PROCEDE DE PURIFICATION DE COMPOSES DIAMINOPHENOTHIAZIUM.

Procédé de purification de composés du type diaminophénothiazinium comportant une étape de filtration de dérivés (II). Les produits résultant de ce procédé ont un degré de pureté élevé. Utilisation de ces composés pour la préparation de médicaments.
La présente invention a pour objet un nouveau procédé de purification de composés du type dianimophénothiazinium en particulier le bleu de méthylène, il a également pour objet les produits résultant de ce procédé dont le degré de pureté est plus élevé que ceux connus de l’art antérieur. Elle a encore pour objet l’utilisation de ces composés pour la préparation de médicaments.

Le chlorure de méthylthioninium, également connu sous les noms de bleu de méthylène ou chlorure de 3,7-bis(diméthylamino)phénothiazine-5-ylium, est un composé organique répondant à la formule ci-dessous :

![Chemical structure](attachment:image.png)

Ce composé a été utilisé de longue date comme colorant et indicateur redox, comme révélateur optique dans des systèmes biophysiques, dans des matériaux nanoporeux comme matériau séparateur, et en imagerie photoélectrochromique. Il est également connu pour ses applications comme agent antiseptique, antiinfectieux, comme antidote et comme agent de diagnostique. II trouve des utilisations notamment en gynécologie, néonatalogie, cancérologie, oncologie, urologie, ophtalmologie et gastro-entérologie. De nouvelles utilisations dans le domaine thérapeutique sont en cours de développement, telle que la réduction des contaminants pathogènes dans le sang (GB2373787), la prévention ou l’inhibition d’une réaction hémodynamique excessive (WO03/082296).

De nombreuses méthodes de synthèse ont été décrites pour ce composé, depuis la plus ancienne en 1877 (Brevet allemand n° 1886). Toutes ces méthodes ont en commun d’utiliser des composés métalliques dans au moins une étape de synthèse :

Le Brevet DE-1886 décrit un procédé dans lequel on fait un couplage oxydant du N,N-diméthyl-1,4-diaminobenzène avec H₂S et FeCl₃.

Fiez David et al., « Fundamental Processes of Dye Chemistry », 1949, Interscience, 308-314, décrit un procédé dans lequel le cycle thiazine est formé par traitement au dioxyde de manganèse ou au sulfate de cuivre. Ce procédé comporte encore un traitement au chlorure de zinc et au dichromate de sodium et au thiosulfate d’aluminium.
Le document WO 2006/032879 décrit un procédé de préparation du bleu de méthylène qui comporte une étape de réduction par du fer, une étape d’oxydation par du dichromate de sodium, une étape d’oxydation par du sulfate de cuivre.

Ces procédés requièrent d’effectuer des purifications fastidieuses et coûteuses afin de réduire les impuretés, notamment les impuretés métalliques du bleu de méthylène. Malgré les étapes de purifications ultérieures, ces différents procédés conduisent inévitablement à un bleu de méthylène comportant de nombreuses impuretés métalliques et également des impuretés organiques, notamment de l’azur B, de l’azur C et de l’azur A.

Le document WO 2006/032879 affirme pouvoir atteindre un taux d’impuretés métalliques représentant 10% du seuil maximal fixé par la pharmacopée européenne, mais d’après les exemples on constate que ce taux n’est pas obtenu simultanément pour tous les métaux et que les résultats des étapes de purification ne sont pas toujours reproductibles. Une analyse détaillée des contenus en métaux de différents bleus de méthylène disponibles commercialement est illustrée dans ce document.

La pharmacopée européenne a été modifiée récemment dans le sens d’une augmentation des seuils de tolérance des impuretés métalliques car aucun producteur de bleu de méthylène n’était en mesure de produire, et surtout de produire en quantité industrielle, un bleu de méthylène d’une qualité répondant à ses précédentes exigences.

Un premier objet de l’invention a donc été la mise au point d’un procédé de purification du bleu de méthylène qui donne accès à un bleu de méthylène d’une grande pureté, notamment qui comporte un très faible taux d’impuretés métalliques et organiques, qui soit extrapolable à l’échelle industrielle dans des conditions économiques satisfaisantes, et qui ne soit pas sujet à des variations de qualité.

Le procédé qui a été mis au point s’applique non seulement au bleu de méthylène, mais également à d’autres dérivés de type dianimophénothiazinium.

Le procédé de l’invention est un procédé de purification de composés répondant à formule (I) ci-dessous :

![Structure chimique](image)
dans laquelle chacun de R_1, R_2, R_3, R_4, R_5, R_6, R_7, R_8, R_9, R_{10} peut être choisi, indépendamment des autres, parmi le groupe constitué de :
- l’atome d’hydrogène,
- les groupements alkylique en C_{1-6}, linéaires ramifiés ou cycliques, saturés ou insaturés, éventuellement substitués par une plusieurs fonctions choisies parmi un atome d’halogène, une fonction alcoxy en C_{1-6}, alkylcarboxyle en C_{1-6}, CO-NH_2,
- les groupements aryle éventuellement substitués par une ou plusieurs fonctions choisies parmi : un alkyle en C_{1-4}, un atome d’halogène, une fonction alcoxy en C_{1-6}, alkylcarboxyle en C_{1-6}, CO-NH_2,
étant entendu que deux groupements R_i (i=1,2,...10) placés successivement sur la figure (I) peuvent être joints pour former un cycle. Par exemple R_1 avec R_5 ou R_2 avec R_6, R_7 avec R_8, R_8 avec R_7, R_7 avec R_4, R_4 avec R_9, R_{10} avec R_2 ou R_2 avec R_1 peuvent consister en une seule chaîne alkyle éventuellement substituée de façon à former un quatrième cycle.
X' représente un anion organique ou inorganique.
Les anions utilisables incluent, par exemple, les anions des acides minéraux tels que : l’acide chlorhydrique, l’acide bromhydrique, l’acide sulfurique, l’acide phosphorique, l’acide nitrique ; les anions des acides organiques tels que par exemple, l’acide acétique, l’acide trifluoroacétique, l’acide oxalique, l’acide tartrique, l’acide succinique, l’acide malique, l’acide fumarique, l’acide gluconique, l’acide citrique, l’acide malique, l’acide ascorbique, l’acide benzoïque, ils incluent également OH'.
Ce procédé est caractérisé en ce qu’il comporte au moins une étape au cours de laquelle un composé de formule (II) :

![Diagramme](image)

(II)
est soumis à une filtration sur un support susceptible de retenir les composés métalliques, les groupements R_1, R_2, R_3, R_4, R_5, R_6, R_7, R_8, R_9, R_{10} ayant la même définition que dans la formule (I) et R représente un groupement choisi parmi :
- un groupement phényle ou benzyle, éventuellement substitués par une ou plusieurs fonctions choisies parmi : un alkyle en C₁-C₄, un atome d’halogène, un halogénoalkyle en C₁-C₄, un groupement nitro,
 - un groupement alkyle en C₁-C₈, linéaire, ramifié ou cyclique,
 - un groupement alcool en C₁-C₈,
 - un groupement phényloxy ou benzylxy éventuellement substitués sur le noyau aromatique par une ou plusieurs fonctions choisies parmi : un alkyle en C₁-C₄, un atome d’halogène, un halogénoalkyle en C₁-C₄, un groupement nitro,

Z représente un atome choisi parmi O et S.

Un tel support peut être choisi parmi : un gel de silice, un gel d’alumine (neutre, basique ou acide), une diatomite éventuellement modifiée, de la cérite, une membrane microporeuse. les résines greffées par des groupements capteurs de métaux et les fibres greffées par des groupements capteurs de métaux, tels que des fonctions thiol, acide carboxylique, amine tertiaire, ou tout autre support ayant la propriété de retenir les métaux. Parmi les fibres greffées, on peut citer notamment les produits commercialisés par la société Johnson Matthey sous la marque Smopex ®. Parmi les diatomites, on peut citer les produits commercialisés par la société CECA sous la marque Clarcel ®.

Le composé de formule (II) est obtenu à partir du composé de formule (I) par réduction du composé de formule (I) puis par réaction de la fonction amine du cycle phénothiazinium avec un groupement protecteur approprié R-CZ-Y dans lequel R et Z ont la même définition que ci-dessus et Y représente un groupe partant choisi parmi : un atome d’halogène tel que Cl, I, Br, un groupement alcool en C₁-C₆, un groupement -OCOR (anhydride), un groupement hydroxyde, éventuellement en présence d’un activateur du type dicyclohexylcarbonodiimide (DCC). Avantageusement R est choisi parmi un groupement phényle, un groupement toluyl.

Certains composés de formule (II) tels que le benzoyl leuco bleu de méthylène sont disponibles commercialement.

Le composé représenté par la formule (I) peut être représenté par plusieurs structures résonnantes équivalentes. A titre d’illustration et de façon non limitative, on fait figurer ci-dessous d’autres structures qui sont équivalentes à celle de la formule (I) :
Dans la formule (I), et dans la formule (II), de préférence R₁, R₂, R₃, R₄, R₅ et R₆, R₇, R₈, R₉, R₁₀, identiques ou différents sont choisis parmi l’atome d’hydrogène et un alkyle en C₁-C₄. Avantageusement R₅, R₈, R₉ et R₁₀ représentent H.

Avantageusement encore, l’une ou plusieurs des conditions suivantes sont vérifiées :
- X représente Cl ou OH,
- R₁, R₂, R₃, R₄, identiques ou différents sont choisis parmi un atome d’hydrogène et le méthyle,
- R₆ représente un atome d’hydrogène,
- R₇ représente un atome d’hydrogène,
- Z représente O.

De façon avantageuse le composé de formule (I) est le chlorure de tétraméthylthionine ou bleu de méthylène.
Selon une autre variante le composé de formule (I) est le chlorure de diméthylthionine ou Azur A, ou le chlorure de triméthylthionine ou Azur B, ou le chlorure de monométhylthionine ou Azur C.

Selon l’invention le procédé de purification du composé de formule (I) comporte au moins une étape de filtration d’un composé de formule (II) sur un support susceptible de retenir les composés métalliques, tel qu’un gel de silice, d’alumine (neutre, basique ou acide), une diatomite éventuellement modifiée, une résine fonctionnalisée par des capteurs de métaux, des fibres fonctionnalisées par des capteurs de métaux, de la céline, une membrane microporeuse ou tout autre support capable de retenir les composés métalliques.

De façon plus détaillée, le composé de formule (II) est mis en solution dans un solvant approprié, on prépare un filtre avec le support de filtration que l’on introduit dans un récipient approprié, tel qu’une colonne de verre, un filtre en verre fritté ou une essoreuse industrielle. Le récipient rempli du support de filtration choisi est humidifié, préférentiellement par le même solvant que celui dans lequel est dissout le composé de formule (II).

La solution contenant le composé de formule (II) est déposée sur le filtre, la solution qui traverse le filtre est récupérée, le filtre est rincé plusieurs fois par un solvant identique ou différent de celui ayant servi à solubiliser le composé de formule (II). Les fractions éluées sont récupérées et éventuellement concentrées.

Parmi les solvants utilisables pour solubiliser les composés de formule (II) on peut citer : les solvants chlorés, comme par exemple le dichlorométhane ou le chloroforme, les alcools tels que isopropanol, éthanol, méthanol ou acétonitrile, acétate d’éthyle, tétrahydrofurane, ou un mélange de ces solvants.

La solution du composé de formule (I) est avantageusement d’une concentration allant de 1 g/l à 10³ g/l. Des concentrations plus faibles conduisent à utiliser des volumes de solvant trop importants avec des conséquences sur la sécurité et la taille du matériel. Des concentrations plus importantes sont difficilement envisageables en raison de la solubilité des produits.

On prévoit d’utiliser environ 0,1 à 10 kg de support de filtration par kg de produit à filtrer. On prévoit avantageusement de rincer le filtre avec 0,1 à 50 l de solvant par kg de produit de formule (II) jusqu’à éluion totale du produit de formule (II). Le procédé de l’invention présente l’avantage de débarrasser le produit de formule (II) de ses impuretés métalliques.

De façon avantageuse, la fabrication du composé de formule (II) se fait à partir du composé de formule (I) que l’on fait réagir avec un groupement de protection R-CZ-Y dans lequel Y est avantageusement choisi parmi : Cl, Br, I, un groupement alcoxy en
C₁-C₆, un groupement -OCOR (anhydride), un groupement hydroxyle, éventuellement en présence d’un activateur du type dicyclohexylcarbodiimide (DCC).

La réaction se fait de façon classique en milieu basique ou neutre dans de l’eau ou dans un mélange d’eau et d’un autre solvant tel que par exemple acétonitrile, tétrahydrofurane, dichlorométhane ou tout autre solvant organique approprié.

La réaction est exothermique, et on utilise de préférence des moyens de refroidissement qui permettent de maintenir la température du mélange aux environs de la température ambiante.

Le produit de départ (I) est soit commercial, soit préparé par des méthodes connues, telles que celles décrites dans WO 2006/032879.

D’une façon générale les produits de formule (I) sont préparés par des procédés de synthèse qui font appel à l’utilisation de dérivés métalliques que l’on retrouve comme impuretés dans les produits (I). C’est le cas du bleu de méthylène, mais aussi de l’azur A, de l’azur B et de l’azur C.

Les composés de formule (I) ne peuvent pas être débarrassés de leurs impuretés métalliques de façon directe, simple et efficace. Les méthodes de l’art antérieur font appel à des recristallisations successives qui n’ont pas des rendements satisfaisants et qui conduisent à des produits dont le taux d’impuretés résiduelles est difficile à contrôler.

En outre les produits de formule (I) ont la propriété de chélate les métaux alors que les produits (II) sont non chélatants, car neutres.

Dans les différentes étapes du procédé de l’invention, on veille à employer des matériaux, des réactifs, des solvants dépouvrus de résidus métalliques de façon à ne pas introduire de contamination externe.

Après que le produit de formule (II) ait été purifié suivant le procédé de l’invention, on procède avantageusment à une étape de déprotection de l’amine du cycle phénothiazine du composé de formule (II). Cette déprotection est faite par tout moyen connu de l’homme du métier, en évitant l’introduction de contaminants métalliques et dans des conditions évitant la dégradation du composé de formule (I). Parmi les moyens utilisables pour la déprotection du groupe R-CZ- on peut citer : les quinones, comme par exemple la 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ), HNO₃, HClO₄, I₂, HCl, H₂SO₄, H₂O₂, un traitement par des rayonnements ultraviolets. De préférence on utilise une quinone pour cette étape, et de façon très préférentielle la 2,3-dichloro-5,6-dicyano-1,4-benzoquinone. De façon avantageuse, cette réaction de déprotection est faite dans un solvant choisi parmi : l’acétate d’éthyle, l’acétonitrile, le tétrahydrofurane, l’acétone. Le solvant préféré pour cette étape est l’acétonitrile.

Des conditions de déprotection avantageuses prévoient l’emploi de 0,80 à 1,1 équivalents molaires de DDQ par rapport au composé (II), encore plus avantageusement de 0,85 à 1,05 équivalents molaires de DDQ par rapport au composé (II),
avantageusement de 0,90 à 1 équivalent molaire. Préférentiellement, cette déprotection se fait à une température comprise entre -30°C et -5°C. Bien que non totalement exclues, une température plus basse aurait l'inconvénient d'allonger les durées de réaction, une température plus élevée pourrait conduire à la formation de produits secondaires.

En fonction du moyen de déprotection employé on peut être amené à faire un échange d’ions pour aboutir au composé de formule (I) comportant l’anion X’ souhaitée. De préférence, cet échange d’ion est fait par traitement avec HCl dans l’acétate d’éthyle. D’autres solvants pourraient être utilisés, mais certains sont susceptibles de conduire à la formation de produits secondaires.

Les conditions de déprotection des composés de formule (II) exposées ci-dessus sont particulièrement avantageuses en ce qu’elles permettent d’aboutir à un composé de formule (I) sans introduire au cours de cette étape d’impuretés métalliques ou formant d’impuretés organiques. Selon une variante de l’invention, on peut prévoir de purifier le composé de formule (II) par d’autres moyens que la filtration sur un support susceptible de retenir les métaux, comme par exemple par cristallisation dans un solvant approprié. Selon cette variante, on déprotège ensuite le composé de formule (II) à l’aide d’une quinone, en particulier le DDQ, de préférence dans les conditions exposées ci-dessus.

Un autre objet de l’invention est donc un procédé de purification de composés répondant à formule (I) décrite ci-dessus, caractérisé en ce qu’il comporte au moins une étape de déprotection de l’amine du cycle phénothiazine du composé de formule (II) par traitement par une quinone, en particulier par la 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ). Avantageusement on emploie les conditions de mise en œuvre du DDQ qui ont été décrites ci-dessus.

La méthode de déprotection du composé (II) en composé (I) permet d’aboutir à un composé (I) qui ne comporte pas d’impuretés métalliques additionnelles par rapport au produit (II). En outre, ces conditions de déprotection évitent la formation de produits de dégradation organique. En effet, les composés de formule (I) sont d’une stabilité limitée et l’utilisation de certaines conditions de traitement conduit à des dégradations, par exemple du bleu de méliphène en Azur A, B et C.

Le procédé de l’invention permet d’avoir accès à un composé de formule (I) purifié de ses contaminants métalliques de façon fiable, reproductible et applicable à l’échelle industrielle. Ces qualités sont essentielles pour pouvoir fournir un produit de formule (I) de qualité pharmaceutique.

Notamment le procédé de purification de l’invention est le seul qui permette d’obtenir en quantités industrielles et de façon reproductible un bleu de méliphène ou chlorure de tétraméthylthionine qui comprenne 0,02 µg/g ou moins de cadmium par g de bleu de méliphène. Un tel produit constitue un autre objet de l’invention.
Un autre objet de l'invention est un bleu de méthylène ou chlorure de tétraméthylthionine ayant un taux de pureté supérieur à 97%, mesurée en CLHP (chromatographie liquide haute performance) dans les conditions de la pharmacopée européenne 5.4 (édition d’avril 2006) et comprenant moins de 4,5 µg/g d’aluminium, avantageusement moins de 3 µg/g d’aluminium, encore plus avantageusement moins de 2,5 µg/g d’aluminium.

Le procédé de l’invention est également le seul à donner accès à un bleu de méthylène ou chlorure de tétraméthylthionine ayant un taux de pureté supérieur à 97%, mesurée en CLHP dans les conditions de la pharmacopée européenne 5.4 (édition d’avril 2006) et comprenant moins de 0,5 µg/g d’étain. Un tel produit constitue un autre objet de l’invention.

Le procédé de l’invention est le seul à donner accès, en quantité industrielle, à un bleu de méthylène ou chlorure de tétraméthylthionine comprenant moins de 3% d’impuretés, mesuré en CLHP dans les conditions de la pharmacopée européenne 5.4 (édition d’avril 2006) et un taux d’impuretés métalliques inférieur à 20 µg/g, avantageusement inférieur à 15 µg/g, encore plus avantageusement inférieur à 10 µg/g.

Un autre objet de l’invention est un composé de formule (I), à l’exclusion du bleu de méthylène ou chlorure de tétraméthylthionine et comportant un taux d’impuretés métalliques global inférieur à 100 µg/g, avantageusement inférieur à 50 µg/g, en particulier inférieur à 30 µg/g. De préférence ce composé satisfait une ou plusieurs des conditions suivantes :

- pureté supérieure à 97%, mesurée en CLHP dans les conditions de la pharmacopée européenne 5.4 (édition d’avril 2006)
- taux d’aluminium inférieur à 5 µg/g, avantageusement inférieur à 4 µg/g, encore plus avantageusement inférieur à 3 µg/g.
- taux de cadmium inférieur à 0,1 µg/g, avantageusement inférieur à 0,05 µg/g, encore mieux inférieur à 0,02 µg/g,
- taux d’étain inférieur à 0,5 µg/g, avantageusement inférieur à 0,4 µg/g et encore plus avantageusement inférieur à 0,3 µg/g.

Le bleu de méthylène est utilisé depuis des décennies dans le traitement de la malaria et dans le traitement de diverses infections. Il est utilisé comme agent antiseptique, anti infectieux, comme antidote et comme agent de diagnostique. De façon récente son activité antivirale a été mise en évidence, et il pourrait être utilisé dans la préparation d’un médicament destiné à lutter contre une pathologie telle qu’une infection, la présence de contaminants pathogènes dans le sang, une réaction hémodynamique excessive, une infection par le HIV, le virus West Nile, le virus de l’hépatite C, la maladie d’Alzheimer.
Enfin il pourrait également être utilisé en cosmétique ou pour des produits destinés à une application ophtalmique.

Pour toutes ces applications thérapeutiques, et en particulier dans le contexte de la prévention et du traitement de la maladie d’Alzheimer, il est nécessaire de disposer d’un bleu de méthylène ayant un degré de pureté élevé et en particulier comportant très peu d’impuretés métalliques.

Un médicament comprenant un bleu de méthylène de l’invention, dans un support pharmaceutiquement acceptable, constitue un autre objet de l’invention.

Le support et les quantités de bleu de méthylène à administrer sont bien connus de l’homme du métier.

L’invention a en outre pour objet un procédé de préparation d’un médicament comportant un composé de formule (I), caractérisé en ce que ce procédé comporte une purification du produit de formule (I) telle que décrite ci-dessus.

PARTIE EXPERIMENTALE

Un bleu de méthylène commercial est purifié conformément au procédé de la figure 1.

1- Synthèse du Benzoyl leuco bleu de Méthylène (Etape A)

Dans un réacteur double enveloppe de 120 L muni d’une agitation et sous azote on introduit :

- 80 L d’eau distillée,
- 4,2 kg (10,7 moles) de bleu de méthylène commercialisé par la société LEANCARE LTD sous la référence Cl 52015, comprenant d’importantes quantités d’impuretés métalliques (Al, Fe, Cu, Cr).

On laisse 15 min sous agitation puis on ajoute 6,9 kg de sodium hydrosulfite Na₂S₂O₄ en solution aqueuse à 85%. La coloration vire du bleu vers le beige.

On laisse 45 min supplémentaires sous agitation, puis on ajoute 2,69 kg de soude sous forme de pastilles. La température de la réaction est maintenue entre 18 et 20°C. La durée d’addition est de 30 min et on laisse sous agitation 30 min supplémentaires. Ensuite on ajoute goutte-à-goutte 7,90 L de chlorure de benzoyle. Le mélange réactionnel vire vers une coloration vert-beige. La durée d’addition est de 2h et ensuite on laisse sous agitation pendant 20 h.

Traitement :

Après arrêt de l’agitation on laisse décanter 15 min et on aspire le surnageant. On ajoute 80 L d’eau (25 volumes) et après agitation et décantation on aspire de nouveau le surnageant. On ajoute 24 L d’EtOH après une agitation d’environ 5 min on ajoute 16 L d’eau. Après avoir agité pendant 15 min, le mélange est filtré sur recette. Cette opération est répétée 3 fois. Après séchage on obtient 2,9 kg (Rdt : 66%) de benzoyl leuco bleu de méthylène.
2- Purification

On utilise 4,25 kg de benzoyl leuco bleu de méthylène issu de la première étape, solubilisé dans 30 L de CH₂Cl₂. On filtre sur 3 parts de silice (Merck Gerudan Si60) (11,5 kg) et 0,5 kg de sable de Fontainebleau on rince avec 30 litres de CH₂Cl₂. On élimine CH₂Cl₂ par évaporation sous vide. On ajoute 6 L d’éthanol. On laisse sous agitation à froid puis on filtre sur recette. On sèche sous vide. On obtient 3,4 kg de benzoyl leuco bleu de méthylène purifié (Rdt : 80%).

Pureté : +99 % CLHP

Métaux : le contenu en métaux (en μg/g) est donné pour 3 essais dans le tableau I.
Tableau 1

<table>
<thead>
<tr>
<th>Essai</th>
<th>Essai 1</th>
<th>Essai 2</th>
<th>Essai 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al</td>
<td>0,5</td>
<td>0,5</td>
<td>0,1</td>
</tr>
<tr>
<td>Cu</td>
<td>0</td>
<td>0</td>
<td>0,4</td>
</tr>
<tr>
<td>Fe</td>
<td>0</td>
<td>0</td>
<td>0,1</td>
</tr>
<tr>
<td>Zn</td>
<td>0,9</td>
<td>0,7</td>
<td>0,5</td>
</tr>
<tr>
<td>Ni</td>
<td>0,1</td>
<td>0,1</td>
<td>0,1</td>
</tr>
<tr>
<td>Cr</td>
<td>0,3</td>
<td>0,3</td>
<td>0,03</td>
</tr>
<tr>
<td>Mo</td>
<td>0,1</td>
<td>0,1</td>
<td>0,1</td>
</tr>
<tr>
<td>Mn</td>
<td>0,02</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sn</td>
<td>0,5</td>
<td>0,4</td>
<td>0,5</td>
</tr>
<tr>
<td>Pb</td>
<td>5</td>
<td>3,2</td>
<td>2,4</td>
</tr>
<tr>
<td>Cd</td>
<td>0,2</td>
<td>0,2</td>
<td>0,07</td>
</tr>
</tbody>
</table>

3- Débenzoylation

Dans un réacteur double enveloppe émaillé de 1001 à température ambiante, on introduit :

- 45 L d’acétonitrile (ACN)
- 1,6 kg du benzoyl leuco bleu de méthylène issu de la seconde étape et on place sous agitation. On laisse agiter 30 min à température ambiante puis on baisse la température à -18°C. On ajoute en une portion 950 g de DDQ solubilisés dans 4 L d’ACN. On laisse agiter 2h à -18°C. On filtre. On obtient un complexe du 3,7-bis(diméthyl amino)phénynothiazine avec le DDQ qui est utilisé directement dans l’étape suivante.

4- Salification

5- Neutralisation

6- Purification et hydratation

Dans un réacteur émaillé de 40 L sous N₂, à température ambiante, on a introduit 1,9 kg du produit de la cinquième étape et 30 L du mélange 50/50 CH₂Cl₂/EtOH. On chauffe au reflux (43°C). On filtre à chaud avec un filtre microfibre (Whatman GF/D).
14

REVENDICATIONS

1. Procédé de purification d’un composé répondant à formule (I) ci-dessous :

\[
\begin{array}{c}
\begin{array}{c}
\text{R} \\
\text{R}_1 \\
\text{R}_2 \\
\text{R}_3 \\
\text{R}_4 \\
\text{R}_5 \\
\text{R}_6 \\
\text{R}_7 \\
\text{R}_8 \\
\text{R}_9 \\
\text{R}_{10} \\
\text{X}^-
\end{array}
\end{array}
\]

(I)

dans laquelle chacun de \(R_1, R_2, R_3, R_4, R_5, R_6, R_7, R_8, R_9, R_{10} \) peut être choisi, indépendamment des autres, parmi le groupe constitué de :

- l’atome d’hydrogène,
- les groupements alkyle en \(C_1-C_6 \), linéaires ramifiés ou cycliques, saturés ou insaturés, éventuellement substitués par une plusieurs fonctions choisies parmi un atome d’halogène, une fonction alcoxy en \(C_1-C_6 \), alkylxycarbonyle en \(C_1-C_6 \), \(-\text{CONH}_2\),
- les groupements aryle éventuellement substitués par une ou plusieurs fonctions choisies parmi : un alkyle en \(C_1-C_4 \), un atome d’halogène, une fonction alcoxy en \(C_1-C_6 \), alkylxycarbonyle en \(C_1-C_6 \), \(-\text{CONH}_2\).

\(X^- \) représente un anion organique ou inorganique, caractérisé en ce qu’il comporte au moins une étape au cours de laquelle un composé de formule (II) :

\[
\begin{array}{c}
\begin{array}{c}
\text{R} \\
\text{R}_1 \\
\text{R}_2 \\
\text{R}_3 \\
\text{R}_4 \\
\text{R}_5 \\
\text{R}_6 \\
\text{R}_7 \\
\text{R}_8 \\
\text{R}_9 \\
\text{R}_{10}
\end{array}
\end{array}
\]

(II)

dans laquelle \(R \) représente un groupement choisi parmi :

- un groupement phényle ou benzyle, éventuellement substitués par une ou plusieurs fonctions choisies parmi : un alkyle en \(C_1-C_4 \), un atome d’halogène, un halogénoalkyle en \(C_1-C_4 \), un groupement nitro,
- un groupement alkyle en C₁-C₈, linéaire, ramifié ou cyclique,
- un groupement alkyl amino en C₁-C₈,
- un groupement alcoxy en C₁-C₈,
- un groupement phényloxy ou benzylxoy éventuellement substitués sur
le noyau aromatique par une ou plusieurs fonctions choisies parmi : un alkyle en C₁-C₄, un
atome d’halogène, un halogénoalkyle en C₁-C₄, un groupement nitro,
 Z représente un atome choisi parmi O et S,
 est soumis à une filtration sur un support susceptible de retenir les
composés métalliques.

2. Procédé selon la revendication 1, caractérisé en ce que R₁, R₂, R₃, R₄,
R₅ et R₆, identiques ou différents, sont choisis parmi l’atome d’hydrogène et un alkyle en
C₁-C₄.

3. Procédé selon la revendication 1, caractérisé en ce que l’une ou
plusieurs des conditions suivantes sont vérifiées :
 - R₅, R₈, R₉ et R₁₀ représentent H.
 - X représente Cl ou OH,
 - R₁, R₂, R₃, R₄, identiques ou différents sont choisis parmi un atome
d’hydrogène et le méthyle,
 - R₆ représente un atome d’hydrogène,
 - R₇ représente un atome d’hydrogène
 - Z représente O.

4. Procédé selon l’une quelconque des revendications précédentes,
caractérisé en ce que le composé de formule (I) est le chlorure de tétraméthylthionine ou
bleu de méthylène.

5. Procédé selon l’une quelconque des revendications 1 à 3, caractérisé
en ce que le composé de formule (I) est choisi parmi :
 le chlorure de diméthylthionine ou Azur A,
 le chlorure de triméthylthionine ou Azur B,
 le chlorure de monométhylthionine ou Azur C.

6. Procédé selon l’une quelconque des revendications précédentes,
caractérisé en ce que le support de filtration est choisi parmi : un gel de silice, un gel
d’alumine neutre, basique ou acide, une diatomite éventuellement modifiée, de la cépite,
une membrane microporeuse, une résine greffée par des groupements capteurs de métaux,
des fibres greffées par des groupements capteurs de métaux.

7. Procédé selon l’une quelconque des revendications précédentes,
caractérisé en ce que pour la filtration le composé de formule (II) est mis en solution dans
un solvant choisi parmi les solvants chlorés, comme le dichlorométhane ou le chloroforme.
les alcools tels que éthanol, isopropanol, méthanol, l’acétonitrile, l’acétate d’éthyle, le tétrahydrofurane, ou un mélange de ces solvants.

8. Procédé selon l’une quelconque des revendications précédentes, caractérisé en ce que il comporte en outre une étape de déprotection de l’amine du cycle phénothiazine du composé de formule (II).

9. Procédé selon la revendication 8, caractérisé en ce que la déprotection est faite par un moyen choisi parmi : les quinones, comme le 2,3-dichloro-5,6-dicyano-1,4-benzoquinone, HNO₃, HClO₄, I₂, HCl, H₂SO₄, H₂O₂, un traitement par des rayonnements ultraviolets.

10. Procédé selon la revendication 9, caractérisé en ce que la déprotection est faite par le 2,3-dichloro-5,6-dicyano-1,4-benzoquinone dans l’acétonitrile.

11. Procédé selon l’une quelconque des revendications 8 à 10, caractérisé en ce qu’il comporte en outre une étape d’échange d’ion, par traitement avec HCl dans l’acétate d’éthyle.

12. Procédé de purification d’un composé répondant à formule (I) ci-dessous:

```
  [ 
    N       +       N
   R₁      S      R₃
   /   \    /   \\
  R₂    R₁₀   R₄
   \   /  \\
    R₅   R₆
    /  
  R₇

(I)
```

dans laquelle chacun de R₁, R₂, R₃, R₄, R₅, R₆, R₇, R₈, R₉, R₁₀ peut être choisi, indépendamment des autres, parmi le groupe constitué de :

- l’atome d’hydrogène,
- les groupements alkyle en C₁-C₆, linéaires ramifiés ou cycliques, saturés ou insaturés, éventuellement substitués par une plusieurs fonctions choisies parmi un atome d’halogène, une fonction alcoxy en C₁-C₆, alkylxycarbonyle en C₁-C₆, -CONH₂,
- les groupements aryle éventuellement substitués par une ou plusieurs fonctions choisies parmi : un alkyle en C₁-C₄, un atome d’halogène, une fonction alcoxy en C₁-C₆, alkylxycarbonyle en C₁-C₆, -CONH₂,

X⁻ représente un anion organique ou inorganique, caractérisé en ce qu’il comporte au moins une étape au cours de laquelle un composé de formule (II) :
dans laquelle R représente un groupement choisi parmi :
- un groupement phényle ou benzyle, éventuellement substitués par une
ou plusieurs fonctions choisies parmi : un alkyle en C₁-C₄, un atome d’halogène, un
halogénoalkyle en C₁-C₄, un groupement nitro,
- un groupement alkyle en C₁-C₈, linéaire, ramifié ou cyclique,
- un groupement alkyl amino en C₁-C₈,
- un groupement alcoxy en C₁-C₈,
- un groupement phénylexy ou benzylxy éventuellement substitués sur
le noyau aromatique par une ou plusieurs fonctions choisies parmi : un alkyle en C₁-C₄, un
atome d’halogène, un halogénoalkyle en C₁-C₄, un groupement nitro,
Z représente un atome choisi parmi O et S,
est soumis à une étape de déprotection de l’amme du cycle phénothiazine
par traitement par une quinone, en particulier par la 2,3-dichloro-5,6-dicyano-1,4-
benzoquinone (DDQ).

13. Procédé de préparation d’un médicament comportant un composé de
formule (I) tel que défini par la revendication 1, caractérisé en ce que ce procédé comporte
une purification du composé de formule (I) selon le procédé suivant l’une quelconque des
revendications 1 à 12.

14. Bleu de méthylène (chlorure de 3,7-
 bis(diméthylamino)phénothiazine-5-ylium) caractérisé en ce qu’il comprend une quantité
de cadmium de 0,02 µg ou moins par g de bleu de méthylène.

15. Bleu de méthylène (chlorure de 3,7-
 bis(diméthylamino)phénothiazine-5-ylum) ayant un taux de pureté supérieur à 97% et
comprenant moins de 4,5 µg/g d’aluminium, avantageusement moins de 3 µg/g
d’aluminium, encore plus avantageusement moins de 2,5 µg/g d’aluminium.

16. Bleu de méthylène (chlorure de 3,7-
 bis(diméthylamino)phénothiazine-5-ium) ayant un taux de pureté supérieur à 97% et
comprenant moins de 0,5 µg/g d’étain, avantageusement moins de 0,3 µg/g d’étain.
17. Bleu de méthylène (chlorure de 3,7-bis(diméthylamino)phénylthiazine-5-ium) comprenant moins de 3% d’impuretés et un taux d’impuretés métalliques inférieur à 20 µg/g, avantageusement inférieur à 15 µg/g, encore plus avantageusement inférieur à 10 µg/g.

18. Composé de formule (I), à l’exclusion du bleu de méthylène, comportant un taux d’impuretés métalliques global inférieur à 100 µg/g, avantageusement inférieur à 50 µg/g, en particulier inférieur à 30 µg/g.

19. Composé selon la revendication 18, caractérisé en ce qu’il satisfait une ou plusieurs des conditions suivantes :

- pureté supérieure à 97%
- taux d’aluminium inférieur à 5 µg/g, avantageusement inférieur à 4 µg/g, encore plus avantageusement inférieur à 3 µg/g,
- taux de cadmium inférieur à 0,1 µg/g, avantageusement inférieur à 0,05 µg/g, encore mieux inférieur à 0,02 µg/g,
- taux d’étain inférieur à 0,5 µg/g, avantageusement inférieur à 0,4 µg/g et encore plus avantageusement inférieur à 0,3 µg/g.

20. Médicament comprenant un bleu de méthylène selon l’une quelconque des revendications 14 à 17 dans un support pharmaceutiquement acceptable.

21. Utilisation d’un bleu de méthylène selon l’une quelconque des revendications 14 à 17 pour la préparation d’un médicament destiné à la prévention ou au traitement d’une pathologie sélectionnée parmi :

- une infection, la présence de contaminants pathogéniques dans le sang,
- une réaction hémodynamique excessive, une infection par le HIV, le virus West Nile, le virus de l’hépatite C, la maladie d’Alzheimer.
Schéma synthétique du Bleu de Méthylène

A. $\text{H}_2\text{O}/\text{Na}_2\text{SO}_4$, NaOH, Chlorure de benzoyl
B. DDO/CH$_3$CN
C. Echange d’ion puis NaOH/H$_2$O pH 4
D. Hydratation (H$_2$O)

Figure 1
<table>
<thead>
<tr>
<th>Catégorie</th>
<th>Citation du document avec indication, en cas de besoin, des parties pertinentes</th>
<th>Revendication(s) concerné(e)s</th>
<th>Classement attribué à l'invention par l'INPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATABASE BEILSTEIN CROSSFIRE</td>
<td>Beilstein Institute of Organic Chemistry; BRN: 3580048 XP002417987 * abrégé *</td>
<td>18,19</td>
<td>C07D0279/22 C07D0279/20 A61K31/5415 A61P31/18 A61P25/28 A61P31/12 A61P7/00</td>
</tr>
<tr>
<td>DATABASE BEILSTEIN CROSSFIRE</td>
<td>Beilstein Institute of Organic Chemistry; BRN: 3813503 XP002417988 * abrégé *</td>
<td>18,19</td>
<td></td>
</tr>
<tr>
<td>DATABASE BEILSTEIN CROSSFIRE</td>
<td>Beilstein Institute of Organic Chemistry; BRN: 3778387 XP002417989 * abrégé *</td>
<td>18,19</td>
<td></td>
</tr>
<tr>
<td>DATABASE BEILSTEIN CROSSFIRE</td>
<td>Beilstein Institute of Organic Chemistry; BRN: 3793309 XP002417990 * abrégé *</td>
<td>18,19</td>
<td></td>
</tr>
<tr>
<td>DATABASE BEILSTEIN CROSSFIRE</td>
<td>Beilstein Institute of Organic Chemistry; BRN: 3800554 XP002417991 * abrégé *</td>
<td>18,19</td>
<td></td>
</tr>
<tr>
<td>DATABASE BEILSTEIN CROSSFIRE</td>
<td>Beilstein Institute of Organic Chemistry; BRN: 3804805 XP002417992 * abrégé *</td>
<td>18,19</td>
<td></td>
</tr>
</tbody>
</table>

Date d'achèvement de la recherche: 2 février 2007

Examinateur: Marzi, Elena

CATÉGORIE DES DOCUMENTS CITÉS

X : particulièrement pertinent à lui seul
Y : particulièrement pertinent en combinaison avec un autre document de la même catégorie
A : arrière-plan technologique
O : déviation non-écrite
P : document intercalaire
T : théorie ou principe à la base de l'invention
E : document de brevet bénéficiant d'une date antérieure à la date de dépôt et qui n’a été publié qu’à cette date de dépôt ou qu’à une date postérieure.
D : cité dans la demande
L : cité pour d’autres raisons
*: membre de la même famille, document correspondant
<table>
<thead>
<tr>
<th>Catégorie</th>
<th>Citation du document avec indication, en cas de besoin, des parties pertinentes</th>
<th>Revendication(s) concernée(s)</th>
<th>Classement attribué à l'invention par l'INPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>DATABASE BEILSTEIN CROSSFIRE Beilstein Institute of Organic Chemistry; BRN: 3795157 XP002417993 * abrégé *</td>
<td>18,19</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>DATABASE BEILSTEIN CROSSFIRE Beilstein Institute of Organic Chemistry; BRN: 380578 XP002417994 * abrégé *</td>
<td>18,19</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>DATABASE BEILSTEIN CROSSFIRE Beilstein Institute of Organic Chemistry; BRN: 3806640 XP002417995 * abrégé *</td>
<td>18,19</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>DATABASE BEILSTEIN CROSSFIRE Beilstein Institute of Organic Chemistry; BRN: 3817629 XP002417996 * abrégé *</td>
<td>18,19</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>DATABASE BEILSTEIN CROSSFIRE Beilstein Institute of Organic Chemistry; BRN: 3830868 XP002417997 * abrégé *</td>
<td>18,19</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>DATABASE BEILSTEIN CROSSFIRE Beilstein Institute of Organic Chemistry; BRN: 3817653 XP002417998 * abrégé *</td>
<td>18,19</td>
<td></td>
</tr>
</tbody>
</table>

DOMAINES TECHNIQUES RECHERCHÉS (IPC)

CATEGORIE DES DOCUMENTS CITES

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>Particulièrement pertinent à lui seul</td>
</tr>
<tr>
<td>V</td>
<td>Particulièrement pertinent en combinaison avec un autre document de la même catégorie</td>
</tr>
<tr>
<td>A</td>
<td>Arrière-plan technologique</td>
</tr>
<tr>
<td>O</td>
<td>Divulgation non-résolue</td>
</tr>
<tr>
<td>P</td>
<td>Document intermédiaire</td>
</tr>
<tr>
<td>T</td>
<td>Théorie ou principe à la base de l'invention</td>
</tr>
<tr>
<td>E</td>
<td>Document de brevet bénéficiant d'une date antérieure à la date de dépôt et qui n'a pas été publié qu'à cette date</td>
</tr>
<tr>
<td>D</td>
<td>Cité dans la demande</td>
</tr>
<tr>
<td>L</td>
<td>Cité pour d'autres raisons</td>
</tr>
<tr>
<td>M</td>
<td>Membre de la même famille, document correspondant</td>
</tr>
</tbody>
</table>

Date d'achèvement de la recherche: 2 février 2007
Examinatrice: Marzi, Elena
RAPPORT DE RECHERCHE PRÉLIMINAIRE

étalé sur la base des dernières revendications déposées avant le commencement de la recherche

DOCUMENTS CONSIDÉRÉS COMME PERTINENTS

<table>
<thead>
<tr>
<th>Catégorie</th>
<th>Citation du document avec indication, en cas de besoin, des parties pertinentes</th>
<th>Revendication(s) concernée(s)</th>
<th>Classement attribué à l'invention par l'INPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>DATABASE BEILSTEIN CROSSFIRE Beilstein Institute of Organic Chemistry; BRN: 3811127 X002417999 * abrégé *</td>
<td>18,19</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>DATABASE BEILSTEIN CROSSFIRE Beilstein Institute of Organic Chemistry; BRN: 4075262 X002418000 * abrégé *</td>
<td>18,19</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>DATABASE BEILSTEIN CROSSFIRE Beilstein Institute of Organic Chemistry; BRN: 3809569 X002418001 * abrégé *</td>
<td>18,19</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>FR 2 810 318 A1 (GALEY LAURENT [FR]) 21 décembre 2001 (2001-12-21) * page 4, ligne 13-17 * * page 5, ligne 4 - page 7, ligne 20 * * revendications 1-26 * Azure B, page 12 * page 13; exemple 1 *</td>
<td>14-21</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>WO 2005/054217 A (PHOTOPHARMICA LTD [GB]; BROWN STANLEY BEAMES [GB]; O'GRADY CASSANDRA C) 16 juin 2005 (2005-06-16) * page 4, ligne 1 - page 9, ligne 7 * * page 26; composés 9-13, 28 * * page 29 - page 30; tableau 1 * * revendications 1-17 *</td>
<td>14-21</td>
<td></td>
</tr>
</tbody>
</table>

Date d'achèvement de la recherche

2 février 2007

Examineur

Marzi, Elena

CATEGORIE DES DOCUMENTS CITES

X : particulièrement pertinent à lui seul
Y : particulièrement pertinent en combinaison avec un autre document de la même catégorie
A : arrière-plan technologique
O : déduction non énoncé
P : document intercalaire

T : théorie ou principe à la base de l'invention
E : document de brevet bénéficiant d'une date antérieure à la date de dépôt et qui n'a pas été publié qu'à cette date de dépôt ou qu'à une date postérieure.
D : cité dans la demande
L : cité pour d'autres raisons
& : membre de la même famille, document correspondant
<table>
<thead>
<tr>
<th>Catégorie</th>
<th>Citation du document avec indication, en cas de besoin, des parties pertinentes</th>
<th>Revendications concernée(s)</th>
<th>Classement attribué à l'invention par l'INPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>* page 59, ligne 31 - page 63, ligne 11 * * page 2, ligne 1 - page 6, ligne 27 * * page 7, ligne 31 - page 12 * * revendications 1-149 *</td>
<td>14-21</td>
<td></td>
</tr>
</tbody>
</table>

DOMAINES TECHNIQUES RECHERCHES (IPC)

CATÉGORIE DES DOCUMENTS CITÉS

- X : particulièrement pertinent à lui seul
- Y : particulièrement pertinent en combinaison avec un autre document de la même catégorie
- A : arrière-plan technologique
- O : divulgation non-externe
- P : document intercalaire
- T : théorie ou principe à la base de l'invention
- E : document de brevet bénéficiant d'une date antérieure à la date de dépôt et qui n'a pas été publié qu'à cette date de dépôt ou qu'à une date postérieure.
- D : cité dans la demande
- L : cité pour d'autres raisons
- & : membre de la même famille, document correspondant

Date d'achèvement de la recherche

2 février 2007

Examinateur

Marzi, Elena
ANNEXE AU RAPPORT DE RECHERCHE PRÉLIMINAIRE
RELATIF A LA DEMANDE DE BREVET FRANÇAIS NO. FR 0606330 FA 684240

La présente annexe indique les membres de la famille de brevets relatifs aux documents brevets cités dans le rapport de recherche préliminaire visé ci-dessus.
Les dits membres sont contenus au fichier informatique de l’Office européen des brevets à la date du 02-02-2007
Les renseignements fournis sont donnés à titre indicatif et n’engagent pas la responsabilité de l’Office européen des brevets, ni de l’Administration française

<table>
<thead>
<tr>
<th>Document brevet cité au rapport de recherche</th>
<th>Date de publication</th>
<th>Membre(s) de la famille de brevet(s)</th>
<th>Date de publication</th>
</tr>
</thead>
<tbody>
<tr>
<td>FR 2810318 A1</td>
<td>21-12-2001</td>
<td>AU 6917501 A</td>
<td>24-12-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2410824 A1</td>
<td>20-12-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1436180 A</td>
<td>13-08-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 0196322 A1</td>
<td>20-12-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2003158204 A1</td>
<td>21-08-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR P10416928 A</td>
<td>16-01-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2547556 A1</td>
<td>16-06-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1687286 A1</td>
<td>09-08-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20060111536 A</td>
<td>27-10-2006</td>
</tr>
<tr>
<td>WO 2006032879 A2</td>
<td>30-03-2006</td>
<td>AUCUN</td>
<td></td>
</tr>
</tbody>
</table>

Pour tout renseignement concernant cette annexe : voir Journal Officiel de l’Office européen des brevets, No.12/82