
(12)
(19)

(54)

(51)6

(21)

(30)

(31)

(43)
(43)

(71)

(72)

PATENT APPLICATION (11) Application No. AU 199918599 A1
AUSTRALIAN PATENT OFFICE

Title
Message processing device and method thereof and storage medium storing
mess age processing control program

International Patent Classification(s)
H04L 029/02

Application No: 199918599 (22) Application Date: 1999.03.04

Priority Data

Number (32) Date (33) Country
10-073401 1998.03.05 JP

Publication Date : 1999.09.16
Publication Journal Date : 1999.09.16

Applicant(s)
NEC Corporation

Inventor(s)
Hiroki Tagato

Agent/Attorney
SPRUSON and FERGUSON,GPO Box 3898,SYDNEY NSW 2001

(74)

Message Processing Device and Method Thereof and Storage

Medium Storing Message Processing Control Program

ABSTRACT OF THE DISCLOSURE

A message processing device (10) for sending and receiving a message
composed of one or more elements between different kinds of devices including a parse
tree holding unit (104) having a function of holding a parse tree (105) generated from
syntax descriptions (108) which define structure of a message sent or received, a parse

io tree scanning unit (101) connected to the parse tree holding unit (104) and having a
function of scanning the parse tree as message data to be processed is applied, encoding
and decoding a value and outputting encoded and decoded values, a preamble
processing unit (102) connected to the parse tree scanning unit (101) and having a
function of processing a preamble field of a message for use in indicating whether an

15 element exists or not in the message data sent or received, and an index processing unit
(103) connected to the parse tree scanning unit (101) and having a function of
processing an index field of a message for use in indicating what number of element is
selected in the message data whose one of a plurality of elements is selected to be sent
or received.

• · ·

• · · ·

(N:\Libccl01654:BFD

7

FIG. 1

• · · ·
• ·

• · ·

• ·

• · · ·
Λ · · ·

• · · ·

S & F Ref: 455626

AUSTRALIA

PATENTS ACT 1990

COMPLETE SPECIFICATION

FOR A STANDARD PATENT

ORIGINAL

Name and Address
of Applicant: NEC Corporation

7-1, Shi ba 5-chome
Minato-ku
Tokyo
JAPAN

Actual Inventor(s): Hiroki Tagato.

Address for Service: Spruson & Ferguson, Patent Attorneys
Level 33 St Martins Tower, 31 Market Street
Sydney, New South Wales, 2000, Australia

Invention Title: Message Processing Device and Method Thereof and
Storage Medium Storing Message Processing Control
Program

The following statement is a full description of this invention, including the
best method of performing it known to me/us:-

5845

4
1

• · · ·
• ·
• ·

• · ·

• · ·

« ·

10

MESSAGE PROCESSING DEVICE AND METHOD THEREOF AND STORAGE

MEDIUM STORING MESSAGE PROCESSING CONTROL PROGRAM

BACKGROUND OF THE INVENTION
FIELD. OF THE INVENTION

The present invention relates to a message

processing device and, more particularly,

processing device for processing messages

Abstract Syntax Notation One (hereinafter

ASN.l) according to Packed Encoding Rules

to a message

defined by

referred to as

(hereinafter

referred to as PER) and a method thereof, and a storage

5

medium which stores a message processing control program.

DESCRIPTION OF THE RELATED ART

Message processing device of this kind is

15 conventionally used in communication between different

kinds of devices to encode a message to be sent into a

format independent of a communication network and upon

reception of a message encoded in a format independent

of a network, decode the message into a format which can

25 to the standards defined by International Organization

for Standardization (hereinafter referred to as ISO),

20 be handled at a reception side. This message processing

device is widely used in the fields of file transfer

systems (File Transfer, Access and Management,

hereinafter referred to as FTAM) and network management.

Because encoding and decoding procedures are conformed

2

the application range of message processing devices is

extremely wide.

Encoding and decoding procedures defined by ISO

are roughly classified into two kinds. These are

5 respectively called Basic Encoding Rules (hereinafter

referred to as BER) (ISO/IEC 8825-1:1995 Information

technology — ASN.l encoding rules: Specification of

Basic Encoding Rules (BER), Canonical Encoding

Rules(CER) and Distinguished Encoding Rules (DER)) and

10 Packed Encoding Rule (hereinafter referred to as PER)

(ISO/IEC 8825-2:1996 Information technology — ASN.l

encoding rules: Specification of Packed Encoding Rules

(PER)). BER and PER will be briefly described in the

15

following.

At present, for encoding and decoding messages

defined by ASN.l abstract syntax, BER is widely employed.

In BER, at the encoding of a message, three fields are

generated for each element value, a tag field for

identifying a type of element in question, a length

20 field indicative of an octet length of an encoded value,

and a value field for storing an actually encoded value.

tag field, a length field and a value field.

At the encoding of a constructor type value, nesting is

also possible in which a value field again includes a

25 In BER, encoding results might be redundant in

some cases because encoding of a value of each element

is always conducted in a format of a tag field, a length

3

field and a value field. PER is a technique of

compressing an encoding result by generating neither a

redundant tag field nor a redundant length field. PER

has the following characteristics.

5 a) No tag field for identifying a type is

generated.

b) A length field is generated only when a

length of a value field can not be settled by ASN.l

abstract syntax descriptions or even if the length can
• · ·

10 be settled, when the value field becomes lengthy.

15

c)

string type

d)

Encoding of a value of Boolean type and bit

is conducted on a bit basis.

In the encoding of sequence-type and set-type

values, information about whether its constituent

element is designated as optional or default is encoded

• · « ·
• ·

• · · ·
··· ·

as a field called preamble.

• · ··

e)

indicating

In the encoding

which element is

of a choice type, information

chosen is encoded as a field

« ·

*

* · · ·
• ·

• · ·

• · · ·
• · · ·

called index

20 f) In the encoding of the set type, encoding is

started in ascending order of numbers of a tag

(application tag, context-specific tag, etc.) attached

to its element.

g) In a case where a constraint is imposed on a

25 range of values of an integer type or the like, a result

of the encoding of the value is compressed by using this

constraint.

4

h) Transfer syntax has two kinds, aligned

transfer syntax in which a bit-basis encoding result is

padded to align on octet boundaries and unaligned

transfer syntax without execution of padding.

5 Conventional message processing devices relate to

BER among the above-described two kinds of encoding

rules and as recited in Japanese Patent Laying-Open

(Kokai) No. Heisei 1-198145, hold a parse tree generated

from ASN.l abstract syntax descriptions which define

10 structure of a message to be encoded and scan said parse

tree as a message to be processed is applied, thereby

encoding the message into three fields, a tag field, a

length field and a value field and decoding, or taking

15

out a value corresponding to each element of abstract

syntax from said three fields. The message processing

device recited in "Institute of Electronics, Information

and Communication Engineers of Japan, 1997 National

Conference Lectures Papers (Communication 2), pp.148,

March, 1997, and "Institute of Electronics, Information

20 and Communication Engineers of Japan, 1997 Communication

Society Conference Lectures Papers, Vol. 2, pp. 145,

September, 1997, realizes message processing by hardware

by generating, from said parse tree, a finite-state

machine (hereinafter referred to as FSM) corresponding

One example of conventional message processing

25 to the tree and using the FSM at the encoding and

decoding.

5

devices will be described with reference to a drawing.

Schematic block diagram of structure of a conventional

message processing device is shown in Fig. 32. As

illustrated in Fig. 32, a conventional message

5 processing device 32 includes a parse tree scanning unit

3201 and a parse tree holding unit 3202.

The parse tree holding unit 3202 has a function

of holding a parse tree 3203 generated from an ASN.l

abstract syntax description 3206. The parse tree

10

15

scanning unit 3201 has a function of, upon application

«
of an ASN.l value notation 3204 (message to be

processed), scanning the parse tree 3203 and encoding a

value to generate an ASN.l transfer syntax 3205

(encoding result), as well as a function of, upon
• · · ·

• · application of the ASN.l transfer syntax 3205 (message

to be processed), scanning the parse tree 3203 and
• ·

decoding a value to generate the ASN.l value notation

3204 (decoding result).
• · ·

♦ ♦ · ·

• · · ·

• · · ·

Next, ASN.l abstract syntax will be briefly

20 described. Example of ASN.l abstract syntax is shown in

Fig. 33. Descriptions in Fig. 33 define the structure of

a message Example 3 and indicate that Example 3 is of

the sequence type made of a sequence of five elements,

"id", "subid", "length", "content" and "trailer". In

25 addition, "id", "subid" and "length" are of the integer

type, "content" is of the sequence type and "trailer" is

of an octet string type. As can be seen from the fact

6

that "content" is defined as the sequence type, in ASN.l

abstract syntax, definition to have nesting is possible

and accordingly, a sequence-type element can be again of

the sequence type.

5 To the element "subid" and the element "length",

[0] and [1] as context-specific tags are attached. In

message processing according to BER, use of a context­

specific tag prevents a plurality of elements of the

same type from failing to exactly correlate with their

10 corresponding values. For example, because both of the

element "subid" and the element "length" are of the

integer type and the element "subid" is designated as

optional, when a value corresponding to the element

"subid" is omitted in the ASN.l value notation which

15 will be described in the following, use of the context­

specific tags attached to the element "subid" and the

element "length" enables the element "length" and its

corresponding value to properly correlate with each

other.

20 Also, the element "subid" is designated as

optional, which indicates that in the ASN.l value

notation, a value corresponding to the element "subid"

can be omitted. The elements "subid" and "length" are

further designated as implicit, which indicates that in

25 the encoding according to BER, encoding is conducted as

to tags attached to the elements in question (here,

context-specific tags [0] and [1]), while no encoding is

conducted as to a tag indicative of a data type (integer

type, here) of the elements in question. In addition to

these, as to the elements "id", "subid", "length" and

"age", constraints are imposed on a range of obtainable

5 values in the ASN. 1 value notation. As to the element

"id", for example, the obtainable values range from not

less than 0 to not more than 63. As to the element

"trailer", a constraint is imposed on a range of lengths

of an octet string of a value and the lengths range from

10 not less than 0 to not more than 15. In a message

processing device related to BER, these constraints are

not used in encoding and decoding.

Fig. 34 shows one example of specific values

15

corresponding to a message defined by the ASN.l abstract

syntax shown in Fig. 33, which is called value notation.

More specifically, "id" which is an integer-type element

corresponds to the value 3 and other elements have

similar corresponding relations.

Next, brief description will be made of a parse

20 tree for use in a conventional message processing device.

Fig. 35 shows a parse tree generated from the ASN.l

abstract syntax descriptions in Fig. 33. The parse tree

represents the structure of a message defined by the

ASN.l abstract syntax descriptions as tree structure.

25 Each node of the parse tree is composed of six fields

which respectively represent "a type of element

corresponding to a node in question", "a tag attached to

8

the element corresponding to the node in question",

"whether the element corresponding to the node in

question is designated as implicit", "whether the

element corresponding to the node in question is

5 designated as optional or default", "a pointer to a

subsequent node in the same nesting hierarchy" and "a

pointer to a node in a lower nesting hierarchy".

In the following, how a message is handled by a

conventional message processing device will be

10 specifically described.

First, description will be made of message

encoding. Fig. 36 shows a flow of message encoding by a

conventional message processing device.

15

In the message processing device 32, at a time

point of starting encoding processing, the parse tree

scanning unit 3201 is ready to scan a node 3501 as a

root node of the parse tree. The message processing

device 32 starts the processing upon reception of an

input message to be processed. In the following, how

encoding is conducted by the message processing device

32 will be described for each step with reference to

Figs. 34, 35 and 36. As a flow of encoding, the message

illustrated in Fig. 36 is generated as the parse tree of

Fig. 35 is scanned in response to the reception of the

25 message of Fig. 34.

Step 1 (at a time point of reception of a message

up to 3401)

9

The parse tree scanning unit 3201 scans the node

3501 of the parse tree to sense that the input message

Example 3 is of the sequence type. Therefore, a tag

field '30' corresponding to the sequence type is

5 generated. Also, because the sequence type is of the

constructor type, as to a length field, an octet '80'

indicating that a length is unsettled is generated (3601

of Fig. 36).

20

25

Step 2 (at a time point of reception of a message

up to 3402)

The parse tree scanning unit 3201 scans a node

3502 of the parse tree to sense that the element "id" is

of the integer type. Therefore, a tag field '02'

corresponding to the integer type is generated. In

addition, because the value is 3, a length field '01'

and a value field '03' are generated (3602 of Fig. 36).

Step 3 (at a time point of reception of a message

up to 3403)

The parse tree scanning unit 3201 scans a node

3503 of the parse tree to sense that the element "subid"

is of the integer type, that it is designated as

optional and designated also as implicit, and that a

context-specific tag "0" is attached. Here, since the

input element is "length" (not "subid"), the parse tree

scanning unit 3201 scans a node 3504 of the parse tree

to sense that the "length" is of the integer type, that

it is designated as implicit and that a context-specific

10

tag [1] is attached. Therefore, a tag field '81'

corresponding to the context-specific tag [1] is

generated. In addition, since the value is 4, the length

field '01' and a value field '04' are generated (3603 of

5 Fig. 36).

Step 4 (at a time point of reception of messagea

up to 3404)

····

• ·

10

15

The parse tree scanning

3505 of the parse tree to sense

unit 3201 scans

that "content" is

sequence type. Therefore, the tag field '30'

corresponding to the sequence type is generated.

addition,

type, the

unsettled

node

of the

In

since the sequence type is of the constructor

octet '80' indicating that the length

is generated with respect to a length

(3604 of Fig. 36)

Step 5 (at a time point of reception of

is

field

message

a

a

·>*·« up to 3405)

The parse tree scanning unit 3201 scans node

»· ·* <· · ·
♦ · · ·

3506 of the parse tree to sense that "name" is of

20 printable string type. Therefore, a tag field '13'

a

corresponding to the printable string type is generated.

In addition, since the value is

'03' and a value field '666F6F'

"foo", a length field

are generated (3605 of

Fig. 36).

25 Step 6 (at a time point of reception of a message

up to 3406)

The parse tree scanning unit 3201 scans a node

11

3507 of the parse tree to sense that "age" is of the

integer type. Therefore, the tag field '02'

corresponding to the integer type is generated. In

addition, since the value is 26, the length field '01'

5 and a value field '1A' are generated (3606 of Fig. 36).

Step 7 (at a time point of reception of a message

up to 3407)

The parse tree scanning unit 3201 senses that

·· ·
ft

10

scanning of a

all completed

corresponding

subtree with the node 3505 as

to generate a value field end

a root is

octet '0000'

to the length unsettled octet '80'

generated at Step 4 and add the same to the trail (36079 ··♦

of Fig. 36).

• ·

15

• · * ·

• · · *

• · ·
20

25

Step 8 (at a time point

up to 3408)

The parse tree scanning

3508 of the parse tree to sense

of reception of a

unit 3201 scans a

that the element

"trailer" is of the octet string type. Therefore,

field '04' corresponding to the octet string type

message

node

a tag

is

generated. In addition, since the value is ABCD'H, a

length field '02' and a value field 'ABCD' are generated

(3608 of Fig. 36).

Step 9 (at a time point of reception of a message

up to 3409)

The parse tree scanning unit 3201 senses that

scanning of the parse tree is all finished to generate

the value field end octet '0000' corresponding to the

(

12

length unsettled octet '80' generated at Step 1 and add

the same to the trail. (3609 of Fig. 36).

Final results of the encoding of the message

illustrated in Fig. 34 by the conventional message

5 processing device 32 are shown in Fig. 37. In Fig. 37,

illustrated is a shaped octet string of the results in

order to make clear nesting hierarchies of the encoded

message. As shown in Fig. 37, the encoded message has

each element composed of three fields, a tag (T), a

« ···• · ··· *
• · · ·

» · ♦
·· ·

• ·♦
* · ·
··· ·

• ··

• ♦·
«

• ·

10 length (L) and a value (V).

Next, decoding of a message will

Fig. 38 shows input data (ASN.l transfer

be described.

syntax 381) to

the conventional message processing device 32 and a

• · · ·
• · ·
···♦

·· ·

15

··

····

• · ♦ ♦

»
20

decoding result (ASN.l value notation 382) in the case

of decoding. The

382 is defined by

In the following,

structure of the ASN.l value

the ASN.l abstract syntax of

how decoding is conducted by

conventional message processing device 32 will

described for each step with reference to Fig.

notation

Fig. 33.

the

be

35 and

Fig. 38. As a flow of decoding, the ASN.l value notation

382 of Fig. 38 is generated as the parse tree of Fig. 35

is scanned in response to the reception of the ASN.l

transfer syntax 381.

Step 1 (at a time point of reception of a message

Upon reception of

tree scanning unit 3201 scans the node 3501 of the parse

25 up to 3801)

13

tree to sense that '30' denotes a tag indicative of the

5

10

··
• ··

• ·
*

• ·

• · ··

·<··· 15

sequence type.

the start of a

upon reception

Accordingly, a symbol

sequence-type value is

'{' indicative of

generated. Next,

of a length field '80', the unit 3201

senses that '80' denotes an octet indicating that the

length is unsettled (3811

Step 2 (at a time

up to 3802)

Upon reception of

tree scanning

tree to sense

integer type.

'01',

field

reads

of Fig. 38).

point of reception of a message

a tag field '02', the parse

unit 3201 scans the node 3502 of the parse

that '02' denotes a tag indicative of the

Next, upon reception of a length

the unit 3201 senses that a length of the

is one octet. Accordingly, the unit 3201

field

value

further

one octet '03' to decode as the value 3

corresponding to the element "id" (3812 of Fig 38).

• ·

• ·
• *· ·

Step 3 (at a time point of reception of a message

····

20

25

up to 3803)

parse

tree scanning unit 3201 scans the node 3503 of the parse

tree to sense that '80' denotes a tag indicative of the

context-specific tag [0]. Since here input tag field is

not '80', the parse tree scanning unit 3201 scans the

tag indicative of the context-specific tag [1], Next,

upon reception of the length field '01', the unit 3201

senses that the length of the value field is one octet.

node 3504 of the parse tree to sense that '81' denotes a

5

14

Therefore, the unit 3201 further reads one octet '04' to

decode as the value 4 corresponding to the element

"length" (3813 of Fig. 38).

Step 4 (at a time point of reception of a message

up to 3804)

Upon reception of the tag field '30', the parse

tree scanning unit 3201 scans the node 3505 of the parse

tree to sense that '30' denotes a tag indicative of the

sequence type. The symbol '{' indicative of the start of

• 9 999 9 10 the sequence type is accordingly generated. Next, upon

99
99

·«
• »·

reception

that '80'

• ·
unsettled

of the length field '80', the unit 3201 senses

denotes an octet indicating that the length is

(3814 of Fig. 38) .

• · · ·
• *

• · ·
• 9 * ·• 99 9 9

15 3805)

Step 5 (at a time of reception of a message up to

Upon reception of a tag field '13', the parse
9

9999 tree scanning unit 3201 scans the node 3506 of the parse

tree to sense that '13' denotes a tag indicative of the

• · · ·< * * · printable string type. Next, upon reception of a length

20 field '03', the unit 3201 senses that the length of the

value field is three octets. Accordingly, the unit 3201

further reads subsequent three octets '666F6F' to decode

as the value "foo" corresponding to the element "name”

(3815 of Fig. 38).

up to 3806)

25 Step 6 (at a time point of reception of a message

Upon reception of the tag field '02', the parse

15

5

10

15

20

tree scanning unit 3201 scans the node 3507 of the parse

tree to sense that '02' denotes a tag indicative of the

integer type. Next, upon reception of the length field

'01', the unit 3201 senses that the length of the value

field is one octet. Therefore, the unit 3201 further

reads subsequent one octet '1A' to decode as the value

26 corresponding to the element "age" (3816 of Fig. 38).

Step 7 (at a time point of reception of a message

up to 3807)

Upon reception of a field '0000', the parse tree

scanning unit 3201 senses that this denotes an octet

indicative of the end of the value field. Therefore, the

symbol '}’ indicative of the end of the sequence type is

generated (3817 of Fig. 38).

Step 8 (at a time point of reception of a message

up to 3808)

Upon reception of a tag field '04', the parse

tree scanning unit 3201 scans the node 3508 of the parse

tree to sense that '04' denotes a tag indicative of the

octet string type. Next, upon reception of a length

field '02', the unit 3201 senses that the length of the

value field is two octets. Accordingly, the unit 3201

further reads subsequent two octets 'ABCD' to decode as

25 (3818 of Fig. 38).

Stop 9 (at a time point of reception of a message

up to 3809)

the value ABCDΉ corresponding to the element "trailer"

,„.£jv. 7rs··. ϊ: ·;■==;

- 16 -

Upon reception of the field '0000', the parse

tree scanning unit 3201 senses that this is an octet

indicative of the end of the value field. Therefore, the

symbol '}' indicative of the end of the sequence type is

5 generated (3819 of Fig. 38).

Final results of the decoding of the ASN.l

transfer syntax 381 of Fig. 38 by the conventional

message processing device 32 are as illustrated in the

ASN.l value notation 382 of Fig. 38.

10

15

20

As described so far, the conventional message

processing devices conform to BER as message encoding

rules (encoding and decoding procedures). More

specifically, the devices premise that at the encoding

of a message, a tag field, a length field and a value

field are generated for each element and at the decoding,

an input message is composed of the above-described

three fields. With the conventional message processing

devices, therefore, it is impossible to encode and

decode a message according to other encoding rules than

BER and accordingly has such problems as mentioned in

the following.

The first problem is that since in a conventional

message processing device conformed to BER, encoding is

always conducted for each element in the format of a tag

25 field, a length field and a value field, existence of

redundant tag field and length field is inevitable.

Another problem is that since even when obtainable

17

values in ASN.l abstract syntax are limited, this

limitation is not at all taken into consideration, and

therefore the contents of a value field can not be

compressed. At the exchange of a message defined by the

5 ASN.l abstract syntax between different kinds of devices,

when a channel for exchanging the message has an idle

capacity, use of BER which involves generation of a

redundant field will not cause a serious problem, while

when constraints are imposed on a capacity of a channel,

10

15

20

there will occur a case where it is required to prevent

generation of a redundant field and send and receive a

value compressed as much as possible. However, the

conventional message processing devices can not meet

such demands as mentioned above because they are allowed

to use only BER as encoding rules.

The second problem is that with conventional

message processing devices, there is a possibility that

in an application requiring high-speed data transfer,

satisfactory processing performance can not be obtained.

The reason is that since even if the contents of tag,

length and value fields are redundant, the conventional

message processing devices are not allowed to refrain

from generating the above-described fields, resulting in

increasing a time overhead for generating redundant

The third problem is that use of the conventional

message processing devices needs a large amount of

25 fields.

18

storage region for storing a message to be processed and

temporal data being processed. The reason is that since

even if the contents of tag, length and value fields are

redundant, the conventional message processing devices

5 are not allowed to refrain from generating the above­

described fields, from when a redundant field is

generated until when the same is output to a user of the

message processing devices, an overhead in a region for

holding a message containing a redundant field within

10 the device is large.

The fourth problem is that with the conventional
c

message processing devices, a delay time is long from

• · ·
• · ·
• · · ·
• · ·

• · ·

when a message to be processed is applied to the message

• ·
to to ·

• · · ·
• to ·
• ·
• to to to

• ·
to to to to

• · to ·
• to to ·

• · · ·
• ·

15

20

25

processing device

desired output is

by a user of the device

obtained. The reason is

until when

that since the

conventional message processing devices are not allowed

to refrain from generating tag, length and value fields

even if the contents of said fields are redundant, and

therefore a time overhead for generating redundant

fields is large. In a real-time system etc., stringent

constraints

from when a

device by a

might be imposed in some cases on a time

message

user of

of the conventional

to be processed is applied to the

the device until when a response

message processing device might

• ·

cause serious inconvenience.

(processing result) is obtained and in such a case, use

19

SUMMARY OF THE INVENTION

A first object of the present invention is to

provide a message processing device capable of handling

compressed encoding data and, more particularly, a

5 message processing device capable of encoding and

decoding a message according to PER and a method

therefor.

A second object of the present invention is to

provide a message processing device enabling reduction

10 in a volume of data sent and received in an environment

in which messages are sent and received between

different kinds of devices and a method therefor.

A third object of the present invention is to

provide a message processing device which can achieve

15 satisfactory performance even in an application

requiring high-speed data transfer by generating neither

a redundant tag field nor a length field to eliminate a

time overhead for generating a redundant field and a

method therefor.

20 A fourth object of the present invention is to

provide a message processing device capable of encoding

and decoding a message even with a smaller storage

region and a method therefor.

A fifth object of the present invention is to

25 provide a message processing device enabling a delay

time to be minimized from when a message to be processed

is applied to the device until when a desired result is

20

obtained and a method therefor.

According to the first aspect of the invention, a

message processing device for sending and receiving a

message composed of one or more elements between

5 different kinds of devices, comprises

parse tree holding means having a function of

holding a parse tree generated from syntax descriptions

defining structure

parse tree

of a message sent or received,

scanning means connected to the parse

10 tree holding means and having a function of, as message

data to be processed is applied, scanning the parse tree
• · ·
• ·
• ·· to encode and decode a value and outputting encoded and

• · • · ·
« · • ·• ·

decoded values,

preamble processing means connected to the parse

15 tree scanning means and having a function of processing

a preamble field of a message for use in indicating

whether an element exists or not in message data sent or

received, and

index processing means connected to the parse

20 tree scanning means and having a function of processing

an index field of a message for use in indicating what

25

number of element

of a plurality of

received.

is selected in message data whose one

elements is selected to be sent or

In the preferred construction, the preamble

processing means comprises a counter having a function

of receiving input of a signal indicating whether a node

o

4

• ·
• · · ·

21

being scanned is omissible and when the signal indicates

that the node is omissible, counting up a count value

and outputting the count value to a decoder which will

be described later, a decoder having a function of

5 decoding a count value of the counter and outputting the

decoded value as a write enable signal to each of flip­

flops constituting a register which will be described

later, a first multiplexer having a function of

receiving input of a signal indicating which processing

10 of encoding and decoding is being executed, and when the

signal indicates encoding, outputting a signal

indicating whether an element corresponding to a node in

the parse tree being scanned exists or not to a register

which will be described later and when the signal

15 indicates decoding, outputting a preamble field input

signal to the register which will be described later, a

register having a function of receiving input of the

signal from the first multiplexer and the write enable

signal from the decoder, and for a flip-flop to which

20 the write enable signal is effective, reading the signal

from the multiplexer and holding the contents of the

signal and for a flip-flop to which the write enable

25 contents as a preamble field output signal, and a second

multiplexer having a function of receiving input of the

preamble field output signal from the register and the

signal is not effective, keeping holding the currently

held contents, as well as outputting the currently held

« ·
• · · ·
* ·

s

10

15

22

count value from the counter and outputting

of a bit at a bit position corresponding to

value in a preamble field as an instruction

the contents

the count

signal

giving an instruction to decode an element corresponding

to the subsequent node

In another preferred construction, the index

processing means comprises a counter having a function

of

of

of

receiving input of a signal indicating whether a node

the parse tree

a plurality of

received is being

is being scanned,

outputting

comparator

outputting

corresponding to a message whose one

elements is

scanned and

counting up

the count value to

selected to be sent or

when the node in question

a count value and

a first register and a

which will be described later, as well as

the count value as an index value output

5

signal, a first register having a function of receiving

input of the count value and a signal indicating whether

• · · · a node corresponding to a selected element of a message

• · · · whose one of a plurality of elements is selected to be

20 sent or received is being scanned or not, and when the
• · · ·

• · · ·
node in question is being scanned, outputting the

currently held contents as an index field output signal

and when the node in question is not being scanned,

holding the count value, a second register having a

signal and holding the index field input signal, as well

25 function of receiving input of an index field input

as outputting the currently held contents to a

23

comparator which will be described later, and a

comparator having a function of receiving input of the

count value and the signal from the second register and

comparing the contents of the two, and when the contents

5 coincide with each other, outputting an instruction

signal giving an instruction to decode a value of an

element corresponding to a node of the parse tree

corresponding to the currently output index value.

In another preferred construction, the preamble

10 processing means handles a preamble to instruct the

parse tree scanning means to scan only a node of the

parse tree corresponding to an element existing in

message data sent or received, thereby eliminating the

need of scanning of a node whose scanning is not

15 required.

In another preferred construction, the preamble

processing means comprises a counter having a function

of receiving input of a signal indicating whether a node

being scanned is omissible and when the signal indicates

20 that the node is omissible, counting up a count value

and outputting the count value to a decoder which will

be described later, a decoder having a function of

decoding a count value of the counter and outputting the

decoded value as a write enable signal to each of flip-

25 flops constituting a register which will be described

later, a first multiplexer having a function of

receiving input of a signal indicating which processing

24

of encoding and decoding is being executed, and when the

signal indicates encoding, outputting a signal

indicating whether an element corresponding to a node in

the parse tree being scanned exists or not to a register

5 which will be described later and when the signal

indicates decoding, outputting a preamble field input

signal to the register which will be described later, a

register having a function of receiving input of the

signals from the first multiplexer and the write enable

10 signal from the decoder, and for a flip-flop to which

the write enable signal is effective, reading the signal

from the multiplexer and holding the contents of the

signal and for a flip-flop to which the write enable

signal is not effective, keeping holding the currently

15 held contents, as well as outputting the currently held

contents as a preamble field output signal, and a second

multiplexer having a function of receiving input of the

preamble field output signal from the register and the

count value from the counter and outputting the contents

20 of a bit at a bit position corresponding to the count

value in a preamble field as an instruction signal

giving an instruction to decode an element corresponding

to the subsequent node, and

the preamble processing means handles a preamble

25 to instruct the parse tree scanning means to scan only a

node of the parse tree corresponding to an element

existing in message data sent or received, thereby

25

eliminating the need of scanning of a node whose

scanning is not required.

In another preferred construction, in the

encoding of a message, when message data is applied,

5 examination is made whether an element yet to be encoded

exists in the messaqe data or not,

when there is no element yet to be encoded, an

encoding result of each element linked after a preamble

is output as an encoding result,

*··«

····
···«

10

15

20

25

when an element yet to be

parse tree scanning means scans a

parse tree to examine whether the

an omissible element or not, when

encoded exists, the

subsequent node of the

element in question is

the element in

question is not an omissible element, the parse tree

scanning means examines whether the node in question is

a node corresponding to the element yet to be encoded

and when the node in question is not the corresponding

node, the routine again returns to the examination

whether an element yet to be encoded exists or not,

when the node is the corresponding node, the

element in question is encoded to again return to the

examination whether an element yet to be encoded exists

or not,

when the element in question is an omissible

element, the parse tree scanning means gives an

instruction to the preamble processing means to generate

a 1-bit field in the preamble processing means which

• ·

♦ ·

«

»·♦·

10

15

20

26

field is then linked to the trail of the existing

preamble and the parse tree scanning means examines

whether the node in question is a node corresponding to

the element yet to be encoded, and when the node is not

the corresponding node,

gives an instruction to

set the contents of the

processing means to the

the parse tree scanning means

the preamble processing means to

field generated in the preamble

contents indicating that

"omissible element is omitted" and again return to the

examination whether an element yet to be encoded exists,

and

when the node in question is a node corresponding

to the element yet to be encoded, the parse tree

scanning means gives an instruction to the preamble

processing means to set the contents of the field

generated in the preamble processing means to the

contents indicating that "omissible element is not

omitted" and encodes the element in question to again

return to the examination whether an element yet to be

encoded exists.

5

• 9 · ·

···· In another preferred construction, in the
• · · ·

decoding of a message,

when message data is applied, first a preamble

field is read and stored in the preamble processing

25 means,

preamble field is initialized to 0,

27

examination is made whether there exists an

element yet to be decoded in the message data,

5

when no element yet to be decoded exists, a

decoding result of each element is output.

when an element yet to be decoded exists, the

parse tree scanning means scans the subsequent node of

the parse tree to examine whether an element

corresponding to the node in question is an omissible

element and when the element in question is not an

10 omissible element, decodes the element in question to

again return to the examination whether

• · ·
• · · *

an element yet

to be decoded exists,

when the element in question is an omissible

element, if the contents of the current bit position in

15 the preamble field indicate that "omissible element is

···· omitted", 1 is added to a variable indicative of the

« current bit position to return to the examination

whether an element yet to be decoded exists, and

if the contents of the current bit position in

····

20 the preamble field indicate that "omissible element is

not omitted", the element in question is decoded and 1

is added to the variable indicative of the current bit

yet to be decoded exists.

25 In another preferred construction, the preamble

processing

parse tree scanning means to scan only a node of the

position to return to the examination whether an element

28

parse tree corresponding to an element existing in

message data sent or received, thereby eliminating the

need of scanning of a node whose scanning is not

required,

5 the parse tree is stored in a continuous region

on a storage region of the parse tree holding means, and

in the decoding of a message,

when message data is applied, first a preamble

field is read and stored in the preamble processing

10 means,

a variable indicative of a bit position in the

preamble field is initialized to 0,

an address of a node being currently scanned is

stored in a variable indicative of an address of a node

15 of the parse tree,

examination is made whether there exists an

element yet to be decoded in the message data,

20

when no element yet to be decoded exists, a

decoding result of each element is output,

when an element yet to be decoded exists,

examination is made whether the element in question is

an omissible element and when the element in question is

not an omissible element, an address of the subsequent

node is stored in the variable indicative of an address

25 of a node of the parse tree, the node of the parse tree

having the address in question is scanned and the

element in question is decoded to return to the

29

examination whether an element yet to be decoded exists,

when the element in question is an omissible

element, if the contents of the current bit position in

the preamble field indicate that "omissible element is

5 omitted", the address of the subsequent node is stored

in the variable indicative of an address of a node of

the parse tree and 1 is added to a variable indicative

of the current bit position to return to the examination

whether an element yet to be decoded exists, and

10 if the contents of the current bit position in

the preamble field indicate that "omissible element is

not omitted", the address of the subsequent node is

stored in the variable indicative of an address of a

node of the parse tree, the node of the parse tree

15 having the address in question is scanned, the element

in question is decoded and 1 is added to the variable

indicative of the current bit position to return to the

examination whether an element yet to be decoded exists.

In another preferred construction, the index

20 processing means handles an index to instruct the parse

tree scanning means to scan only a node of the parse

tree corresponding to a selected element in message data

sent or received, thereby eliminating the need of

scanning of a node whose scanning is not required.

25 In another preferred construction, in the

encoding of a message,

when message data is applied, examination is made

30

whether a node of the parse tree being currently scanned

is a node corresponding to a selected element and when

the node is not the corresponding node, the index

processing means adds 1 to a current index value and the

5 parse tree scanning means scans the subsequent node of

the parse tree to again return to the examination

whether the node being scanned corresponds to the

selected element, and

when the node is the corresponding node, the

10 index processing means encodes the current index value

and the parse tree scanning means encodes the element in

♦*’·*· question to output the encoding results of the index
• 999

*··’ · value and the element in question linked together.
• · ·• · · 9
.·.··. In another preferred construction, in the

• · ·
·;···· 15 decoding of a message,

20

25

when message data is applied, first an index

field is read and stored in the index processing means,

the contents of the index field are decoded to

obtain an index value,

a variable indicative of a choice number is

initialized to 0,

the parse tree scanning means scans a subsequent

node of the parse tree,

examination is made whether the variable and the

index value are equal and if the two values are not

equal, 1 is added to the variable to again return to

scanning of a subsequent node of the parse tree, and

31

when the variable and the index value are equal,

the element in question is decoded.

In another preferred construction, the index

processing means handles an index to instruct the parse

5 tree scanning means to scan only a node of the parse

tree corresponding to a selected element in message data

sent or received, thereby eliminating the need of

scanning of a node whose scanning is not required,

10

15

20

25

the parse tree is stored in a continuous region

on a storage region of the parse tree holding means, and

in the decoding of a message,

when message data is applied, first an index

field is read and stored in the index processing means,

the contents of the index field are decoded to

obtain an index value,

an address of a node being currently scanned is

stored in a variable indicative of an address of a node

of the parse tree, and

the parse tree scanning means scans a node of the

parse tree to be referred to by a sum of the variable

and a product of the size of a storage region necessary

for holding one node of the parse tree and the index

value to decode the element in question.

In another preferred construction, the preamble

processing means handles a preamble to instruct the

parse tree scanning means to scan only a node of the

parse tree corresponding to an element existing in

32

message data sent or received, and the index processing

means handles an index to instruct the parse tree

scanning means to scan only a node of the parse tree

corresponding to a selected element in message data sent

5 or received, thereby eliminating the need of scanning of

a node whose scanning is not required.

In another preferred construction, the parse tree

holding means holds such a parse tree generated from

10

syntax descriptions defining structure of a message sent

or received as having a node format made up of six

fields, "type of element", "tag attached to element",

"constraints on element", "whether element is omissible",

"pointer to subsequent node in the same nesting

hierarchy" and "pointer to node in lower nesting

15 hierarchy".

20

25

In another preferred construction, a message

whose structure is defined by the abstract syntax

notation one (ASN.l) is handled according to the packed

encoding rules (PER).

According to the second aspect of the invention,

a message processing method of sending and receiving a

message composed of one or more elements between

different kinds of devices and processing the message,

comprising the steps of

holding a parse tree generated from syntax

descriptions defining structure of a message sent or

received,

33

as message data to be processed is applied,

scanning the parse tree to encode and decode a value and

outputting encoded and decoded values,

processing a preamble field of a message for use

5 in indicating whether an element exists or not in

message data sent or received, and

processing an index field of a message for use in

indicating what number of element is selected in message

data whose one of a plurality of elements is selected to

10 be sent or received.

In the preferred construction, the message

15

20

encoding step comprises the steps of

when message data is applied, examining whether

an element yet to be encoded exists in the message data

or not,

when there is no element yet to be encoded,

outputting an encoding result of each element linked

after a preamble as an encoding result,

when an element yet to be encoded exists,

scanning a subsequent node of the parse tree to examine

whether the element in question is an omissible element

or not, when the element in question is not an omissible

element, examining whether the node in question is a

node corresponding to the element yet to be encoded and

25 when the node in question is not the corresponding node,

again returning to the examination whether an element

yet to be encoded exists or not,

34

when the node is the corresponding node, encoding

the element in question to again return to the

examination whether an element yet to be encoded exists

or not,

5 when the element in question is an omissible

element, generating a 1-bit field, linking the field to

10

15

20

25

the trail of the existing preamble and examining whether

the node in question is a node corresponding to the

element yet to be encoded, and when the node is not the

corresponding node, setting the contents of the

generated field to the contents indicating that

"omissible element is omitted" to again return to the

examination whether an element yet to be encoded exists,

and

when the node in question is a node corresponding

to the element yet to be encoded, setting the contents

of the generated field to the contents indicating that

"omissible element is not omitted" and encoding the

element in question to again return to the examination

whether an element yet to be encoded exists.

In another preferred construction, the message

decoding step comprises the steps of

when message data is applied, first reading and

storing a preamble field,

initializing a variable indicative of a bit

position in the preamble field to 0,

examining whether there exists an element yet to

35

5

be decoded in the message data,

when

outputting a

when

scanning the

no element yet to be decoded exists,

decoding result of each element,

an element yet to be decoded exists,

subsequent node of the parse tree to

examine whether an element corresponding to the node in

question is an omissible element and when the element in

question is not an omissible element, decoding the

element in question to again return to the examination

«

• ·
• · ·
• ·
• · ·

• ♦ ·

• · · ·
4 · ·
·· ·
• · · ·

• · ·

• ·

• · · ·
• · · ·

• · · ·
• · · ·
• · · ·

10

15

20

25

whether an element yet to be

when the element in

element, if the contents of

the preamble field indicate

decoded exists,

question is an omissible

the current bit

that "omissible

omitted", adding 1 to a variable indicative

position in

element

of the

current bit position to return to the examination

whether an element yet to be decoded exists, and

if the contents of the current bit position

the preamble field indicate that "omissible element

not omitted", decoding the element in question and

is

in

is

adding 1 to the variable indicative of the current bit

position to return to the examination whether an element

yet to be decoded exists

In another preferred construction, in the

preamble processing step,

the parse tree is stored in a continuos region on

a storage region, and

the message decoding step comprises the steps of

36

when message data is applied, first reading and

storing a preamble field,

initializing a variable indicative of a bit

position in the preamble field to 0,

5 storing an address of a node being currently

scanned in a variable indicative of an address of a node

of the parse tree,

examining whether there exists an element yet to

be decoded in the message data,

10

15

20

when no element yet to be decoded exists,

outputting a decoding result of each element,

when an element yet to be decoded exists,

examining whether the element in question is an

omissible element and when the element in question is

• ·
• ·

• · · ·
• · · ·

• · · ·
• · · ·
• · · ·

not an omissible element, storing an address of a

subsequent node in the variable indicative of an address

of a node of the parse tree, scanning the node of the

parse tree having the address in question and decoding

the element in question to return to the examination

whether an element yet to be decoded exists,

when the element in question is an omissible

element, if the contents of the current bit position in

the preamble field indicate that "omissible element is

25 variable indicative of an address of a node of the parse

tree and adding 1 to a variable indicative of the

current bit position to return to the examination

omitted", storing an address of a subsequent node in the

37

whether an element yet to be decoded exists, and

if the contents of the current bit position in

the preamble field indicate that "omissible element is

not omitted", storing an address of a subsequent node in

5 the variable indicative of an address of a node of the

parse tree, scanning the node of the parse tree having

the address in question, decoding the element in

question and adding 1 to the variable indicative of the

current bit position to return to the examination

10 whether an element yet to be decoded exists.

15

20

25

In another preferred construction, the message

encoding step comprises the steps of

when message data is applied, examining whether a

node of the parse tree being scanned is a node

corresponding to a selected element and when the node is

not the corresponding node, adding 1 to an index value

being operated and scanning the subsequent node of the

parse tree to again return to the examination whether

the node being scanned corresponds to the selected

element, and

when the node is the corresponding node, encoding

the index value being operated and encoding the element

in question to output the encoding results of the index

value and the element in question linked together.

In another preferred construction, the message

decoding stop comprises the steps of

when message data is applied, first reading and

38

storing an index field,

decoding the contents of the index field to

obtain an index value,

initializing a variable indicative of a choice

5 number to 0,

scanning a subsequent node of the parse tree,

examining whether the variable and the index

value are equal and if the two values are not equal,

adding 1 to the variable to again return to scanning of

10 a subsequent node of the parse tree, and

when the variable and the index value are equal,

decoding the element in question.

In another preferred construction, in the

preamble processing step,

15

20

the parse tree is stored in a continuos region on

a storage region, and

the message decoding step comprises the steps of

when message data is applied, first reading and

storing an index field,

decoding the contents of the index field to

obtain an index value,

storing an address of a node being currently

scanned in a variable indicative of an address of a node

of the parse tree, and

25 scanning a node of the parse tree to be referred

to by a sum of the variable and a product of the size of

a storage region necessary for holding one node of the

39

parse tree and the index value to decode the element in

question.

According to another aspect of the invention, a

computer readable memory storing a control program which

5 controls a message processing device for sending and

receiving a message composed of one or more elements

between different kinds of devices, the control program

comprising the steps of

holding a parse tree generated from syntax

10 descriptions defining structure of a message sent or

15

20

received,

as message data to be processed is applied,

scanning the parse tree to encode and decode a value and

outputting encoded and decoded values,

processing a preamble field of a message for use

in indicating whether an element exists or not in

message data sent or received, and

processing an index field of a message for use in

indicating what number of element is selected in message

data whose one of a plurality of elements is selected to

be sent or received.

25

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will be understood mure

Other objects, features and advantages of the

present invention will become clear from the detailed

description given herebelow.

40

fully from the detailed description given herebelow and

from the accompanying drawings of the preferred

embodiment of the invention, which, however, should not

be taken to be limitative to the invention, but are for

5 explanation and understanding only.

In the drawings:

Fig. 1 is a block diagram showing structure of a

message processing device as one form of an embodiment

of the present invention;

Fig. 2 is a block diagram showing structure of a10

preamble processing unit in the message processing

device according to the present embodiment;

Fig. 3 is a block diagram showing structure of an

index processing unit in the message processing device

according to the present embodiment;

Fig. 4 is a diagram showing a format of a node of

a parse tree for use in the message processing device of

the present embodiment;

Fig. 5 is a diagram showing examples of ASN.l

abstract syntax and a parse tree corresponding thereto;

Fig. 6 is a flow chart showing a flow of

processing to be conducted for encoding an integer-type

value in the message processing device of the present

embodiment;

25 Fig. 7 is a flow chart showing a flow of

processing to be conducted for decoding an integer-type

value in the message processing device of the present

41

embodiment;

Fig. 8 is a diagram showing an example of

5

encoding and decoding of a value of the integer type in

the message processing device of the present embodiment;

Fig. 9 is a flow chart showing a flow of

processing to be conducted for encoding a value of a

sequence type or a set type value in the message

processing device of the present embodiment;

Fig. 10 is a flow chart showing a flow of

processing to be conducted for decoding a value of a

sequence-type or set-type value in the message

processing device of the present embodiment;

Fig. 11 is a diagram showing an example of

encoding and decoding of a sequence-type value by the

message processing device of the present embodiment;

Fig. 12 is a flow chart showing a flow of

processing to be conducted for encoding a value of a

choice type in the message processing device of the

present embodiment;

Fig. 13 is a flow chart showing a flow of

processing to be conducted for decoding a value of a

choice type in the message processing device of the

present embodiment;

Fig. 14 is a diagram showing an example of

encoding and decoding of a choice-type value by the25

message processing device of the present embodiment;

Fig. 15 is a diagram showing an example of ASN.l

42

abstract syntax for use in explaining an embodiment of

the message processing device according to the present

embodiment;

Fig. 16 is a diagram showing an example of a

5

20

value notation of a message defined by the abstract

syntax of Fig. 15;

Fig. 17 is a diagram showing a parse tree

generated based on the abstract syntax of Fig. 15;

Fig. 18 is a diagram showing, in the embodiment

of the message processing device according to the

present embodiment, an internal state and output of the

message processing device at a time when Step 1 is

completed in the encoding of the message of Fig. 16;

Fig. 19 is a diagram showing, in the embodiment

of the message processing device according to the

present embodiment, an internal state and output of the

message processing device at a time when Step 2 is

completed in the encoding of the message of Fig. 16;

Fig. 20 is a diagram showing, in the embodiment

of the message processing device according to the

present embodiment, an internal state and output of the

message processing device at a time when Step 3 is

completed in the encoding of the message of Fig. 16;

Fig. 21 is a diagram showing, in the embodiment

25 of the message processing device according to the

present embodiment, an internal state and output of the

message processing device at a time when Step 4 is

43

completed in the encoding of the message of Fig. 16;

Fig. 22 is a diagram showing, in the embodiment

of the message processing device according to the

present embodiment, an internal state and output of the

5 message processing device at a time when Step 5 is

completed in the encoding of the message of Fig. 16;

Fig. 23 is a diagram showing, in the embodiment

of the message processing device according to the

present embodiment, an internal state and output of the

message processing device at a time when Step 6 is

completed in the encoding of the message of Fig. 16;

Fig. 24 is a diagram showing, in the embodiment

of the message processing device according to the

present embodiment, an internal state and output of the

message processing device at a time when Step 7 is

completed in the encoding of the message of Fig. 16;

Fig. 25 is a diagram showing, in the embodiment

of the message processing device according to the

present embodiment, an internal state and output of the

message processing device at a time when Step 8 is

completed in the encoding of the message of Fig. 16;

Fig. 26 is a diagram showing, in the embodiment

of the message processing device according to the

present embodiment, an internal state and output of the

25 message processing device at a time when Step 9 is

completed in the encoding of the message of Fig. 16;

Fig. 27 is a diagram showing, in the embodiment

44

of the message processing device according to the

present embodiment, an internal state and output of the

message processing device at a time when Step 10 is

completed in the encoding of the message of Fig. 16;

5 Fig. 28 is a diagram showing encoding results

obtained when the message of Fig. 16 is encoded in the

embodiment of the message processing device according to

the present embodiment;

Fig. 29 is a diagram showing a form in which a

10 parse tree is held at a parse tree holding unit in a

20

second embodiment of the message processing device

according to the present embodiment;

Fig. 30 is a flow chart showing a flow of

processing to be conducted for decoding a sequence-type

or set-type value in the second embodiment of the

message processing device according to the present

embodiment;

Fig. 31 is a flow chart showing a flow of

processing to be conducted for decoding the choice type

in the second embodiment of the message processing

device according to the present embodiment;

Fig. 32 is a block diagram showing structure of a

conventional message processing device;

Fig. 33 is a diagram showing an example of ASN.l

25 abstract syntax for use in explaining the conventional

message processing device;

Fig. 34 is a diagram showing an example of value

45

notation of a message defined by the abstract syntax of

Fig. 33;

Fig. 35 is a diagram showing a parse tree

generated based on the abstract syntax of Fig. 33;

5 Fig. 36 is a diagram showing a flow of encoding

processing for encoding the message of Fig. 34 by the

conventional message processing device;

Fig. 37 is a diagram showing encoding results

obtained by the encoding of the message of Fig. 34 by

10 the conventional message processing device;

Fig. 38 is a diagram showing an example of

decoding results obtained by a conventional message

processing device.

15

20

DESCRIPTION OF THE PREFERRED EMBODIMENT

The preferred embodiment of the present invention

will be discussed hereinafter in detail with reference

to the accompanying drawings. In the following

description, numerous specific details are set forth in

order to provide a thorough understanding of the present

invention. It will be obvious, however, to those skilled

in the art that the present invention may be practiced

without these specific details. In other instance, well-

known structures are not shown in detail in order to

25 unnecessary obscure the present invention.

Fig. 1 is a block diagram schematically showing

structure of a message processing device according to an

46

embodiment of the present invention. As illustrated in

Fig. 1, a message processing device 10 of the present

embodiment includes a parse tree holding unit 104, a

parse tree scanning unit 101, a preamble processing unit

5 102 and an index processing unit 103. In Fig. 1,

illustration is made only of a characteristic part of

the structure of the present embodiment and that of the

remaining common part is omitted.

Each component of the message processing device

10 according to the present embodiment is realized by a

15

program-controlled device in a computer system such as a

workstation or a personal computer. A computer program

which controls the processing device is provided as

storage in a storage medium such as a magnetic disk or a

semiconductor memory and is loaded into the processing

device to execute functions as will be described in the

following.

The parse tree holding unit 104 has a function of

holding a parse tree 105 generated from an ASN.l

20 abstract syntax 108. The parse tree scanning unit 101

has a function of, upon application of an ASN.l value

notation 106 (message to be processed), sending and

receiving instructions to and from the preamble

processing unit 102 and the index processing unit 103 to

25 scan the parse tree 105 and encoding a value to generate

an ASN.l transfer syntax 107 (encoding result), as well

as a function of, upon application of the ASN.l transfer

47

····

• · ··
• ·

·· ·

* ··

« 4

• · 4 ·
• ··· 9

* · · ·
• «

·

» ·

·· ·· «
·♦··

·*··

····
* · ·· · «

10

15

20

syntax 107 (message to be processed), sending and

receiving instructions to and from the preamble

processing unit 102 and the index processing unit 103 to

scan the parse tree 105 and decoding a value to generate

the ASN.l value notation 106 (decoding result).

The preamble processing unit 102, at

of a value, when a sequence-type or set-type

designated as optional or default, generates

called preamble and sets each

predetermined value ('1' when

when no element exists) based

parse tree scanning

unit 102 also has a

value, analyzing an

unit 101.

the encoding

element is

a bit field

bit in the preamble at a

an element exists and '0'

on an instruction from the

The preamble processing

function of, at the decoding of a

input preamble to instruct the parse

tree scanning unit 101 on a node of the parse tree 105

to be scanned next.

The index processing unit 103 has a function of,

at the encoding of a value, counting an index value

based on an

unit 101 to

choice-type

instruction from the parse tree scanning

generate an index field when handling a

element. The index processing unit 102 also

5

has a function of, at the decoding of a value, analyzing

an input index field to instruct the parse tree scanning

unit 101 on a node of the parse tree 105 to be scanned

25 next.

Description will be next made of structure of the

preamble processing unit 102 of the message processing

48

device according to the present embodiment. Fig. 2 is a

block diagram schematically showing structure of the

preamble processing unit 102 at the message processing

device 10 of the present embodiment. As illustrated in

5 Fig. 2, the preamble processing unit 102 of the present

embodiment includes a counter 201, a decoder 202, a

first multiplexer 203, a register 204 and a second

multiplexer 205.

Input/output signals related to the preamble

10 processing unit 102 are a preamble field input signal

15

20

211 for the decoding of a message, a preamble field

output signal 212 for the encoding of a message, a

signal 213 applied from the parse tree scanning unit and

indicating whether a node being scanned is designated as

optional or default, a signal 214 applied from the parse

tree scanning unit and indicating whether an element

corresponding to a node being scanned exists, a signal

215 applied from the parse tree and indicating which

processing of encoding and decoding is currently being

executed, and a signal 216 which is to be output to the

parse tree scanning unit and gives an instruction to

scan the next node and decode an element corresponding

to the node.

The counter 301 has a function of receiving input

25 of the signal 213 indicating whether a node being

scanned is designated at optional or as default and when

the signal 213 indicates that the node is designated as

49

such, counting up a count value and outputting the count

value to the decoder 202. The decoder 202 has a function

of receiving and decoding said count value and

outputting the decoded value as a write enable signal to

5 each of the flip-flops constituting the register 204.

The first multiplexer 203 has a function of

receiving input of the signal 215 indicating which

processing of encoding and decoding is being currently

executed and when the signal 215 indicates encoding,

10

15

20

outputting the signal 214 to the register 204 and when

the signal 215 indicates decoding, outputting the signal

211 to the register 204. The register 204 has a function

of receiving input of the signal from the first

multiplexer 203 and a write enable signal from the

decoder 202, and for a flip-flop to which said write

enable signal is effective, reading the signal from the

first multiplexer 203 and holding the contents and for a

flip-flop to which said write enable signal is not

effective, keeping holding the currently held contents

and further outputting the currently held contents as

the signal 212 and outputting the same to the second

multiplexer 205.

The second multiplexer 205 has a function of

receiving input of the preamble field output signal 212

25 from the register 204 and a count value from the counter

202 to output, to the parse tree scanning unit, the

contents of a bit at a bit position corresponding to the

50

count value in the preamble field as the instruction

signal 216 which gives an instruction to decode an

element corresponding to the subsequent node.

Description will be next made of structure of the

5 index processing unit 103 of the message processing

device according to the present embodiment. Fig. 3 is a

block diagram schematically showing structure of the

index processing unit 103 in the message processing

device 10 of the present embodiment. As illustrated in

10 Fig. 3, the index processing unit 103 of the present

embodiment includes a counter 301, a first register 302,

15

20

25

a second register 303 and a comparator 304.

Input/output signals related to the index

processing unit 103 are an index field input signal 311

for the decoding of a message, an index value output

signal 312 for the decoding of a message, an index field

output signal 313 for the encoding of a message, a

signal 314 applied from the parse tree scanning unit and

indicating whether a subtree with a choice-type node as

a root node is currently being scanned or not, a signal

315 applied from the parse tree scanning unit and

indicating whether a node corresponding to a selected

choice-type element is being scanned or not, and a

signal 316 which is to be output to the parse tree

scanning unit and gives an instruction to decode a value

of an element corresponding to a node cf the parse tree

corresponding to an index value being currently output.

51

The counter 201 has a function of receiving input

of the signal 314 indicating whether a subtree with a

choice-type node as a root node is being scanned and

when the signal 314 indicates that the subtree in

5 question is being scanned, counting up a count value,

outputting the count value to the first register 302 and

the comparator 304 and outputting the count value as the

index value output signal 312.

The first register 302 has a function of

10

15

20

25

receiving input of said count value and the signal 315

indicating whether a node corresponding to a selected

choice-type element is being scanned or not and when the

signal 315 indicates that the node in question is being

scanned, outputting the currently held contents as the

index field output signal 313 and when the signal 315

indicates that the node in question is not being scanned,

holding said count value.

The second register 303 has a function of

receiving input of the index field signal 311 and

holding the signal 311, as well as outputting the

currently held contents to the comparator 314. The

comparator 314 has a function of receiving input of said

count value and a signal from the second register 303

and comparing the contents of the two, and when the

contents coincide with each other, outputting the signal

316 which gives instruction to decode a value of an

element corresponding to a node of the parse tree

52

corresponding to the currently output index value.

Next, description will be made of the parse tree

105 held by the parse tree holding unit 104 of the

message processing device 10 according to the present

5 embodiment. The parse tree 105 can be generated from the

ASN.l abstract syntax 108 using an ASN.l compiler or

other technique. Fig. 4 is a diagram showing a format of

a node of the parse tree 105. As illustrated in Fig. 4,

one node of the parse tree 105 is composed of six fields.

10

20

A first field 401 is a field indicative of a type

of element of the ASN.l abstract syntax 108

corresponding to a node. A second field 402 is a field

indicative of a tag (application tag, context-specific

tag, etc.) attached to the element of the ASN.l abstract

syntax 108 corresponding to the node. A third field 403

is a field indicative of constraints (range of

obtainable values and range of lengths of values)

imposed on the element of the ASN.l abstract syntax 108

corresponding to the node. A fourth field 404 is a field

indicating whether the element of the ASN.l abstract

syntax 108 corresponding to the node is designated as

optional or default. A fifth field 405 is a field which

stores, with respect to the element in the ASN.l

25 to a node corresponding to an element existing in the

same nesting hierarchy as and subsequent to the former

element. A sixth field 406 stores, with respect to the

abstract syntax 108 corresponding to the node, a pointer

53

element in the ASN.l abstract syntax 108 corresponding

to the node, a pointer to a node corresponding to an

element existing in the nesting hierarchy lower by one

than the former element. For example, a parse tree

5 corresponding to the ASN.l abstract syntax 501 of Fig. 5

is that denoted by 502 in Fig. 5.

(Description of Operation)

Next, how the message processing device 10

operates in the present embodiment will be described.

10 Description will be made with respect to three cases, a

15

case of handling

(where the parse

the sequence type or the set type

tree scanning unit 101 sends and

receives instructions to and from the preamble

processing unit 102 to operate), a case of handling the

choice type (where the parse tree scanning unit 101

sends and receives instructions to and from the index
• ·• ·
• ♦ · ·• ·• ·

processing unit 103 to operate) and a case of handling

the other types than these (where the parse tree
• ·

····
• · · ·

scanning unit 101 operates without sending and receiving

20 instructions to and from either of the preamble

• · · · processing unit 102 and the index processing unit 103).

Case 1 (where other types than the sequence type,

the set type and the choice type are handled)

In encoding, as the ASN.l value notation 106

25 (input data to be encoded) is applied, the parse tree

scanning unit 101 scans the parse tree 105 held by the

parse tree holding unit 104 to conduct encoding

54

according to a type of element in question indicated in

the first field of a node of the parse tree 105. At the

encoding, data length of an encoding result is

compressed using constraints on the element of the type

5 in question which is indicated in the third field of the

node of the parse tree.

In decoding, as the ASN.l transfer syntax 107

(input data to be decoded) is applied, the parse tree

scanning unit 101 scans the parse tree 105 held by the

10 parse tree holding unit 104 to conduct decoding

according to a type of element in question indicated in

the first field of a node of the parse tree 105. At the

decoding, determination is made in which compression

format the data to be decoded is compressed by making

use of the constraints on the element of the type in

question which is indicated in the third field of the

node of the parse tree to decode the data as a value of

the element in question.

As an example of Case 1, a flow chart of the

processing for encoding an integer-type element is shown

in Fig. 6. In the encoding of an integer-type value, the

parse tree scanning unit 101 scans a node in question of

the parse tree 105 to examine the third field (Step 601).

When there is no constraint, encode the number of octets

25 necessary for encoding the value as a length field and

encode the value itself as a value field to finish the

processing (Steps 606 and 607). With constraints,

55 -

examination is made whether an upper bound and a lower

bound of obtainable values coincide with each other or

not (Step 602). When they coincide with each other,

output nothing to finish the processing (Step 608). When

5 they fail to coincide with each other, examination is

made whether the upper bound and the lower bound of

obtainable values are both settled (Step 603). When they

are settled, encode an offset value from the lower bound

of obtainable values as a value field to finish the

10 processing (Step 609). Whey they are not settled, encode

the number of octets necessary for encoding the offset

value from the lower bound of obtainable values as a

length field and encode the offset value as a value

field to finish the processing (Steps 604 and 605).

Next, a flow chart of the processing for decoding

an integer-type element is shown in Fig. 7. In the

decoding of an integer-type value, the parse tree

scanning unit 101 scans a node in question of the parse

tree 105 to examine the third field (Step 701).

When there is no constraint, read a length field

to obtain the number n of octets of a value field (Step

707). Next, read n octets of the input data and decode

the same to output as an integer-type value (Steps 708

and 709). With constraints, examine whether an upper

25 bound and a lower bound of obtainable values coincide

with each other (Step 702). When they coincide with each

other, output a value of the upper bound (which is also

56 -

the lower bound) of obtainable values as an integer-type

value (Step 710). When they fail to coincide with each

other, examine whether the upper bound and the lower

bound of obtainable values are both settled or not (Step

5 703). When they are settled, read m bits or m octets of

the input and decode the same. (The value of m and

either bit or octet are here determined by upper and

lower bounds of obtainable values. For, example, if the

lower bound is 0 and the upper bound is 15, m will be

10 four bits, and if the lower bound is 0 and the upper

25

bound is 255, m will be one octet.) (Step 711).

Next, output a sum of the decoded value and the

lower bound of obtainable values as an integer-type

value (Step 712). When they are not settled, read the

length field to obtain the number n of octets of the

value field (Step 704). Next, read n octets of the input

data and decode the same (Step 705). Next, output a sum

of the decoded value and the lower bound of obtainable

values as an integer-type value (Step 706).

An example of actual encoding and decoding of an

integer-type element is shown in Fig. 8.

Case 2 (where the sequence type or the set type

are handled)

Flow chart of the processing for encoding is

shown in Fig. 9. Upon application of the ASN.l value

notation 106 (input data to be encoded), examine whether

there is an element yet to be encoded (Step 901). If

57

there is no element yet to be encoded, output an

encoding result of each element linked after a preamble

as a sequence-type or set-type encoding result (Step

906). If there is an element yet to be encoded, the

5 parse tree scanning unit 101 scans the subsequent node

of the parse tree 105 (Step 902). Next, the parse tree

scanning unit 101 examines whether the element in

question is designated as optional or default (Step 903).

If the element is designated neither as optional

10 nor default, the parse tree scanning unit 101 examines

whether the node in question is a node corresponding to

20

25

the element yet to be encoded (Step 904). If it is not

the corresponding node, return to Step 901.

If it is the corresponding node, encode the

element in question (Step 905) to return to Step 901.

When the element in question is designated as optional

or default at Step 903, the parse tree scanning unit 101

gives an instruction to the preamble processing unit 102,

whereby the preamble processing unit 102 generates a 1-

bit field and links the same at the trail of the

existing preamble (Step 907).

Next, the parse tree scanning unit 101 examines

whether the node in question is a node corresponding to

the element yet to be encoded (Step 908). If the node is

not the corresponding node, the parse tree scanning unit

101 gives an instruction to the preamble processing unit

102, whereby the preamble processing unit 102 sets the

58

contents of the generated field to '0' (Step 911) to

return to Step 901. If it is the corresponding node, the

parse tree scanning unit 101 gives an instruction to the

preamble processing unit 102, whereby the preamble

5 processing unit 102 sets the contents of the generated

field to '1' (Step 909) and the parse tree scanning unit

101 encodes the element in question (Step 910) to return

to Step 901.

Flow chart of the processing for decoding is

10 shown in Fig. 10. Upon application of the ASN.l transfer

syntax 107 (input data to be decoded), first read a

preamble field and store the same in a preamble buffer

in the preamble processing unit 102 (Step 1001). Next,

initialize a variable i indicative of a bit position

within the preamble field to 0 (Step 1002).

Next, examine whether there is an element yet to

be decoded (Step 1003). If there is no element yet to be

decoded, output a decoding result of each element (Step

1009). If there is an element yet to be decoded, the

parse tree scanning unit 101 scans the subsequent node

of the parse tree 105 (Step 1004). Then, the parse tree

scanning unit 101 checks the fourth field of the node of

the parse tree 105 to examine whether an element

corresponding to the node in question is designated as

25 optional or default (Step 1005). If it is designated

neither as optional nor default, the parse tree scanning

unit 101 decodes the element in question (Step 1010) to

59

return to Step 1003. If it is designated as optional or

default, the preamble processing unit 102 examines

whether i-th bit of the preamble field is '1' (Step

1006). If it is not '1', add 1 to the value of i (Step

5 1008) to return to Step 1003. If it is '1', the preamble

processing unit 102 gives an instruction to the parse

tree scanning unit 101, whereby the parse tree scanning

unit 101 decodes the element in question (Step 1007).

Thereafter, add 1 to the value of i (Step 1008) to

10

·· ·
····

20

return to Step 1003.

An example of actual encoding and decoding of a

sequence-type element is shown in Fig. 11.

Case 3 (where the choice type is handled)

Flow chart of the processing for encoding is

shown in Fig. 12. Upon application of the ASN.l value

notation 106 (input data to be encoded), the parse tree

scanning unit 101 examines whether a node in question is

a node corresponding to the input element (Step 1201).

If it is not the corresponding node, the parse tree

scanning unit 101 gives an instruction to the index

processing unit 103, whereby the index processing unit

103 adds 1 to an index value (Step 1202).

Next, the parse tree scanning unit 101 scans the

subsequent node of the parse tree 105 (Step 1203). When

25 the node is the corresponding node at Step 1201, the

parse tree processing unit 101 gives an instruction to

the index processing unit 103, whereby the index

60

processing unit 103 encodes the current index value

(Step 1204). Next, the parse tree scanning unit 101

encodes the element in question and links the encoding

result of the index value and the encoding result of the

5 element in question together to output the obtained

value as a choice-type encoding result (Step 1205).

Flow chart of the processing for decoding is

shown in Fig. 13. Upon application of the ASN.l transfer

syntax 107 (input data to be decoded), first read an

10 index field and store the index field in the index

buffer in the index processing unit 103 (Step 1301).

• ·

Next, decode an index from the read index field to

obtain an index value (Step 1302). Next, initialize the

variable i temporarily indicating an index value (Step

1303).

Next, the parse tree scanning unit 101 scans the

subsequent node of the parse tree 105 (Step 1304). The

index processing unit 103 examines whether i and the

index value are equal (Step 1305). If they are not equal

20 add 1 to the value of i (Step 1306) to return to Step

1304. If they are equal, the index processing unit 103

gives an instruction to the parse tree scanning unit 101,

whereby the parse tree scanning unit 101 decodes the

element in question (Step 1307).

25 An example of actual encoding and decoding of a

choice-type element is shown in Fig. 14.

For specifically describing how a message is

61

encoded and decoded by the message processing device 10

of the present embodiment, consideration will be given

to a case of the encoding of a message represented by

the ASN.l value notation of Fig. 16 whose structure is

5 defined by the ASN.l abstract syntax of Fig. 15. This

case is premised on that encoding is conformed to PER

standardized by ISO as encoding rules.

The ASN.l abstract syntax of Fig. 15 defines

10

15

20

25

structure of a message "Example 2" and indicates that

the message Example 2 is of the sequence type and has a

sequence of six elements, "id", "subid", "length",

"header", "content" and "trailer". In addition, "id",

"subid" and "length" are of the integer type, "header "

is of the choice type, "content" is of the sequence type

and "trailer" is of the octet string type. Fig. 17 shows

a parse tree generated from the ASN.l abstract syntax of

Fig. 15. In the following, description will be made for

each step.

Step 1 (at a time point of reception of a message

up to 1601)

The parse tree scanning unit 101 scans a node

1701 of the parse tree to sense that the input message

Example 2 is of the sequence type. Nothing is yet to be

generated as output data. Fig. 18 shows an internal

state and output of the message processing device 10 at

a time point when Step 1 is completed.

Step 2 (at a time point of reception of a message

62

up to 1602)

The parse tree scanning unit 101 scans a node

1702 of the parse tree to sense that the input element

"id" is of the integer type and that an obtainable value

5 is limited to be not less than 0 and not more than 1023.

Since the range of obtainable values is 1024, the value

3 of "id" is encoded as two-octet field '0003'

(hexadecimal) and stored in an output buffer at the

number 0 in the parse tree scanning unit 101. Nothing is

10 yet to be generated as output data. Fig. 19 shows an

internal state and output of the message processing

device 10 at a time point when Step 2 is completed.

Step 3 (at a time point of reception of a message

up to 1603)

15 The parse tree scanning unit 101 scans a node

1703 of the parse tree to sense that "subid" is of the

integer type, that an obtainable value is limited to be

not less than 0 and not more than 1023 and that "subid"

is designated as optional. Here, the parse tree scanning

20 unit 101 gives an instruction to the preamble processing

unit 102, whereby the preamble processing unit 102

generates a 1-bit bit field in a preamble buffer at the

number 0 in the preamble processing unit 102.

Here, since the input element is "length" (not

25 "subid"), the parse tree scanning unit 101 gives an

instruction to the preamble processing unit 102, whereby

the preamble processing unit 102 sets the contents of

63

the generated bit field to '0'. Next, the parse tree

scanning unit 101 scans a node 1704 of the parse tree to

sense that the input element "length" is of the integer

type and that an obtainable value is limited to be not

5 less than 0 and not more than 255. Since the range of

obtainable values is 256, the value 4 of "length" is

encoded as 1-octet field '04' (hexadecimal) and is

linked to the field stored in the output buffer at the

number 0 in the parse tree scanning unit 101. Nothing is

10 yet to be generated as output data. Fig. 20 shows an

15

····• · ··· ·
·»··• · ··· ·

20

25

internal state and output of the message processing

device 10 at a time point when Step 3 is completed (in

Fig. 20, linked fields are illustrated as being

connected with a dotted line for the convenience of

space on paper).

Step 4 (at a time point of reception of a message

up to 1604)

The parse tree scanning unit 101 scans a node

1705 of the parse tree to sense that a value to be

encoded next is of the choice type. Next, the parse tree

scanning unit 101 scans a node 1706 of the parse tree to

sense that "content-name" is of the printable string

type. Since the input element is not content-name, the

parse tree scanning unit 101 gives an instruction to the

index processing unit 103, whereby the index processing

unit 103 adds 1 to the contents of the index buffer at

the number 0 to have the value

64

Next, the parse tree scanning unit 101 scans a

10

node 1707 of the parse tree to sense that the input

element "content-type"

an obtainable value is

is of the integer type

limited to be not less

and that

than 0 and

not more than 15. Since the range of obtainable values

is 16, the value 4 of the "content-type" is encoded as a

4-bit field '0100’ (binary). In addition,

scanning unit 101 gives an instruction to

processing unit 103 to encode the current

the parse tree

the index

index value,

whereby the index processing unit 103 encodes the

current index value 1 as 1-bit field '1' (binary). A

*···
* · ·
• 4 ·
♦ ···

• · ·
·· ·

• ··
• · ·
··« «
• 44

• · 4

field '10100'(binary) obtained by the encoding result of

the index and the encoding result of the value linked

together is generated and linked to the field stored in

15 the output buffer of the parse tree scanning unit 101.

The index value 0 in the index processing unit 103 is
• 4

·· ·
····

• ·
·· ·

cleared to 0. Nothing is yet to be generated as output

data. Fig. 21 shows an internal state and output of the
'· ·*
1 · ·

*
»· ··
····

message processing device 10 at a time point when Step 4

20 is completed (in Fig. 21, linked fields are illustrated

• ·

····
····
···»

• ·
·♦··

5

as being connected with a dotted line for the

convenience of space on paper).

Step 5 (at a time point of reception of a message

up to 1605)

25 The parse tree scanning unit 101 scans a node

1798 of the parse tree to sense that the input element

"content" is of the sequence type. Nothing is yet to be

65

generated as output data. Fig. 22 shows an internal

state and output of the message processing device 10 at

a time point when Step 5 is completed (in Fig. 22,

linked fields are illustrated as being connected with a

5 dotted line for the convenience of space of paper).

Step 6 (at a time point of reception of a message

up to 1606)

The parse tree scanning unit 101 scans a node

1709 of the parse tree to sense that the input element

10 "name" is of the printable string type. The value "foo"

of the element "name" is encoded as 3-octet field

'666F6F' (hexadecimal). In addition, since the element

"name" has no constraint, encoding a length is necessary

15

and therefore the length 3 is encoded as 1-octet field

'03' (hexadecimal). A field '03666F6F' (hexadecimal)

obtained by the encoding result of the length and the

encoding result of the value linked together is stored

in the output buffer at the number 1 in the parse tree

scanning unit 101. Fig. 23 shows an internal state and

output of the message processing device 10 at a time

point when Step 6 is completed (in Fig. 23, linked

fields are illustrated as being connected with a dotted

line for the convenience of space of paper).

Step 7 (at a time point of reception of a message

25 up to 1607)

The parse tree scanning unit 101 scans a node

1710 of the parse tree to sense that the input element

66

1-

5

"age" is of the integer type and that an obtainable

value is limited

obtainable value

encode offset 26

octet field '1A'

to be not less than 0. Since an

is limited to be not less than 0,

from 0 to the value 26 of "age" as

(hexadecimal). In addition, since with

the limitation on the range of values not less than 0,

the maximum number of octets necessary for encoding a

value can not be settled, and therefore length should be

encoded. The length 1 is encoded as 1-octet field '01'.

• · · ·
• ·

• · ·
• · · ·

• ·
• · ·

10 A field '011A' (hexadecimal) obtained by the

result of the length and the encoding result

encoding

of the
• · value linked together is generated and is linked to the
• ·

• ·

• · · ·
• · ·

• · · ·

• · · ·

• · · ·

15

20

field

parse

stored in the

tree scanning

generated as output

state and output of

a time

linked

dotted

output buffer at the number 1 of the

unit 101. Nothing is yet to be

data. Fig. 24 shows an internal

the message processing device 10 at

point when Step 7 is completed (in Fig. 24,

fields are illustrated as being connected with a

line for the convenience of space of paper).

Step 8 (at a time point of reception of a message

up to 1608)

The parse tree scanning unit 101 senses that the

scanning of the subtree with the node 1708 as a root is

all completed (which means encoding of the elements

25 contained in the sequence-type element "content" is

completed) and links the field stored in the output

buffer at the number 1 of the parse tree scanning unit

67

101 with the field stored in the output buffer at the

number 0 to clear the contents of the output buffer at

the number 1. At the time of linking the fields, padding

is conducted for aligning the fields on octet boundaries.

5 Fig. 25 shows an internal state and output of the

message processing device 10 at a time point when Step 8

is completed (in Fig. 25, linked fields are illustrated

as being connected with a dotted line for the

convenience of space of paper).

• · · · 10 Step 9 (at a time point of reception of a message

up to 1609)

*
The parse tree scanning unit 101 scans a node

1711 of the parse tree to sense that the input element

"trailer" is of the octet string type, that lengths of
• · · · « ♦• ·
• · ·· 15 values are limited to be not less than 0 and not more

than 15 and that the element is designated as optional.
• · · ·
• ·

• · · ·
····

Here, the parse tree scanning unit 101 gives an

instruction to the preamble processing unit 102, whereby

the preamble processing unit 102 generates a 1-bit bit

20 field and links the same to a bit field in the preamble

buffer at the number 0. Since the input element is

"trailer", the parse tree scanning unit 101 gives an

instruction to the preamble processing unit 102, whereby

the preamble processing unit 102 sets the contents of

25 the generated bit field to '1'.

Next, the parse tree scanning unit 101 encodes

the value ABCD'H as 2-octet field 'ABCD' (hexadecimal).

68

Here, since the range of length values is 16, encoding

of a length is necessary. The length 2 is encoded as 1-

octet field '02' (hexadecimal). A field 102ABCD'

(hexadecimal) obtained by the encoding result of the

5 length and the encoding result of the value linked

together is generated and linked with a field stored in

the output buffer at the number 0 of the parse tree

scanning unit 101. Nothing is yet to be generated as

output data. Fig. 26 shows an internal state and output

10 of the message processing device 10 at a time point when

Step 9 is completed (in Fig. 26, linked fields are

illustrated as being connected with a dotted line for

the convenience of space of paper).

Step 10 (at a time point of reception of a

15 message up to 1610)

The parse tree scanning unit 101 senses that the

scanning of the parse tree is all completed to link and

output the field stored in the preamble buffer at the

number 0 of the preamble processing unit 102 and the

20 field stored in the output buffer at the number 0 of the

parse tree scanning unit 101. Also clear the contents of

the output buffer at the number 0 of the parse tree

scanning unit 101 and the contents of the preamble

buffer at the number 0 of the preamble processing unit

25 102. At the time of linking the fields, padding is

conducted for aligning the fields on the octet

boundaries. Fig. 27 shows an internal state and output

69

of the message processing device 10 at a time point when

Step 10 is completed (in Fig. 27, linked fields are

illustrated as being connected with a dotted line for

the convenience of space of paper).

5 Final results of encoding obtained by the message

processing device 10 of the present embodiment are shown

in Fig. 28 (in Fig. 28, linked fields are illustrated as

being connected with a dotted line for the convenience

of space of paper).

10

• · ·
• · ·

* ·
• ··

Next, consideration will be given to decoding of

a message represented by the ASN.l

Fig. 28. Description will be made

transfer syntax of

for each step in the

following.

• ·

15

Step 1 (at a time point of reception of a message

up to 2801)

The parse tree scanning unit 101 scans the node
·· ··
• · ·
• ·
• · ··

• ·

1701 of the parse tree to sense that Example 2 is of the

• ·· ·

20

sequence

preamble

preamble

type. The preamble processing unit 102 reads a

field '01' (binary) and stores the same in the

buffer at the number 0 in the preamble

processing unit 102 to initialize a variable i

indicative of a bit position in the preamble field to 0.

Step 2 (at a time point of reception of a message

up to 2802)

25 The parse tree scanning unit 101 scans the node

1702 of the parse tree to sense that "id" is of the

integer type and that an obtainable value is limited to

ΊΟ

be not less than 0 and not more than 1023. Since the

range of obtainable values is 1024, the parse tree

scanning unit 101 further reads two octets of input data

'0003' (hexadecimal) and decodes the same to obtain the

5 value 3. Since the lower bound of obtainable values is 0,

output the value 3 obtained by adding 0 and 3 as the

value of "id".

Step 3 (at a time point of reception of a message

up to 2803)

10 The parse tree scanning unit 101 scans the node

1703 of the parse tree to sense that "subid" is of the

integer type, that obtainable values are limited to be

not less than 0 and not more than 1023 and that "subid"

is designated as optional. The preamble processing unit

15 102 here examines an i-th bit of the preamble field to

sense that the bit is ' 0' . The preamble processing unit

102 instructs the parse tree scanning unit 101 to scan

the next node. The unit 102 also adds 1 to the value of

i to have the value 1.

20 The parse tree scanning unit 101 scans the node

1704 of the parse tree to sense that "length" is of the

integer type and that an obtainable value is limited to

be not less than 0 and not more than 255. Since the

range of obtainable values is 256, the parse tree

25 scanning unit 101 further reads one octet of input data

'04' (hexadecimal) and decodes the same to obtain the

value 4. Since the lower bound of obtainable values is 0,

71

output the value 4 obtained by adding 0 and 4 as the

value of "length".

Step 4 (at a time point of reception of a message

up to 2804)

5 The parse tree scanning unit 101 scans the node

1705 of the parse tree to sense that the value to be

decoded next is of the choice type. The index processing

unit 103 reads the index field '1' (binary) and decodes

the same to obtain the index value of 1. The unit 103

10 also initializes a variable i which temporarily holds

the index to 0. The parse tree scanning unit 101 scans

the node 1706 of the parse tree to sense that "content­

name" is of the printable string type. Here, the index

processing unit 103 compares i and the index value to

15 find that they are 0 and 1, different, and accordingly

instructs the parse tree scanning unit 101 to scan the

next node and adds 1 to i to have the value 1.

The parse tree scanning unit 101 scans the node

1707 of the parse tree to sense that "content-type" is

20 of the integer type and that obtainable values are

limited to be not less than 0 and not more than 15. Here,

the index processing unit 103 compares i and the index

to find that they are 1 and 1, equal, and accordingly

instructs the parse tree scanning unit 101 to decode the

25 value. Since the range of obtainable values is 16, the

parse tree scanning unit 101 further reads four bits of

input data '0100' and decodes the same to obtain the

72

value 4. Since the lower bound of obtainable values is 0,

output the value 4 obtained by adding 0 and 4 as the

value of "content-type".

Step 5 (at a time point of reception of a message

5 up to 2805)

The parse tree scanning unit 101 scans the node

10

1708 to sense that "content" is

Since no preamble field exists,

unit

unit

of the sequence type.

the preamble processing

conducts nothing. Next, the parse tree scanning

101 scans the node 1709 of the parse tree to sense

that "name" is of the printable string type. Since no

4 44

15

20

constraint is

tree scanning

(hexadecimal)

imposed on the element "name", the parse

unit 101 first reads the length field '03'

and decodes the same to obtain the value 3.

The unit 101 accordingly senses that the number of

octets of the value field is 3. The parse tree scanning

unit 101 further reads three octets of input data

'666F6F' (hexadecimal) and decodes

the value "foo". Output the value

"name"

Step 6 (at a time point of

the same to obtain

"foo" as the value of

reception of a message

4

4

• ·

up to 2806)

The parse tree scanning unit 101 scans the node

1710 of the parse tree to sense that "age" is of the

25 integer type and that obtainable values are limited to

be not less then 0. Since obtainable values are limited

to be not less than 0, the parse tree scanning unit 101

73

first reads the length field '01' (hexadecimal) and

decodes the same to obtain the value 1. The unit 101

accordingly senses that the number of octets of the

value field is 1. The parse tree scanning unit 101

5 further reads one octet of input data ' IA' (hexadecimal)

9999 10

15

and decodes the same to obtain the value 26. Since

obtainable values are limited to be not less than 0,

output the value 26 obtained by adding 0 and 26 as the

value of "age".

Step 7 (at a time point of reception of a message

up to 2807)

The parse tree scanning unit 101 scans the node

1711 of the parse tree to sense that "trailer" is of the

octet string type, that lengths of values are limited to

be not less than 0 and not more than 15 and that the

element is designated as optional. The preamble

processing unit 102 here examines an i-th bit of the

preamble field to sense that it is ' 1' . The preamble

processing unit 102 instructs the parse tree scanning

20 unit 101 to decode the value. In addition, the unit 102

adds 1 to the value of i to have 2. Since lengths of

obtainable values are limited to be not less than 0 and

not more than 15, the parse tree scanning unit 101 first

reads the length field '02' (hexadecimal) and decodes

25 the same to obtain the value 2. The unit 101 accordingly

senses that the number of octets of the value field is

two. The parse tree scanning unit 101 further reads two

74

octets of input data 'ABCD' (hexadecimal) and decodes

the same to obtain the value ABCD'H. Output the value

ABCDΉ as the value of "trailer".

A decoding result finally obtained by the message

5 processing device 10 of the present embodiment is the

ASN.l value notation shown in Fig. 16.

Next, a second embodiment will be described. In

the first embodiment, no specific description has been

made of a mode in which the parse tree 105, which is

• ••to
• ·
····

10 held by the parse tree holding unit 104 of the message

processing device 10, is held in a storage region and
• ·
• · ·

• ·

* to · to

therefore an arbitrary mode such as a list form can be

taken. Fig. 29 shows a mode in which the parse tree 105

is held in a storage region of the parse tree holding

to·
15 unit 104 in the second embodiment. As illustrated in the

figure, successive arrangement of nodes of the parse
• to ··
• · ·
• · tree 105 on the storage region enables the preamble

processing unit 102 and the index processing unit 103 to

to · ·♦ • · · ·
• · · ♦ to ·to to to to 20

instruct the parse tree scanning unit 101 to scan only a

node to be scanned.

A flow chart of the processing for decoding the

sequence-type or set-type value in the second embodiment

25

is shown in Fig. 30 (a flow of the processing for

is shown in Fig. 9).

Upon application of the ASN.l transfer syntax 107

(input data to be decoded), first read a preamble field

encoding is the same as that of the first embodiment and

75

5

and store the same in a preamble buffer in the preamble

processing unit 102 (Step 3001). Next, initialize a

variable i indicative of a bit position in the preamble

field to 0 (Step 3002). Next, store an address of a node

of the parse tree 105 being currently scanned in a

variable PTAddr (Step 3003). Next, examine whether there

remains an element yet to be decoded (Step 3004). If no

element yet to be decoded remains, output a decoding

result of each element (Step 3010). If there is an

element yet to be decoded, examine whether the element

in question is designated as optional or default (Step

3005).

If the element is designated neither as optional

nor as default, add "node" (size of a storage region

necessary for holding one node of the parse tree 105) to

PTAddr (Step 3012), whereby the parse tree scanning unit

101 scans a node of the parse tree referred to by the

address PTAddr and decodes the element in question (Step

3013) to return to Step 3004. If the element is

20 designated as optional or default, the preamble

processing unit 102 examines whether an i-th bit of the

preamble field is '1' (Step 3006). If the bit is not '1',

add "node" to PTAddr (step 3011) and add 1 to i (Step

3009) to return to Step 3004. If the bit is '1', add

25 "node" to PTAddr (Step 3007), so that the parse tree

scanning unit 101 scans a node of the parse tree

referred to by the address PTAddr to decode the element

76

in question (Step 3008) and add 1 to i (Step 3009) to

return to Step 3004.

Next, a flow chart of the processing for decoding

the choice type in the second embodiment is shown in Fig.

5 31 (a flow of the processing for encoding is the same as

that of the first embodiment and is shown in Fig. 12).

Upon application of the ASN.l transfer syntax 107 (input

data to be decoded), first read an index field and store

the index field in an index buffer in the index

10

20

processing unit 103 (Step 3101). Next, decode an index

from the read index field to obtain an index value i

(Step 3102). Next, store an address of a node of the

parse tree 105 being currently scanned in a variable

PTAddr (Step 3103). Next, scan a node of the parse tree

referred to by an address PTAddr+node*i to decode the

element in question (Step 3104).

Although the present invention has been described

with respect to preferred embodiments in the foregoing,

the present invention is not necessarily limited to the

above-described embodiments.

Thus structured message processing device of the

present invention enables a message to be handled

according to encoding rules for compressing an encoding

data length which can not be used by conventional

25 message processing devices and, more particularly,

enables message encoding and decoding according to PER

by the addition of a preamble processing unit and an

77

index processing unit to a conventional message

processing device.

More specifically, in a case of handling

sequence-type and set-type values, when an element

5 designated as optional or default exists, according to

the encoding rules for compressing an encoding data

length, a field called a preamble is provided to

indicate whether an element designated as optional or

default exists or not in place of encoding of a tag

10 which is used in a conventional message processing

device and a preamble processing unit handles said

preamble to send and receive instructions to and from a

parse tree scanning unit, thereby enabling an element

15

designated as optional or default to be handled without

using a tag. It is therefore possible to encode and

decode a message without generating a redundant tag

field when handling sequence-type and set-type elements.

Also when handling a choice-type value, finding

to what number of element the choice-type value

20 corresponds without the use of a tag is enabled by the

provision of a field called index and handling of said

index by an index processing unit to send and receive

instructions to and from a parse tree scanning unit. It

is therefore possible, when handling a choice-type

25 element, to encode and decode a message without

generating a redundant tag field.

Furthermore, changing a format of a node of a

78

parse tree so as to hold constraints information

indicative of a range of obtainable values and a range

of lengths of the values of each element represented by

the ASN.l abstract syntax enables the parse tree

5 scanning unit to compress an encoding data length using

said constraints information. It is therefore

unnecessary to use a

accordingly possible

redundant length field and

to compress the contents of a value

field as well.

····
• · ·
·· 4

«V··
• · ·

• ··
• · ♦
• ·· ·

• ·«
• · 9

• ··

10

message

storage

program

As described in the foregoing, according to the

processing device, the method thereof and a

medium which stores a message processing control

of the present invention, introduction of a

preamble processing unit and an index processing unit
9 «• «
·»»· • ···

15 enables encoding and decoding of a message in accordance

with encoding rules for compressing the contents of
99 encoding data, PER, in particular.

·*·· As a result, it is possible to reduce a volume of

6 « ··
* ·♦·

• ·· ·
4 ·

data sent and received in an environment in which

20 messages are sent and received between different kinds

of devices. The reason is that in the message processing

device of the present invention, neither a redundant tag

field nor a redundant length field is generated and as

to a value field, encoding data length is compressed

25 using constraints in the ASN.l abstract syntax. Because

of the reduction in the volume of data sent and received,

the message processing device of the present invention

79

5

10

15

20

25

enables efficient communication even when a channel for

exchanging messages has a limited capacity.

Also, in an application requiring high-speed data

transfer, satisfactory performance can be achieved. The

reason is that by generating neither a redundant tag

field nor a redundant length field, a time overhead for

generating a redundant field is eliminated.

Furthermore, even with a smaller storage region,

message encoding and decoding is possible. The reason is

that generating neither a redundant tag field nor a

redundant length field and as to a value field,

compressing its contents using constraints leads to

reduction in a buffer region for temporarily holding a

message before the message is sent out to a channel.

Moreover, it is possible to minimize a delay time

from when a message to be processed is applied to the

device until when a desired result is obtained. The

reason is that no generation of redundant tag field and

length field eliminates a time overhead for generating a

redundant field which can not be eliminated by a

conventional message processing device. This effect

allows application of the message processing device of

the present invention also to a real-time system or the

like in which stringent constraints are imposed on a

time from when a message is applied to the device until

when a desired result is obtained.

Although the invention has been illustrated and

80

described with respect to exemplary embodiment thereof,

it should be understood by those skilled in the art that

the foregoing and various other changes, omissions and

additions may be made therein and thereto, without

5 departing from the spirit and scope of the present

invention. Therefore, the present invention should not

be understood as limited to the specific embodiment set

out above but to include all possible embodiments which

can be embodies within a scope encompassed and

10 equivalents thereof with respect to the feature set out

in the appended claims.

81

The claims defining the Invention are as follows:
WIIAT 10 CLAIMED IS ι-

5

• ·
• ·
• · · ·

1. Α message processing device for sending and

receiving a message composed of one or more elements

between different kinds of devices, comprising:

parse tree holding means having a function of

holding a parse tree generated from syntax descriptions

defining structure of a message sent or received;

tree

parse tree scanning means connected to said parse

holding means and having a function of, as message

data to be processed is applied, scanning said parse
• ·
• · ·
• · ·

• ·
• · ·

10 tree to encode and decode a value and outputting encoded

and decoded values;

preamble processing means connected to said parse

·· *

• · · ·
• · ·
• ·
• · · ·

• ·

15

tree scanning means and having a function of processing

a preamble field of a message for use in indicating

whether an element exists or not in message data sent or

received; and

index processing means connected to said parse

tree scanning means and having a function of processing

an index field of a message for use in indicating what

20 number of element is selected in message data whose one

of a plurality of elements is selected to be sent or

received.

82

2. The message processing device as set forth in

claim 1, wherein

said preamble processing means comprises:

a counter having a function of receiving input of

5 a signal indicating whether a node being scanned is

omissible and when said signal indicates that the node

is omissible, counting up a count value and outputting

the count value,

a decoder having a function of decoding a count

10 value of said counter and outputting the decoded value

20

as a write enable signal to each of flip-flops

constituting a register which will be described later,

a first multiplexer having a function of

receiving input of a signal indicating which processing

of encoding and decoding is being executed, and when the

signal indicates encoding, outputting a signal

indicating whether an element corresponding to a node in

the parse tree being scanned exists or not to a register

which will be described later and when the signal

indicates decoding, outputting a preamble field input

signal,

a register having a function of receiving input

of the signal from said first multiplexer and the write

enable signal from said decoder, and for a flip-flop to

25 which said write enable signal is effective, reading the

signal from said multiplexer and holding the contents of

the signal and for a flip-flop to which said write

83

enable signal is not effective, keeping holding the

currently held contents, as well as outputting the

30 currently held contents as a preamble field output

signal, and

a second multiplexer having a function of

receiving input of the preamble field output signal from

said register and the count value from said counter and

35 outputting the contents of a bit at a bit position

corresponding to the count value in a preamble field as

an instruction signal giving an instruction to decode an

element corresponding to the subsequent node.

3. The message processing device as set forth in

claim 1, wherein

said index processing means comprises:

a counter having a function of receiving input of

a signal indicating whether a node of the parse tree

corresponding to a message whose one of a plurality of

elements is selected to be sent or received is being

scanned and when the node in question is being scanned,

counting up a count value and outputting the count value

10 to a first register and a comparator which will be

described later, as well as outputting the count value

as an index value output signal,

a first register having a function of receiving

input of said count value and a signal indicating

84

15 whether a node corresponding to a selected element of a

message whose one of a plurality of elements is selected

to be sent or received is being scanned or not, and when

the node in question is being scanned, outputting the

currently held contents as an index field output signal

20 and when the node in question is not being scanned,

holding said count value,

a second register having a function of receiving

input of an index field input signal and holding said

index field input signal, as well as outputting the

25 currently held contents, and

a comparator having a function of receiving input

of said count value and the signal from said second

register and comparing the contents of the two, and when

the contents coincide with each other, outputting an

instruction signal giving an instruction to decode a

value of an element corresponding to a node of the parse

tree corresponding to the currently output index value.

4. The message processing device as set forth in

claim 1, wherein

said preamble processing means handles a preamble

to instruct said parse tree scanning means to scan only

5 a node of the parse tree corresponding to an element

existing in message data sent or received, thereby

eliminating the need of scanning of a node whose

85

scanning is not required.

5. The message processing device as set forth in

claim 1, wherein

said preamble processing means comprises:

a counter having a function of receiving input of

5 a signal indicating whether a node being scanned is

omissible and when said signal indicates that the node

is omissible, counting up a count value and outputting

• ·· · the count value,
*···
·· a decoder having a function of decoding a count

····

··

···»

10

15

value of said counter and outputting the decoded value

as a write enable signal to each of flip-flops

constituting a register which will be described later,

a first multiplexer having a function of

receiving input of a signal indicating which processing

of encoding and decoding is being executed, and when the

signal indicates encoding, outputting a signal
• · · · indicating whether an element corresponding to a node in

the parse tree being scanned exists or not to a register

which will be described later and when the signal

20 indicates decoding, outputting a preamble field input

signal,

a register having a function of receiving input

of the signals from said first multiplexer and the write

enable signal from said decoder, and for a flip-flop to

86

25 which said write enable signal is effective, reading the

signal from said multiplexer and holding the contents of

the signal and for a flip-flop to which said write

enable signal is not effective, keeping holding the

currently held contents, as well as outputting the

30 currently held contents as a preamble field output

signal, and

a second multiplexer having a function of

receiving input of the preamble field output signal from

said register and the count value from said counter and

35

40

outputting the contents of a bit at a bit position

corresponding to the count value in a preamble field as

an instruction signal giving an instruction to decode an

element corresponding to the subsequent node, and

said preamble processing means handles a preamble

to instruct said parse tree scanning means to scan only

a node of the parse tree corresponding to an element

existing in message data sent or received, thereby

eliminating the need of scanning of a node whose

scanning is not required.

45

6. The message processing device as set forth in

claim 1, wherein

in the encoding of a message,

when message data is applied, examination is made

5 whether an element yet to be encoded exists in the

87

message data or not,

when there is no element yet to be encoded, an

encoding result of each element linked after a preamble

is output as an encoding result,

10 when an element yet to be encoded exists, said

parse tree scanning means scans a subsequent node of the

parse tree to examine whether the element in question is

an omissible element or not, when the element in

question is not an omissible element, said parse tree

15 scanning means examines whether the node in question is

a node corresponding to the element yet to be encoded

and when the node in question is not the corresponding

node, the routine again returns to the examination

whether an element yet to be encoded exists or not,

20

25

30

when the node is the corresponding node, the

element in question is encoded to again return to the

examination whether an element yet to be encoded exists

or not,

when the element in question is an omissible

element, said parse tree scanning means gives an

instruction to said preamble processing means to

generate a 1-bit field in said preamble processing means

which field is then linked to the trail of the existing

preamble and said parse tree scanning means examines

whether the node in question is a node corresponding to

the element yet to be encoded, and when the node is not

the corresponding node, said parse tree scanning means

88

35

40

gives an instruction to said preamble processing means

to set the contents of the field generated in said

preamble processing means to the contents indicating

that "omissible element is omitted" and again return to

the examination whether an element yet to be encoded

exists, and

when the node in question is a node corresponding

to the element yet to be encoded, said parse tree

scanning means gives an instruction to said preamble

processing means to set the contents of the field

• · ·
···· » · ·
• · ·

• ··
• · ·
··· ·
• · ·

• · ·
• · ·

• ·

45

generated in said preamble processing means

contents indicating that "omissible element

to the

is not

omitted" and encodes the element in question to again

return to the examination whether an element yet to be

• · · «• ·• · ·
encoded exists.

• · ·

« · · ·• · ·« ·
···»• ·• ·· ·

7. The message processing device as set forth in

claim 1, wherein
····• · · ·

• · » · • ·
in the decoding of a message,

when message data is applied, first a preamble

5 field is read and stored in said preamble processing

means,

a variable indicative of a bit position in the

preamble field is initialized to 0,

examination is made whether there exists an

10 element yet to be decoded in the message data,

89

15

when no

decoding result

when an

element

of each

element

yet to be decoded exists, a

element is output,

yet to be decoded exists, said

parse tree scanning means scans the subsequent node of

the parse tree to examine whether an element

corresponding to the node in question is an omissible

element and when the element in question is not an

omissible element, decodes the element in question to

again return to the examination whether an element yet

20 to be decoded exists,
···*

• *
·· 9 when the element in question is an omissible

•» ·
9 99
9 9 9
9 99 *

9 99• · ·• · ·

element, if the contents of

the preamble field indicate

the current bit position in

that "omissible element is

omitted", 1 is added to a variable indicative of the

• · · ·
* · 9

99 ♦

9 9 »9
9 ♦ 9

9 9 9

25 current bit position to return to the examination

whether an element yet to be decoded exists, and

if the contents of the current bit position in

the preamble field indicate that "omissible element is

not omitted", the element in question is decoded and 1
• · · · ·«··

·« * · « «
9 · · ·

30 is added to the variable indicative of the current bit

position to return to the examination whether an element

yet to be decoded exists.

8. The message processing device as set forth in

claim 1, wherein

said preamble processing means handles a preamble

* »

9 9 «*

• •4«

90

to instruct said parse tree scanning means to scan only

5 a node of the parse tree corresponding to an element

existing in message data sent or received, thereby

eliminating the need of scanning of a node whose

scanning is not required,

the parse tree is stored in a continuous region

10 on a storage region of said parse tree holding means,

and

in the decoding of a message,

when message data is applied, first a preamble

15

20

25

field is read and stored in said preamble processing

means,

a variable indicative of a bit position in the

preamble field is initialized to 0,

an address of a node being currently scanned is

stored in a variable indicative of an address of a node

of the parse tree,

examination is made whether there exists an

element yet to be decoded in the message data,

when no element yet to be decoded exists, a

decoding result of each element is output,

when an element yet to be decoded exists,

examination is made whether the element in question is

an omissible element and when the element in question is

not an omissible element, an address of the subsequent

node is stored in the variable indicative of an address

30 of a node of the parse tree, the node of the parse tree

91

having the address in question is scanned and the

element in question is decoded to return to the

examination whether an element yet to be decoded exists,

when the element in question is an omissible

35 element, if the contents of the current bit position in

the preamble field indicate that "omissible element is

omitted", the address of the subsequent node is stored

in the variable indicative of an address of a node of

40

45

the parse tree and 1 is added to a variable indicative

of the current bit position to return to the examination

whether an element yet to be decoded exists, and

if the contents of the current bit position in

the preamble field indicate that "omissible element is

not omitted", the address of the subsequent node is

stored in the variable indicative of an address of a

node of the parse tree, the node of the parse tree

having the address in question is scanned, the element

in question is decoded and 1 is added to the variable

indicative of the current bit position to return to the

50 examination whether an element yet to be decoded exists.

9. The message processing device as set forth in

claim 1, wherein

said index processing means handles an index to

instruct said parse tree scanning means to scan only a

5 node of the parse tree corresponding to a selected

92

element in message data sent or received, thereby

eliminating the need of scanning of a node whose

scanning is not required.

10. The message processing device as set forth in

claim 1, wherein

in the encoding of a message,

when message data is applied, examination is made

5 whether a node of the parse tree being currently scanned

is a node corresponding to a selected element and when

the node is not the corresponding node, said index

processing means adds 1 to a current index value and

said parse tree scanning means scans the subsequent node

10 of the parse tree to again return to the examination

whether the node being scanned corresponds to the

selected element, and

when the node is the corresponding node, said

index processing means encodes the current index value

15 and said parse tree scanning means encodes the element

in question to output the encoding results of the index

value and the element in question linked together.

claim 1, wherein

in the decoding of a message,

11. The message processing device as set forth in

93

when message data is applied, first an index

5 field is read and stored in said index processing means,

the contents of the index field are decoded to

obtain an index value,

a variable indicative of a choice number is

initialized to 0,

10

15

said parse tree scanning means scans a subsequent

node of the parse tree,

examination is made whether said variable and the

index value are equal and if the two values are not

equal, 1 is added to said variable to again return to

scanning of a subsequent node of the parse tree, and

when said variable and the index value are equal,

the element in question is decoded.

12. The message processing device as set forth in

claim 1, wherein

said index processing means handles an index to

instruct said parse tree scanning means to scan only a

5 node of the parse tree corresponding to a selected

element in message data sent or received, thereby

eliminating the need of scanning of a node whose

scanning is not required,

the parse tree is stored in a continuous region

10 on a storage region of said perse tree holding means,

and

94

in the decoding of a message,

when message data is applied, first an index

field is read and stored in said index processing means,

15 the contents of the index field are decoded to

obtain an index value,

stored

an address of a node being currently scanned is

in a variable indicative of an address of a node

of the parse tree, and

• · · ·
• ·

• ·
• · · ·

• ·
• ·

20 said parse tree scanning means scans a node of

the parse tree to be referred to by a sum of said

25

variable and a product of

necessary for holding one

index value to decode the

the size of

node of the

a storage region

parse tree and the

element in question.

• · ·
• · ·

• ·
• · ·

• •f*
13. The message processing device as set forth in

claim 1, wherein

said preamble processing means handles a preamble

• · · · to instruct said parse tree scanning means to scan only

5 a node of the parse tree corresponding to an element

existing in message data sent or received, and said

index processing means handles an index to instruct said

10

parse

parse

tree scanning means to scan only

tree corresponding to a selected

message data sent or received, thereby

a node of the

element in

eliminating the

need of scanning of a node whose scanning is not

required.

95

14. The message processing device as set forth in

claim 1, wherein

said parse tree holding means holds such a parse

tree generated from syntax descriptions defining

5 structure of a message sent or received as having a node

format made up of six fields, "type of element", "tag

attached to element", "constraints on element", "whether

element is omissible", "pointer to subsequent node in

the same nesting hierarchy" and "pointer to node in

lower nesting hierarchy".

15. The message processing device as set forth in

claim 1, wherein

a message whose structure is defined by the

abstract syntax notation one (ASN.l) is handled

5 according to the packed encoding rules (PER).

16. A message processing method of sending and

receiving a message composed of one or more elements

between different kinds of devices and processing the

message, comprising the steps of:

5 holding a parse tree generated from syntax

descriptions defining structure of a message sent or

96

received;

as message data to be processed is applied,

scanning said parse tree to encode and decode a value

10 and outputting encoded and decoded values;

processing a preamble field of a message for use

in indicating whether an element exists or not in

message data sent or received; and

processing an index field of a message for use in

15 indicating what number of element is selected in message

data whose one of a plurality of elements is selected to

be sent or received.

17. The message processing method as set forth in

claim 16, wherein

said message encoding step comprises the steps

of:

5 when message data is applied, examining whether

an element yet to be encoded exists in the message data

or not,

when there is no element yet to be encoded,

outputting an encoding result of each element linked

10 after a preamble as an encoding result,

when an element yet to be encoded exists,

scanning a subsequent node of the parse tree to examine

whether the element in question is an omissible element

or not, when the element in question is not an omissible

97

15 element, examining whether the node in question is a

node corresponding to the element yet to be encoded and

when the node in question is not the corresponding node,

again returning to the examination whether an element

yet to be encoded exists or not,

20 when the node is the corresponding node, encoding

the element in question to again return to the

examination whether an element yet to be encoded exists

or not,

when the element in question is an omissible

element, generating a 1-bit field, linking the field to

the trail of the existing preamble and examining whether

the node in question is a node corresponding to the

element yet to be encoded, and when the node is not the

corresponding node, setting the contents of said

30 generated field to the contents indicating that

"omissible element is omitted" to again return to the

examination whether an element yet to be encoded exists,

and

when the node in question is a node corresponding

35 to the element yet to be encoded, setting the contents

of said generated field to the contents indicating that

"omissible element is not omitted" and encoding the

element in question to again return to the examination

whether an element yet to be encoded exists.

40

98

5

18. The message processing method as set forth in

claim 16, wherein

said message decoding step comprises the steps

of:

when message data is applied, first reading and

storing a preamble field,

initializing a variable indicative of a bit

position in the preamble field to 0,

10

15

examining whether there exists an element yet to

be decoded in the message data,

when no element yet to be decoded exists,

outputting a decoding result of each element,

when an element yet to be decoded exists,

scanning the subsequent node of the parse tree to

examine whether an element corresponding to the node in

question is an omissible element and when the element in

question is not an omissible element, decoding the

element in question to again return to the examination

whether an element yet to be decoded exists,

20 when the element in question is an omissible

element, if the contents of the current bit position in

the preamble field indicate that "omissible element is

omitted", adding 1 to a variable indicative of the

current bit position to return to the examination

25 whether an element yet to be decoded exists, and

if the contents of the current bit position in

the preamble field indicate that "omissible element is

99

not omitted", decoding the element in question and

adding 1 to the variable indicative of the current bit

30 position to return to the examination whether an element

yet to be decoded exists.

19. The message processing method as set forth in

claim 16, wherein

in said preamble processing step,

the parse tree is stored in a continuos region on

5 a storage region, and

said message decoding step comprises the steps

10

of:

when message data is applied, first reading and

storing a preamble field,

initializing a variable indicative of a bit

position in the preamble field to 0,

storing an address of a node being currently

scanned in a variable indicative of an address of a node

of the parse tree,

15 examining whether there exists an element yet to

be decoded in the message data,

when no element yet to be decoded exists,

outputting a decoding result of each element,

when an element yet to be decoded exists,

20 examining whether the element in question is an

omissible element and when the element in question is

100

not an omissible element, storing an address of a

subsequent node in the variable indicative of an address

of a node of the parse tree, scanning the node of the

25 parse tree having the address in question and decoding

the element in question to return to the examination

whether an element yet to be decoded exists,

when the element in question is an omissible

element, if the contents of the current bit position in

30 the preamble field indicate that "omissible element is

omitted", storing an address of a subsequent node in the

variable indicative of an address of a node of the parse

tree and adding 1 to a variable indicative of the

35

current bit position to return to the examination

whether an element yet to be decoded exists, and

if the contents of the current bit position in

the preamble field indicate that "omissible element is

not omitted", storing an address of a subsequent node in

the variable indicative of an address of a node of the

parse tree, scanning the node of the parse tree having

the address in question, decoding the element in

question and adding 1 to the variable indicative of the

current bit position to return to the examination

whether an element yet to be decoded exists.

45

20. The message processing method as set forth in

claim 16, wherein

101

said message encoding step comprises the steps

of s

5 when message data is applied, examining whether a

node of the parse tree being scanned is a node

corresponding to a selected element and when the node is

not the corresponding node, adding 1 to an index value

being operated and scanning the subsequent node of the

• · · ·

• ··
• ·

·*··

10

15

parse tree to again return to the examination whether

the node being scanned corresponds to the selected

element, and

when the node

the index value being

in question to output

value and the element

is the corresponding node, encoding

operated and encoding the element

the encoding results of the index

in question linked together.

21. The message processing method as set forth in

····
····

• ·

claim 16 wherein

said message decoding step comprises the steps

of:

5 when message data is applied, first reading and

storing an index field,

decoding the contents of the index field to

obtain an index value,

initializing a variable indicative of a choice

scanning a subsequent node of the parse tree,

10 number to 0,

102

examining whether said variable and the index

value are equal and if the two values are not equal,

adding 1 to said variable to again return to scanning of

15 a subsequent node of the parse tree, and

when said variable and the index value are equal,

decoding the element in question.

22. The message processing method as set forth in

claim 16, wherein

in said preamble processing step,

the parse tree is stored in a continuos region on

15

a storage region, and

said message decoding step comprises the steps

of ·

when message data is applied, first reading and

storing an index field,

decoding the contents of the index field to

obtain an index value,

storing an address of a node being currently

scanned in a variable indicative of an address of a node

of the parse tree, and

scanning a node of the parse tree to be referred

to by a sum of said variable and a product of the size

of a storage region necessary for holding one node of

tho parse tree and the index value to decode the element

in question.

103

····

10

15

23. A computer readable memory storing a control

program which controls a message processing device for

sending and receiving a message composed of one or more

elements between different kinds of devices, said

control program comprising the steps of:

holding a parse tree generated from syntax

descriptions defining structure of a message sent or

received;

as message data to be processed is applied,

scanning said parse tree to encode and decode a value

and outputting encoded and decoded values;

processing a preamble field of a message for use

in indicating whether an element exists or not in

message data sent or received; and

processing an index field of a message for use in

indicating

data whose

be sent or

what number of element is selected in message

one of a plurality of elements is selected to

received.

5

5

24. The computer readable memory as set forth in

claim 23, wherein

said control program

in said message encoding step,

when message data is applied, examines whether an

element yet to be encoded exists in the message data or

not,

104

when there is no element yet to be encoded,

outputs an encoding result of each element linked after

10 a preamble as an encoding result,

when an element yet to be encoded exists, scans a

subsequent node of the parse tree to examine whether the

element in question is an omissible element or not, when

the element in question is not an omissible element,

15 examines whether the node in question is a node

corresponding to the element yet to be encoded and when

the node in question is not the corresponding node,

again returns to the examination whether an element yet

to be encoded exists or not,

20

25

when the node is the corresponding node, encodes

the element in question to again return to the

examination whether an element yet to be encoded exists

or not,

when the element in question is an omissible

element, generates a 1-bit field, links the field to the

trail of the existing preamble and examines whether the

node in question is a node corresponding to the element

yet to be encoded, and when the node is not the

corresponding node, sets the contents of said generated

30 field to the contents indicating that "omissible element

is omitted" to again return to the examination whether

an element yet to be encoded exists, and

when the node in question is a node corresponding

to the element yet to be encoded, sets the contents of

105

35 said generated field to the contents indicating that

"omissible element is not omitted" and encodes the

element in question to again return to the examination

whether an element yet to be encoded exists.

25. The computer readable memory as set forth in

claim 23, wherein

5

said control program

in said message decoding step,

when message data is applied, first reads and

stores a preamble field,

10

initializes a variable indicative of a bit

position in the preamble field to 0,

examines whether there exists an element yet to

be decoded in the message data,

when no element yet to be decoded exists, outputs

a decoding result of each element,

when an element yet to be decoded exists, scans

the subsequent node of the parse tree to examine whether

15 an element corresponding to the node in question is an

omissible element or not and when the element in

question is not an omissible element, decodes the

element in question to again return to the examination

whether an element yet to be decoded exists,

20 when the element in question is an omissible

element, if the contents of the current bit position in

106

the preamble field indicate that "omissible element is

omitted", adds 1 to a variable indicative of the current

bit position to return to the examination whether an

25 element yet to be decoded exists, and

if the contents of the current bit position in

the preamble field indicate that "omissible element is

not omitted", decodes the element in question and adds 1

to the variable indicative of the current bit position

4

30 to return to the examination whether an element yet to

be decoded exists.

26. The computer readable program as set forth in

claim 23, wherein

5

said control program

in said preamble processing step,

stores the parse tree in a continuos region on a

storage region, and

for decoding a message,

when message data is applied, first reads and

stores a preamble field,

10 initializes a variable indicative of a bit

position in the preamble field to 0,

stores an address of a node being currently

scanned in a variable indicative of an address of a node

of the perse tree,

15 examines whether there exists an element yet to

107

be decoded in the message data,

when no element yet to be decoded exists, outputs

a decoding result of each element,

when an element yet to be decoded exists,

20 examines whether the element in question is an omissible

element and when the element in question is not an

omissible element, stores an address of a subsequent

node in the variable indicative of an address of a node

of the parse tree, scans the node of the parse tree

25 having the address in question and decodes the element

in question to return to the examination whether an

element yet to be decoded exists,

when the element in question is an omissible

element, if the contents of the current bit position in

30

35

the preamble field indicate that "omissible element is

omitted", stores an address of a subsequent node in the

variable indicative of an address of a node of the parse

tree and adds 1 to a variable indicative of the current

bit position to return to the examination whether an

element yet to be decoded exists, and

when the contents of the current bit position in

the preamble field indicate that "omissible element is

not omitted", stores an address of a subsequent node in

the variable indicative of an address of a node of the

40 parse tree, scans the node of the parse tree having the

address in question, decodes the element in question and

adds 1 to the variable indicative of the current bit

108

position to return to the examination whether an element

yet to be decoded exists.

45

27. The computer readable memory as set forth in

claim 23, wherein

said control program

5

in said message encoding step,

when message data is applied, examines whether a

node of the parse tree being scanned is a node

corresponding to a selected element and when the node is

not the corresponding node, adds 1 to an index value

10

15

being operated and scans the subsequent node of the

parse tree to again return to the examination whether

the node being scanned corresponds to the selected

element, and

when the node is the corresponding node, encodes

the index value being operated and encodes the element

in question to output the encoding results of the index

value and the element in question linked together.

28. The computer readable memory as set forth in

claim 23, wherein

said control program

in said message decoding step,

5 when message data is applied, first reads and

109

stores an index field,

decodes the contents of the index field to obtain

an index value,

initializes a variable indicative of a choice

10 number to 0,

scans a subsequent node of the parse tree,

examines whether said variable and the index

value are equal and if the two values are not equal,

15

adds 1 to said variable to again return to scanning of a

subsequent node of the parse tree, and

when said variable and the index value are equal,

decodes the element in question.

····
• ·

·· ft

• ft ··
• ft ft
ft ft
• ••ft

29. The computer readable memory as set forth in

claim 23, wherein

• ·

said control program
ft ··· ft···

• ••0 • ·ft···
in said preamble processing step,

stores the parse tree in a continuos region on a

storage region, and

for decoding a message,

5

when message data is applied, first reads and

stores an index field,

10 decodes the contents of the index field to obtain

stores an address of being currently

scanned in a variable indicative of an address of a node

an index value,

- 110 -

of the parse tree, and
scans a node of the parse tree to be referred to by a sum of said variable and a

product of the size of a storage region necessary for holding one node of the parse tree
and the index value to decode the element in question.

30. A message processing device substantially as described herein with
reference to Figs. 1 to 5 of the accompanying drawings.

31. A message processing method substantially as described herein in
io relation to any one of the embodiments with reference to Figs. 6 to 31 of the

accompanying drawings.

DATED this Fourth Day of March 1999
NEC Corporation

15 Patent Attorneys for the Applicant
SPRUSON & FERGUSON

[N:\LibcclO1654iBFD

7

FIG. 1

• · · ·
• ·

• · ·

• ·

• · · ·
Λ · · ·

1/34

• · · ·

FIG. 2

2/34

3/34

• · · ·
• ·

FIG. 3
INDEX FIELD INPUT

INDEX FIELD OUTPUT INDEX VALUE OUTPUT
(AT DECODING) (AT DECODING)

FIG. 4

01 402 403 404 405 406

TYPE OF
ELEMENT

TAG
ATTACHED

TO
ELEMENT

CONSTRAINTS
ON ELEMENT

DESIGNATED
AS

OPTIONAL
OR

DEFAULT

POINTER TO
SUBSEQUENT

NODE IN
THE SAME

NESTING
HIERARCHY

POINTER TO
NODE IN
LOWER

NESTING
HIERARCHY

• · · ·

FIG. 5

4/34

501

Examp I el ::= SEQUENCE {
a [0] INTEGER OPTIONAL,
b [1] INTEGER OPTIONAL,
c OCTET STRING.
d INTEGER(0..7)

502

FIG. 6

5/34

608
YES

OUTPUT NOTHING

ENCODING OF \

THE INTEGER TYPE J

06

YES

YES

ENCODE AS VALUE
FIELD AND OUTPUT

VALUE FIELD

ENCODE AND OUTPUT
THE NUMBER OF

OCTETS NECESSARY FOR
ENCODING VALUE
AS LENGTH FIELD

CONSTRAINTS
ON ELEMENT EXIST?

UPPER BOUND
AND LOWER BOUND OF

OBTA NABLE VALUES

UPPER BOUND AND
LOWER BOUND OF OBTAINABLE

VALUES COINC DE WITH
EACH OTHER?

(THIRD FIELD OF
PARSE TREE)

603

604 ENCODE AND OUTPUT
THE NUMBER OF OCTETS

NECESSARY FOR ENCODING
OFFSET VALUE FROM LOWER

BOUND AS LENGTH FIELD 6(?9

ENCODE AND OUTPUT
OFFSET VALUE FROM

LOWER BOUND AS
VALUE FIELD

ENCODE AND
OUTPUT OFFSET

VALUE FROM
LOWER BOUND

AS VALUE FIELD

FIG. Ί

6/34

70

DECODING OF
THE INTEGER TYPE

OUTPUT UPPER BOUND
OR LOWER BOUND

OF OBTAINABLE
VALUES AS

INTEGER-TYPE VALUE

707

YES

CONSTRANTS
ON ELEMENT EX ST?

UPPER BOUND
AND LOWER BOUND

OBTA IN ABLE VALUES

PPER BOUND AND
OWER BOUND OF OBTAINABLE

VALUES CO NO DE W TH
EACH OTHER?

(THIRD FIELD OF
PARSE TREE)

READ LENGTH FIELD
TO OBTAIN

THE NUMBER N OF
OCTETS OF

VALUE FIELD

I
READ AND DECODE

n OCTETS OF
INPUT DATA

OUTPUT AS
INTEGER-TYPE

VALUE

704

705,

READ LENGTH FIELDTO
OBTAIN THE NUMBER

n OF OCTETS OF
VALUE FIELD

READ AND ENCODE
n OCTETS OF

INPUT DATA

OUTPUT SUM OF DECODED
VALUE AND LOWER BOUND

OF OBTAINABLE VALUE
AS INTEGER-TYPE VALUE

READ ANC
m BITS (0

OF INPL
(m AND E

OR OCT
DETERMINEt

BOUND Ah
BOUN

OBTAINABL

) DECODE
R OCTETS)
JT DATA
ITHER BIT
ET ARE
) BY UPPER
JD LOWER
D OF
E VALUES)

OUTPUT SUM OF
DECODED VALUE AND

LOWER BOUND OF
DBTAINABLE VALUES AS

INTEGER-TYPE VALUE

FIG. 8

7/34

a
b
c
d

INTEGER(1..1)
INTEGER(0..7)
INTEGERS 28..MAX)
INTEGER

a = 1
b = 3
c = 133
d = 133

DECODING RESULT OF a
(VALUE NOTATION)

DECODING RESULT OF b
(VALUE NOTATION)

DECODING RESULT OF c
(VALUE NOTATION)

DECODING RESULT OF d
(VALUE NOTATION)

DECODING ENCODING

ENCODING RESULT OF a
(TRANSFER SYNTAX)(NOTHING EXISTS)

VALUE 3

ENCODING RESULT OF b
(TRANSFER SYNTAX)

ENCODING RESULT OF c
(TRANSFER SYNTAX)

j

o|o|o|o|o|o|o| 1 0 1 0 [0 I 0 J 0 I 1 j o | 1

THE NUMBER OF OCTETS
NECESSARY FOR ENCODING
OFFSET VALUE = 1

OFFSET FROM 128 = 5

ENCODING RESULT OF d
(TRANSFER SYNTAX)

0 j 0 [0 [0 [0 o|o| 1 1 ΐ 0 ΐ 0 ΐ 0 ΐ 0 ί 1 ΐ 0 I 1

THE NUMBER OF OCTETS
NECESSARY FOR ENCODING

VALUE = 133

VALUE = 1

FIG. 9

8/34

(
ENCODING OF SEQUENCE^

TYPE OR SET TYPE J
.901

^XeLEMENt^x.
YET TO BE ENCODED

EXISTS?
902^ YES

SCAN SUBSEQUENT
NODE OF

PARSE TREE

NO
<906

OUTPUT PREAMBLE AND
ENCODING RESULT OF

EACH ELEMENT

903

NO

ELEMENT IN
QUESTION DESIGNATED

AS OPTIONAL OR
DEFAULT? ^X

YES
907

NO
904

NODE
IN QUESTION IS

NODE CORRESPONDING TO
"^ELEMENT YET TO BEX

^''xwENCODED’X*^

YES

ENCODE ELEMENT
IN QUESTION

905

GENERATE 1-BIT FIELD AT
PREAMBLE PROCESSING UNIT

AND LINK THE SAME TO TRAIL
OF CURRENT PREAMBLE

NODE
IN QUESTION IS

NODE CORRESPONDING
S^ELEMENT YET TO BE

ENCODED? X

YES

•08

TO
NO

909 SET
CONTENTS OF
GENERATING
FIELD TO '1'

910
ENCODE ELEMENT

IN QUESTION

SET
CONTENTS OF

GENERATED
FIELD TO '0*

FIG. 10

9/34

FIG. 11
ASN.1 ABSTRACT SYNTAX ASN.1 VALUE NOTATION

10/34

SampleSEQ ::= SEQUENCE{ {
a INTEGER OPTIONAL, a 10,
b INTEGER OPTIONAL, c 12,
c INTEGER,
d INTEGER OPTIONAL

}

d 8
}

DECODING

ASN.1 TRANSFER SYNTAX

ENCODING

1151
ENCODING

RESULT OF A
ENCODING 1 ENCODING

RESULT OF C 1 RESULT OF D

PREAMBLE

• · ·
• ·

• ·

FIG. 12

1203

11/34

····

FIG. 13

FIG. 14
ASN.1 ABSTRACT SYNTAX ASN.1 VALUE NOTATION

12/34

SampleCHO ::= CHOICE!
a [0] INTEGER,
b [1] INTEGER,
c [2] INTEGER,
d [3] INTEGER

}

{
c 12,

}

DECODING

ASN.1 TRANSFER SYNTAX

I

ExampIe2
id
sub id
length
header

content-name
content-type

},
content

name
age

},
trailer

}

ENCODING

TO ENCODING
Ί| I RESULT OF c

INDEX

FIG. 15

:= SEQUENCE {
INTEGER(0..1023),

[0] IMPLICIT INTEGER(O..1023) OPTIONAL,
[1] IMPLICIT INTEGERS). .255),

CHOICE!
[0] Printab I eString,
LU INTEGER(O. .15)

SEQUENCE {
Printab I eString,
INTEGER(O..MAX)

OCTET STRING(SIZE(O..15)) OPTIONAL

FIG. 16

13/34

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

FIG.
14/34

Example2

1706

1707

1709

1710

FIG. 18

15/34

BUFFER
NO.

OUTPUT BUFFER
OF PARSE TREE
SCANNING UNIT

PREAMBLE BUFFER INDEX BUFFER OF
OF PREAMBLE INDEX PROCESSING

PROCESSING UNIT UNIT

0: EMPTY EMPTY 0

FIG. 31

SCAN NODE HAVING
ADDRESS PTADDR + NODE * i TO
DECODE ELEMENT IN QUESTION

3101

3102

3103

3104

FIG. 19

BUFFER
NO.

0:

OUTPUT BUFFER
OF PARSE TREE
SCANNING UNIT

PREAMBLE BUFFER
OF PREAMBLE

PROCESSING UNIT

INDEX BUFFER
OF INDEX

PROCESSING UNIT

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 EMPTY 0

OUTPUT

16/34

EMPTY

• e
• · · ·
• · · ·
• · ·

• ft
• ft ·
• · ·

• · ft • ·
ft

FIG. 20

BUFFER
NO.

0:

OUTPUT BUFFER
OF PARSE TREE
SCANNING UNIT

PREAMBLE BUFFER
OF PREAMBLE

PROCESSING UNIT

INDEX BUFFER
OF INDEX

PROCESSING UNIT

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 1 0 0

0 0 17/34

OUTPUT

EMPTY

FIG. 21

BUFFER
NO.

OUTPUT BUFFER
OF PARSE TREE
SCANNING UNIT

0 : 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 *x

0 0 0 0 0 1 0 0 *x

1 0 1 0 0

PREAMBLE BUFFER
OF PREAMBLE

PROCESSING UNIT

0

INDEX BUFFER
OF INDEX

PROCESSING UNIT

0

18/34

OUTPUT

EMPTY

• · ·
• to · to
• · · · ·
• to ·

• ·

• ···to to ··· to• to ·• ♦ to

• to• · · ·• · · ·
• · · ·• · ·

to · ·· ·«
• ·
• ·

• ·

• ·
• ·

to ·
• to

• ·

FIG. 22

BUFFER
NO.

OUTPUT BUFFER
OF PARSE TREE
SCANNING UNIT

f

0: 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1
fl

/’

0 0 0 0 0 1 0 0

1 0 1 0 0

PREAMBLE BUFFER
OF PREAMBLE

PROCESSING UNIT

0

INDEX BUFFER
OF INDEX

PROCESSING UNIT

0

19/34

1 : EMPTY EMPTY 0

OUTPUT

EMPTY

FIG. 23

BUFFER
NO.

0:

OUTPUT BUFFER
OF PARSE TREE
SCANNING UNIT

PREAMBLE BUFFER
OF PREAMBLE

PROCESSING UNIT

INDEX BUFFER
OF INDEX

PROCESSING UNIT

0 0

20/34

EMPTY

OUTPUT

EMPTY

FIG. 24
BUFFER

NO.

OUTPUT BUFFER
OF PARSE TREE
SCANNING UNIT

PREAMBLE BUFFER
OF PREAMBLE

PROCESSING UNIT

INDEX BUFFER
OF INDEX

PROCESSING UNIT

10 10 0

0: 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1

(1
0 0 0 0 0 1 0 0

<

0 0

1 : EMPTY

)

21/34

OUTPUT

EMPTY

FIG. 25
BUFFER

NO.

OUTPUT BUFFER
OF PARSE TREE
SCANNING UNIT

PREAMBLE BUFFER
OF PREAMBLE

PROCESSING UNIT

INDEX BUFFER
OF INDEX

PROCESSING UNIT

0:

(

000001 000000001 1

(

(
0 0 0 0 0 1 0 0

1 0 1 0 0 0 0 0

) 0 0

PADDING

0000001101100110
—1--1 IJ-‘ I·1 !—... l.i I r)

(..... pi I" I —|" Illi
~0 1 1 0 1 1 1 1 0 1 1 0 1 1 1 1

)
(

0000000100011010

OUTPUT

EMPTY

9

• · ·
9 * ·

FIG. 26

• · ·♦ · ··• ♦ · · ·
• ··• · ·• · ·

9 9 9
• 9 ·• · ·

• · « «
• · 9 «

• · · ·
9 ·

·♦ 9 9

9 9 9 9
• 999

99 99
• 9

·· 9 9

BUFFER
NO.

OUTPUT BUFFER
OF PARSE TREE
SCANNING UNIT

PREAMBLE BUFFER
OF PREAMBLE

PROCESSING UNIT

INDEX BUFFER
OF INDEX

PROCESSING UNIT

0 1 0

1 0 1 0 0 0 0 0 PADDING

23/34

OUTPUT

EMPTY

···
• ·

• · ·

FIG. 27 BUFFER
NO.

OUTPUT BUFFER
OF PARSE TREE
SCANNING UNIT

PREAMBLE BUFFER
OF PREAMBLE

PROCESSING UNIT

0: EMPTY EMPTY

INDEX BUFFER
OF INDEX

PROCESSING UNIT

0

OUTPUT

0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0

1 0 1 0 0 0 0 0 PADDING

&

FIG.
PADDING

25/34

···

FIG. 29
26/34

LEGEND BA: BASE ADDRESS OF STORAGE REGION
NODE: SUM OF TYPE, TAG, RESTRICT, OPTDEF, NEXTPTR AND SUCCPTR
NUMNODE: THE NUMBER OF NODES OF PARSING TREE
TYPE: SIZE OF STORAGE REGION NECESSARY FOR HOLDING ELEMENT TYPE
TAG: SIZE OF STORAGE REGION NECESSARY FOR HOLDING TAG ATTACHED TO ELEMENT
RESTRICT: SIZE OF STORAGE REGION NECESSARY FOR HOLDING CONSTRAINTS INFORMATION ATTACHED TO ELEMENT
OPTDEF: SIZE OF STORAGE REGION NECESSARY FOR HOLDING DESIGNATION AS OPTIONAL OR DESIGNATION AS DEFAULT
NEXTPTR: SIZE OF STORAGE REGION NECESSARY FOR HOLDING POINTER TO NEXT ELEMENT IN THE SAME NESTING HIERARCHY
SUCCPTR: SIZE OF STORAGE REGION NECESSARY FOR HOLDING POINTER TO ELEMENT IN LOWER NESTING HIERARCHY

FIG. 30

27/34

FIG. 32
(PRIOR ART)

28/34

32

··«

FIG. 33 (PRIOR ART)

ExampIe3 : :=SEQUENCE {

id

subid CO] IMPLICIT

length [1] IMPLICIT

content

name

age

},

trailer

}

INTEGER(0..63),

INTEGER(0..63) OPTIONAL,

INTEGER(O..255),

SEQUENCE {

Printab I eString,

INTEGERS. .MAX)

OCTET STRING(SIZE(O..15))

29/34

FIG. 34 (PRIOR ART)

30/34

FIG. 35
(PRIOR ART)

31/34

Example3

3506

3507

NESTING
HIERARCHY t I I

1 2 3

FIG. 36 (PRIOR ART)
FL

O
W

 OF
 EN

C
O

D
IN

G

. OCTET INDICATING THAT
’ LENGTH IS UNSETTLED

01 03 81 01 04 30
3604

OCTET INDICATIVE OF
END OF VALUE FIELD

3609

01 03 81 01 04

1 ΚΒΓ' “I
30 |8θ| 02 01 03 81 01 04 30 k 13 03 66 6F 6F 02 01 iAggH04 02 AB

32/34

« 4 «·«

FIG. 37
(PRIOR ART)

« · · ·• · · ··· ··• «·♦ ··

• · ··· 9 *·· · · · ···«• ······♦C · · · »· ··• · · · * ·
• · · » 99 ·· »·

2

1

NESTING
HIERARCHY

1

2

3

L: LENGTH FIELD

33/34

V: VALUE FIELD

EOC : OCTET INDICATIVE OF END OF VALUE FIELD

FIG. 38 (PRIOR ART)

TLTLVTLVTLTL V TLV EOC T L V EOC

ASN.1 VALUE NOTATION
(DECODING RESULT)

T : TAG FIELD

L : LENGTH FIELD

V: VALUE FIELD

_ OCTET INDICATIVE OF
’ END OF VALUE FIELD

34/34

