



April 5, 1932.

F. E. CRAMPTON

1,852,955

ROOF FLASHING RETAINING AND SEALING DEVICE

Filed Aug. 26, 1929

INVENTOR

Frank E. Crampton,
Hann H. Co.
ATTORNEY

Patented Apr. 5, 1932

1,852,955

UNITED STATES PATENT OFFICE

FRANK E. CRAMPTON, OF LOS ANGELES, CALIFORNIA

ROOF-FLASHING RETAINING AND SEALING DEVICE

Application filed August 26, 1929. Serial No. 388,521.

My invention relates to devices for retaining and sealing roof-flashing, and it has particular reference to such devices as are employed in connection with roof-flashing for concrete walls.

Devices of this character as heretofore constructed necessitate the use of form boards of prescribed width so that their joints be positioned to permit the extension there-through of the projecting parts of the device.

It is a purpose of my invention to provide a roof-flashing retaining and sealing device, the receiving strip of which is capable of being contained wholly between the two walls or parts of a wall form and to the elimination of the necessity of constructing the form boards of prescribed widths, there being no part of the receiving strip projecting from the form, and thus permitting the use of form boards of any width and the construction of the wall in the usual manner.

It is also a purpose of my invention to provide a device of the character described having a multiply-receiving strip and a counter-flashing strip adapted to be inserted between the ply of the receiving strip, and which receiving strip in its association with a wall and roof-flashing is constructed to maintain the plies thereof spaced to allow the subsequent insertion of the counter strip even under the tendency of the superimposed concrete to press or pinch the plies together.

A further purpose of my invention is the provision of a device having a receiving strip the inherent construction of which is such that when placed on a wall during construction thereof and following setting of the concrete, it is locked in the wall with such a degree of security as to prevent its removal when removing the wall forms, and to prevent seepage of water therearound and beneath the roof-flashing, and to thereby effectively seal the flashing against leakage.

I will describe only one form of roof-flashing retaining and sealing device embodying my invention, and will then point out the novel features thereof in claims.

In the accompanying drawings:

Fig. 1 is a view showing in fragmentary vertical section a concrete wall and the adja-

cent parts of a roof and roof covering and flashing, having applied thereto one form of roof-flashing sealing and retaining device embodying my invention.

Fig. 2 is a sectional fragmentary perspective view of the device and the relative positions which its parts assume in respect to the roof-flashing.

In carrying out my invention, I provide a device which consists in the main of a receiving strip R, and a counter flashing-strip C. These strips are formed of suitable sheet metal, the strip R being bent longitudinally along the medial line to provide an upper ply or layer 15 and a lower layer or ply 16, the two layers being disposed horizontally when the strip is in applied position within a wall. That portion of the strip at the inner marginal edge of the plies 15 and 16 is bent upwardly, preferably at right angles to form an upstanding flange 17 provided for the purpose of locking the strip within the wall, as well as to provide a stop for any water which may find its way along the upper surface of the strip, and so as to prevent the water from passing to the lower side of the strip. The lower ply 16 is bent to provide an offset portion 18 in order to space that part of the ply to the outer side of the offset portion from the upper ply 15, and to thereby form an intervening channel adapted for the reception of the horizontal portion of the counter strip C. Even when the receiving strip is embedded within the concrete of a wall as illustrated in Fig. 1, the aforesaid channel remains open, because the side walls of the channel are prevented from collapsing under pressure of the concrete thereon by reason of the offset portion 18 in its coaction with those parts of the plies 15 and 16 which are in direct contact with each other.

The outer edge of the upper ply 15 is provided with a flange 20 which, in the final position thereof assumes a vertical position as illustrated in solid lines in Fig. 1. However, this flange is adapted to be bent to the inclined position indicated in dash lines in Fig. 1 in order to permit the insertion of the counter strip as will be more fully described hereinafter. The lower edge of the flange 19 is

bent inwardly to form a lip coextensive in length with the flange, and adapted to have contact with the outer side of the counter strip to effect a liquid tight seal between the flange and strip so as to prevent water entering therebetween.

This flange 19 constitutes an outer vertical ply and, as previously expressed herein, is a continuation of the upper horizontal ply 15.

10 The lower horizontal ply 16 is likewise provided with an extension 21 which constitutes an inner vertical ply and exceeds in width that of the outer vertical ply 19. The ply 21 at its lower end is extended inwardly and upwardly to form an L-shaped extension 22 adapted to be embedded in the concrete as illustrated in Fig. 1, and to thus coact with the flange 17 in locking the receiving strip firmly within the wall. The vertical portion 15 of the extension 22 serves as a stop to prevent the passage of water around and beneath the extension to the outer side of the wall, that is, should the water find its way around the flange 17.

25 The counter strip C consists of a sheet of metal having its upper marginal edge bent substantially at right angles to form a flange 23, while its lower edge is bent inwardly at an angle to provide a lip 24. The flange 30 and lip are coextensive in length with the strip, and in the applied position of the strip within the receiving strip, the vertical portion of the strip C is disposed between the inner and outer vertical plies 21 and 19, while 35 the flange 23 is disposed in the channel provided between the plies 15 and 16, it being understood that the flange corresponds substantially in width with that of the channel. The lip 24 is adapted to contact with the vertical ply 21 so as to form a liquid tight seal between the receiving strip and the ply to prevent the passage of water upwardly from beneath the extension 22.

In actual practice, the receiving strip R is secured in position between the wall forms and before that part of the wall projecting above the roof indicated at R is constructed. The receiving strip is secured to the inner side of the inner wall form by driving nails 45 through the vertical ply 21 and into the boards forming the inner wall form. To sustain the receiving strip in proper position, particularly when pouring the fluid concrete into the wall form, one or more strands of wire 25 may be connected to the flange 17 and extended upwardly and connected to the inner wall form as illustrated in Fig. 1. With the receiving strip secured as described, the concrete may now be poured into the form 50 and preferably in a manner to insure the passage of the concrete beneath the receiving strip so as to firmly embed the extension 22 therein as well as the flange 17. Once the concrete is set, the receiving strip is securely locked within the wall and in such position

that the vertical plies 19 and 21 are disposed to the inner side of the wall. The inner wall form can now be readily removed, the boards being pulled from the nails holding the receiving strip, as will be understood. The projecting nails may be clipped flush with the surface of the ply 21, and likewise the ends of the wires 25 cut free of the form boards. Thus, with the form boards removed, the plies 19 and 21 are exposed to the inner side of the wall to permit the placement of the counter strip into position. In applying the counter strip, it is of course necessary to bend the ply 19 outwardly to the dotted line position, the counter strip being placed to the outer side of the roof flashing indicated at 70 26 which is extended between the counter strip and the vertical ply 21. The lip 24 bears against the roof flashing as illustrated in Fig. 1 and thus holds the latter snugly against the inner side of the wall so as to seal the roof flashing against the passage of water therebeneath. Once the counter strip is applied, the ply 19 is bent back to normal position so that its lip 20 engages the outer side of the 80 counter strip to form a seal against the passage of water upwardly between the two plies.

Although I have herein shown and described only one form of roof-flashing retaining and sealing device embodying my invention, it is to be understood that various changes and modifications may be made herein without departing from the spirit of the invention and the spirit and scope of the appended claims.

I claim:

1. A device for retaining and sealing roof-flashing, comprising a receiving strip adapted to be placed in a wall form and secured in the wall during construction thereof, said strip comprising a sheet of material folded along a longitudinal line to form superimposed horizontal plies the lower one of which is offset to space it from the other ply and form an intervening channel, said plies at their point of connection being bent upwardly to form a retaining flange, a vertical ply depending from the outer edge of the lower horizontal ply, an inwardly projecting extension at the lower edge of the vertical ply, a second vertical ply depending from the outer edge of the upper horizontal ply, a lip on the lower edge of the outer vertical ply, a counter strip comprising a sheet of material bent along a longitudinal line at its upper marginal edge to form a flange and at its lower edge to form a lip, the vertical portion of the counter strip being disposed between the vertical plies, and the flange within said channel.

2. A counter flashing receiver of the type adapted for original embedment in a plastic structure, said receiver comprising a single piece of sheet material bent to provide a face for fitting against a wall of a mold; a double

thickness angle having one leg perpendicular to the face, said leg having one of the component sheets thereof joining the angle and the face and the other of the component sheets thereof shaped to provide a shoulder coextensive in length with the sheet and at the extremity of the leg; a flat portion parallel to the face and spaced from the part of the sheet forming the face to provide space for the insertion of sheet material; a portion of the sheet joining one extremity of the flat portion and the shoulder and spaced from the first mentioned component sheet to provide space for the insertion of sheet material; and an anchor comprising an angle joined to the other extremity of the flat portion by one leg thereof.

3. In a device for retaining and sealing roof flashing, a receiving strip adapted to be placed on a wall form and secured in the wall during construction thereof, the lower ply of which is offset to space it from the upper ply for at least a portion of its width to form an intervening channel, an inner vertical ply providing a depending extension of the lower horizontal ply from a point where it is spaced from the upper horizontal ply, said vertical ply having means thereon for securing it against outward displacement from the wall, and an outer vertical ply providing a depending extension of the upper horizontal ply, said vertical plies co-acting to define a vertical channel between the horizontal plies for the reception of a counter strip, the lower edge of the outer vertical ply having a sealing lip positioned to engage a counter strip when the latter is inserted within the channels.

FRANK E. CRAMPTON.

40

45

50

55

60

65