. As disclosed in the foregoing, the servers F1, F2, 
F3, F4, and F5, each share their respective load balancing 
data with one another. Thus, the load balancing data 4020 
comprises load balancing data from the particular server, in 
this example, server F3, and the load balancing data from 
each of the other servers, F1-F2 and F4-F5. According to one 
embodiment, a server transmits its load balancing data at 
predetermined time intervals. According to another embodi 
ment, each server determines when a significant change or 
a time limit has expired since the last broadcast of its load 
balancing data, and then broadcasts the same. 

0550. As shown in FIG. 40, each server 4000 includes 
the proactive object positioner 4018, which accepts as an 
input, the load balancing data of the Some or all of the 
servers, and generates as an output, the object positioning 
plan 4025. According to one embodiment, the proactive 
object positioner 4018 for a given server generates a plan for 
that server. The server then attempts to push objects found 
in the plan to the other servers in the DFSS3900 to balance 
throughput, capacity, or both. According to another embodi 
ment, the proactive object positioner 4018 for a given server 
generates the plan 4025, which is relevant to all servers. In 
Such a case, the server attempts to push only its objects from 
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the plan 4025 to other servers. Thus, each server in the DFSS 
3900 acts independently to accomplish the plan 4025 of the 
entire DFSS 3900, thereby advantageously providing a 
distributed and balanced approach that has no single point of 
failure and needing, if any, only minimal Supervision. 
0551 As discussed in the foregoing, the object positioner 
4018 corresponding to each server in the DFSS 3900 can 
generate the positioning plan 4025 to position objects to 
balance capacity, throughput, or both. 
0552. Positioning to Balance Capacity, Such as the Num 
ber or Size of Objects 
0553 According to one embodiment, the proactive object 
positioner 4018 for each server can instruct its server to 
balance the number of objects stored on some or each disk 
array of the DFSS 3900. For example, as disclosed with 
reference to FIG. 5, each server has a predefined amount of 
memory for caching the G-nodes of the objects stored on the 
disk array associated with that server. By balancing the 
number of objects related to a particular server, the DFSS 
3900 advantageously avoids having more G-node data for a 
server than can be stored in that server's G-node memory 
cache. 

0554 According to one embodiment, the proactive object 
positioner 4018 for each server can instruct its server to 
balance the size of objects stored on some or each disk array 
of the DFSS 3900. For example, if a particular server is 
associated with a disk array having a large number of Small 
objects stored therein, the server can exceed that server's 
G-node memory cache. Therefore, each proactive object 
positioner 4018 can instruct its server to push objects such 
that the size of objects accessible by each server is balanced. 
For example, the servers can evenly distribute the number of 
Small objects, the number of medium-sized objects, and the 
number of large objects between servers. By balancing the 
size of objects related to a particular server, the DFSS 3900 
reduces the chances of having more G-node data for a server 
than can be stored in that server's G-node memory cache. 
0555 According to yet another embodiment, the proac 
tive object positioner 4018 for each server can instruct its 
server to optimize the number of free and used data blocks 
when the servers in the DFSS 3900 have a large average 
object size. In Such case, the number of G-nodes and the 
G-node memory cache will not likely be a performance 
issue, although number of used versus free data blocks will 
likely be an issue. While used versus free data blocks need 
not be entirely uniform across servers, maintaining a certain 
level of unused block capacity for each server provides 
flexibility in throughput balancing and new object creation, 
thereby enhancing the performance of the overall DFSS 
3900. 

0556 Positioning to Balance Throughput, Such as the 
Access Frequency of Objects 
0557. According to one embodiment, the proactive object 
positioner 4018 generates the positioning plan 4025 to 
position objects based on, for example, predicted access 
frequencies of the same. As discussed above, prediction may 
comprise historical data, and may comprise a number of 
other data and factors as well. The positioner 4018 can 
advantageously use objects predicted to be infrequently 
accessed for capacity balancing to avoid upsetting any 
throughput balancing already in place. For example, when 
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the positioner 4018 determines to balance the capacity 
among resources of the DFSS 3900, such as, for example, a 
drive, disk array, or server, the positioner 4018 can move 
objects that are of little significance to the throughput of the 
resource. Such as, for example, those objects predicted to be 
least accessed. Thus, as the positioner 4018 balances the 
capacity through objects predicted to be, or found to be least 
recently accessed, the respective throughput of the resources 
will not be substantially affected. According to one embodi 
ment, each server tracks the objects predicted to be infre 
quently used by maintaining in their load balancing data, an 
LRU stack of, for example, pointers to the G-Nodes of the 
objects predicted to be infrequently accessed. 

0558 Additionally, the positioner 4018 can generate the 
positioning plan 4025 to move objects predicted to be 
infrequently accessed from faster drives to slower drives. 
For example, if the large file LF from FIG. 39 were 
predicted to be infrequently accessed, storage of file LF on 
the fastest drives of the DFSS 3900, for example, the drives 
of the disk array 3924, would be inefficient. Thus, the 
proactive object positioner 4018 determines that the large 
file LF predicted to be infrequently accessed can be advan 
tageously stored on the slow, large drives of the disk array 
3926 of server F4. A skilled artisan will recognize that 
movement of the file LF to servers F4 is not expected to 
substantially affect the throughput of servers F3 and F4. 
outside of the processes for moving the file LF. 
0559) Additionally, the proactive object positioner 4018 
can use the MRU stack in a server's load balancing data to 
instruct an overburdened server to take actions to offload 
some of the access from itself to those servers with less 
throughput. For example, the positioner 4018 can generate 
instructions to move the objects predicted to be heavily 
accessed to other servers, thereby moving the entire through 
put load associated therewith, to the other servers. Also, 
positioner 4018 can generate instructions to create copies of 
objects predicted to be heavily accessed on other servers, 
thereby sharing the throughput load with the other servers 

0560 For example, according to one embodiment, the 
server F1 includes the streamed file SF predicted to be 
heavily accessed, which in this example may include 
extremely popular multimedia data, Such as, for example, a 
new video or music release, a major news story, or the like, 
where many clients are requesting access of the same. 
Moreover, according to this embodiment, the server F1 is 
being over-utilized, while the server F3 is being under 
utilized. Thus, the object positioner 4018 recognizes that the 
movement of the file SF to the server F3 may simply 
overload the server F3. According to one embodiment, the 
proactive object positioner 4018 can instruct the server F1 to 
push, for example, read-only copies of the file SF to the 
server F3. Moreover, a skilled artisan will recognize from 
the disclosure herein that the server F1 can then return to a 
requesting client, a file handle 1300 for the file SF desig 
nating server F3, and the client will then generate requests 
to server F3, instead of server F1. Accordingly, the over 
utilization of server F1 is advantageously decreased while 
the under utilization of server F3 is advantageously 
increased, thereby balancing the throughput across the 
DFSS 3900. 

0561. According to yet another embodiment, the proac 
tive object positioner 4018 can generate instructions to move 
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objects to match the attributes of resources available to a 
particular server, thereby potentially decreasing the response 
time of the DFSS 3900. For example, as illustrated in the 
foregoing embodiment, the object positioner 4018 can 
instruct the server F1 to push the file SF predicted to be 
heavily accessed, to the server F3 having very fast disk 
drives, even when the server F1 is not being over-utilized. 
Moreover, as discussed above, the positioner 4018 can 
instruct the server F3 to store the file in distributed parity 
groups matching the number of very fast drives. 
0562 According to one embodiment, one or more of the 
servers can include specific software and hardware solu 
tions, such as dedicated digital signal processors, which can 
add additional horse power to the generation of the object 
positioning plan 4025. For example, load balancing can be 
performed by an external client connected to the DFSS 
3900. 

0563 FIG. 41 depicts the object positioning plan 4025 of 
server F3 of FIG. 39, according to aspects of an exemplary 
embodiment of the invention. As shown in FIG. 41, the plan 
4025 includes instructions to push an object, and instruc 
tions on how to handle Subsequent client requests for access 
to that object. According to one embodiment, a server that 
pushes an object tells clients seeking access to the object that 
the object has been moved. The pushing server can maintain 
a cache of objects that it recently pushed, and when feasible, 
the pushing server will Supply the requesting client with the 
location, or server, where the object was moved, thereby 
providing direct access to the object for the client. 
0564) As shown in FIG. 41, the plan 4025 calls for server 
F3 to push the large file LF to server F4 for storage thereon, 
thereby freeing the fastest drives in the DFSS 3900 to store 
more objects predicted to be more heavily accessed. More 
over, the plan 4025 includes an indication that server F3 will 
return an indication of Staleness for any clients still caching 
the file handle of file LF designating server F3. The plan 
4025 also indicates that if server F1 requests, server F3 will 
accept and store a copy of the streamed file SF and return an 
indication of file creation to server F1, such as, for example, 
the file handle of server F3's copy of file SF. Thus, the DFSS 
3900 uses a pushing approach to ensure server independence 
in proactively placing objects. 

0565 Based on the foregoing disclosure related to FIGS. 
39-41, a skilled artisan will recognize the vast scalability of 
the DFSS 3900. For example, adding or removing hardware 
components such as drives, resources, or even servers, 
simply causes updated, or sometimes additional, load bal 
ancing information to be broadcast to the other servers. Each 
server then can immediately generate new positioning plans 
to take full advantage of the new components or configu 
ration of the DFSS 3900. Each server then pushes their 
respective objects throughout the DFSS 3900, thereby effi 
ciently balancing the throughput, capacity, or both, of the 
SaC. 

0566 Although the foregoing invention has been 
described in terms of certain preferred embodiments, other 
embodiments will be apparent to those of ordinary skill in 
the art from the disclosure herein. For example, the DFSS 
3900 may advantageously push new file handles to clients, 
Such as, for example, file handles including information on 
the location of an object. According to another embodiment, 
the DFSS 3900 can advantageously allow servers who have 
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pushed objects to other servers, to automatically suggest 
new file handles to requesting clients. However, this 
approach can have the drawback that the file handle stored 
by the old server can itself be outdated, for example, when 
the new server Subsequently pushed the same object to yet 
another server. Thus, according to one embodiment, servers 
return indications of Staleness for objects they not longer 
have stored on their respective disk arrays. 
0567. In addition, a skilled artisan will recognize from 
the disclosure herein that many of the balancing ideas can be 
implemented in conventional non-distributed file storage 
systems. For example, the method of moving infrequently 
accessed files to balance capacity so as not to upset balanced 
load can be incorporated into conventional data storage 
systems. 
Data Flow Architecture 

0568 Each server 130-135 in the DFSS 100 includes 
storage controller hardware and storage controller Software 
to manage an array of disk drives. For example, the servers 
130-131 each manage data on the disk arrays 140 and 141. 
A large number of disk drives can be used, and the DFSS 
100 can be accessed by a large number of client machines 
110. This potentially places a large workload on the servers 
130-135. It is therefore desirable that the servers 130-135 
operate in an efficient manner to reduce the occurrence of 
bottlenecks in the storage system. 
0569 Prior art approaches for storage servers tend to be 
software intensive. Specifically, a programmable CPU in the 
server becomes involved in the movement of data between 
the client and the disks in the disk array. This limits the 
performance of the storage system because the server CPU 
becomes a bottleneck. While prior approaches may have a 
certain degree of hardware acceleration, such as XOR parity 
operations associated with RAID, these minimal accelera 
tion techniques do not adequately offload the server CPU. 
0570 FIG. 42 shows an architecture for a server, such as 
the server 130, that reduces loading on a CPU 4205 of the 
server 130. As shown in FIG. 42, the clients 110 commu 
nicate (over the network fabric 120, not shown) with one or 
more network interfaces 4214. The network interfaces 4214 
communicate with a first I/O bus 4201 shown as a network 
bus. The network bus communicates with the CPU 4205 and 
with a data engine 4210. A first data cache 4218 and a second 
data cache 4220 are provided to the data engine 4210. A 
metadata cache 4216 is provided to the CPU 4205. The CPU 
4205 and the data engine 4210 also communicate with a 
second I/O bus 4202 shown as a storage bus. One or more 
storage interfaces 4212 also communicate with the second 
bus 4202. 

0571. The storage interfaces 4212 communicate with the 
disks 140,141. In one embodiment, the first I/O bus 4201 is 
a PCI bus. In one embodiment, the second I/O bus 4202 is 
a PCI bus. In one embodiment, the caches 4216, 4218, and 
4220 are non-volatile. In one embodiment, the network 
interfaces 4214 are Fibre Channel interfaces. In one embodi 
ment, the storage interfaces 4212 are Fibre Channel inter 
faces. The data engine 4210 can be a general-purpose 
processor, a digital signal processor, a Field Programmable 
Gate Array (FPGA), other forms of soft or hard program 
mable logic, a custom ASIC, etc. The network interface 
controllers 4214, 4212 can support Fibre Channel, Ethernet, 
Infiniband, or other high performance networking protocols. 
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0572 The architecture shown in FIG. 42 allows data to 
be efficiently moved between the client machines 110 and 
disks 140-141 with little or no software intervention by the 
CPU 4205. The architecture shown in FIG. 42 separates the 
data path from the control message path. The CPU 4205 
handles control, file system metadata, and housekeeping 
functions (conceptually, the CPU 4205 can be considered as 
a control engine). Actual file data passes through the data 
engine 4210. 
0573 Control messages (e.g. file read/write commands 
from clients) are routed to the CPU 4205. The CPU 4205 
processes the commands, and queues data transfer opera 
tions to the data engine 4210. The data transfer operations, 
once scheduled with the data engine 4210 can be completed 
without further involvement of the CPU 4205. Data passing 
between the disks 140,141 and the clients 110 (either as read 
or write operations) is buffered through the data cache 4218 
and/or the data cache 4220. In one embodiment, the data 
engine 4210 operates using a data flow architecture that 
packages instructions with data as the data flows through the 
data engine 4210 and its associated data caches. 
0574. The data engine 4210 provides a separate path for 
data flow by connecting the network interfaces 4214 and the 
storage interfaces 4212 with the data caches 4218, 4220. The 
data engine 4210 provides file data transfers between the 
network interface 4214 and the caches 4218, 4220 and 
between the storage interface 4212 and the caches 4218, 
4220. As an example of the data path operation, consider a 
client file read operation. A client read request is received on 
one of the network interfaces 4214 and is routed to the CPU 
4205. The CPU 4205 validates the request, and determines 
from the request which data is desired. The request will 
typically specify a file to be read, and the particular section 
of data within the file. The CPU 4205 will use file metadata 
in the cache 4216 to determine if the data is already present 
in one of the data caches 4218, 4220, or if the data must be 
retrieved from the disks 140, 141. If the data is in the data 
cache 4218, 4220, the CPU 4205 will queue a transfer with 
the network interfaces 4214 to transfer the data directly from 
the appropriate data cache 4218, 4220 to the requesting 
client 110, with no further intervention by the CPU 4205. If 
the data is not in the data caches 4218, 4220, then the CPU 
4205 will queue one or more transfers with the storage 
interfaces 4212 to move the data from the disks 140, 141 to 
the data caches 4218, 4220, again without further interven 
tion by the CPU 4205. When the data is in the data caches 
4218, 4220, the CPU 4205 will queue a transfer on the 
network interfaces 4214 to move the data to the requesting 
client 110, again without further intervention by the CPU 
42O5. 

0575 One aspect of the operation of the data engine 4210 
is that the CPU 4205 schedules data movement operations 
by writing an entry onto a queue in the network interfaces 
4214 or into a queue in the storage interfaces 4212. The data 
engine 4210 and the network and storage interfaces 4214, 
4212 are connected by busses 42.01, 4202. The busses 42.01, 
4202 each include an address bus and a data bus. In one 
embodiment, the network or storage interfaces 4214, 4212 
perform the actual data movement (or sequence of data 
movements) independently of the CPU 4205 by encoding an 
instruction code in the address bus that connects the data 
engine to the interface. The instruction code is set up by the 
host CPU 4205 when the transfer is queued, and can specify 
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that data is to be written or read to one or both of the cache 
memories 4218, 4220. In addition, the instruction code can 
specify that an operation Such as a parity XOR operation or 
a data conversion operation be performed on the data while 
it is in transit through the data engine 4210. Because 
instructions are queued with the data transfers, the host CPU 
can queue hundreds or thousands of instructions in advance 
with each interface 4214, 4212, and all of these instructions 
can be can be completed asynchronously and autonomously. 

0576. As described above, once a data movement opera 
tion has been queued, the data engine 4210 offloads the CPU 
4205 from direct involvement in the actual movement of 
data from the clients 110 to the disks 140, 141, and vice 
versa. The CPU 4205 schedules network transfers by queu 
ing data transfer operations on the network interfaces 4214 
and the storage interfaces 4212. The interfaces 4214 and 
4212 then communicate directly with the data engine 4210 
to perform the data transfer operations. Some data transfer 
operations involve the movement of data. Other data transfer 
operations combine the movement of data with other opera 
tions that are to be performed on the data in transit (e.g., 
parity generation, data recovery, data conversion, etc.). 
0577. The processing modules in the data engine 4210 
can perform five principal operations, as well as a variety of 
Support operations. The principal operations are: 

0578) 1) read from cache 
0579. 2) write to cache 
0580 3) XOR write to cache 
0581. 4) write to one cache with XOR write to other 
cache 

0582 5) write to both caches 
0583. A typical client file read operation would proceed 
as follows in the server 130: 

0584 (1) The file read command is received from the 
client 

0585 (2) The CPU 4205 authenticates client access 
and access permissions. The CPU 4205 also does 
metadata lookups to locate the requested data in cache 
or on disk. 

0586 (3) If data is not in cache, a disk read transaction 
is queued by sending instructions to the storage inter 
faces 4212. 

0587 (4) The storage interfaces 4212 mode data from 
disk to the data caches 4218, 4220. 

0588 (5) The CPU 4205 queue a data-send transaction 
to the network interfaces 4214. 

0589 (6) The network interfaces 4214 send the data to 
the client, completing the client read operation. 

0590 FIG. 43 is a block diagram of the internal structure 
of an ASIC 4310 that is one example of a hardware embodi 
ment of the data engine 4210. The ASIC 4310 provides the 
capability for autonomous movement of data between the 
network interfaces 4214 and data caches 4218, 4220, and 
between the storage interfaces 4212 and the data caches 
4218, 4220. The involvement of the CPU 4205 is often just 
queuing the desired transfer operations. The ASIC 4310 
Supports this autonomy by combining an asynchronous data 
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flow architecture, a high-performance data path than can 
operate independently of the data paths of the CPU 4205, 
and a data cache memory subsystem. The ASIC 4310 also 
implements the parity generation functions used to Support 
a RAID-style data protection scheme. 
0591. The data ASIC 4310 is a special-purpose parallel 
processing system that is data-flow driven. That is, the 
instructions for the parallel processing elements are embed 
ded in data packets that are fed to the ASIC 4310 and to the 
various functional blocks within the ASIC 4310. 

0592. In one embodiment, the ASIC 4310 has four prin 
cipal interfaces: a first data cache interface 4318, a second 
data cache interface 4320, a first bus interface 4301, and a 
Second bus interface 4302. Other versions of the ASIC 4310 
can have a different number of interfaces depending on 
performance goals. 

0593) Data from the first data cache interface 4318 is 
provided to a cache read buffer 4330, to a feedback buffer 
4338, to a feedback buffer 4340 and to a cache read buffer 
4348. Data from the second data cache interface 4320 is 
provided to a cache read buffer 4331, to a feedback buffer 
4339, to a feedback buffer 4341 and to a cache read buffer 
4349. 

0594) Data is provided from the bus interface 4301 
through a write buffer 4336 to a parity engine 4334. Data is 
provided from the parity engine 4334 through a cache write 
buffer 4332 to the cache interface 4318. Data is provided 
from the feedback buffer 4338 to the parity engine 4334. 
0595 Data is provided from the bus interface 4302 
through a write buffer 4346 to a parity engine 4344. 
0596) Data is provided from the parity engine 4344 
through a cache write buffer 4342 to the cache interface 
4318. Data is provided from the feedback buffer 4340 to the 
parity engine 4344. 
0597 Data is provided from the bus interface 4301 
through a write buffer 4337 to a parity engine 4335. Data is 
provided from the parity engine 4335 through a cache write 
buffer 4333 to the cache interface 4320. Data is provided 
from the feedback buffer 4339 to the parity engine 4335. 
0598) Data is provided from the bus interface 4302 
through a write buffer 4347 to a parity engine 4345. Data is 
provided from the parity engine 4345 through a cache write 
buffer 4343 to the cache interface 4320. Data is provided 
from the feedback buffer 4341 to the parity engine 4345. 
0599 Data is provided from the cache read buffers 4348, 
4349 to the bus interface 4202. Data is provided from the 
cache read buffers 4330, 4331 to the bus interface 4201. 

0600 Data transfer paths are provided between the cache 
interface 4218 and the bus interface 4301 and 4302. Simi 
larly, data transfer paths are provided between the cache 
interface 4220 and the bus interfaces 4301 and 4302. A 
control logic 4380 includes, in each of these data path, a 
processing engine that controls data movement between the 
respective interfaces as well as operations that can be 
performed on the data as it moves between the interfaces. 
The control logic 4380 is data-flow driven as described 
above. 

0601. In one embodiment, the bus 42.01 is a PCI bus, the 
bus 4202 is a PCI bus, and data-transfer commands for the 
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data engine are contained in PCI addresses on the respective 
buses. FIG. 44 is a map 4400 of data fields in a 64-bit data 
transfer instruction to the data engine for use with a 64-bit 
PCI bus. A cache address is coded in bits 0-31. A parity index 
is coded in bits 35-50. An opcode is coded in bits 56-58. A 
block size is coded in bits 59-61. A PCI device address is 
coded in bits 62-63. Bits 32-34 and 51-55 are unused. 

0602. The block size is used to select the extent of a block 
addressed by the parity index. This is the number of con 
secutive 16 kilobyte blocks that make up the parity block 
addressed by the parity index. In one embodiment, the block 
size is three bits, interpreted as follows: 

block size = 0 parity block = 16k 
block size = 1 parity block = 32k 
block size = 2 parity block = 64k 
block size = 3 parity block = 128k 
block size = 4 parity block = 256k 
block size = 5 parity block = 512k 
block size = 6 parity block = 1024k 
block size = 7 parity block = 2048k 

0603) In one embodiment, the bus interface 4301 is a PCI 
interface and the bus interface 4302 is a PCI interface. Each 
of these PCI interfaces includes a read control to control 
reads from the caches 4218 and 4220. The read control reads 
data from the respective output buffers 4330, 4331, 4348, 
and 4349 as needed. On completion of a PCI transaction, the 
output buffer is cleared. Each PCI interface also includes a 
write control to control writes to the input buffers. The write 
control adds an address word to the start of a data stream and 
control bits to each word written to the input buffer. In the 
case where parity is generated and data is saved, the write 
control: determines which cache 4218, 4220 gets the data; 
assigns parity to the other cache (that is, the cache that does 
not receive the data); and adds control bits to the data stream. 
Address words are typically identical for the various input 
buffers, but added control bits will be different for each input 
buffer. For parity generation, or regeneration of lost data, the 
data in transit is stored in one of the feedback buffers 4338, 
4339, 4341, or 4340. The feedback buffer is cleared on 
completion of a data stream operation. 
0604 As described above, each data block written to an 
input buffer has address and control bits inserted into the 
data stream. The control bits are as follows: 

0605 bit 0: identifies a word as an address/control word 
or a data word 

0606 bit 1: set to tag last word in a data stream 
0607 bit 2: enable/disable XOR (enable/disable parity 
operations) 

0608 bit 3: for an address word, specifies type of 
addressing as either: 

0609) 
data) 

0610 direct addressing (for normal data) 

index addressing (for parity and regeneration 

0611 For operations that include an XOR operation, the 
XOR destination is a “parity block” in cache (e.g., in the 
cache 4218 or the cache 4220). When a parity block is 
addressed the address is calculated from a combination of 
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the parity index field from the PCI address word; the lower 
bits of the PCI address bus (the number depending on the 
block size); and the block size field from the PCI address 
word. Once the ASIC 4310 calculates the parity block 
address for the first PCI data word, this address is incre 
mented for each Subsequent data word. 

0612 The parity block address can be generated from the 
PCI address word using one of two methods. The first 
method is to concatenate the parity index with the lower bits 
of the PCI address word. The second method is to sum the 
parity index with the lower bits of the PCI address word. In 
either method, data is typically aligned to a natural boundary 
(e.g., 16 k blocks to a 16 k boundary, 32 kblocks to a 32 k 
boundary, etc.). 

0613) The CPU 4205 queues network transaction 
requests to the network interfaces 4214 and storage trans 
action requests to the storage interfaces 4212. In one 
embodiment, the network bus 42.01 is a memory-mapped 
bus having an address word and one or more data words 
(such as, for example, a PCI bus) and queuing a storage 
transaction request involves sending an address word and 
one or more data words to a selected network interface 4214. 
In one embodiment, the address word includes opcode bits 
and address bits as shown in FIG. 44. The data words 
provide information to the selected network interface 4214 
regarding what to do with the data at the specified address 
(e.g., where to send the data and to notify the CPU 4205 
when the data has been sent). In one embodiment, the 
selected network interface 4214 views the data engine 4210 
(e.g., the ASIC 4310) as simply a memory to use for 
retrieving and storing data using addresses in the address 
word included in the network transaction request. In Such an 
embodiment, the network interface 4214 does not know that 
the data engine 4210 is interpreting various bits of the 
address word as opcode bits and that the data engine 4210 
is performing operations (e.g., parity operations) on the data. 

0.614 The storage interfaces 4212 operate with the data 
engine 4210 (e.g., the ASIC 4310) in a similar manner. The 
storage interfaces 4212 view the data engine 4210 as a 
memory (e.g., a simple cache). The storage interfaces 4212 
communicate with the disks 140, 141 to retrieve data from 
the disks and write data to the disks. The data engine 4210 
takes care of assembling parity groups, computing parity, 
recovering lost data, etc. 

0615) “Hiding the parity calculations in the data engine 
4210 offloads the parity workload from the CPU 4205, 
thereby giving the CPU 4205 more time for metadata 
operations. Moreover, using a portion of the memory 
mapped bus address word allows the CPU 4205 to send 
commands to the data engine 4210, again offloading data 
operations from the CPU 4205. The commands are associ 
ated with the data (by virtue of being associated with the 
address of the data). The network interfaces 4214 and the 
storage interfaces 4212 (which, themselves are typically 
network-type interfaces such as Fibre Channel interfaces, 
SCSI interfaces, InfiniBand interfaces, etc.) are unaware of 
the opcode information buried in the address words. This 
allows standard “off-the-shelf interfaces to be used. 

0616) In one embodiment, the CPU 4205 keeps track of 
the data stored in the data caches 4218 and 4220, thus 
allowing the server 130 to service many client requests for 
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file data directly from the caches 4218 and 4220 to the 
network interfaces 4214, without the overhead of disk 
operations. 
0617. Although the foregoing description of the inven 
tion has shown, described and pointed out novel features of 
the invention, it will be understood that various omissions, 
substitutions, and changes in the form of the detail of the 
apparatus as illustrated, as well as the uses thereof, may be 
made by those skilled in the art without departing from the 
spirit of the present invention. Consequently the scope of the 
invention should not be limited to the foregoing discussion 
but should be defined by the appended claims. 
What is claimed is: 

1. A computer network file system comprising: 
a first file server operably connected to a network fabric; 
means for creating files stored on the first file server or a 

second file server connected to the network fabric; and 
means for locating files stored by the first file server and 

files stored by the second file server by traversing a 
directory structure that spans at least the first file server 
and the second file server. 

2. The computer network file system of claim 1, further 
comprising means for describing parity groups. 

3. The computer network file system of claim 1, wherein 
the directory structure comprises a hierarchical directory 
structure having a common root directory. 

4. The computer network file system of claim 1, wherein 
the directory structure is further configured to allow a 
requestor to find a location of a first file catalogued in the 
directory structure without prior knowledge as to a server 
location of the first file. 

5. The computer network file system of claim 1, further 
comprising file system metadata that describes at least one 
portion of the directory structure. 

6. The computer network file system of claim 5, wherein 
the at least one portion of the directory structure relates to 
directories stored on the first file server. 

7. The computer network file system of claim 5, wherein 
the file system metadata comprises at least one Gnid-string. 

8. The computer network file system of claim 7, wherein 
the file system metadata further comprises: 

first file system metadata on the first file server; and 
second file system metadata on the second file server. 
9. The computer network file system of claim 8, wherein 

the second file system metadata describes directories stored 
on the first file server. 

10. The computer network file system of claim 1, wherein 
the network fabric comprises a first Fibre channel network, 
and wherein the first file server communicates with one or 
more disk drives using a second Fibre channel network. 

11. A method for locating data in a computer network, the 
method comprising: 

storing first files on a first file server operably connected 
to a network fabric; 
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storing second files on a second file server operably 
connected to the network fabric; and 

locating the first files stored by the first file server and the 
second files stored by the second file server by travers 
ing directory information that spans at least the first file 
server and the second file server. 

12. The method of claim 11, additionally comprising: 

creating first file system metadata on the first file server; 
and 

creating second file system metadata on the second file 
Sever. 

13. The method of claim 12, wherein the first file system 
metadata describes at least the first files stored by the first 
file server, and wherein the second file system metadata 
describes at least the second files stored by the second file 
SeVe. 

14. The method of claim 12, wherein the first file system 
metadata comprises at least one Gnid-string. 

15. The method of claim 14, wherein a correspondence 
exists between the Gnid-string and a directory of the first file 
SeVe. 

16. The method of claim 11, additionally comprising 
defining at least one parity group having a first parity group 
size, the at least one parity group comprising a parity block 
and one or more data blocks. 

17. The method of claim 11, wherein said locating is 
performed in response to a request for at least one of the first 
files, wherein the request does not include information as to 
a server location of the at least one of the first files. 

18. A file system for managing data in a computer 
network, the file system comprising: 

first data managed primarily by a first file server operably 
connected to a network fabric, wherein the first data 
comprises at least one Gnid-string and describes at least 
first files and first directories stored by the first file 
server, and 

second data managed primarily by a second file server 
operably connected to the network fabric, wherein the 
second data describes at least second files and second 
directories stored by the second file server, the first and 
second data configured to allow a requestor to locate at 
least one first file stored by the first server in a directory 
structure that spans the first server and the second 
Sever. 

19. The file system of claim 18, wherein the first data 
further comprises first file location information comprising 
a disk identifier. 

20. The file system of claim 18, wherein the directory 
structure is further configured to allow a requestor to find a 
location of the at least one first file without prior knowledge 
as to a server location of the at least one first file. 


