(12) PATENT APPLICATION
(19) AUSTRALIAN PATENT OFFICE

(11) Application No. AU 199918599 A1

(54)

(51)°

(21)

(30)
(31)

(43)
(43)

(71)
(72)

(74)

Title

Message processing device and method thereof and storage medium storing

mess age processing control program

International Patent Classification(s)
HO4L 029/02

Application No: 199918599

Priority Data

Number (32) Date
10-073401 1998.03.05
Publication Date : 1999.09.16

Publication Journal Date : 1999.09.16

Applicant(s)
NEC Corporation

Inventor(s)
Hiroki Tagato

Agent/Attorney

(22) Application Date: 1999.03.04

(33) Country
JP

SPRUSON and FERGUSON,GPO Box 3898,SYDNEY NSW 2001

10

15

Message Processing Device and Method Thereof and Storage
Medium Storing Message Processing Control Program

ACT OF THE D

A message processing device (10) for sending and receiving a message
composed of one or more elements between different kinds of devices including a parse
tree holding unit (104) having a function of holding a parse tree (105) generated from
syntax descriptions (108) which define structure of a message sent or received, a parse
tree scanning unit (101) connected to the parse tree holding unit (104) and having a
function of scanning the parse tree as message data to be processed is applied, encoding
and decoding a value and outputting encoded and decoded values, a preamble
processing unit (102) connected to the parse tree scanning unit (101) and having a
function of processing a preamble field of a message for use in indicating whether an
element exists or not in the message data sent or received, and an index processing unit
(103) connected to the parse tree scanning unit (101) and having a function of
processing an index field of a message for use in indicating what number of element is
selected in the message data whose one of a plurality of elements is selected to be sent
or received.

[N:\Libcc]01654:BFD

ASN.1
VALUE
NOTATION

1/34

FIG. 1

10

MESSAGE PROCESSING DEVICE

INDEX
PROCESSING

PREAMBLE
PROCESSING
UNIT

UNIT
)

103

N %

INPUT
_—
~———_

OUTPUT

PARSE TREE 101
SCANNING UNIT L~/

ENCODING
-l PROCESSING | INPUT
FUNCTION T

DECODING
~ PROCESSING |
FUNCTION

ASN.1
TRANSFER
SYNTAX

OuTPUT

104

i

PARSE TREE

HOLDING UNIT
105

// ~
/7 paRsE S

\(TREE /]

\7_/
T

108

ASN.1
ABSTRACT
SYNTAX

S & F Ref: 455626

AUSTRALIA
PATENTS ACT 1990

COMPLETE SPECIFICATION

FOR A STANDARD PATENT

ORIGINAL

Name and Address
of Applicant:

Actual Inventor(s):

Address for Service:

Invention Title:

NEC Corporation
7-1, Shiba 5-chome
Minato-ku

Tokyo

JAPAN

Hiroki Tagato.

Spruson & Ferguson, Patent Attorneys
Level 33 St Martins Tower, 31 Market Street
Sydney, New South Wales, 2000, Australia

Message Processing Device and Method Thereof and
Storage Medium Storing Message Processing Control
Program

The following statement is a full description of this invention, including the
best method of performing it known to me/us:-

5845

5
éééggg)
i 20

25

-1 -

MESSAGE PROCESSING DEVICE AND METHOD THEREOF AND STORAGE

MEDIUM STORING MESSAGE PROCESSING CONTROL PROGRAM

BACKGROUND OF THE INVENTION
FIELD OF THE INVENTION

The present invention relates to a message
processing device and, more particularly, to a message
processing device for processing messages defined by
Abstract Syntax Notation One (hereinafter referred to as
ASN.1l) according to Packed Encoding Rules (hereinafter
referred to as PER) and a method thereof, and a storage
medium which stores a message processing control program.

DESCRIPTION OF THE RELATED ART

Message processing device of this kind is
conventionally used in communication between different
kinds of devices to encode a message to be sent into a
format independent of a communication network and upon
reception of a message encoded in a format independent
of a network, decode the message into a format which can
be handled at a reception side. This message processing
device is widely used in the fields of file transfer
systems (File Transfer, Access and Management,
hereinafter referred to as FTAM) and network management.
Because encoding and decoding procedures are conformed
to the standards defincd by International Organization

for Standardization (hereinafter referred to as ISO),

10

15

20

25

the application range of message processing devices is
extremely wide.

Encoding and decoding procedures defined by ISO
are roughly classified into two kinds. These are
respectively called Basic Encoding Rules (hereinafter
referred to as BER) (ISO/IEC 8825-1:1995 Information
technology -- ASN.l1 encoding rules: Specification of
Basic Encoding Rules (BER), Canonical Encoding
Rules(CER) and Distinguished Encoding Rules (DER)) and
Packed Encoding Rule (hereinafter referred to as PER)
(ISO/IEC 8825-2:1996 Information technology -- ASN.1
encoding rules: Specification of Packed Encoding Rules
(PER)). BER and PER will be briefly described in the
following.

At present, for encoding and decoding messages
defined by ASN.1 abstract syntax, BER is widely employed.
In BER, at the encoding of a message, three fields are
generated for each element value, a tag field for
identifying a type of element in question, a length
field indicative of an octet length of an encoded value,
and a value field for storing an actually encoded value.
At the encoding of a constructor type value, nesting is
also possible in which a value field again includes a
tag field, a length field and a value field.

In BER, encoding results might be redundant in
some cases because encoding of a value of each element

is always conducted in a format of a tag field, a length

10

15

20

25

field and a value field. PER is a technique of
compressing an encoding result by generating neither a
redundant tag field nor a redundant length field. PER
has the following characteristics.

a) No tag field for identifying a type is
generated.

b) A length field is generated only when a
length of a value field can not be settled by ASN.1
abstract syntax descriptions or even if the length can
be settled, when the value field becomes lengthy.

c) Encoding of a value of Boolean type and bit
string type is conducted on a bit basis.

d) In the encoding of sequence-type and set-type
values, information about whether its constituent
element is designated as optional or default is encoded
as a field called preamble.

e) In the encoding of a choice type, information
indicating which element is chosen is encoded as a field
called index.

f) In the encoding of the set type, encoding is
started in ascending order of numbers of a tag
(application tag, context-specific tag, etc.) attached
to its element.

g) In a case where a constraint is imposed on a
range of values of an integer type or the like, a result
of the encoding of the value is compressed by using this

constraint.

10

15

20

25

h) Transfer syntax has two kinds, aligned
transfer syntax in which a bit-basis encoding result is
padded to align on octet boundaries and unaligned
transfer syntax without execution of padding.

Conventional message processing devices relate to
BER among the above-described two kinds of encoding
rules and as recited in Japanese Patent Laying-Open
(Kokai) No. Heisei 1-198145, hold a parse tree generated
from ASN.1 abstract syntax descriptions which define
structure of a message to be encoded and scan said parse
tree as a message to be processed is applied, thereby
encoding the message into three fields, a tag field, a
length field and a value field and decoding, or taking
out a value corresponding to each element of abstract
syntax from said three fields. The message processing
device recited in "Institute of Electronics, Information
and Communication Engineers of Japan, 1997 National
Conference Lectures Papers (Communication 2), pp.148,
March, 1997, and "Institute of Electronics, Information
and Communication Engineers of Japan, 1997 Communication
Society Conference Lectures Papers, Vol. 2, pp. 145,
September, 1997, realizes message processing by hardware
by generating, from said parse tree, a finite-state
machine (hereinafter referred to as FSM) corresponding
to the tree and using the FSM at the encoding and
decoding.

One example of conventional message piocessing

10

15

20

25

devices will be described with reference to a drawing.

Schematic block diagram of structure of a conventional
message processing device is shown in Fig. 32. As
illustrated in Fig. 32, a conventional message
processing device 32 includes a parse tree scanning unit
3201 and a parse tree holding unit 3202.

The parse tree holding unit 3202 has a function
of holding a parse tree 3203 generated from an ASN.1
abstract syntax description 3206. The parse tree
scanning unit 3201 has a function of, upon application
of an ASN.1 value notation 3204 (message to be
processed), scanning the parse tree 3203 and encoding a
value to generate an ASN.l1 transfer syntax 3205
(encoding result), as well as a function of, upon
application of the ASN.1l transfer syntax 3205 (message
to be processed), scanning the parse tree 3203 and
decoding a value to generate the ASN.l1 value notation
3204 (decoding result).

Next, ASN.1 abstract syntax will be briefly
described. Example of ASN.l abstract syntax is shown in
Fig. 33. Descriptions in Fig. 33 define the structure of
a message Example 3 and indicate that Example 3 is of
the sequence type made of a sequence of five elements,
"id", "subid", "length", "content" and "trailer". 1In
addition, "id", "subid" and "length" are of the integer
type, "content" is of the sequence type and "trailer" is

of an octet string type. As can be seen from the fact

10

15

20

25

-6 -

that "content" is defined as the sequence type, in ASN.1
abstract syntax, definition to have nesting is possible
and accordingly, a sequence-type element can be again of
the sequence type.

To the element "subid" and the element "length",
[0] and [1] as context-specific tags are attached. 1In
message processing according to BER, use of a context-
specific tag prevents a plurality of elements of the
same type from failing to exactly correlate with their
corresponding values. For example, because both qf the
element "subid" and the element "length" are of the
integer type and the element "subid" is designated as
optional, when a value corresponding to the element
"subid" is omitted in the ASN.1l value notation which
will be described in the following, use of the context-
specific tags attached to the element "subid" and the
element "length" enables the element "length" and its
corresponding value to properly correlate with each
other.

Also, the element "subid" is designated as
optional, which indicates that in the ASN.1 value
notation, a value corresponding to the element "subid"
can be omitted. The elements "subid" and "length" are
further designated as implicit, which indicates that in
the encoding according to BER, encoding is conducted as
to tags attached to the elements in question (here,

context-specific tags [0] and [1]), while no encoding is

20

25

conducted as to a tag indicative of a data type (integer

type, here) of the elements in question. In addition to
these, as to the elements "id", "subid", "length" and
"age", constraints are imposed on a range of obtainable
values in the ASN. 1 value notation. As to the element
"id", for example, the obtainable values range from not
less than 0 to not more than 63. As to the element
"trailer", a constraint is imposed on a range of lengths
of an octet string of a value and the lengths range from
not less than 0 to not more than 15. In a message
processing device related to BER, these constraints are
not used in encoding and decoding.

Fig. 34 shows one example of specific values
corresponding to a message defined by the ASN.1 abstract
syntax shown in Fig. 33, which is called value notation.
More specifically, "id" which is an integer-type element
corresponds to the value 3 and other elements have
similar corresponding relations.

Next, brief description will be made of a parse
tree for use in a conventional message processing device.
Fig. 35 shows a parse tree generated from the ASN.1
abstract syntax descriptions in Fig. 33. The parse tree
represents the structure of a message defined by the
ASN.1 abstract syntax descriptions as tree structure.
Each node of the parse tree is composed of six fields
which respectively rcpresent "a type of elemcnt

corresponding to a node in question", "a tag attached to

10

15

20

25

the element corresponding to the node in question",

"whether the element corresponding to the node in
question is designated as implicit", "whether the
element corresponding to the node in question is
designated as optional or default", "a pointer to a
subsequent node in the same nesting hierarchy" and "a
pointer to a node in a lower nesting hierarchy".

In the following, how a message is handled by a
conventional message processing device will be
specifically described.

First, description will be made of message
encoding. Fig. 36 shows a flow of message encoding by a
conventional message processing device.

In the message processing device 32, at a time
point of starting encoding processing, the parse tree
scanning unit 3201 is ready to scan a node 3501 as a
root node of the parse tree. The message processing
device 32 starts the processing upon reception of an
input message to be processed. In the following, how
encoding is conducted by the message processing device
32 will be described for each step with reference to
Figs. 34, 35 and 36. As a flow of encoding, the message
illustrated in Fig. 36 is generated as the parse tree of
Fig. 35 is scanned in response to the reception of the
message of Fig. 34.

Step 1 (at a time point of reception of a mecsage

up to 3401)

10

15

20

25

The parse tree scanning unit 3201 scans the node

3501 of the parse tree to sense that the input message
Example 3 is of the sequence type. Therefore, a tag
field '30' corresponding to the sequence type is
generated. Also, because the sequence type is of the
constructor type, as to a length field, an octet '80'
indicating that a length is unsettled is generated (3601
of Fig. 36).

Step 2 (at a time point of reception of a message
up to 3402)

The parse tree scanning unit 3201 scans a node
3502 of the parse tree to sense that the element "id" is
of the integer type. Therefore, a tag field '02'
corresponding to the integer type is generated. In
addition, because the value is 3, a length field '01°
and a value field '03' are generated (3602 of Fig. 36).

Step 3 (at a time point of reception of a message
up to 3403)

The parse tree scanning unit 3201 scans a node
3503 of the parse tree to sense that the element "subid"
is of the integer type, that it is designated as
optional and designated also as implicit, and that a
context-specific tag "0" is attached. Here, since the
input element is "length" (not "subid"), the parse tree
scanning unit 3201 scans a node 3504 of the parse tree
to sense tha®: the "length" is of the integer type, that

it is designated as implicit and that a context-specific

10

15

20

25

tag [1] is attached. Therefore, a tag field '81'

corresponding to the context-specific tag [1] is
generated. In addition, since the value is 4, the length
field '01' and a value field '04' are generated (3603 of
Fig. 36).

Step 4 (at a time point of reception of a message
up to 3404)

The parse tree scanning unit 3201 scans a node
3505 of the parse tree to sense that "content" is of the
sequence type. Therefore, the tag field '30'
corresponding to the sequence type is generated. 1In
addition, since the sequence type is of the constructor
type, the octet '80' indicating that the length is
unsettled is generated with respect to a length field
(3604 of Fig. 36).

Step 5 (at a time point of reception of a message
up to 3405)

The parse tree scanning unit 3201 scans a node
3506 of the parse tree to sense that "name" is of a
printable string type. Therefore, a tag field '13'
corresponding to the printable string type is generated.
In addition, since the value is "foo", a length field
'03' and a value field '666F6F' are generated (3605 of
Fig. 36).

Step 6 (at a time point of reception of a message
up to 3406)

The parse tree scanning unit 3201 scans a node

10

15

20

25

3507 of the parse tree to sense that "age" is of the

integer type. Therefore, the tag field '02'
corresponding to the integer type is generated. 1In
addition, since the value is 26, the length field '01‘
and a value field '1A' are generated (3606 of Fig. 36).

Step 7 (at a time point of reception of a message
up to 3407)

The parse tree scanning unit 3201 senses that
scanning of a subtree with the node 3505 as a root is
all completed to generate a value field end octet '0000'
corresponding to the length unsettled octet '80'
generated at Step 4 and add the same to the trail (3607
of Fig. 36).

Step 8 (at a time point of reception of a message
up to 3408)

The parse tree scanning unit 3201 scans a node
3508 of the parse tree to sense that the element
"trailer" is of the octet string type. Therefore, a tag
field '04' corresponding to the octet string type is
generated. In addition, since the value is ABCD'H, a
length field '02' and a value field 'ABCD' are generated
(3608 of Fig. 36).

Step 9 (at a time point of reception of a message
up to 3409)

The parse tree scanning unit 3201 senses that
scarning of the parse tree :is all finished to gener:te

the value field end octet '0000' corresponding to tie

10

15

20

25

length unsettled octet '80' generated at Step 1 and add

the same to the trail. (3609 of Fig. 36).

Final results of the encoding of the message
illustrated in Fig. 34 by the conventional message
processing device 32 are shown in Fig. 37. In Fig. 37,
illustrated is a shaped octet string of the results in
order to make clear nesting hierarchies of the encoded
message. As shown in Fig. 37, the encoded message has
each element composed of three fields, a tag (T), a
length (L) and a value (V).

Next, decoding of a message will be described.
Fig. 38 shows input data (ASN.1 transfer syntax 381) to
the conventional message processing device 32 and a
decoding result (ASN.l1 value notation 382) in the case
of decoding. The structure of the ASN.1l value notation
382 is defined by the ASN.l1l abstract syntax of Fig. 33.
In the following, how decoding is conducted by the
conventional message processing device 32 will be
described for each step with reference to Fig. 35 and
Fig. 38. As a flow of decoding, the ASN.1l value notation
382 of Fig. 38 is generated as the parse tree of Fig. 35
is scanned in response to the reception of the ASN.1
transfer syntax 381.

Step 1 (at a time point of reception of a message
up to 3801)

Upor reception of a tag field '30', the parse

tree scanning unit 3201 scans the node 3501 of the parse

10

15

20

25

tree to sense that '30' denotes a tag indicative of the

sequence type. Accordingly, a symbol '{' indicative of
the start of a sequence-type value is generated. Next,
upon reception of a length field '80', the unit 3201
senses that '80' denotes an octet indicating that the
length is unsettled (3811 of Fig. 38).

Step 2 (at a time point of reception of a message
up to 3802)

Upon reception of a tag field '02', the parse
tree scanning unit 3201 scans the node 3502 of the parse
tree to sense that '02' denotes a tag indicative of the
integer type. Next, upon reception of a length field
'01', the unit 3201 senses that a length of the value
field is one octet. Accordingly, the unit 3201 further
reads one octet '03' to decode as the value 3
corresponding to the element "id" (3812 of Fig. 38).

Step 3 (at a time point of reception of a message
up to 3803)

Upon reception of a tag field '81', the parse
tree scanning unit 3201 scans the node 3503 of the parse
tree to sense that '80' denotes a tag indicative of the
context-specific tag [0]. Since here input tag field is
not '80', the parse tree scanning unit 3201 scans the
node 3504 of the parse tree to sense that '81' denotes a
tag indicative of the context-specific tag [1]. Next,
upon reception of the length field '01', the unit 3201

senses that the length of the value field is one octet.

10

15

20

25

Therefore, the unit 3201 further reads one octet '04*' to

decode as the value 4 corresponding to the element
"length" (3813 of Fig. 38).

Step 4 (at a time point of reception of a message
up to 3804)

Upon reception of the tag field '30', the parse
tree scanning unit 3201 scans the node 3505 of the parse
tree to sense that '30' denotes a tag indicative of the
sequence type. The symbol '{' indicative of the start of
the sequence type is accordingly generated. Next, upon
reception of the length field '80', the unit 3201 senses
that '80' denotes an octet indicating that the length is
unsettled (3814 of Fig. 38).

Step 5 (at a time of reception of a message up to
3805)

Upon reception of a tag field '13', the parse
tree scanning unit 3201 scans the node 3506 of the parse
tree to sense that '13' denotes a tag indicative of the
printable string type. Next, upon reception of a length
field '03', the unit 3201 senses that the length of the
value field is three octets. Accordingly, the unit 3201
further reads subsequent three octets '666F6F' to decode
as the value "foo" corresponding to the element "name"
(3815 of Fig. 38).

Step 6 (at a time point of reception of a message
up to 3806)

Upon reception of the tag field '02', the parse

10

15

20

25

tree scanning unit 3201 scans the node 3507 of the parse

tree to sense that '02' denotes a tag indicative of the
integer type. Next, upon reception of the length field
'0l', the unit 3201 senses that the length of the value
field is one octet. Therefore, the unit 3201 further
reads subsequent one octet '1A' to decode as the value
26 corresponding to the element "age" (3816 of Fig. 38).

Step 7 (at a time point of reception of a message
up to 3807)

Upon reception of a field '0000', the parse tree
scanning unit 3201 senses that this denotes an octet
indicative of the end of the value field. Therefore, the
symbol '}' indicative of the end of the sequence type is
generated (3817 of Fig. 38).

Step 8 (at a time point of reception of a message
up to 3808)

Upon reception of a tag field '04', the parse
tree scanning unit 3201 scans the node 3508 of the parse
tree to sense that '04' denotes a tag indicative of the
octet string type. Next, upon reception of a length
field '02', the unit 3201 senses that the length of the
value field is two octets. Accordingly, the unit 3201
further reads subsequent two octets 'ABCD' to decode as
the value ABCD'H corresponding to the element "trailer"
(3818 of Fig. 38).

Stop 9 (at a time point of reception of a message

up to 3809)

10

15

20

25

Upon reception of the field '0000', the parse

tree scanning unit 3201 senses that this is an octet
indicative of the end of the value field. Therefore, the
symbol '}' indicative of the end of the sequence type is
generated (3819 of Fig. 38).

Final results of the decoding of the ASN.1
transfer syntax 381 of Fig. 38 by the conventional
message processing device 32 are as illustrated in the
ASN.1 value notation 382 of Fig. 38.

As described so far, the conventional message
processing devices conform to BER as message encoding
rules (encoding and decoding procedures). More
specifically, the devices premise that at the encoding
of a message, a tag field, a length field and a value
field are generated for each element and at the decoding,
an input message is composed of the above-described
three fields. With the conventional message processing
devices, therefore, it is impossible to encode and
decode a message according to other encoding rules than
BER and accordingly has such problems as mentioned in
the following.

The first problem is that since in a conventional
message processing device conformed to BER, encoding is
always conducted for each element in the format of a tag
field, a length field and a value field, existence of
redundant tag field and length field is irevitable.

Another problem is that since even when obtainable

5
s
25

values in ASN.1 abstract syntax are limited, this

limitation is not at all taken into consideration, and
therefore the contents of a value field can not be
compressed. At the exchange of a message defined by the
ASN.1 abstract syntax between different kinds of devices,
when a channel for exchanging the message has an idle
capacity, use of BER which involves generation of a
redundant field will not cause a serious problem, while
when constraints are imposed on a capacity of a channel,
there will occur a case where it is required to prevent
generation of a redundant field and send and receive a
value compressed as much as possible. However, the
conventional message processing devices can not meet
such demands as mentioned above because they are allowed
to use only BER as encoding rules.

The second problem is that with conventional
message processing devices, there is a possibility that
in an application requiring high-speed data transfer,
satisfactory processing performance can not be obtained.
The reason is that since even if the contents of tagqg,
length and value fields are redundant, the conventional
message processing devices are not allowed to refrain
from generating the above-described fields, resulting in
increasing a time overhead for generating redundant
fields.

The third problem is that use of the convcntional

message processing devices needs a large amount oif

10

20

25

storage region for storing a message to be processed and

temporal data being processed. The reason is that since
even if the contents of tag, length and value fields are
redundant, the conventional message processing devices
are not allowed to refrain from generating the above-
described fields, from when a redundant field is
generated until when the same is output to a user of the
message processing devices, an overhead in a region for
holding a message containing a redundant field within
the device is large.

The fourth problem is that with the conventional
message processing devices, a delay time is long from
when a message to be processed is applied to the message
processing device by a user of the device until when
desired output is obtained. The reason is that since the
conventional message processing devices are not allowed
to refrain from generating tag, length and value fields
even if the contents of said fields are redundant, and
therefore a time overhead for generating redundant
fields is large. In a real-time system etc., stringent
constraints might be imposed in some cases on a time
from when a message to be processed is applied to the
device by a user of the device until when a response
(processing result) is obtained and in such a case, use
of the conventional message processing device might

cause serious inconvenience.

10

20

25

SUMMARY OF THE INVENTION

A first object of the present invention is to

provide a message processing device capable of handling
compressed encoding data and, more particularly, a
message processing device capable of encoding and
decoding a message according to PER and a method
therefor.

A second object of the present invention is to
provide a message processing device enabling reduction
in a volume of data sent and received in an environment
in which messages are sent and received between
different kinds of devices and a method therefor.

A third object of the present invention is to
provide a message processing device which can achieve
satisfactory performance even in an application
requiring high-speed data transfer by generating neither
a redundant tag field nor a length field to eliminate a
time overhead for generating a redundant field and a
method therefor.

A fourth object of the present invention is to
provide a message processing device capable of encoding
and decoding a message even with a smaller storage
region and a method therefor.

A fifth object of the present invention is to
provide a message processing device enabling a delay
time to be minimized from when a message o be processed

is applied to the device until when a desired result is

10

20

25

obtained and a method therefor.

According to the first aspect of the invention, a
message processing device for sending and receiving a
message composed of one or more elements between
different kinds of devices, comprises

parse tree holding means having a function of
holding a parse tree generated from syntax descriptions
defining structure of a message sent or received,

parse tree scanning means connected to the parse
tree holding means and having a function of, as message
data to be processed is applied, scanning the parse tree
to encode and decode a value and outputting encoded and
decoded values,

preamble processing means connected to the parse
tree scanning means and having a function of processing
a preamble field of a message for use in indicating
whether an element exists or not in message data sent or
received, and

index processing means connected to the parse
tree scanning means and having a function of processing
an index field of a message for use in indicating what
number of element is selected in message data whose one
of a plurality of elements is selected to be sent or
received.

In the preferred construction, the preamble
rrocessing means compriscs a counter having a fuxnction

of receiving input of a signal indicating whether a node

10

15

20

25

being scanned is omissible and when the signal indicates

that the node is omissible, counting up a count value
and outputting the count value to a decoder which will
be described later, a decoder having a function of
decoding a count value of the counter and outputting the
decoded value as a write enable signal to each of flip-
flops constituting a register which will be described
1ater,'a first multiplexer having a function of
receiving input of a signal indicating which processing
of encoding and decoding is being executed, and when the
signal indicates encoding, outputting a signal
indicating whether an element corresponding to a node in
the parse tree being scanned exists or not to a register
which will be described later and when the signal
indicates decoding, outputting a preamble field input
signal to the register which will be described later, a
register having a function of receiving input of the
signal from the first multiplexer and the write enable
signal from the decoder, and for a flip-flop to which
the write enable signal is effective, reading the signal
from the multiplexer and holding the contents of the
signal and for a flip-flop to which the write enable
signal is not effective, keeping holding the currently
held contents, as well as outputting the currently held
contents as a preamble field output signal, and a second
multiplexer having a function of receiving input of the

preamble field output signal from the register and the

10

20

25

count value from the counter and outputting the contents

of a bit at a bit position corresponding to the count
value in a preamble field as an instruction signal
giving an instruction to decode an element corresponding
to the subsequent node.

In another preferred construction, the index
processing means comprises a counter having a function
of receiving input of a signal indicating whether a node
of the parse tree corresponding to a message whose one
of a plurality of elements is selected to be sent or
received is being scanned and when the node in question
is being scanned, counting up a count value and
outputting the count value to a first register and a
comparator which will be described later, as well as
outputting the count value as an index value output
signal, a first register having a function of receiving
input of the count value and a signal indicating whether
a node corresponding to a selected element of a message
whose one of a plurality of elements is selected to be
sent or received is being scanned or not, and when the
node in question is being scanned, outputting the
currently held contents as an index field output signal
and when the node in question is not being scanned,
holding the count value, a second register having a
function of receiving input of an index field input
signal and holding the index field input signal, as well

as outputting the currently held contenis to a

10

20

25

comparator which will be described later, and a

comparator having a function of receiving input of the
count value and the signal from the second register and
comparing the contents of the two, and when the contents
coincide with each other, outputting an instruction
signal giving an instruction to decode a value of an
element corresponding to a node of the parse tree
corresponding to the currently output index value.

In another preferred construction, the preamble
processing means handles a preamble to instruct the
parse tree scanning means to scan only a node of the
parse tree corresponding to an element existing in
message data sent or received, thereby eliminating the
need of scanning of a node whose scanning is not
required.

In another preferred construction, the preamble
processing means comprises a counter having a function
of receiving input of a signal indicating whether a node
being scanned is omissible and when the signal indicates
that the node is omissible, counting up a count value
and outputting the count value to a decoder which will
be described later, a decoder having a function of
decoding a count value of the counter and outputting the
decoded value as a write enable signal to each of flip-
flops constituting a register which will be described
later, a first multiplexer having a function of

receiving input of a siygnal indicating which processing

10

15

20

25

of encoding and decoding is being executed, and when the

signal indicates encoding, outputting a signal
indicating whether an element corresponding to a node in
the parse tree being scanned exists or not to a register
which will be described later and when the signal
indicates decoding, outputting a preamble field input
signal to the register which will be described later, a
register having a function of receiving input of the
signals from the first multiplexer and the write enable
signal from the decoder, and for a flip-flop to which
the write enable signal is effective, reading the signal
from the multiplexer and holding the contents of the
signal and for a flip-flop to which the write enable
signal is not effective, keeping holding the currently
held contents, as well as outputting the currently held
contents as a preamble field output signal, and a second
multiplexer having a function of receiving input of the
preamble field output signal from the register and the
count value from the counter and outputting the contents
of a bit at a bit position corresponding to the count
value in a preamble field as an instruction signal
giving an instruction to decode an element corresponding
to the subsequent node, and

the preamble processing means handles a preamble
to instruct the parse tree scanning means to scan only a
node of the parse tree correspcading to an element

existing in message data sent or received, thereby

10

20

25

- 25 -

eliminating the need of scanning of a node whose
scanning is not required.

In another preferred construction, in the
encoding of a message, when message data is applied,
examination is made whether an element yet to be encoded
exists in the message data or not,

when there is no element yet to be encoded, an
encoding result of each element linked after a preamble
is output as an encoding result,

when an element yet to be encoded exists, the
parse tree scanning means scans a subsequent node of the
parse tree to examine whether the element in question is
an omissible element or not, when the element in
question is not an omissible element, the parse tree
scanning means examines whether the node in question is
a node corresponding to the element yet to be encoded
and when the node in question is not the corresponding
node, the routine again returns to the examination
whether an element yet to be encoded exists or not,

when the node is the corresponding node, the
element in question is encoded to again return to the
examination whether an element yet to be encoded exists
or not,

when the element in question is an omissible
element, the parse tree scanning means gives an
instruction to the preamble processing means to generate

a 1-bit field in the preamble processiiig means which

10

20

25

- 26 -

field is then linked to the trail of the existing
preamble and the parse tree scanning means examines
whether the node in question is a node corresponding to
the element yet to be encoded, and when the node is not
the corresponding node, the parse tree scanning means
gives an instruction to the preamble processing means to
set the contents of the field generated in the preamble
processing means to the contents indicating that
"omissible element is omitted"” and again return to the
examination whether an element yet to be encoded exists,

and

when the node in question is a node corresponding

to the element yet to be encoded, the parse tree
scanning means gives an instruction to the preamble
processing means to set the contents of the field
generated in the preamble processing means to the
contents indicating that "omissible element is not
omitted" and encodes the element in question to again
return to the examination whether an element yet to be
encoded exists.

In another preferred construction, in the
decoding of a message,

when message data is applied, first a preamble
field is read and stored in the preamble processing
means,

a variable indicative of a bit positiom in the

preamble field is initialized to 0,

10

20

25

- 27 =

examination is made whether there exists an
element yet to be decoded in the message data,

when no element yet to be decoded exists, a
decoding result of each element is output,

when an element yet to be decoded exists, the
parse tree scanning means scans the subsequent node of
the parse tree to examine whether an element
corresponding to the node in question is an omissible
element and when the element in question is not an
omissible element, decodes the element in question to
again return to the examination whether an element yet
to be decoded exists,

when the element in question is an omissible
element, if the contents of the current bit position in
the preamble field indicate that "omissible element is
omitted", 1 is added to a variable indicative of the
current bit position to return to the examination
whether an element yet to be decoded exists, and

if the contents of the current bit position in
the preamble field indicate that "omissible element is
not omitted", the element in question is decoded and 1
is added to the variable indicative of the current bit
position to return to the examination whether an element
yet to be decoded exists.

In another preferred construction, the preamble
proceszing means handles a preamble to instruct the

parse iree scanning means to scan only a node of the

10

20

25

-~ 28 -

parse tree corresponding to an element existing in
message data sent or received, thereby eliminating the
need of scanning of a node whose scanning is not
required,

the parse tree is stored in a continuous region
on a storage region of the parse tree holding means, and

in the decoding of a message,

when message data is applied, first a preamble
field is read and stored in the preamble processing
means,

a variable indicative of a bit position in the
preamble field is initialized to O,

an address of a node being currently scanned is
stored in a variable indicative of an address of a node
of the parse tree,

examination is made whether there exists an
element yet to be decoded in the message data,

when no element yet to be decoded exists, a
decoding result of each element is output,

when an element yet to be decoded exists,
examination is made whether the element in question is
an omissible element and when the element in question is
not an omissible element, an address of the subsequent
node is stored in the variable indicative of an address
of a node of the parse tree, the node of the parse tree
having the address in question is scarned and the

element in question is decoded to return to the

10

[XX XY
3

e® oo
*

20

L1 X X3
oo

25

- 29 -

examination whether an element yet to be decoded exists,

when the element in question is an omissible
element, if the contents of the current bit position in
the preamble field indicate that "omissible element is
omitted”, the address of the subsequent node is stored
in the variable indicative of an address of a node of
the parse tree and 1 is added to a variable indicative
of the current bit position to return to the examination
whether an element yet to be decoded exists, and

if the contents of the current bit position in
the preamble field indicate that "omissible element is
not omitted", the address of the subsequent node is
stored in the variable indicative of an address of a
node of the parse tree, the node of the parse tree
having the address in question is scanned, the element
in question is decoded and 1 is added to the variable
indicative of the current bit position to return to the
examination whether an element yet to be decoded exists.

In another preferred construction, the index
processing means handles an index to instruct the parse
tree scanning means to scan only a node of the parse
tree corresponding to a selected element in message data
sent or received, thereby eliminating the need of
scanning of a node whose scanning is not required.

In another preferred construction, in the
encoding of a message,

when message Jdata is applied, examination is made

10

20

25

- 30 -

whether a node of the parse tree being currently scanned
is a node corresponding to a selected element and when
the node is not the corresponding node, the index
processing means adds 1 to a current index value and the
parse tree scanning means scans the subsequent node of
the parse tree to again return to the examination
whether the node being scanned corresponds to the
selected element, and

when the node is the corresponding node, the
index processing means encodes the current index value
and the parse tree scanning means encodes the element in
question to output the encoding results of the index
value and the element in question linked together.

In another preferred construction, in the
decoding of a message,

when message data is applied, first an index
field is read and stored in the index processing means,

the contents of the index field are decoded to
obtain an index value,

a variable indicative of a choice number is
initialized to 0,

the parse tree scanning means scans a subsequent
node of the parse tree,

examination is made whether the variable and the
index value are equal and if the two values are not
equal, 1 is added to the variable to again return to

scanning of a subsequent node of the parse tree, and

10

15

20

25

- 31 -~

when the variable and the index value are equal,
the element in question is decoded.

In another preferred construction, the index
processing means handles an index to instruct the parse
tree scanning means to scan only a node of the parse
tree corresponding to a selected element in message data
sent or received, thereby eliminating the need of
scanning of a node whose scanning is not required,

the parse tree is stored in a continuous region
on a storage region of the parse tree holding means, and

in the decoding of a message,

when message data is applied, first an index
field is read and stored in the index processing means,

the contents of the index field are decoded to
obtain an index value,

an address of a node being currently scanned is
stored in a variable indicative of an address of a node
of the parse tree, and

the parse tree scanning means scans a node of the
parse tree to be referred to by a sum of the variable
and a product of the size of a storage region necessary
for holding one node of the parse tree and the index
value to decode the element in question.

In another preferred construction, the preamble
processing means handles a preamble to instruct the
parse tree scanning means to scan only a node of the

parse tree corresponding to an element existing in

10

20

25

- 32 -

message data sent or received, and the index processing
means handles an index to instruct the parse tree
scanning means to scan only a node of the parse tree

corresponding to a selected element in message data sent

" or received, thereby eliminating the need of scanning of

a node whose scanning is not required.

In another preferred construction, the parse tree
holding means holds such a parse tree generated from
syntax descriptions defining structure of a message sent
or received as having a node format made up of six
fields, "type of element", "tag attached to element",
"constraints on element”, "whether element is omissible",
"pointer to subsequent node in the same nesting
hierarchy" and "pointer to node in lower nesting
hierarchy".

In another preferred construction, a message
whose structure is defined by the abstract syntax
notation one (ASN.l) is handled according to the packed
encoding rules (PER).

According to the second aspect of the invention,
a message processing method of sending and receiving a
message composed of one or more elements between
different kinds of devices and processing the message,
comprising the steps of

holding a parse tree generated from syntax
descriptions defining structure of a message sent or

received,

10

svoee
L

o []

s
.

L 1]

L3 L X]

s ¢ >

L X X .
e 6o

[3

.
o oo

20

25

- 33 -

as message data to be processed is applied,
scanning the parse tree to encode and decode a value and
outputting encoded and decoded values,

processing a preamble field of a message for use
in indicating whether an element exists or not in
message data sent or received, and

processing an index field of a message for use in
indicating what number of element is selected in message
data whose one of a plurality of elements is selected to
be sent or received.

In the preferred construction, the message
encoding step comprises the steps of

when message data is applied, examining whether
an element yet to be encoded exists in the message data
or not,

when there is no element yet to be encoded,
outputting an encoding result of each element linked
after a preamble as an encoding result,

when an element yet to be encoded exists,
scanning a subsequent node of the parse tree to examine
whether the element in question is an omissible element
or not, when the element in question is not an omissible
element, examining whether the node in question is a
node corresponding to the element yet to be encoded and
when the node in question is not the corresponding node,
agair returning to the examination whether an element

yet to be encoded exists or not,

10

(XXX]
» L
o L]
(X X))

L
e
o0

e e00 o
o
o0 o0

0:0005 15

o eeo

20

°
(XX X]

o000
(XXX)

(XXX]

25

- 34 -

when the node is the corresponding node, encoding
the element in question to again return to the
examination whether an element yet to be encoded exists
or not,

when the element in question is an omissible
element, generating a 1-bit field, linking the field to
the trail of the existing preamble and examining whether
the node in question is a node corresponding to the
element yet to be encoded, and when the node is not the
corresponding node, setting the contents of the
generated field to the contents indicating that
"omiséible element is omitted" to again return to the
examination whether an element yet to be encoded exists,
and

when the node in question is a node corresponding
to the element yet to be encoded, setting the contents
of the generated field to the contents indicating that
"omissible element is not omitted" and encoding the
element in question to again return to the examination
whether an element yet to be encoded exists.

| In another preferred construction, the message

decoding step comprises the steps of

when message data is applied, first reading and
storing a preamble field,

initializing a variable indicative of a bit
position in the preamble field to O,

examining whether there exists an element yet to

10

15

25

- 35 -

be decoded in the message data,

when no element yet to be decoded exists,
outputting a decoding result of each element,

when an element yet to be decoded exists,
scanning the subsequent node of the parse tree to
examine whether an element corresponding to the node in
question is an omissible element and when the element in
question is not an omissible element, decoding the
element in question to again return to the examination
whether an element yet to be decoded exists,

when the element in question is an omissible
element, if the contents of the current bit position in
the preamble field indicate that "omissible element is
omitted", adding 1 to a variable indicative of the
current bit position to return to the examination
whether an element yet to be decoded exists, and

if the contents of the current bit position in
the preamble field indicate that "omissible element is
not omitted", decoding the element in question and
adding 1 to the variable indicative of the current bit
position to return to the examination whether an element
yet to be decoded exists.

In another preferred construction, in the
preamble processing step,

the parse tree is stored in a continuos region on
a storage region, ard

the message decoding step comprises the steps of

10

15

25

- 36 -

when message data is applied, first reading and
storing a preamble field,

initializing a variable indicative of a bit
position in the preamble field to 0,

storing an address of a node being currently
scanned in a variable indicative of an address of a node
of the parse tree,

examining whether there exists an element yet to
be decoded in the message data,

when no element yet to be decoded exists,
outputting a decoding result of each element,

when an element yet to be decoded exists,
examining whether the element in question is an
omissible element and when the element in question is
not an omissible element, storing an address of a
subsequent node in the variable indicative of an address
of a node of the parse tree, scanning the node of the
parse tree having the address in question and decoding
the element in question to return to the examination
whether an element yet to be decoded exists,

when the element in question is an omissible
element, if the contents of the current bit position in
the preamble field indicate that "omissible element is
omitted", storing an address of a subsequent node in the
variable indicative of an address of a node of the parse
tree and adding 1 to a varicble indicative of the

curient bit position to return to the examination

10

25

- 37 =

whether an element yet to be decoded exists, and

if the contents of the current bit position in
the preamble field indicate that "omissible element is
not omitted", storing an address of a subsequent node in
the variable indicative of an address of a node of the
parse tree, scanning the node of the parse tree having
the address in question, decoding the element in
question and adding 1 to the variable indicative of the
current bit position to return to the examination
whether an element yet to be decoded exists.

In another preferred construction, the message
encoding step comprises the steps of

when message data is applied, examining whether a
node of the parse tree being scanned is a node
corresponding to a selected element and when the node is
not the corresponding node, adding 1 to an index value
being operated and scanning the subsequent node of the
parse tree to again return to the examination whether
the node being scanned corresponds to the selected
element, and

when the node is the corresponding node, éncoding
the index value being operated and encoding the element
in question to output the encoding results of the index
value and the element in question linked together.

In another preferred construction, the message
decoding stzp comprises the steps cf

when message data is applied, first reading and

10

25

- 38 -

storing an index field,

decoding the contents of the index field to
obtain an index value,

initializing a variable indicative of a choice
number to 0,

scanning a subsequent node of the parse tree,

examining whether the variable and the index
value are equal and if the two values are not equal,
adding 1 to the variable to again return to scanning of
a subsequent node of the parse tree, and

when the variable and the index value are equal,
decoding the element in question.

In another preferred construction, in the
preamble processing step,

the parse tree is stored in a continuos region on
a storage region, and

the message decoding step comprises the steps of

when message data is applied, first reading and
storing an index field,

decoding the contents of the index field to
obtain an index value,

storing an address of a node being currently
scanned in a variable indicative of an address of a node
of the parse tree, and

scanning a node of the parse tree to be referred
to by a sum of the variable and a product cf the size of

a storage region necessary for holding one node of the

10

25

- 39 -

parse tree and the index value to decode the element in
question.

According to another aspect of the invention, a
computer readable memory storing a control program which
controls a message processing device for sending and
receiving a message composed of one or more elements
between different kinds of devices, the control program
comprising the steps of

holding a parse tree generated from syntax
descriptions defining structure of a message sent or
received,

as message data to be processed is applied,
scanning the parse tree to encode and decode a value and
outputting encoded and decoded values,

processing a preamble field of a message for use
in indicating whether an element exists or not in
message data sent or received, and

processing an index field of a message for use in
indicating what number of element is selected in message
data whose one of a plurality of elements is selected to
be sent or received.

Other objects, features and advantages of the
present invention will become clear from the detailed

description given herebelow.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will be understood more

10

15

26

- 40 -

fully from the detailed description given herebelow and
from the accompanying drawings of the preferred
embodiment of the invention, which, however, should not
be taken to be limitative to the invention, but are for
explanation and understanding only.

In the drawings:

Fig. 1 is a block diagram showing structure of a
message processing device as one form of an embodiment
of the present invention;

Fig. 2 is a block diagram showing structure of a
preamble processing unit in the message processing
device according to the present embodiment;

Fig. 3 is a block diagram showing structure of an
index processing unit in the message processing device
according to the present embodiment;

Fig. 4 is a diagram showing a format of a node of
a parse tree for use in the message processing device of
the present embodiment;

Fig. 5 is a diagram showing examples of ASN.1
abstract syntax and a parse tree corresponding thereto;
Fig. 6 is a flow chart showing a flow of
processing to be conducted for encoding an integer-type
value in the message processing device of the present

embodiment;

Fig. 7 is a flow chart showing a flow of
processing to be conducted for decoding an integer-type

value in the message processing device of the present
p

10

15

20

25

- 41 =~

embodiment;
Fig. 8 is a diagram showing an example of

encoding and decoding of a value of the integer type in

the message processing device of the present embodiment;

Fig. 9 is a flow chart showing a flow of
processing to be conducted for encoding a value of a
sequence type or a set type value in the message
processing device of the present embodiment;

Fig. 10 is a flow chart showing a flow of
processing to be conducted for decoding a value of a
sequence-type or set-type value in the message
processing device of the present embodiment;

Fig. 11 is a diagram showing an example of
encoding and decoding of a sequence-type value by the
message processing device of the present embodiment;

Fig. 12 is a flow chart showing a flow of
processing to be conducted for encoding a value of a
choice type in the message processing device of the
present embodiment;

Fig. 13 is a flow chart showing a flow of
processing to be conducted for decoding a value of a
choice type in the message processing device of the
present embodiment;

Fig. 14 is a diagram showing an example of
encoding and decoding of a choice-type value by the

message processing device of the present embodiment;

Fig. 15 is a diagram showing an example of ASN.1

10

15

25

- 42 -

abstract syntax for use in explaining an embodiment of
the message processing device according to the present
embodiment;

Fig. 16 is a diagram showing an example of a
value notation of a message defined by the abstract
syntax of Fig. 15;

Fig. 17 is a diagram showing a parse tree
generated based on the abstract syntax of Fig. 15;

Fig. 18 is a diagram showing, in the embodiment
of the message processing device according to the
present embodiment, an internal state and output of the
message processing device at a time when Step 1 is
completed in the encoding of the message of Fig. 16;

Fig. 19 is a diagram showing, in the embodiment
of the message processing device according to the
present embodiment, an internal state and output of the
message processing device at a time when Step 2 is
completed in the encoding of the message of Fig. 16;

Fig. 20 is a diagram showing, in the embodiment
of the message processing device according to the
present embodiment, an internal state and output of the
message processing device at a time when Step 3 is
completed in the encoding of the message of Fig. 16;

Fig. 21 is a diagram showing, in the embodiment
of the message processing device‘according to the
prasent embodiment, an internal state and output of the

message processing device at a time when Step 4 is

10

15

20

25

- 43 -

completed in the encoding of the message of Fig. 16;
Fig. 22 is a diagram showing, in the embodiment
of the message processing device according to the
present embodiment, an internal state and output of the
message processing device at a time when Step 5 is
completed in the encoding of the message of Fig. 16;
Fig. 23 is a diagram showing, in the embodiment
of the message processing device according to the
present embodiment, an internal state and output of the
message processing device at a time when Step 6 is
completed in the encoding of the message of Fig. 16;
Fig. 24 is a diagram showing, in the embodiment
of the message processing device according to the
present embodiment, an internal state and output of the
message processing device at a time when Step 7 is
completed in the encoding of the message of Fig. 16;
Fig. 25 is a diagram showing, in the embodiment
of the message processing device according to the
present embodiment, an internal state and output of the
message processing device at a time when Step 8 is
completed in the encoding of the message of Fig. 16;
Fig. 26 is a diagram showing, in the embodiment
of the message processing device according to the
present embodiment, an internal state and output of the
message processing device at a time when Step 9 is
completed in the encoding of the message of Fig. 16;

Fig. 27 is a diagram showing, in the embodiment

10

15

25

- 44 -

of the message processing device according to the
present embodiment, an internal state and output of the
message processing device at a time when Step 10 is
completed in the encoding of the message of Fig. 16;

Fig. 28 is a diagram showing encoding results
obtained when the message of Fig. 16 is encoded in the
embodiment of the message processing device according to
the present embodiment;

Fig. 29 is a diagram showing a form in which a
parse tree is held at a parse tree holding unit in a
second embodiment of the message processing device
according to the present embodiment;

Fig. 30 is a flow chart showing a flow of
processing to be conducted for decoding a sequence-type
or set-type value in the second embodiment of the
message processing device according to the present
embodiment;

Fig. 31 is a flow chart showing a flow of
processing to be conducted for decoding the choice type
in the second embodiment of the message processing
device according to the present embodiment;

Fig. 32 is a block diagram showing structure of a
conventional message processing device;

Fig. 33 is a diagram showing an example of ASN.1l
abstract syntax for use in explaining the conventional
message processing device;

Fig. 34 is a diagram showing an e¢xample of value

Py

10

15

20

25

- 45 -

notation of a message defined by the abstract syntax of
Fig. 33;

Fig. 35 is a diagram showing a parse tree
generated based on the abstract syntax of Fig. 33;

Fig. 36 is a diagram showing a flow of encoding
processing for encoding the message of Fig. 34 by the
conventional message processing device;

Fig. 37 is a diagram showing encoding results
obtained by the encoding of the message of Fig. 34 by
the conventional message processing device;

Fig. 38 is a diagram showing an example of
decoding results obtained by a conventional message

processing device.

DESCRIPTION OF THE PREFERRED EMBODIMENT

The preferred embodiment of the present invention

will be discussed hereinafter in detail with reference
to the accompanying drawings. In the following
description, numerous specific details are set forth in

order to provide a thorough understanding of the present

invention. It will be obvious, however, to those skilled

in the art that the present invention may be practiced
without these specific details. In other instance, well-
known structures are not shown in detail in order to
unnecessary obscure the present invention.

Fig. 1 is a block diagram schematically chowing

structure of a message piocessing device accordiig to an

10

15

25

- 46 -

embodiment of the present invention. As illustrated in
Fig. 1, a message processing device 10 of the present
embodiment includes a parse tree holding unit 104, a
parse tree scanning unit 101, a preamble processing unit
102 and an index processing unit 103. In Fig. 1,
illustration is made only of a characteristic part of
the structure of the present embodiment and that of the
remaining common part is omitted.

Each component of the message processing device
according to the present embodiment is realized by a
program-controlled device in a computer system such as a
workstation or a personal computer. A computer program
which controls the processing device is provided as
storage in a storage medium such as a magnetic disk or a
semiconductor memory and is loaded into the processing
device to execute functions as will be described in the
following.

The parse tree holding unit 104 has a function of
holding a parse tree 105 generated from an ASN.1
abstract syntax 108. The parse tree scanning unit 101
has a function of, upon application of an ASN.1l value
notation 106 (message to be processed), sending and
receiving instructions to and from the preamble
processing unit 102 and the index processing unit 103 to
scan the parse tree 105 and encoding a value to generate
an ASN.1 transfer syntax 107 (encoding result), as well

as a function of, upon application of the ASN.1 transfer

10

15

20

25

- 47 -

syntax 107 (message to be processed), sending and
receiving instructions to and from the preamble
processing unit 102 and the index processing unit 103 to
scan the parse tree 105 and decoding a value to generate
the ASN.1l value notation 106 (decoding result).

The preamble processing unit 102, at the encoding
of a value, when a sequence-type or set-type element is
designated as optional or default, generates a bit field
called preamble and sets each bit in the preamble at a
predetermined value ('l' when an element exists and '0'
when no element exists) based on an instruction from the
parse tree scanning unit 101. The preamble processing
unit 102 also has a function of, at the decoding of a
value, analyzing an input preamble to instruct the parse
tree scanning unit 101 on a node of the parse tree 105
to be scanned next.

The index processing unit 103 has a function of,
at the encoding of a value, counting an index value
based on an instruction from the parse tree scanning
unit 101 to genefate an index field when handling a
choice-type element. The index processing unit 102 also
has a function of, at the decoding of a value, analyzing
an input index field to instruct the parse tree scanning
unit 101 on a node of the parse tree 105 to be scanned
next.

Description will be next made of structure of the

preamble processing unit 102 of the message processing

10

15

20

25

- 48 -

device according to the present embodiment. Fig. 2 is a
block diagram schematically showing structure of the
preamble processing unit 102 at the message processing
device 10 of the present embodiment. As illustrated in
Fig. 2, the preamble processing unit 102 of the present
embodiment includes a counter 201, a decoder 202, a
first multiplexer 203, a register 204 and a second
multiplexer 205.

Input/output signals related to the preamble
processing unit 102 are a preamble field input signal
211 for the decoding of a message, a preamble field
output signal 212 for the encoding of a message, a
signal 213 applied from the parse tree scanning unit and
indicating whether a node being scanned is designated as
optional or default, a signal 214 applied from the parse
tree scanning unit and indicating whether an element
corresponding to a node being scanned exists, a signal
215 applied from the parse tree and indicating which
processing of encoding and decoding is currently being
executed, and a signal 216 which is to be output to the
parse tree scanning unit and gives an instruction to
scan the next node and decode an element corresponding
to the node.

The counter 301 has a function of receiving input
of the signal 213 indicating whether a node being
scanned is designated ac optional or as default and when

the signal 213 indicates that the node is designated as

10

15

20

25

- 49 -

such, counting up a count value and outputting the count
value to the decoder 202. The decoder 202 has a function
of receiving and decoding said count value and
outputting the decoded value as a write enable signal to
each of the flip-flops constituting the register 204.

The first multiplexer 203 has a function of
receiving input of the signal 215 indicating which
processing of encoding and decoding is being currently
executed and when the signal 215 indicates encoding,
outputting the signal 214 to the register 204 and when
the signal 215 indicates decoding, outputting the signal
211 to the register 204. The register 204 has a function
of receiving input of the signal from the first
multiplexer 203 and a write enable signal from the
decoder 202, and for a flip-flop to which said write
enable signal is effective, reading the signal from the
first multiplexer 203 and holding the contents and for a
flip-flop to which said write enable signal is not
effective, keeping holding the currently held contents
and further outputting the currently held contents as
the signal 212 and outputting the same to the second
multiplexer 205.

The second multiplexer 205 has a function of
receiving input of the preamble field output signal 212
from the register 204 and a count value from the counter
202 to output, to the parse trec scanning unit, the

contents of a bit at a bit position corresponding to the

10

15

20

25

- 50 -

count value in the preamble field as the instruction
signal 216 which gives an instruction to decode an
element corresponding to the subsequent node.

Description will be next made of structure of the
index processing unit 103 of the message processing
device according to the present embodiment. Fig. 3 is a
block diagram schematically showing structure of the
index processing unit 103 in the message processing
device 10 of the present embodiment. As illustrated in
Fig. 3, the index processing unit 103 of the present
embodiment includes a counter 301, a first register 302,
a second register 303 and a comparator 304.

Input/output signals related to the index
processing unit 103 are an index field input signal 311
for the decoding of a message, an index value output
signal 312 for the decoding of a message, an index field
output signal 313 for the encoding of a message, a
signal 314 applied from the parse tree scanning unit and
indicating whether a subtree with a choice-type node as
a root node is currently being scanned or not, a signal
315 applied from the parse tree scanning unit and
indicating whether a node corresponding to a selected
choice-type element is being scanned or not, and a
signal 316 which is to be output to the parse tree
scanning unit and gives an instruction to decode a value
of an element corresponding to a node cf the parse tree

corresponding to an index value being currently output.

10

16

20

25

- 51 -

The counter 201 has a function of receiving input
of the signal 314 indicating whether a subtree with a
choice-type node as a root node is being scanned and
when the signal 314 indicates that the subtree in
question is being scanned, counting up a count value,
outputting the count value to the first register 302 and
the comparator 304 and outputting the count value as the
index value output signal 312.

The first register 302 has a function of
receiving input of said count value and the signal 315
indicating whether a node corresponding to a selected
choice-type element is being scanned or not and when the
signal 315 indicates that the node in question is being
scanned, outputting the currently held contents as the
index field output signal 313 and when the signal 315
indicates that the node in question is not being scanned,
holding said count value.

The second register 303 has a function of
receiving input of the index field signal 311 and
holding the signal 311, as well as outputting the
currently held contents to the comparator 314. The
comparator 314 has a function of receiving input of said
count value and a signal from the second register 303
and comparing the contents of the two, and when the
contents coincide with each other, outputting the signal
316 which gives instruction to decode a value cf an

element corresponding Lo a node of the parse tiee

10

15

20

25

- 52 =

corresponding to the currently output index value.

Next, description will be made of the parse tree
105 held by the parse tree holding unit 104 of the
message processing device 10 according to the present
embodiment. The parse tree 105 can be generated from the
ASN.1 abstract syntax 108 using an ASN.l compiler or
other technique. Fig. 4 is a diagram showing a format of
a node of the parse tree 105. As illustrated in Fig. 4,
one node of the parse tree 105 is composed of six fields.

A first field 401 is a field indicative of a type
of element of the ASN.1 abstract syntax 108
corresponding to a node. A second field 402 is a field
indicative of a tag (application tag, context-specific
tag, etc.) attached to the element of the ASN.1 abstract
syntax 108 corresponding to the node. A third field 403
is a field indicative of constraints (range of
obtainable values and range of lengths of values)
imposed on the element of the ASN.1l abstract syntax 108
corresponding to the node. A fourth field 404 is a field
indicating whether the element of the ASN.1 abstract
syntax 108 corresponding to the node is designated as
optional or default. A fifth field 405 is a field which
stores, with respect to the element in the ASN.1
abstract syntax 108 corresponding to the node, a pointer
to a node corresponding to an element existing in the
same nosting hierarchy as and cubsequent to the former

elemenc. A sixth field 406 stores, with respect to the

10

15

20

25

- 53 =

element in the ASN.1 abstract syntax 108 corresponding
to the node, a pointer to a node corresponding to an
element existing in the nesting hierarchy lower by one
than the former element. For example, a parse tree
corresponding to the ASN.1 abstract syntax 501 of Fig. 5
is that denoted by 502 in Fig. 5.

(Description of Operation)

Next, how the message processing device 10
operates in the present embodiment will be described.
Description will be made with respect to three cases, a
case of handling the sequence type or the set type
(where the parse tree scanning unit 101 sends and
receives instructions to and from the preamble
processing unit 102 to operate), a case of handling the
choice type (where the parse tree scanning unit 101
sends and receives instructions to and from the index
processing unit 103 to operate) and a case of handling
the other types than these (where the parse tree
scanning unit 101 operates without sending and receiving
instructions to and from either of the preamble
processing unit 102 and the index processing unit 103).

Case 1 (where other types than the sequence type,
the set type and the choice type are handled)

In encoding, as the ASN.1 value notation 106
(input data to be encoded) is applied, the parse tree
scanning unit 101 scans the parse tree 105 held by the

parse tree holding unit 104 to conduct encoding

10

15

20

25

- 54 -

according to a type of element in question indicated in
the first field of a node of the parse tree 105. At the
encoding, data length of an encoding result is
compressed using constraints on the element of the type
in question which is indicated in the third field of the
node of the parse tree.

In decoding, as the ASN.1 transfer syntax 107
(input data to be decoded) is applied, the parse tree
scanning unit 101 scans the parse tree 105 held by the
parse tree holding unit 104 to conduct decoding
according to a type of element in question indicated in
the first field of a node of the parse tree 105. At the
decoding, determination is made in which compression
format the data to be decoded is compressed by making
use of the constraints on the element of the type in
question which is indicated in the third field of the
node of the parse tree to decode the data as a value of
the element in question.

As an example of Case 1, a flow chart of the
processing for encoding an integer-type element is shown
in Fig. 6. In the encoding of an integer-type value, the
parse tree scanning unit 101 scans a node in question of
the parse tree 105 to examine the third field (Step 601).
When there is no constraint, encode the number of octets
necessary for encoding the value as a length field and
encode the value itself as a value field to finish the

processing (Steps 60€ and 607). With constraints,

10

15

20

25

- 55 -

examination is made whether an upper bound and a lower
bound of obtainable values coincide with each other or
not (Step 602). When they coincide with each other,
output nothing to finish the processing (Step 608). When
they fail to coincide with each other, examination is
made whether the upper bound and the lower bound of
obtainable values are both settled (Step 603). When they
are settled, encode an offset value from the lower bound
of obtainable values as a value field to finish the
processing (Step 609). Whey they are not settled, encode
the number of octets necessary for encoding the offset
value from the lower bound of obtainable values as a
length field and encode the offset value as a value
field to finish the processing (Steps 604 and 605).

Next, a flow chart of the processing for decoding
an integer-type element is shown in Fig. 7. 1In the
decoding of an integer-type value, the parse tree
scanning unit 101 scans a node in question of the parse
tree 105 to examine the third field (Step 701).

When there is no constraint, read a length field
to obtain the number n of octets of a value field (Step
707). Next, read n octets of the input data and decode
the same to output as an integer-type value (Steps 708
and 709). With constraints, examine whether an upper
bound and a lower bound of obtainable values coincide
with cach other (Step 702). When they coincide with cach

other, output a value of the upper bound (which is also

10

15

20

25

- 56 -

the lower bound) of obtainable values as an integer-type
value (Step 710). When they fail to coincide with each
other, examine whether the upper bound and the lower
bound of obtainable values are both settled or not (Step
703). When they are settled, read m bits or m octets of
the input and decode the same. (The value of m and
either bit or octet are here determined by upper and
lower bounds of obtainable values. For, example, if th<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>