$19722 / 88$

COMMONWEALTH of AUSTRALIA
PATENTS ACT 1952

APPLICATION FOR A STANDARD PATENT

$$
605720
$$

hereby apply for the grant of a Standard Patent for an invention entitled:

"APPARATUS FOR SLICING FOOD PIECES"

$\because \cdot:$

$\because \cdot$ which is described in the accompanying $\begin{gathered}\text { xprasisisoresk } \\ \text { complete }\end{gathered}$ specification.
:'.... Details of basic applications):-

Number
Convention Country
Date

076,406
United States of America
22nd July 1987

APPLICATION ACCEFIED AND AMENDMENTS

AlLOWED 16.11 .90
$\because \cdot!$
$\because \cdot:$

The address for service is care of DAVIES \& COLLISON, Patent Attorneys, of 1 Little In Collins Street, Melbourne, in the State of Victoria, Commonwealth of Australia.

Dated this 21 st
day of
July
1988

To: THE COMMISSIONER OF PATENTS
(a member of the firm of DAVIES \& COLLISON for and on behalf of the Applicant).

Inserf full name(o) and addrem (o1) of daclarant(0) being the appli: cans(0) of person(1) suithorized to lisn on behalf of on applicani compony,

Cross ous whichever of paregrephe
(1) of $1(b)$ doas 1101 apply

I(a) relater to application made by individual(a)
$f(b)$ ralates 10 applicailon made of company: inacel name of - applicionl company.
-"。
"eroirour whicheres of paragraphs - $2(\mathrm{a})$ or $2(b)$ doce nol apply

- 2 (a) pactes 10 applicallon made bybimentor(1)
${ }^{a} 2$ (b) reljates to applleation made bs company (s) of person(s) who olst mod Inventor(s); insert full rime (o) and addreu(ea) of Inven. tors.

Insert place and date of algnalure.

Signature of declatant(s) (no aftestalion required)
Note: Inilial all alterallons,

COMMONWEALTII OF AUSTRALIA
 PATENTS ACT 1952

DECLARATION IN SUPPORT OF CONVENTION OR NON-CONVENTION APPLICATION FOR A PATENT

In support of the Application made for a patent for an invention entutled:
"Apparatus for: sidicing Ioon jureros"

1	Ronald R. liranacor
Wt	7701 Legacy Drive
	1lano, Toxas 75024-19\%1
	(J.S. $\overline{\text { () }}$
	Unitod states of nmerier

do solemnly and since:ely declare as follows :-

or (b) Iamauthorized by Fritionary, :
the applicant.............. for the patent to make this declaration on:ithörir: bethalf

or (b)
Gary II. Anders
501 Evergroen Driv.
Euless, Toxas 76040
Jantes ... Moran, Jr.
1021 English Stixcot

${ }_{\text {rite }}$ the actual inventor..s........ of the invention and the facts upon which the applicant.
is entitled to make the application ase as follows :-
ARef
by virtuc of an assignment from tho invonters::
to the applicant company orccutod July an, 1.1.,
in respect of the invention.
3. The basic application............ as defined by Section 141 of the Act was made the U.S.A. 22 July 1.987

in ... on the ...
by
\qquad
In on the
by.
4. The hasic application.......... referred to in paragraph 3 of this Declaration was the first application \qquad made in a Convention country in respect of the invention the subject of the application.
Declared at plano, Tezas this U.S.A.
 Frito-Lay, Ing.
DAvies \& COllison, melbourne and Canberra.
(12) PATENT ABRIDGMENT (11) Document No. AU-E-19722/88
(19) AUSTRALIAN PATENT OFFICE (10) Accoptance No. 606720
(54) Title

APPARATUS FOR SLICING FOOD PIECES
Intornational Patent Classification(s)
(51)4 B26D 001/29 B26D 001/08 B26D 001/56
(21) Application No.: $19722 / \therefore .8$
(22) Application ato :22.07.88
(30) Priority Data
(31) Number (32) Dato (33) Country

076406 US UNITED STATES OF AMERICA
(43) Publication Dato : 27.01.89
(44) Publication Dato of Accoptod Application: 14.02.91
(71) Applicarit(s)

FRITO-LAY, INC.
(72) Inventor(s)

GARY H. ANDERS; JAMES A. MORAN JR.
(74) Attorney or Agent

DAVIES \& COLLISON, 1 Little Collins Street, MELBOURNE VIC 3000
(56) Prior Art Documents

US 4184423
US 3139130
US 2807'299
(57) Claim

1. An apparatus for slicing a food piece and monolayering food piece slices on a conveyor, comprising:
(a) at least one stationary feeding channel for serially fecding food pieces, the feeding channel having a feed outlet through which a food piece passes prior to slicing thereof; and-
(b) a moving conveyor belt disposed below said feed outiet;
(c) at least one moving silcing assembly that includes a first substantially planar support surface on which the food piece exiting the feed cutlet rests prior to a slice being cut, the first substantially planar support surface disposed at a distance below the feed outlet about equal to the desired slice thickness; a fixed slicing blade having a cutting edge maintained at a set distance from said first supporting surface and adjacent to sald feed
outlet to sever a slice from the food piece; the slicing blade being disposed at an angle with respect to said feed outlet, the distance between the first support surface and the edge of the slicing blade defining a slice exit through which individual slices exit the slicing assembly; a blade holder having a second substantially planar support surface contingent to and extending over a portion of said slicing blade and extending in an opposing direction from said first support surface, on which second planar surface said food piece rests while a slice is being cut, the cutting edge of the slicing blade being in the plane of said sccond planar surface, a slice-throwing surface extending from the slicing blade in the vicinity of the slice exit with a portion of the slicing blade disposed between the slice-throwing surface and the secend planar surface, the slice-throwing surface being at an acute angle relative to the sccond planar surface for throwing slices away from the slice exit during movement of the slicing assembly and monolayering said slices on said moving conveyor belt; and
(d) means for moving the slicing blade in a culting direction past the feed outlet to serially slice a food piece into individual slices and to throw the slices away from the slice exit with the slice-throwing surface so as to monolayer said slices on said moving conveyor belt.
```
COMMONWEALTHOPAUSTRAXXA
```


PATENT ACT 1952

COMPLETE SPECIFICATMON

(ORIGINAL) 11
POR OPRICE USE

Cl.NSS INT, CLASS

Application Number:
Lodged:

$\bullet \bullet$

Complete Specification Lodged:
Accepted: published:

Priority:

This document contains the whe.ciments made under $66_{i c t i o n} 49$ and is correct for printing.

```
Related Art:
```

NAME OF APPLICANT: FRITO-LAY, INC.

ADDRESS OF APPLICANT: 7701 Legacy Drive, Plano, Texas 75024-4099, United States of America. $\because \bullet:$ $\because \bullet$

NAME(S) OF INVENTOR(S) Gary H. ANDERS James A. MORAN, JR.

ADDRESS FOR SERVICE: DAVIES \& COLLISON, Patent Attorneys
1 Little Collins Street, Melbourne, 3000.

COMPLETE SPECIPICATION FOR THE INVENTION ENTITLED:
"APPARATUS FOR SLICING FOOD PIECES"

The following statement is a full description of this invention, including the best method of performing it known to us :-

BACKGROUND OF THE INVENTION

Pleld of the Invention

The present invention relates to the fleld of automated slicing of food pleces and placement of the slices.
Description of the Background Art
High speed automated devices for silcing food pleces, such as potatocs and the like, are known in the art. One such apparatus is the Urschel Model CC, commoniy utilized to slice potatoes in the commercial production of potato chips. The Urschel Model CC includes a stationary drum with peripherally mounted knives and a rotating impoller within the drun. Food pieces, such as potatoes, are fed into the drum and forced agalnst the peripherally mounted knlves by the impeller with the silces exiting the perlphery of the drum. Such drum-type slicers are efficient, and are useful for producing slices which are processed after slicing as a group to form the final product, such as washing and frying of a mass of potato slices in the production of potato chips. Rowever, due to the manner in which slices exit the periphery of the drum upori slicing, such drum-type slicers are not particularly useful for forming slices which must be separated after slicing for further processing.

For slicing elongate food pieces such as loaves of sadsage, bricks of cherse and the like, another silicing approach has been utliized by the J. E. Grote Company, Inc. of Ohio. This approach utilizes a stationary horizontal slicing table, above which projects a rotating slicing blade at a slight angle with respect to the plane of the table. A vertically orlented pivoting guide tube carries the food pieces to be sliced above the slicing
outce which is reciprocated past the upwardly extending, rotating blade to slice the foud pieces at the feed outlet. The slice thickness is determined by the distance the blade extends above the slicing table, the slices dropping by gravity from the slicing blade through a slot in the slicing table adjacent the slicing blade. Grote angularly projecting above a stationary slicing table is not particularly well suited for slicing non-clongate food pieces such as apples, potatocs and the like at high speed, because of the considerable amount of waste generated during slicing due to the pivoting motion of the guide tubes. The Grote-type slicer docs not provide means for supporting the uncut food pieces. The undesirable waste results during pivoting motion of the guide tube when the tailing of an item being sliced, such as the end of an apple, is thrown rut of the tube as scrap. Although cjection of nonuniform "ends" may be desirable when slicing salami and the like, it constitutes a substantial economic waste when slicing apples or oitier fruits and vegetables.

There renains a need in the art for an apparatus capable of efficiently slicing non-clongate food pieces at high specds without substantial waste, and in a manner which permits monolayering of the slices.

SUMMARY OF THE INVENTION

According to the present invention there is provided an apparatus for slicing a food picce and monolayering food piece sliccs on a conveyor, comprising:
(a) at least onc stationary fecding channcl for serially fecding food pieces, the fecding channel having a feed outlet through which a food picce passes prior to slicing thereof;
(b) a moving conveyor belt disposed below said fced outlet;
(c) at least one mowing slicing asscmbly that includes a linst substantially planar support surface on which the food piece exiting the feed wath rests prior to a slice being cut, the first sulstantially planar support surface disposed at a distance below the feed outlet about equal to the desired slice

(b) at icast one moving slicing assembly that includes a first
substantially phanar support surface on which the foocd piece exiting the feed ontht rests prior to a slice being cut, the first substantially planar support surface disposed at a distance below the feed outlet about equal to the desired slice thickness; a fixed slicing blade having a cutting edge maintained at a set distance
from said first support surface and adjacent to said feed outlet to sever a slice from the frod piece; the slicing blade being disposed at an angle with respect to said feed outce the distance between the first support surface and the edge of the slicing bade defining a slice exit through which individual slices exit the slicing assembly; a blade holder having a second substantially planar support surface contingent to and extending over a portion of said slicing blade and extending in an opposing direction from said first support surface, on which second planar surface said food piece rests while a slice is being cut, the cutting edge of the slicing blade being in the plane of said second planar surface, a slice-throwing surface extending from the slicing blade in the vicinity of the slice exit with a portion of the slicing blade 1.5 disposed between the slice-throwing surface and the second planar surface, the slice-throwing surface being at an acute angle relative to said second planar surface for throwing slices away from the slice exit during movement of the slicing asscmbly;
(c) means for rotating the slicing assembly to move the slicing blade in a slicing direction past the feed outlet to scrially slice a food piece into individual slices and to throw the slices away from the slice exit with the slice-throwing surfacc;
(d) a conveyor belt bencath the slice exit travelling in a direction opposite the slicing direction of the slicing blade; and
(c) a stationary, angled guide surface bathed with downwardly flowing liquid, the guide surface being positioned between the slice exit and the conveyor for capturing slices thrown by the throwing surface in the downwardly flowing liquid and monolayering the slices on the conveyor.

BRIEF DISCRIPIION OF 'THE: DRAWING;

'The drawings illustrate sanious embodiments of the invention, and throughout the drawings, features of the invention having the same function hear 5 the same reference numeral.

FIGS. 1A-1C are a sequence of schematic side elevation views of an apparatus according to one embodiment of the invention during the cutting and monolayering of one slice from a food piece with a rotating slicing assembly.

PIG. 2 ls a schematic top elevation view of an embodiment of the invention employing a rotating silcing assembly with a plurallty of food plece gulde tubes in a row for slicing and monolayering slices.

PIG. 2A is a schematic top elevation view showing a non-radially orlented cutting blade in a rotary silcer according to the invention.

PIG. 3 is a schematic top elevation view of an embodiment of the invention employing a rotating silcing assembly with two rows of food plece gulde tubes spaced 180° apart for silcing and monolayering silces.

PIG. 4 is a schematic top elevation view of an embodiment of the invention employing a rotating silcing assembly with eight evenly spaced rows of food piece guide tubes for non-monolayered deposition of slices.

PIG. 5 is a schematic side elevation view of a rotary slicer according to the invention utilizing a floating shear bar.

FIGS. $6 A-6 D$ are a sequence of schematic side elevation views of an apparatus according to another embodiment of the invention during the cutting and monolayering of one slice from a food piece with a reciprocating slicing assembly.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

An apparatus according to one embodiment of the present invention includes a stationary guide tube 10 defining a feeding channel 12. See figs. $1 \mathrm{~A}-1 \mathrm{C}$. Advantageously, guide tube 10 is detachable from the apparatus for cleaning. Pieces of food to be sliced, such as apples A, are serially fed through feeding channel 12 towards a feed outlet 14 adjacent a slicing assembly, the apples passing through the feed outlet 14 during slicing of the apples. The feed channel can be substantially vertical as shown, or angled off a vertical center line by, for example, up to about 60° towards the
front or back of the allcer, to take advantage of gravity feedirig. If desired, a plurality of gulde tubes 10 can be arranged side-by-side in ε row n as shown in Fig. 2. Referring back to Figs. $1 A-1 C$, a slicing blade
assembly 15 according to this embodiment ls moved past the feed outlet 14 to silce a food plece. Slicing blade assembly 15 Includes a first planar support surface 20 on which a food plece exiting the feeding channel rests prior to being cut. Support surface 20 follows a flrst planar path during movement of the silcing assembly 15 past feed outlet 14 to slice a food plece. The slicing blade assembly 15 further includes a slicing blade 18 fixed within a blade nolder 16 . Slicing blade 18 has a slicing edge 19 that follows a second planar path that is adjacent the feed outlet, during movement of slicing assembly 15 past feed outlet 14 to slice a food piece. The slicing edge 19 of the slicing blade 18 is beveled on a side 23 of the blade adjacent the feed outlet 14 of feeding channel 12.

The slicing assembly 15 includes a second planar support surface 21 on which the food plece rests while a slice is being cut. During slicing, support surface 21 follows the second planar path along with blade edge 19 , The slicing blade edge 19 is adjacent the feed outlet 14 and the first support surface 20 is disposed at a distance below the feed outlet 14 about equal to a desired slice thickness T, such that the first and second planar paths are parallel and separated by a distance about equal to the thickness of a slice. Por varying slice thickness, the distance T between the feed outlet 14 and the first support surface 20 can be adjustable, as is later described in more detall. Similarly, the distance between feed outlet 14 and blade edge 19 can be adjustable as discussed below.

The blade holder 16 with blade 18 fixed thereto are fixedly connected to the flrst and second planar surfaces 20 and 21, which form the upper surface of a rotating turntable 50. The first support surface 20 and the slicing blade 18 are spaced apart such that the distance between the first support surface and the silcing blade define a slice exit 34 through which individual silces exit the slicing assembly 15 . The distance between the first support surface 20 and the slicing blade edge, which defines the slice exit, can for example be between about 1.3 and 3.3 mm (between about 0.05 and 0.13 inch).

Feed outlet 14 is defined at a rearward portion thereof by a fixed slicing shear bar 11 that supports the lower portion of tube 10 and cooperates with the silcing blade 18 to slice a food plece.

In the embodiment shown in figs. $1 A-1 C$, the silcing blade assembly 15 comprised of the blade holder 16 with slicing blade 18 fixed thereto and the offset second planar surface 20 is moved past feed outlet 14 by rotation of turntable 50. Advantageously, the feed channel 12 is disposed about perpendicular to the rotational plane of turntable 50.

Turntable 50 is rotated by any suitable means such as by drive 59 shown schematically in Fig. is connected to turntable 50 by means of shaft 60 . According to the embodiment shown in Fig. 2, a slicing blade is provided for each of guide tubes 10a-10d. One pair of slicing blades 18 a and 18 c , corresponding respectively to guide tubes 10 a and 10 c , are 180° out of phase with the other pair of slicing blades 18 b and 18 d , corresponding respectively to guide tubes $10 b$ and 10d. If desired, more than one slicing blade can be provided for each of guide tubes 10a-10d.

In the embodiment shown in Figs. $1 \mathrm{~A}-1 \mathrm{C}$, uniform placement of slices exiting the silcing assembly is
fucilltated by a sloping gulde surface or sllde 30 that extends downardly beneath each gulde tube 10 with the turntable rotating therebetween.

With reference to Fig . 1 B , the slicing blade 18 ls positioned below the feed outlet 14 at an angle relative to the feed outlet, with the cutting edge 19 of blade 18 disposed adjacent feed outlet 14 . The slice discharge or throw angle 32 is defined by support surface 21 and a tapered throwing surface 17 of lower blade support member 52 extending beneath the slicing blade. Throwing surface 17 provides slice control by throwing a slice that is severed from the fruit piece towards slide 30. Angle 32 of throwing surface 17 can vary between about 15° and about 60°, depending on the thickness of the slice to be cut, for controliing the cut slice and throwing a slice towards slide 30. Generally, the thicker the silice, the lower the angle for optimal control over the slice. For example, with 0.085 inch thick apple slices, an angle of about 45° from the direction of travel of the blade assembly has been found to be suitable. The higher the speed of rotation, the smaller the angle required. At too great of an angle the sliced product tends to ripple or crack. At too slight an angle there is no control over the disposition of the slice once it has separated. Throwing surface 17 also serves as a wear plate and can be planar as illustrated or curved if desired.

A downwardly moving curtain of liquid 62 exiting manifold 64 flows over and bathes the top surface of slide 30. Slide 30 is positioned so that $31 i c e s$ are thrown onto the top surface thereof by throwing surface 17 and captured in the downwardly moving curtain of liquid 62. The slices flow with the liquid and are deposited in a monolayer onto a moving conveyor belt C disposed beneath the slide 30. In the embodiment shown, the conveying direction is opposite that of the slicing
direction. Por monolayering apple slices, liquid 62 advantageously contalns an anti-browning agent such as sodium blsulfite.

Slices can be monolayered directiy onto a conveyor by throwing surface 17 without a slide 30 by having the conveyor travel in the same direction as the slicing direction as shown in Pig. 5.

Referring back to plgs. $1 A-1 C$, the lower first support surface 20 holds the uncut whole product before it is sliced. The upper second support surface 16 is at about the same height as the cutting blade 18. Rotation of turntable 50 silces the product with the slice being thrown onto slide 30 by surface 17 to be monolayered on conveyor C, while the second (upper) planar surface supports the separated whole product. Continuous rotation of the slicing knife assembly past the feed outlet of the stationary feeding channel serially slices apples A passing through the feed outlet 14 of tube 10.

In the embodiment shown in Fig. 2, slicing blades 18 a and 18 c are stagsered with respect to slicing blades 18b and 18d such that fruit pieces in guide tubes 10a and $10 c$ are sliced when blades 18 a and 18 b pass therebeneath, followed by slicing of fruit pieces in guide tubes lob and 10 d when blades 18 b and 18 d pass thereunder. This results in staggered rows of slices S on conveyor C for efficient space utilization of the top surface of conveyor C with monolayered slices.

The edges of blades 18 need not be perpendicular to the cutting direction, but can be angled to cut different products, as shown in Fig. 2A.

Fig. 3 illustrates another embodiment utilizing a rotating turntable 50, wherein two rows R of four stationary guide tubes $10 \mathrm{a}-10 \mathrm{~d}$ are mounted 180° apart over a rotating turntable 50. As in the embodiment shown in Fig.2, a single set of two pairs of staggered slicing
blades 18a, 18 c and 18 b , 18 d are mounted on turntable 50. However, in thls embodiment, conveyor C must be wide enough to pass beneath the entire turntable to capture the slices S in monolayer.

If desired, more than two rows R of guide tubes can be provided for a single set of two pairs of staggered slicing blades 18a, 18 c and 18b, 18d. Fig. 1 1llustrates eight rows R of guide tubes 10a-10d, beneath which a turntable 50 rotates with a single set of respective slicing blades $18 \mathrm{a}-18 \mathrm{~d}$ arrayed in staggered pairs. A multiple guide tube arrangement as in Fig. 4 results in non-monolayered deposition of silces on conveyor C, which is suitable for product which does not require monolayering for further processing downstream.

Fig. 5 illustrates another embodiment of the invention employing a rotatiog turntable 50 that utilizes a "floating shear bar" 70, for use with turntables having top surfaces with slight irregularities or that do not have completely true planar surfaces. According to this embodiment, shear bar 70 rides on wheels 72 that follow the top surface of turntable 50 as it rotates. Shear bar 70 is vertically displaceable within feed block 74 that is fixedly supported bi a. frame 76 so that the shear bar follows or "rides" the top surface of the rotating turntable 50. One or more guide tubes 10 are mounted on feed block 74 by means including a hinge 78 , such that the feeding channel 12 passes uninterrupted from guide tube 10 through feed block 74 and shear bar 70 for slicing a food piece A. Ringe 78 permits easy access to feed block 74 and shear bar 70.

An apparatus according to yet another embodiment of the invention also includes a stationary guide tube 10 defining a feeding channel 12. See pigs. 6A-6D. As described with respect to the above-discussed embodiment, guide tube 10 advantageously is detachable from the

10

apparatus for cleaning. Pleces of food to be sliced, such as apples A, are serlally fed through feeding channel 12 towards a feed outlet 14 adjacent a slicing assembly, the apples passing through the feed outlet 14 during slicing of the apples. The feed channel can be substantially vertical as shown, or angled off a vertical center line by, for example, up to about 60° towards the front or back of the slicer, to take advantage of gravity feeding. if desired, a plurality of guide tubes 10 can be arranged side-by-side in a row.

A slicing blade assembly 15 according to this embodiment is moved past the feed outlet 14 to slice a food piece. Slicing blade assembly 15 includes a flrst planar support surface 20 on which a food plece exiting the feeding channel rests prior to being cut. Support surface 20 foll.ows a first planar path duririg movement of the slicing assembly 15 past feed outlet 14 to slice a food piece. The slicing blade assembly 15 includes a slicing blade 18 fixed within n blade holder 16 . Slicing blade 18 has a slicing edge 19 that follows a second planar path that is adjacent the feed outlet during movement of slicing assembly 15 past feed outlet 14 to slice a food piece. The slicing edge 19 of the slicing blade 18 is beveled on a side 23 of the blade adjacent the feed outlet 14 of feeding channel 12.

The slicing assembly 15 includes a second planar support surface 21 on which the food plece rests while a slice is being cut. During slicing, support surface 21 follows the second pianar path along with blade edge 19. The slicing blade edge 19 is adjacent the feed outlet 14 and the first support surface 20 is disposed at a distance below the feed outlet 14 about equal to a desired slice thickness T, such that the first and second planar paths are parallel and separated by a distance about equal to the thickness of a slice. For varying
slice thlckness, the distance T between the feed outlet 14 and the flrst support surface 20 can be adjustable, by means of, for example, screws 54 and 56 as shown schematically in Fig. 6A. Additionally, the diatance between feed outlet 14 and blade edge 19 can be adjustable using any suitable means, suul as screws 56 , one shown schematically in Pig. 6A. The blade holder 16 with blade 18 fixed thereto is fixediy connected to the first planar surface 20 by any suitable means, such as by connecting side members 24, one of which is lllustrated in Pig. 6A. The first support surface 20 and the slicing blade 18 are spaced apart such that the distance between the first support surface and the slicing blade define a slice exit 34 through which individual silices exit the silicing assembly 15. Thaz distance between the first support surface 20 and the slicing blade edge, which defines the slice exit, can for example be between about 1.3 and 3.3 mm (between about 0.06 and 0.1 inch).

In the embodiment shown in Figs. 6A-6D, the slicing blade assembly 15 comprised of the blade holder 16 with slicing blade 18 fixed thereto and the offset second planar surface 21 is reciprocated past feed outlet 14 by any suitable means, such as by air cylinder 26 having a reciprocating piston 28 connected to the slicing blade assembly 15. Piston 28 of air cylinder 26 can have, for example, a four inch stroke, and reciprocate up to, for example, 250-300 times per minute. Other means, such as a reciprocating mechanical driver, can be used to reciprocate assembly 15 . Advantageously, the feed channel 12 is disposed about perpendicular to the direction of reciprocating travel of slicing assembly 15.

Feed outlet 14 is defined at a rearward portion thereof by a fixed slicing shear bar 11 that supporte the lower portion of tube 10 and cooperates with the slicing blade 18 to sl ce a food plece.

As shown in Fig. 6B, the silcing blade 18 ls positioned below the feed outlet 14 at an angle relative to the feed outlet, with the cutting edge 19 of blade 18 disposed adjacent feed outlet 14. The sllce discharge angle 32 is defined by support surface 21 and a tapered throwing surface 17 of lower blade support member 52 extending beneath the slicing blade. Angle 32 can vary between about 15° and about 60°, depending on the thickness of the silce to be cut, for controlling placement of a the cut slice and directing a silce. Generally, the thicker the silce, the lower the angle for optimal control over the slice. For example, with 0.085 lnch thick apple slices, an angle of about 45° from the direction of travel of the blade assembly has been found to be suitable. At too great of an angle the sliced product tends to ripple or crack. At too slight an angle there is no control over the disposition of the slice once it has separated. Throwing surface 17 also serves as a wear plate and can be planar as illustrated or curved if desired.

Por providing uniform placement of slices exiting the slicing assembly, a stationary guide surface such as guide bar 30^{\prime} can be provided. Gulde bar 30^{\prime} can be generally vertically oriented as illustrated, extending downwardly beneath a support base B above which sllcing assembly 15 reciprocates. Alternatively, guide bar 30^{\prime} can be angled instead of vertical, as in the abovediscussed rotary embodiment, and can be flushed with liquid if desired. The bar 30^{\prime} is positioned to contact slices thrown b_{j} the throwing surface 17, and uniformly align the slices to fall onto endless conveyor belt 44 in a monolayer, the silces being thrown against the guide bar 30' after being severed and prior to falling onto conveyor 44. See Figs. 6C and 6D.

In operation, the lower first support surface 20 holds the uncut whole product before it is sliced. The
upper second support surface 16 is at about the same helght as the cutting blade 18. Actuation of alr cylinder 26 silces the product with the slice being carrled under blade 18 while the second (upper) planar surface supports the separated whole product. Alr cylinder 26 then returns the slicing knife assembly to the position shown in Fig. 6A, and the slicing process is repeated. Repeated reciprocation of the slicing knife assembly past the feed outlet of the stationary feeding channel by means of air cylinder 26 serially slices apples a passing through the feed outlet 14 of tube 10. Figs. 6A-6D further illustrate means for providing a moving gtream of liquid positioned below the allce exit 34 to contact a slice after passing through the slice exit.

According to this embodiment, a moving elongate stream or sheet of liquid 38 exits under pressure from one or more openings in liquid chamber 40 , which chamber is supplied liquid under pressure from a source not shown. The moving stream of liquid passes beneath the slice exit 34 in position to contact the silces and garry them to conveyor 44. The slices are serially and separately thrown against guide bar 30'. If desired, guide bar $30^{\prime \prime}$ can extend above base B as shown in phantom lines in Fig. 6D. The slices are contacted by the liquid stream 38 and are directed onto a moving porous conveyor belt 44 where the slices are deposited in a monolayer for further processing such as drying. For forming apple chips from apple slices, the moving stream of fluid 38 advantageously contains an anti-browning agent such as sodium bisulfite.

The embodiments of the present invention, utilizing a blade fixed in a moving slicing assembly with offset planar support surfaces and a stationary feeding channel, slices rounded (non-elongate) food pleces in a
substantlally more uniform manner and with much less waste than devices which reciprocate a feeding channel containing food pleces past a rotating or vibrating knife angularly projecting above unlformly planar silcing table. The planar support surfaces in different planes also promote sifce uniformity by preventing "wobble" of the fruit piece during slicing. Furthermore, the throwing surface of the present invention provides for uniform monolayering of the slices on a conveyor beneath the slicing assembly. For gravity feed of food pieces such as apples through tube 10 , slice thickness uniformity is optimlzed with at least about 18 inches of apples or round product in the tube.

Since many modifications, variations and changes in
15 detail may be made to the described embodiments, it is intended that all matter in the foregoing description and shown in the accompanying drawings be interpreted as illustrative and not in a limiting sense.

The claims dofining the invontion are as follows:

1. An apparatus for sifing a food piece and monolayering food piece slices on a conveyor, comprising:
(a) at least one stationary feeding channel for serially feeding food pieces, the feeding channel having a feed outlet through which a food piece passes prior to slicing thereof; and-
(b) a moving conveyor belt disposed below said feed outlet;
(c) at least one moving slicing assembly that includes a first substantially planar support surface on which the food piece exiting the feed outlet rests prior to a slice being cut, the first substantially planar support surface disposed at a distance below the feed outlet about equal to the desired slice thickness; a fixed slicing blade having a cutting edge maintained at a set distance from said first supporting surface and adjacent to said feed outlet to sever a slice from the food piece; the slicing blade being disposed at an angle with respect to said feed outlet, the distance between the first support surface and the edge of the slicing blade defining a slice exit through which individual slices exit the slicing assembly; a blade holder aving a second substantially planar support surface contingent to and extending over a portion of said slicing blade and extending in an opposing direction from said first support surface, on which second planar surface said food piece rests while a slice is being cut, the cutting edge of the slicing blade being in the plane of said second planar surface, a slice-throwing surface extending from the slicing blade in the
vicinity of the slice exit with a portion of the slicing blade disposed between the slice-throwing surface and the secend planar surface, the sliec-throwing surface being at an acute angle relative to the second planar surface for throwing slices away from the slice exit during movement of the slicing assembly and monolayering said slices on said moving conveyor belt; and
(d) means for moving the slicing blade in a cutting direction past the feed outlet to scrially slice a food piece into individual slices and to throw the slices away from the slice exit with the slice-throwing surface so as to monolayer said slices on said moving conveyor belt.
2. The apparatus of claim 1 wherein said fecding channel includes a shear bar disposed at said feed outlet.
3. The apparatus of claim 1 whercin said fecding channel is disposed about perpendicular to the direction of travel of said slicing assembly.
4. The apparatus of claim 1 wherein the distance between said feed outlet and said first support surface is adjustable.
5. The apparatus of claim 1 wherein the distance between said feed outlet and said adjacent slicing blade is adjustable.
6. The apparatus of claim 1 wherein said slice-throwing surface extends at an acute angle of between 15° and 60° from the direction of travel of said slicing assembly.
7. The apparatus of claim 6 whercin said acute angle is about 45°.

8. The apparatus of claim 1 wherein the distance between the first support surface and the slicing blade which defines the slice exit is between 1.3 millimeters and 3.3 millimeters.
9. The apparatus of claim 1 further including a guide surface disposed below said slice exit to guide said slices for uniform monolayering of said siices.
10. The apparatus of claim 1 further including a liquid dispensing means beneath said elleet assembly for wetting slices with a liquid as they exit said slicer assembly.
11. The apparatus of claim 1θ wherein said guide surface is a stationary, angled slide having a liquid-bathed upper surface that is positioned below the slice exit and above the conveyor for capturing slices thrown by the throwing surface and monolayering the slices on the conveyor passing beneath the slide.
12. The apparatus of claim 1 wherein the edge of the slicing blade is perpendicular to the slicing direction.
13. The apparatus of claim 1 wherein the edge of the slicing blade is angled with respect to the slicing direction.
14. The apparatus of claim 1 wherein the conveyor passes beneath the slice exit in a direction opposite the cutting direction of said blade.
15. An apparatus for slicing a food piece and monolayering food piece slices on a conveyor, comprising:
(a) at least one stationary feeding channel for serially feeding food pieces, the feeding channel having a feed outlet through which a food piece passes prior to slicing thereof; and
(b) at least one moving slicing assembly that includes a first substantially planar support
surface on which the food piece exiting the feed outlet rests prior to a slice being cut, the first substantially planar support surface disposed at a distance below the feed outlet about equal to the desired slice thickness; a fixed slicing blade having a cutting edge maintained at a set distance from said first support surface and adjacent to said feed outlet to sever a slice from the food piece; the slicing blade being disposed at an angle with respect to said feed outlet the distance between the first support surface and the edge of the slicing blade defining a slice exit through which individual slices exit the slicing assembly; a blade holder having a second substantially planar support surface contingent to and extending over a portion of said slicing blade and extending in an opposing direction from said first support surface, on which second planar surface said food piece rests while a slice is being cut, the cutting edge of the slicing blade being in the plane of said second planar surface, a slice-throwing surface extending from the slicing blade in the vicinity of the slice exit with a portion of the slicing blade disposed between the slicethrowing surface and the second planar surface, the slice-throwing surface being at an acute angle relative to said second planar surface for throwing slices away fyom the slice exit during movement of the slicing assembly;
(c) means for rotating the slicing assembly to move the slicing blade in a slicing direction past the feed outlet to serially slice a food piece
into individual slices and to throw the slices away from the slice exit with the slice-throwing surface;
(d) a conveyor belt bencath the slice exit travelling in a direction opposite the slicing direction of the slicing blade; and
 surface and the slicing blade which defines the slice exit is between 1.3 millimetres and 3.3 millimetres.
16. The apparatus of claim 1 wherein the conveyor passes bencath the slice exit in a direction the same as the cutting direction of the blade.
17. The apparatus of claim 15 including a plurality of said fecding channels in

DATED this 12th day of November, 1990
FRITO-LAY, INC.
By its Patent Attomeys
DAVIES \& COLLISON

$$
\text { 女 } \quad \text { Q }
$$

FIG. $1 A$

B B

$$
\begin{array}{llll}
\therefore & \because & \therefore \therefore & \therefore \\
\because & \because & \because & \therefore \\
\therefore \therefore & \vdots & \because & \therefore \\
\therefore \therefore & \therefore & \therefore
\end{array}
$$

$$
\begin{array}{llll}
\therefore & \because & \therefore \therefore & \therefore \\
\therefore \therefore & \because & \because & \therefore \\
\therefore & \therefore & \therefore & \therefore
\end{array}
$$

$$
\begin{array}{llll}
\therefore \therefore & \because & \therefore & \therefore \\
\therefore \therefore \therefore & \vdots & \therefore & \therefore \\
\therefore & \therefore & \therefore & \therefore \\
\therefore & \therefore
\end{array}
$$

FIG. 4

FIG. 3

FIG. 6A

FIG. 6B

FIG. $6 C$

