发明名称
抗拔桩桩端板

摘要
本发明抗拔桩桩端板涉及的一种连接在混凝土桩的两端，将一根混凝土柱的末端与另一根相邻混凝土柱的末端连接起来的互锁连接桩端板，还适用于使用重型落锤在桩端板顶面冲击打重型桩，抗拔桩桩端板包括第一桩端板和第二桩端板；第一桩端板和第二桩端板连接处具有相同凸出端和凹槽段，第一桩端板的凸出段与第二桩端板的凹槽段相连接，各段连接处设置有矩形槽，凸出段的矩形槽与凹槽段的矩形槽组合成连接矩形槽，矩形连接销插入连接矩形槽内，将第一桩端板与第二桩端板互锁连接在一起；第一桩端板和第二桩端板另一侧面与混凝土连接面，混凝土连接面为平面。
1. 一种抗拨管桩端板，其特征在于：包括第一管桩端板和第二管桩端板；第一管桩端板和第二管桩端板连接处具有相同凸出端和凹槽段，第一管桩端板的凸出段与第二管桩端板的凹槽段相连接，各段连接处设置有矩形槽，凸出段的矩形槽与凹槽段的矩形槽组合成连接矩形槽，矩形连接销插入连接矩形槽内，将第一管桩端板与第二管桩端板互锁连接在一起；

第一管桩端板和第二管桩端板另一侧面为与混凝土连接面，混凝土连接面为平面。

2. 根据权利要求1所述的抗拨管桩端板，其特征在于：第一管桩端板和第二管桩端板外周均设置有管柱裙板压装槽，用于压装管柱裙板。

3. 根据权利要求1所述的抗拨管桩端板，其特征在于：在第一管桩端板与第二管桩端板上设置有若干个主筋锚孔和钢筋锚孔，主筋锚孔和钢筋孔组合在一起。

4. 根据权利要求1所述的抗拨管桩端板，其特征在于：抗拨管桩端板是一种用于接合两根管桩的连接端板。

5. 根据权利要求1所述的抗拨管桩端板，其特征在于：所述的矩形连接销采用带斜度锥形矩形连接销，前端小，后端大。

6. 根据权利要求1所述的抗拨管桩端板，其特征在于：所述的连接矩形槽采用带斜度连接矩形槽，槽口外部大，内部小。
抗拔管桩端板

技术领域
[0001] 本发明抗拔管桩端板涉及的是一种连接在混凝土桩的两端，将一根混凝土桩的末端与另一根相邻混凝土桩的末端连接起来的互锁连接管桩端板，还适用于使用重型落锤在管桩端板顶面冲击打重型桩。

背景技术
[0002] 钢筋混凝土(RC)桩和预应力高强度混凝土管(PHC)桩在末端加装有普通钢板桩帽，除了现场焊接外，没有其它把这些桩帽互联起来的机械方法。这种采用焊接方式连接管桩抗拉性能差，焊接容易开裂影响施工工程质量，施工周期长，操作不方便。
[0003] 虽然现有的一种用于混凝土桩的端板(CN104540999A)也用于连接在混凝土桩的两端，作为一种互锁端板连接器管桩端板两侧均具有突出段或凹入段，在管桩制作过程中，扣固钢筋必须设置为不同长度进行扣固，施工要求高，施工很不方便。由于采用整体分段冲压成形，在突出段与凹入端连接处，强度比较差，会影响混凝土桩的质量。

发明内容
[0004] 本发明目的是针对上述不足之处提供一种抗拔管桩端板，是一种用于接合两根管桩的连接端板，抗拔管桩端板包括第一管柱端板、第二管柱端板和第二管柱端板连接处具有相同上端和下端段，第一管柱端板凸出段与第二管柱端板的凹槽端相连接，各段连接处设置有矩形槽，凸出段的矩形槽与凹槽段的矩形槽组合成连接矩形槽，矩形连接销插入连接矩形槽内，将第一管柱端板与第二管柱端板互锁连接在一起。设互锁端板连接机构具有安全扭矩和比钢筋混凝土桩段更高的拉抗、抗拔脱强度，并且解决了目前两管柱端板连接时采用焊接方式连接焊接容易开裂、拉抗、抗拔脱性能差问题。

抗拔管桩端板是采取以下技术方案实现的：

抗拔管桩端板是一种用于接合两根管桩的连接端板，抗拔管桩端板包括第一管柱端板和第二管柱端板，第一管柱端板和第二管柱端板连接处具有相同上端和下端段，第一管柱端板的凸出段与第二管柱端板的凹槽段相连接，各段连接处设置有矩形槽，凸出段的矩形槽与凹槽段的矩形槽组合成连接矩形槽，矩形连接销插入连接矩形槽内，将第一管柱端板与第二管柱端板互锁连接在一起。

[0005] 第一管柱端板和第二管柱端板另一侧为与混凝土连接面，混凝土连接面为平面。
[0006] 第一管柱端板和第二管柱端板外周均设置有管柱裙板压装槽，用于压装管柱裙板。
[0007] 在第一管柱端板与第二管柱端板上设置有若干个主筋锥孔和钢筋锥孔，主筋锥孔和钢筋孔组合在一起。
[0008] 所述的矩形连接销采用带斜度锥形矩形连接销，前端小，后端大。
[0009] 所述的连接矩形槽采用带斜度连接矩形槽，槽口外部大，内部小。
工作原理

抗拔管桩端板在浇注预应力混凝土管桩时，将管桩端板分别安装在张拉螺栓两端，同时将预应力钢筋穿装铆固在管桩端板上，张拉螺栓安装在主筋锚孔中，通过张拉达到管桩设计强度，将管桩端板压装在管桩锚板压装槽内，再采用离心浇注混凝土，通过养护制成预应力混凝土管桩。在两根预应力混凝土管桩施工时，将第一管桩端板和第二管桩端凸出段和凹槽段相配合连接，把矩形连接销打入连接矩形槽内，将第一管桩端板与第二管桩端互锁连接在一起，从而将两根管桩紧密组装在一起。

本发明抗拔管桩端板设计合理结构紧凑，由于第一管桩端板和第二管桩端板连接处具有相同凸出段和凹槽段，并在各段连接处设置有矩形槽，凸出段和凹槽段的矩形槽组合成连接矩形槽，采用矩形连接销插入连接矩形槽内，将第一管桩端板与第二管桩端互锁连接在一起，使抗拔端板连接机构具有安全锁扣和抗拉性能，抗拔端板更加强壮。并且解决了目前两管桩端板连接时采用焊接方式连接焊接不易开裂、抗拉、抗拔性能差等，本发明抗拔管桩端板在两管和压连接时施工方法简单只需要将矩形连接销插入连接矩形槽内，不需要采用中间连接器或适配器，施工方便，提高了施工效率，节省了施工时间。

本发明抗拔管桩端板的第一管桩端板和第二管桩端板与混凝土连接面为平面，增加了凸出段与凹槽段连接处端板厚度，从而提高了管桩端板整体抗拉、抗拔脱、抗弯折，强度进一步提高管桩端板使用安全性。

附图说明

以下将结合附图对本发明作进一步说明：

图1是抗拔管柱端板结构示意图。

图2是图1抗拔管柱端板的A部放大图。

图3是抗拔管柱端板的第一、第二管柱端板结构示意图（互锁连接面俯视）。

图4是图3抗拔管柱端板的第一、第二管柱端板B-B剖视图。

具体实施方式

参照附图1-4，抗拔管柱端板是一种用于接合两根管柱的连接端板，抗拔管柱端板包括第一管柱端板1和第二管柱端板2，第一管柱端板1和第二管柱端板2连接处具有相同凸出段3和凹槽段4，第一管柱端板的凸出段3与第二管柱端板的凹槽段4相连接，各段连接处设置有矩形槽5，凸出段3的矩形槽5与凹槽段4的矩形槽5组合成连接矩形槽6，矩形连接销7插入连接矩形槽6内，将第一管柱端板1与第二管柱端板2互锁连接在一起。

第一管柱端板1和第二管柱端板2另一侧为与混凝土连接面8，混凝土连接面8为平面。

第一管柱端板1和第二管柱端板2外周均设置有管柱端板压装槽9，用于压装管柱端板。

在第一管柱端板1与第二管柱端板2上设置有若干个主筋锚孔10和钢筋锚孔11，主筋锚孔10和钢筋锚孔11组合在一起。

所述的矩形连接销7采用带斜度锥形矩形连接销，前端小，后端大。
所述的连接矩形槽6采用带斜度连接矩形槽，槽口外部大，内部小。
图3
图4