Title
Heat pump device, heat pump system, and method for controlling three-phase inverter

International Patent Classification(s)
F25B 1/00 (2006.01) H02M 7/48 (2007.01)

Application No: 2010365997 Date of Filing: 2010.12.21

WIPO No: WO12/086010

Publication Date: 2012.06.28
Accepted Journal Date: 2015.03.26

Applicant(s)
Mitsubishi Electric Corporation

Inventor(s)
Hatakeyama, Kazunori; Matsushita, Shinya; Kusube, Shinsaku; Makino, Tsutomu

Agent / Attorney
Davies Collison Cave, Level 15 1 Nicholson Street, MELBOURNE, VIC, 3000

Related Art
JP 11-324934
JP 2010-074898
JP 2010-051090
JP 2008-259343
(21) 国際出願番号: PCT/JP2010/007007
(52) 国際分類: H02M 7/48(2007.01)
(51) 国際特許分類: F25B 1/00(2006.01)
(73) 出願人: 三菱電機(株)(Mitsubishi Electric Corporation)
(74) 代理人: 酒井 宏明(SAKAI, Hiroshi)
(77) 明細書: 三菱電機(株)(Mitsubishi Electric Corporation)
(78) 指定国: 日本語
(79) 日本語
(54) Title: HEAT PUMP DEVICE, HEAT PUMP SYSTEM, AND METHOD FOR CONTROLLING THREE-PHASE INVERTER
(57) Abstract: The purpose of the present invention is to efficiently heat a coolant retained within a condenser. A voltage command correction value operation part (40) outputs, in accordance with a bus voltage (Vdc), a correction value (Kv) for correcting a voltage command value (V*). A multiplier (41) calculates a voltage command (V*) in which the voltage command (V*) has been corrected on the basis of the correction value (Kv). A voltage command generator (25) generates and outputs three phases of voltage command values (V*, V*, V*) on the basis of the phase (0) and the corrected voltage command value (V*) calculated by the multiplier (41). A PWM generator (26) generates six drive signals corresponding to each switching element of an inverter (9) on the basis of a carrier signal and the three phases of voltage command values (V*, V*, V*) outputted by the voltage command generator (25). The PWM generator (26) causes the inverter to generate a high-frequency alternating current voltage by outputting each generated drive signal to the switching elements that correspond to the three-phase inverter.
この発明は、圧縮機内に滞留した冷媒を効率よく加熱することを目的とする。電圧指令補正値演算部４０は、電圧指令値V*を補正する補正値Kvを、母線電圧Vdcに応じて出力する。演算器４１は、補正値Kvに基づき電圧指令値V*を補正した電圧指令値V*を計算する。電圧指令生成部２５は、演算器４１が計算した補正後の電圧指令値V*と位相0°に基づき、三相の電圧指令値Vu*、Vv*、Vw*を生成して出力する。PWM生成部２６は、電圧指令生成部２５が出力した三相の電圧指令値Vu*、Vv*、Vw*とキャリア信号に基づき、インバータ９の各スイッチング素子に対応する6つの駆動信号を生成する。そして、PWM生成部２６は、生成した各駆動信号を前記三相インバータの対応するスイッチング素子へ出力することにより、インバータに高周波交流電圧を発生させる。
DESCRIPTION

HEAT PUMP DEVICE, HEAT PUMP SYSTEM, AND METHOD FOR CONTROLLING THREE-PHASE INVERTER

Field

[0001] The present invention relates to a heating method of a compressor used in a heat pump device.

Background

Background

[0002] In Patent Literature 1, there is a description of causing a faint high-frequency open-phase current to flow to a winding of a motor to warm the motor winding when the amount of a liquid refrigerant retained in a compressor reaches a predetermined value or higher. Accordingly, breakage failure of the compressor is prevented by preventing liquid compression due to starting of an operation in a state where a liquid refrigerant is retained in the compressor.

[0003] In Patent Literature 2, there is a description of controlling a on/off cycle of a switching element to periodically reverse a direction of a current flowing to a stator coil of a motor. With this technique, not only heat generation due to ohmic loss but also heat generation due to hysteresis loss is performed so that sufficient preheating can be performed with a less consumption current, thereby improving the power efficiency.

Citation List

Patent Literatures

Summary

Technical Problem
[0005] In the technique described in Patent Literature 1, because an open-phase current is caused to flow, there is a winding to which a current does not flow, and thus the compressor cannot be uniformly heated. Furthermore, in a case of a permanent magnet synchronous motor having a saliency ratio, a winding inductance depends on a rotor position, and therefore the value of a flowing current changes depending on the rotor position, and thus it is difficult to secure a required heating amount depending on the circumstances.

[0006] In the technique described in Patent Literature 2, any one of the switching elements with one end being connected to a power supply side is repeatedly switched on/off a predetermined number of times during a period of predetermined time. And therewith, after any two of the switching elements with one end being connected to an earth side are switched on for the predetermined period of time, the current flowing to the stator coil is reversed. Therefore, speed-up of a system is required in order to achieve a high frequency operation. Accordingly, the frequency of the current flowing to the winding cannot be increased in an inexpensive system, so that there is a limitation in generation of iron loss due to the high frequency configuration, and the efficiency cannot be improved. Furthermore, noise is generated. Further, during the off period, the motor winding does not become short-circuited, and the current does not slowly attenuate with a time constant determined by a winding resistance and an inductance. Therefore, the current value of the winding has difficulty in being maintained and a current required for heating may not be secured.

[0007] An object of the present invention is to efficiently heat a refrigerant retained in a compressor.
Solution to Problem

[0008] The present invention provides a heat pump device comprising:

a compressor having a compression mechanism for compressing a refrigerant;

a motor that actuates the compression mechanism of the compressor;

a three-phase inverter that applies a predetermined voltage to the motor and is configured to parallel-connect three serial connection parts each having two switching elements; and

a voltage detection unit that detects a voltage value of a voltage supplied to the three-phase inverter; and

an inverter control unit that controls the three-phase inverter to cause the three-phase inverter to generate a high-frequency AC voltage, wherein the inverter control unit includes:

- a voltage-command-value input unit that inputs a voltage command value V^*;

- a voltage-command correction unit that calculates a voltage command value V'^* obtained by correcting the voltage command value V^* inputted by the voltage-command-value input unit based on the voltage value detected by the voltage detection unit;

- a phase switching unit that switches between a phase θ_p and a phase θ_n different from the phase θ_p substantially by 180 degrees and outputs one of them in synchronization with a reference signal having a predetermined frequency;

- a voltage-command generation unit that generates and outputs three-phase voltage command values V_u^*, V_v^* and V_w^*, based on the voltage command value V'^* calculated by the voltage-command correction unit and the phase outputted by the phase switching unit; and
- a drive-signal generation unit that generates six drive signals corresponding to the respective switching elements of the three-phase inverter based on the three-phase voltage command values \(V_u^* \), \(V_v^* \) and \(V_w^* \) outputted by the voltage-command correction unit and the reference signal, and outputs the generated respective drive signals to the corresponding switching elements of the three-phase inverter, to cause the three-phase inverter to generate a high-frequency AC voltage.

Advantageous Effects of Invention

[0009] The heat pump device according to the present invention generates a drive signal based on a phase \(\theta_p \) and a phase \(\theta_n \) that are switched and outputted in synchronization with a reference signal. Therefore, a high-frequency voltage having a high waveform output accuracy can be generated, and a refrigerant retained in a compressor can be efficiently heated while restraining generation of noise.

Furthermore, the heat pump device according to the present invention generates three-phase voltage command values \(V_u^* \), \(V_v^* \) and \(V_w^* \) in a voltage generation unit, by correcting a voltage command value \(V^* \) according to a value of a voltage supplied to an inverter to acquire a corrected voltage command value \(V^*'. \) With this configuration, constant power can be applied to a motor at all times without relying on the value of the voltage applied to the inverter, thereby enabling to prevent breakage of the compressor due to insufficient heating.

Brief Description of Drawings

[0010] FIG. 1 is a diagram showing a configuration of a heat pump device 100 according to a first embodiment.

FIG. 2 is a diagram showing a configuration of an inverter 9 according to the first embodiment.
FIG. 3 is a diagram showing a configuration of an inverter control unit 10 according to the first embodiment.

FIG. 4 is a diagram showing input/output waveforms of a PWM-signal generation unit 26 in the first embodiment.

FIG. 5 is a chart showing eight switching patterns in the first embodiment.

FIG. 6 is a diagram showing a configuration of a heating determination unit 12 in the first embodiment.

FIG. 7 is a flowchart showing an operation of the inverter control unit 10 according to the first embodiment.

FIG. 8 is a diagram showing a configuration of the inverter control unit 10 according to a second embodiment.

FIG. 9 is a timing chart when a phase \(\theta_p \) and a phase \(\theta_n \) are alternately switched by a selection unit 23 at a timing of a top and a bottom of a carrier signal.

FIG. 10 is an explanatory diagram of changes of a voltage vector shown in FIG. 9.

FIG. 11 is a timing chart when the phase \(\theta_p \) and the phase \(\theta_n \) are alternately switched by the selection unit 23 at a timing of a bottom of a carrier signal.

FIG. 12 is an explanatory diagram of a rotor position of an IPM motor.

FIG. 13 is a graph showing change of a current depending on a rotor position.

FIG. 14 is a diagram showing an applied voltage when \(\theta_f \) is changed with a lapse of time.

FIG. 15 is a diagram showing currents flowing to respective U-, V- and W-phases of a motor 8 when \(\theta_f \) is 0 degree (0 degree in a U-phase (V4) direction), 30 degrees, and 60 degrees.

FIG. 16 is a chart representing a voltage waveform between U and V phases and a U-phase current waveform when
there is a difference in a bus voltage \(V_{dc} \).

FIG. 17 is a diagram showing a configuration of the inverter control unit 10 according to a third embodiment.

FIG. 18 is a diagram showing a configuration of a voltage-command correction-value computation unit 40 according to the third embodiment.

FIG. 19 is a figure showing a graph of power (motor power \(P \)) of the motor 8 with respect to a voltage command value \(V^* \) when the bus voltage \(V_{dc} \) takes the smallest, standard, and largest values.

FIG. 20 is an explanatory chart of an example of data stored in a voltage-command correction-value storage unit 43 according to the third embodiment.

FIG. 21 is an explanatory chart of another example of data stored in the voltage-command correction-value storage unit 43 according to the third embodiment.

FIG. 22 is an explanatory chart of a reference of data stored in the voltage-command correction-value storage unit 43 according to the third embodiment.

FIG. 23 is a diagram showing another configuration of the voltage-command correction-value computation unit 46 according to the third embodiment.

FIG. 24 is an explanatory chart of data stored in a corrected voltage-command-value storage unit 44 according to the third embodiment.

FIG. 25 is a diagram showing a configuration of the inverter 9 according to a fourth embodiment.

FIG. 26 is a chart for explaining an operation of an AC-voltage detection unit 45.

FIG. 27 is a diagram showing a configuration of the inverter control unit 10 according to the fourth embodiment.

FIG. 28 is a diagram showing a configuration of the voltage-command correction-value computation unit 40.
according to the fourth embodiment.

FIG. 29 is an explanatory chart of data stored in the voltage-command correction-value computation unit 40 according to the fourth embodiment.

FIG. 30 is a circuit configuration diagram of the heat pump device 100 according to a fifth embodiment.

FIG. 31 is a Mollier chart of a state of a refrigerant of the heat pump device 100 shown in FIG. 30.

Description of Embodiments

In a first embodiment, a basic configuration and operations of a heat pump device 100 are explained.

[0012] FIG. 1 is a diagram showing a configuration of the heat pump device 100 according to the first embodiment. The heat pump device 100 according to the first embodiment includes a refrigeration cycle in which a compressor 1, a four-way valve 2, a heat exchanger 3, an expansion mechanism 4, and a heat exchanger 5 are sequentially connected via a refrigerant pipe 6. A compression mechanism 7 that compresses a refrigerant and a motor 8 that actuates the compression mechanism 7 are provided in the compressor 1. The motor 8 is a three-phase motor including windings of three phases (U-phase, V-phase, and W-phase).

An inverter 9 that applies a voltage to the motor 8 to drive it is electrically connected to the motor 8. The inverter 9 applies voltages \(V_u \), \(V_v \) and \(V_w \) to the U-phase, the V-phase and the W-phase windings of the motor 8, respectively.

The inverter 9 is electrically connected with an inverter control unit 10 including a high-frequency-voltage generation unit 11 and a heating determination unit 12 (state detection unit). The inverter control unit 10
determines whether the motor 8 needs to be heated based on a bus voltage Vdc that is a power supply voltage of the inverter 9, transmitted from the inverter 9, and a value of a current I flowing to the motor 8. When the motor 8 needs to be heated, the inverter control unit 10 outputs a PWM (Pulse Width Modulation) signal (drive signal) to the inverter 9.

[0013] FIG. 2 is a diagram showing a configuration of the inverter 9 according to the first embodiment.

The inverter 9 includes an AC power supply 13, a rectifier 14 that rectifies a voltage supplied from the AC power supply 13, a smoothing capacitor 15 that smoothes the voltage rectified by the rectifier 14 to generate a DC voltage (bus voltage Vdc), and a bus-voltage detection unit 16 that detects the bus voltage Vdc generated by the smoothing capacitor 15 and outputs the bus voltage to the inverter control unit 10.

The inverter 9 has a voltage application unit 19 using the bus voltage Vdc as a power supply. The voltage application unit 19 is a circuit in which three series connection portions of two switching elements (17a and 17d, 17b and 17e, and 17c and 17f) are connected in parallel, and reflux diodes 18a to 18f that are connected in parallel to the respective switching elements 17a to 17f are provided. The voltage application unit 19 drives the respective switching elements in accordance with PWM signals UP, VP, WP, UN, VN and WN, respectively, transmitted from the inverter control unit 10 (17a driven by UP, 17b driven by VP, 17c driven by WP, 17d driven by UN, 17e driven by VN, and 17f driven by WN). The voltage application unit 19 applies the voltages Vu, Vv and Vw according to the driven switching elements 17 to the U-phase, V-phase and W-phase windings of the motor 8,
respectively.

Furthermore, the inverter 9 includes a current detection unit 26 that detects the current I flowing from the inverter 9 to the motor B by applying the voltages V_u, V_v and V_w to the U-phase, V-phase and W-phase windings of the motor B, respectively, to output the current I to the inverter control unit 10.

[0014] FIG. 3 is a diagram showing a configuration of the inverter control unit 10 according to the first embodiment.

As described above, the inverter control unit 10 includes the high-frequency-voltage generation unit 11 and the heating determination unit 12. The heating determination unit 12 is explained later, and the high-frequency-voltage generation unit 11 is explained here.

The high-frequency-voltage generation unit 11 includes table data 21, an external input unit 22, a selection unit 23, an integrator 24, a voltage-command generation unit 25, and a PWM-signal generation unit 26.

The selection unit 23 selects and outputs any one of a voltage command value V_c outputted from the heating determination unit 12, a voltage command value V_t recorded in the table data 21, and a voltage command value V_a inputted from the external input unit 22 as a voltage command value V^*_a. The selection unit 23 also selects and outputs either a rotation-speed command value \(\omega_t \) recorded in the table data 21 or a rotation-speed command value \(\omega_a \) inputted from the external input unit 22 as a rotation-speed command value \(\omega^*_a \).

The integrator 24 obtains a voltage phase \(\theta \) based on the rotation-speed command value \(\omega^*_a \) outputted by the selection unit 23.
The voltage-command generation unit 25 generates and outputs voltage command values V_u^*, V_v^* and V_w^* using the voltage command value V^* outputted by the selection unit 23 and the voltage phase θ obtained by the integrator 24 as inputs thereto.

The PWM-signal generation unit 26 generates the PWM signals (U_P, V_P, W_P, U_N, V_N and W_N) based on the voltage command values V_u^*, V_v^* and V_w^* outputted by the voltage-command generation unit 25 and the bus voltage V_{dc}, and outputs the PWM signals to the inverter 9.

[0015] Now, description is made for a generation method of generating the voltage command values V_u^*, V_v^* and V_w^* in the voltage-command generation unit 25 and a method of generating the PWM signal in the PWM-signal generation unit 26.

FIG. 4 is a chart showing input/output waveforms of the PWM-signal generation unit 26 according to the first embodiment.

For example, the voltage command values V_u^*, V_v^* and V_w^* are defined as cosine waves (sine waves) having phases different by $2\pi/3$ as shown in Equations (1) to (3). Herein, V^* denotes an amplitude of the voltage command value, and θ denotes a phase of the voltage command value.

$$(1) \quad V_u^* = V^* \cos \theta$$

$$(2) \quad V_v^* = V^* \cos (\theta - (2/3)\pi)$$

$$(3) \quad V_w^* = V^* \cos (\theta + (2/3)\pi)$$

The voltage-command generation unit 25 calculates the voltage command values V_u^*, V_v^* and V_w^* according to Equations (1) to (3) based on the voltage command value V^* outputted by the selection unit 23 and the voltage phase θ obtained by the integrator 24, and outputs the calculated
voltage command values V_u^*, V_v^* and V_w^* to the PWM-signal generation unit 26. The PWM-signal generation unit 26 compares the voltage command values V_u^*, V_v^* and V_w^* with a carrier signal (reference signal) having an amplitude $V_{dc}/2$ at a predetermined frequency, and generates PWM signals U_P, V_P, W_P, U_N, V_N and W_N based on a magnitude relation to each other.

For example, when the voltage command value V_u^* is larger than the carrier signal, U_P is set to a voltage for turning on the switching element 17a, and U_N is set to a voltage for turning off the switching element 17d. On the other hand, when the voltage command value V_u^* is smaller than the carrier signal, inversely, U_P is set to a voltage for turning off the switching element 17a, and U_N is set to a voltage for turning on the switching element 17d. The same applies to other signals, and V_P and V_N are determined based on the comparison between the voltage command value V_v^* and the carrier signal, and W_P and W_N are determined based on the comparison between the voltage command value V_w^* and the carrier signal.

In a case of a general inverter, because a complementary PWM system is adopted therefor, U_P and U_N, V_P and V_N, and W_P and W_N have an inverse relationship to each other. Therefore, there are eight switching patterns in total.

[F0016] FIG. 5 is a chart showing eight switching patterns in the first embodiment. In FIG. 5, reference symbols V_0 to V_7 denote voltage vectors generated in the respective switching patterns. The voltage direction of the respective voltage vectors is indicated by $\pm U$, $\pm V$ and $\pm W$ (and 0 when the voltage is not generated). Here, "$+U$" means a voltage for generating a current in the U-phase
direction, which flows into the motor A via the U-phase and flows out from the motor B via the V-phase and the W-phase, and "-U" means a voltage for generating a current in the $-U$ phase direction, which flows into the motor A via the V-phase and the W-phase and flows out from the motor B via the U-phase. The same applies to $\pm V$ and $\pm W$.

The inverter 9 can be caused to output desired voltages by combining the switching patterns shown in FIG. 5 and outputting a voltage vector. At this time, a high frequency voltage can be outputted by changing the phase θ at a high speed.

[0017] The voltage command signals V_u^*, V_v^* and V_w^* may be obtained in two-phase modulation, triple harmonic superimposition modulation, space vector modulation, and the like other than Equations (1) to (3).

[0018] FIG. 6 is a diagram showing a configuration of the heating determination unit 12 according to the first embodiment.

The heating determination unit 12 controls an operation state (ON/OFF) of the high-frequency-voltage generation unit 11 based on the bus voltage V_{dc} detected by the bus-voltage detection unit 16 of the inverter 9, the current I detected by the current detection unit 20 of the inverter 9, and the like.

The heating determination unit 12 includes a current comparison unit 27, a voltage comparison unit 28, a temperature detection unit 29, a temperature comparison unit 30, a first logical-product calculation unit 31, a pooling determination unit 32, an elapsed-time measurement unit 33, a time comparison unit 34, a resetting unit 35, a logical-sum calculation unit 36, a second logical-product calculation unit 37, and a heating-amount determination
unit 38.

[0019] The current comparison unit 27 output "1" with judging that it is a normal state when the current I detected and outputted by the current detection unit 20 is in a state of $I_{\text{min}} < I < I_{\text{max}}$, but outputs "0" when not in the state.

The I_{max} is an upper limit of the current, and the I_{min} is a lower limit of the current. When an excessive positive current equal to or larger than the I_{max} or an excessive negative current equal to or smaller than the I_{min} flows, the current comparison unit 27 determines that the current I is in an abnormal state and outputs "0", thereby operating to stop heating.

[0020] The voltage comparison unit 28 determines that the bus voltage V_{dc} is in a normal state when the bus voltage V_{dc} detected by the bus-voltage detection unit 16 is in a state of $V_{\text{dc}_{\text{min}}} < V_{\text{dc}} < V_{\text{dc}_{\text{max}}}$ and outputs "1", but outputs "0" in other cases.

The $V_{\text{dc}_{\text{max}}}$ is an upper limit of the bus voltage, and the $V_{\text{dc}_{\text{min}}}$ is a lower limit of the bus voltage. In the case of an excessive high bus voltage equal to or higher than the $V_{\text{dc}_{\text{max}}}$ or an excessive low bus voltage equal to or lower than the $V_{\text{dc}_{\text{min}}}$, the voltage comparison unit 28 determines that the bus voltage is in an abnormal state and outputs "0", thereby operating to stop heating.

[0021] The temperature detection unit 29 detects an inverter temperature T_{inv} that is a temperature of the voltage application unit 19, a temperature T_c of the compressor 1, and an outside air temperature T_o.

The temperature comparison unit 30 compares a preset protective temperature $T_{\text{p-inv}}$ of the inverter with the inverter temperature T_{inv}, and compares a preset protective temperature $T_{\text{p-c}}$ of the compressor 1 with the compressor
temperature \(T_c \). The temperature comparison unit 30 determines that a normal operation is currently performed in a state of \(T_{p_{\text{inv}}} > T_{\text{inv}} \) and in a state of \(T_{p_{c}} > T_c \) and outputs "1", but outputs "0" in other cases.

In a case of \(T_{p_{\text{inv}}} < T_{\text{inv}} \), the inverter temperature is high, and in a case of \(T_{p_{c}} < T_c \), the winding temperature of the motor 8 in the compressor 1 is high, and so an insulation failure or the like may occur. Therefore, the temperature comparison unit 30 determines that it is dangerous, outputs "0", and operates to stop the heating. The \(T_{p_{c}} \) needs to be set, taking into consideration a fact that the compressor 1 has a larger heat capacity than the winding of the motor 6 and the temperature rising speed is lower than that of the winding.

[0022] The first logical-product calculation unit 31 outputs a logical product of output values of the current comparison unit 27, the voltage comparison unit 28 and the temperature comparison unit 30. When any one or more of the output values of the current comparison unit 27, the voltage comparison unit 28 and the temperature comparison unit 30 is 0, which indicates an abnormal state, the first logical-product calculation unit 31 outputs "0" to operate to stop the heating.

A method of stopping heating using the current I, the bus voltage \(V_{dc} \), and the temperatures \(T_{\text{inv}} \) and \(T_c \) has been explained. However, not all of these values need to be used. Heating may be stopped using a parameter other than these values.

[0023] Subsequently, the pooling determination unit 32 determines whether or not a liquid refrigerant is retained in the compressor 1 in the compressor 1 (the refrigerant is pooled) based on the temperature \(T_c \) of the compressor 1 and the outside air temperature \(T_{0} \) detected by the temperature
detection unit 29.

Because the compressor 1 has the largest heat capacity in the refrigeration cycle, and the compressor temperature T_c rises slower compared to the rise of the outdoor air temperature T_o, the temperature thereof becomes the lowest. Because the refrigerant stays in a place where the temperature is the lowest in the refrigeration cycle, and accumulates as the liquid refrigerant, the refrigerant accumulates in the compressor 1 at the time of temperature rise. In a case of $T_o>T_c$, the pooling determination unit 32 determines that the refrigerant stays in the compressor 1, outputs "1" to start heating, and stops the heating when $T_o<T_c$.

Control may be executed to start heating when the T_c is in a rising trend or when the T_o is in a rising trend, and when detection of the T_c or T_o becomes difficult, the control can be realized using either one of them, thereby enabling to realize highly reliable control.

When both the compressor temperature T_c and the external temperature T_o cannot be detected, heating of the compressor 1 may be impossible. Therefore, the elapsed-time measurement unit 33 measures a time for which the compressor 1 is not heated (Elapse_Time). When a time limit time Limit_Time preset by the time comparison unit 34 is exceeded, the elapsed-time measurement unit 33 outputs "1" to start heating of the compressor 1. Because the temperature change in a day is such that temperature rises from morning when the sun rises toward daytime, and temperature drops from evening toward night, temperature rise and drop are repeated in a cycle of roughly 12 hours. For this reason, for example, the Limit_Time may be set to about 12 hours.

The Elapse_Time is set to "0" by the resetting unit 35,
when the heating of the compressor 1 is executed.

[0025] The logical-sum calculation unit 36 outputs a logical sum of output values of the pooling determination unit 32 and the time comparison unit 34. When at least one of the output values of the pooling determination unit 32 and the time comparison unit 34 becomes “1” indicating starting of the heating, the logical-sum calculation unit 36 outputs “1” to start heating of the compressor “1”.

[0026] The second logical-product calculation unit 37 outputs a logical product of the output values of the first logical-product calculation unit 31 and the logical-sum calculation unit 36 as an output value of the heating determination unit 12. When the output value is 1, the high-frequency-voltage generation unit 11 is actuated to perform a heating operation of the compressor 1. On the other hand, when the output value is 0, the high-frequency-voltage generation unit 11 is not actuated, and the heating operation of the compressor 1 is not performed, or the operation of the high-frequency-voltage generation unit 11 is stopped to stop the heating operation of the compressor 1.

Because the second logical-product calculation unit 37 outputs the logical product, when a signal “0” for stopping heating of the compressor 1 is being outputted by the first logical-product calculation unit 31, the heating can be stopped even if a signal “1” indicating starting of heating is outputted to the logical-sum calculation unit 36. Therefore, it is possible to realize the heat pump device that can minimize power consumption in a standby mode while ensuring certain reliability.

[0027] The pooling determination unit 32 detects a state where a liquid refrigerant is stayed in the compressor 1 based on the compressor temperature Tc and the external
temperature To. Furthermore, the heating-amount
determination unit 38 determines the amount of the liquid
refrigerant retained in the compressor 1 based on the
compressor temperature Tc and the external temperature To.
The heating-amount determination unit 38 then calculates
and outputs the voltage command value Vc required for
expelling the refrigerant to outside of the compressor 1
according to the determined amount of the liquid
refrigerant. Accordingly, the state where the liquid
refrigerant is retained in the compressor 1 can be resolved
with the minimum necessary electric power, and the
influence on global warming can be reduced with the power
consumption being reduced.

[0028] An operation of the inverter control unit 10 is
explained next.

FIG. 7 is a flowchart showing an operation of the
inverter control unit 10 in the first embodiment.
(S1: Heating determining step)

The heating determination unit 12 determines whether
to actuate the high-frequency-voltage generation unit 11 by
the operation described above during shutdown of the
compressor 1.

When the heating determination unit 12 determines that
the high-frequency-voltage generation unit 11 should be
actuated, that is, when the output value of the heating
determination unit 12 is "1" (ON) (YES at S1), the process
proceeds to S2 to generate PWM signals for preheating. On
the other hand, when the heating determination unit 12
determines that the high-frequency-voltage generation unit
11 should not be actuated, that is, when the output value
of the heating determination unit 12 is "0" (OFF) (NO at
S1), the heating determination unit 12 determines whether
to actuate the high-frequency-voltage generation unit 11
again after a predetermined time has passed.
(S2: Voltage-command-value generating step)

The selection unit 23 selects the voltage command
value V^* and the rotation-speed command value ω^*, and the
integrator 24 obtains the voltage phase Θ based on the
rotation-speed command value ω^* selected by the selection
unit 23. The voltage-command generation unit 25 calculates
the voltage command values V_u^*, V_v^* and V_w^* according to
Equations (1) to (3) based on the voltage command value V^*
selected by the selection unit 23 and the voltage phase Θ
obtained by the integrator 24, and outputs the calculated
voltage command values V_u^*, V_v^* and V_w^* to the PWM-signal
generation unit 26.
(S3: PWM-signal generating step)

The PWM-signal generation unit 26 compares the voltage
command values V_u^*, V_v^* and V_w^* outputted by the voltage-
command generation unit 25 with the carrier signal to
obtain the PWM signals U_P, V_P, W_P, U_N, V_N and W_N, and
outputs these PWM signals to the inverter 9. Accordingly,
the switching elements 17a to 17f of the inverter 9 are
driven to apply a high-frequency voltage to the motor 8.

By applying the high-frequency voltage to the motor 8,
the motor 8 is efficiently heated by iron loss of the motor
8 and copper loss generated by the current flowing in the
winding. By the motor 8 being heated, the liquid
refrigerant stagnating in the compressor 1 is heated and
evaporated, and leaked to outside of the compressor 1.

After a predetermined time has passed, the heating
determination unit 12 returns to S1 again, and determines
whether further heating is required.

[0029] As described above, in the heat pump device 100
according to the first embodiment, when the liquid
refrigerant is stagnating in the compressor 1, the high-
frequency voltage is applied to the motor 8, so that the
motor 8 can be efficiently heated while restraining noise.
Accordingly, the refrigerant retained in the compressor 1
can be efficiently heated, and the retained refrigerant can
be leaked to outside of the compressor 1.

[0030] When the high-frequency voltage having a
frequency equal to or higher than an operation frequency at
the time of a compression operation is applied to the motor
8, a rotor in the motor 8 can not follow the frequency, and
any rotations or vibrations are not generated. Therefore,
at S2, the selection unit 23 had better output a rotation-
speed command value ω^* equal to or higher than the
operation frequency at the time of the compression
operation.

Generally, the operation frequency at the time of the
compression operation is 1 kHz at most. Therefore, a high
frequency voltage having a frequency equal to or larger
than 1 kHz only has to be applied to the motor 8. When a
high frequency voltage having a frequency equal to or
higher than 14 kHz is applied to the motor 8, vibration
sound of an iron core of the motor 8 approaches nearly an
upper limit of an audible frequency, so that there is an
effect for reducing noise. To this end, for example, the
selection unit 23 outputs the rotation-speed command value
ω^* for leading to a high frequency voltage of about 20 kHz.

[0031] However, when the frequency of the high frequency
voltage exceeds the maximum rated frequency of the
switching elements 17a to 17f, a load or power supply
short-circuit may occur due to breakage of the switching
elements 17a to 17f, and it can lead to generation of smoke
or fire. For this reason, it is desired to set the
frequency of the high-frequency voltage to be equal to or
lower than the maximum rated frequency in order to ensure
reliability.

Furthermore, to achieve a high efficiency, a
motor having an IPM (Interior Permanent Magnet) structure
or a concentrated winding motor having a small coil end and
a low winding resistance has been widely used for the
recent compressor motor for a heat pump device. The
concentrated winding motor has a small winding resistance
and a small amount of heat generation due to copper loss,
and thus a large amount of current needs to be caused to
flow to the winding. If a large amount of current is
causeto flow to the winding, then the current flowing to
the inverter 9 also increases, thereby increasing inverter
loss.

Therefore, if heating by applying the high-frequency
voltage described above is performed, then an inductance
component by the high frequency increases, thereby
increasing winding impedance. Accordingly, although the
current flowing to the winding decreases and the copper
loss is reduced, iron loss due to the application of the
high-frequency voltage occurs corresponding to the amount
of copper loss, thereby enabling to perform efficient
heating. Furthermore, because the current flowing to the
winding decreases, the current flowing to the inverter also
decreases, thereby enabling to reduce the loss of the
inverter 9 and perform more efficient heating.

If heating by applying the high-frequency voltage
described above is performed, when the compressor is a
motor having the IPM structure, a rotor surface where high-
frequency magnetic fluxes interlink with each other also
becomes a heat generating portion. Therefore, increase in
an area contacting the refrigerant and prompt heating of
the compression mechanism can be realized, thereby enabling
to perform efficient heating of the refrigerant.

[0033] At present, generally, the mainstream trend is to use silicon (Si) as a material of a semiconductor for the switching elements 17a to 17f that constitute the inverter 9 and the reflux diodes 18a to 18f that are connected to the respective switching elements 17a to 17f in parallel. However, instead of this type of semiconductor, a wide gap semiconductor whose material is silicon carbide (SiC), gallium nitride (GaN) or diamond may be used.

Switching elements and diode elements made from such a wide bandgap semiconductor have a high voltage resistance and a high allowable current density. Therefore, downsizing of the switching elements and diode elements is possible, and by using these downsized switching elements and diode elements, downsizing of a semiconductor module having these elements incorporated therein can be realized.

The switching elements and the diode elements made from such a wide bandgap semiconductor have a high heat resistance. Accordingly, downsizing of a radiator fin of a heat sink and air cooling of a water cooling part can be realized, thereby enabling further downsizing of the semiconductor module.

Furthermore, the switching elements and the diode elements made from such a wide bandgap semiconductor have low power loss. Therefore, the switching elements and the diode elements can be made to have a high efficiency, thereby enabling to make the semiconductor module highly efficient.

[0034] While it is desired that both the switching elements and the diode elements are made from a wide bandgap semiconductor, it is also sufficient that either the switching or diode elements are made from a wide bandgap semiconductor, and even in this case, effects
described in the present embodiment can be achieved.

[0035] Besides, identical effects can be produced by using a MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor) having a super junction structure that is known as a highly efficient switching element.

[0036] In a compressor having a scroll mechanism, high-pressure relief of a compression chamber is difficult. Therefore, there is a high possibility of causing breakage of the compression mechanism due to an excessive stress applied to the compression mechanism in a case of liquid compression, as compared to a compressor of other systems. However, in the heat pump device 100 according to the first embodiment, efficient heating of the compressor 1 is possible, and stagnation of a liquid refrigerant in the compressor 1 can be suppressed. Accordingly, liquid compression can be prevented, the heat pump device 100 is beneficial even when a scroll compressor is used as the compressor 1.

[0037] Furthermore, in the case of a heating device having a frequency of 10 kHz and an output exceeding 50W, the heating device may be subjected to the restriction of laws and regulations. For this reason, it may as well be admitted that an amplitude of the voltage command value is adjusted so as not to exceed 50W in advance, and/or feedback control is executed with detecting the flowing current and the voltage so as to be 50W or less.

[0038] The inverter control unit 10 is configured by a CPU (Central Processing Unit), a DSP (Digital Signal Processor), a microcomputer, an electronic circuit or the like.

[0039] Second embodiment.

In a second embodiment, a method of generating a high frequency voltage is described.
[0040] In a case of a general inverter, a carrier frequency, that is a frequency of a carrier signal, has an upper limit that is determined by a switching speed of switching elements of the inverter. Therefore, it is difficult to output a high frequency voltage having a frequency equal to or higher than the carrier frequency, which is a carrier wave. In a case of a general IGBT (Insulated Gate Bipolar Transistor), the upper limit of the switching speed is about 20 kHz.

When the frequency of the high frequency voltage becomes about 1/10 of the carrier frequency, an adverse effect may occur such that the waveform output accuracy of the high frequency voltage deteriorates and DC components are superposed on the high frequency voltage. When the carrier frequency is set to 20 kHz in view of the above, if the frequency of the high frequency voltage is set equal to or lower than 2 kHz that is 1/10 of the carrier frequency, then the frequency of the high frequency voltage is in an audible frequency domain, and so it is a concern that noise is increased.

[0041] FIG. 8 is a diagram showing a configuration of the inverter control unit 10 according to the second embodiment.

The inverter control unit 10 according to the second embodiment is the same as the inverter control unit 10 according to the first embodiment shown in FIG. 3, except that the high-frequency-voltage generation unit 11 includes an addition unit 39 that adds a phase θp or a phase θn switched by the selection unit 23 to the reference phase θf to obtain the voltage phase θ, instead of the integrator 24 (see FIG. 3). In the circumstances, constituent elements identical to those of the first embodiment are denoted by
the same reference signs and explanations thereof will be omitted, and only different points are explained.

[0042] In the first embodiment, the rotation-speed command value ω^* is integrated by the integrator 24 to obtain the voltage phase θ. On the other hand, in the second embodiment, the selection unit 23 (phase switching unit) alternately switches between two types of voltage phases, the phase Θ_p and the phase Θ_n that is different from the phase Θ_p substantially by 180 degrees. The addition unit 39 then adds the phase Θ_p or Θ_n selected by the selection unit 23 to the reference phase Θ_f and designates the obtained phase as the voltage phase θ.

In the explanations below, it is assumed that $\Theta_p=0$ [degree], and $\Theta_n=180$ [degrees].

[0043] An operation of the inverter control unit 10 is explained next.

Except for the operation of 52 shown in FIG. 7, operations of the inverter control unit 10 are the same as those of the inverter control unit 10 according to the first embodiment. Therefore, explanations thereof will be omitted.

At 52, the selection unit 23 switches between the phases Θ_p and Θ_n alternately at the timing of either a top (peak) or bottom (valley) of a carrier signal or at the timings of the top and bottom of the carrier signal. The addition unit 39 adds the phase Θ_p or phase Θ_n selected by the selection unit 23 to the reference phase Θ_f, designates the obtained phase as the voltage phase θ, and outputs the voltage phase θ to the voltage-command generation unit 25.

The voltage-command generation unit 25 obtains the voltage command values V_u^*, V_v^* and V_w^* according to Equations (1)
to (3) using the voltage phase θ and the voltage command value V^*, and outputs the voltage command values V_u^*, V_v^* and V_w^* to the PWM-signal generation unit 26.

Because the selection unit 23 switches between the 5 phases θ_p and θ_n at the timing of the top or bottom, or at the timings of the top and bottom of the carrier signal, the PWM signal synchronized with the carrier signal can be outputted.

[0044] FIG. 9 is a timing chart when the phase θ_p and 10 the phase θ_n are alternately switched by the selection unit 23 at timings of a top and a bottom of a carrier signal. Because the UP, VP and WP are opposite in ON/OFF state to UN, VN and WN, respectively and when the state of one signal is ascertained, the other one can be ascertained, only UP, VP and WP are described here. It is assumed here that $\theta_f=0$ [degree].

In this case, a PWM signal changes as shown in FIG. 9. The voltage vector changes in order of V_0 (UP=VP=WP=0), V_4 (UP=1, VP=WP=0), V_7 (UP=VP=WP=1), V_3 (UP=0, VP=WP=1), V_0 (UP=VP=WP=0), and so on.

[0045] FIG. 10 is an explanatory diagram of a change of the voltage vector shown in FIG. 9. In FIG. 10, it is indicated that the switching element 17 surrounded by a broken line is ON, and the switching element 17 not surrounded by a broken line is OFF.

As shown in FIG. 10, at the time of applying the V_0 vector and the V_7 vector, lines of the motor 8 are short-circuited, and any voltage is not outputted. In this case, the energy accumulated in the inductance of the motor 8 becomes a current, and the current flows in the short circuit. At the time of applying the V_4 vector, a current (current of +Iu current) flows in the direction of the U-
phase, in which the current flows into the motor B via the U-phase and flows out from the motor B via the V-phase and the W-phase, and at the time of applying the V3 vector, a current (current of -Iu) flows to the winding of the motor B in the direction of the -U phase, in which the current flows into the motor B via the V-phase and the W-phase and flows out from the motor B via the U-phase. That is, the current flows to the winding of the motor B at the time of applying the V4 vector in the opposite direction to that at the time of applying the V3 vector and vice versa. Because the voltage vector changes in order of V0, V4, V7, V3, V0, and so on, the current of +Iu and the current of -Iu flow to the winding of the motor B alternately. Particularly, as shown in FIG. 9, because the V4 vector and the V3 vector appear during one carrier cycle (1/fc), an AC voltage synchronized with a carrier frequency fc can be applied to the winding of the motor B.

Because the V4 vector (the current of +Iu) and the V3 vector (the current of -Iu) are alternately output, forward and reverse torques are switched instantaneously. Therefore, because the torque is compensated, the voltage application is possible, while suppressing vibrations of the rotor.

(0046) FIG. 11 is a timing chart when the phase θp and the phase θn are alternately switched by the selection unit E at a timing of a bottom of a carrier signal.

In this case, the PWM signal changes as shown in FIG. 11. The voltage vector changes to V0, V4, V7, V7, V3, V0, V0, V3, V7, V7, V4, V0, and so on in this order. Because the V4 vector and the V3 vector appear during two carrier cycles, an AC voltage having a frequency half the carrier frequency can be applied to the winding of the motor B.

(0047) FIG. 12 is an explanatory diagram of a rotor
position (a stop position of the rotor) of an IPM motor. A rotor position \(\phi \) of the IPM motor is expressed here by the size of an angle by which the direction of the N pole of the rotor deviates from the U-phase direction.

FIG. 13 is a graph showing current change according to a rotor position. In the case of the IPM motor, the winding inductance depends on the rotor position. Therefore, the winding impedance expressed by a product of an electric angle frequency \(\omega \) and an inductance value fluctuates according to the rotor position. Accordingly, even if the same voltage is applied, a current flowing to the winding of the motor \(\delta \) changes depending on the rotor position, and a heating amount changes. As a result, a large amount of power may be consumed to obtain the required heating amount, depending on the rotor position.

Therefore, the reference phase \(\theta_f \) is changed with a lapse of time to apply a voltage to the rotor evenly.

FIG. 14 is an illustration showing applied voltages when the reference phase \(\theta_f \) is changed with a lapse of time.

The reference phase \(\theta_f \) is changed every 45 degrees with a lapse of time, at 0 degree, 45 degrees, 90 degrees, 135 degrees, and so on. When the reference phase \(\theta_f \) is 0 degree, the phase \(\theta \) of the voltage command value becomes 0 degree and 180 degrees. When the reference phase \(\theta_f \) is 45 degrees, the phase \(\theta \) of the voltage command value becomes 45 degrees and 225 degrees. When the reference phase \(\theta_f \) is 90 degrees, the phase \(\theta \) of the voltage command value becomes 90 degrees and 270 degrees. When the reference phase \(\theta_f \) is 135 degrees, the phase \(\theta \) of the voltage command value becomes 135 degrees and 315 degrees.

That is, the reference phase \(\theta_f \) is initially set to 0
degree, and the phase Θ of the voltage command value is switched between 0 degree and 180 degrees in synchronization with a carrier signal for a predetermined time. Thereafter, the reference phase Θ_f is switched to 45 degrees, and the phase Θ of the voltage command value is switched between 45 degrees and 225 degrees in synchronization with the carrier signal for the predetermined time. Subsequently, the reference phase Θ_f is switched to 90 degrees and so on. In this manner, the phase Θ of the voltage command value is switched between 0 degree and 180 degrees, 45 degrees and 225 degrees, 90 degrees and 270 degrees, 135 degrees and 315 degrees, and so on for each predetermined time.

Accordingly, because an energization phase of a high-frequency AC voltage changes with a lapse of time, the influence of inductance characteristics according to a rotor stop position can be eliminated, and the compressor 1 can be heated uniformly, regardless of the rotor position.

FIG. 15 is a chart representing currents flowing to the respective U-, V- and W-phases of the motor 8 when the reference phase Θ_f is 0 degree (0 degree in the U-phase (V4) direction), 30 degrees, and 60 degrees.

When the reference phase Θ_f is 0 degree, as shown in FIG. 9, only one other voltage vector (voltage vector in which, of the switching elements 17a to 17f, one switching element on the positive voltage side and two switching elements on the negative voltage side, or two switching elements on the positive voltage side and one switching element on the negative voltage side become an ON state) is generated between V0 and V7. In this case, the current waveform becomes a trapezoidal shape and becomes a current having less harmonic components.
However, when the reference phase θ_f is 30 degrees, two different voltage vectors are generated between V_0 and V_7. In this case, the current waveform is distorted, and the current has plenty of harmonic components. The distortion of the current waveform may cause adverse effects including motor noise, motor shaft vibrations, and the like.

When the reference phase θ_f is 60 degrees, only one other voltage vector is generated between V_0 and V_7, as in the case of the reference phase θ_f being 0 degree. In this case, the current waveform becomes a trapezoidal shape and the current has less harmonic components.

In this manner, when the reference phase θ_f is n times (n is an integer equal to or larger than 0) of 60 degrees, because the voltage phase θ becomes a multiple of 60 degrees (here, $\theta_p=0$ [degree], $\theta_n=180$ [degrees]), only one other voltage vector is generated between V_0 and V_7. Meanwhile, when the reference phase θ_f is other than n times of 60 degrees, because the voltage phase θ does not become a multiple of 60 degrees, two other voltage vectors are generated between V_0 and V_7. If two other voltage vectors are generated between V_0 and V_7, the current waveform is distorted, and the current has plenty of harmonic components, thereby leading to possibility of causing adverse effects including motor noise, motor shaft vibrations, and the like. Therefore, it is desired to change the reference phase θ_f at 60-degree intervals of 0 degree, 60 degrees, and so on.

[0050] As described above, in the heat pump device 100 according to the second embodiment, two types of phases of a phase θ_1 and a phase θ_2 different from the phase θ_1
substantially by 180 degrees are switched alternately in synchronization with the carrier signal, and used as a phase of the voltage command value. Accordingly, the high frequency voltage synchronized with the carrier frequency can be applied to the winding of the motor 8.

In the heat pump device 100 according to the second embodiment, the reference phase θf is changed with the lapse of time. Accordingly, because the energization phase of the high-frequency AC voltage changes with the lapse of time, the compressor 1 can be heated uniformly, regardless of the rotor position.

[0051] Third embodiment.

In a third embodiment, there is described a method for maintaining a constant heat generation amount of the motor 8 regardless of change in the bus voltage Vdc when the high-frequency AC voltage is generated by the method explained in the second embodiment.

[0052] FIG. 16 is a chart representing a voltage waveform between U and V phases and a U-phase current waveform when there is a difference in the bus voltage Vdc.

As shown in FIG. 16, when the bus voltage Vdc is small in regard to the voltage between U and V phases, inverter control unit 10 can not set the voltage amplitude high, and therefore the inverter control unit 10 increases a length of an energization time. On the other hand, when the bus voltage Vdc is large, the inverter control unit 10 decreases a length of the energization time, because the voltage amplitude is high. In such a way, the inverter control unit 10 performs control to output the same voltage, regardless of the bus voltage Vdc.

In a section (1) of the U-phase current waveform, because the line voltage between the U and V phases is positive, the U-phase current flows from a negative side to
a positive side. Subsequently, in a section (2), the switching pattern shown in FIG. 5 becomes the voltage vector V0 or V7, and the voltage between U and V phases becomes zero in this section. Therefore, the inverter control unit 10 operates to cause short-circuit between the lines of the motor 8, and energy accumulated in the inductance of the motor 8 attenuates with a time constant determined by a resistance component and an inductance component of the motor 8. Thereafter, because the voltage between U and V phases becomes negative in a section (3), the U-phase current flows from the positive side to the negative side. Subsequently, in a section (4), the inverter control unit 10 operates to cause short-circuit again between the lines of the motor 8, and the energy attenuates with the time constant described above.

When the bus voltage Vdc is large, a length of the time of a zero voltage section of the voltage between U and V phases (section in which the switching pattern becomes the voltage vector V0 or V7 in FIG. 5) is elongated. Therefore, the sections (2) and (4) in which the energy attenuates with the time constant determined by the resistance component and the inductance component of the motor 8 become long. The previously-mentioned time constant is about several milliseconds, and is sufficiently long with respect to a cycle of 50 microseconds when the output frequency is 20 kilohertz. Accordingly, in the sections (2) and (4), the inverter control unit 10 operates to keep the current generated in the sections (1) and (3). Therefore, as the sections (2) and (4) are longer, that is, as the bus voltage Vdc is larger, a mean value and an effective value of the current become higher.

The bus voltage Vdc changes according to fluctuations of the voltage of the AC power supply 13. Therefore, the
bus voltage Vdc changes and the heat generation amount of the motor 8 changes in an environment in which power supply conditions are poor. When the voltage is low, a required amount of heat generation may be unable to be acquired, and the compressor may be unable to be reliably protected.

[0053] FIG. 17 is a diagram showing a configuration of the inverter control unit 10 according to the third embodiment.

The inverter control unit 10 according to the third embodiment is the same as the inverter control unit 10 according to the second embodiment shown in FIG. 8, except that the inverter control unit 10 includes a voltage-command correction-value computation unit 40 that calculates a voltage-command correction value Kv for correcting the voltage command value V*, and that the high-frequency-voltage generation unit 11 includes a multiplier 41 (voltage-command-value calculation unit). Therefore, constituent elements identical to those of the above embodiments are denoted by the same reference signs and explanations thereof will be omitted, and only different points are explained. The voltage-command correction-value computation unit 40 and the multiplier 41 are called generally a voltage-command correction unit.

[0054] According to the second embodiment, the voltage-command generation unit 25 uses the voltage command value V* outputted from the selection unit 23 as an input to generate voltage command values Vu*, Vv* and Vw*. On the contrary, in the third embodiment, the multiplier 41 calculates a product of the voltage command value V*

outputted by the selection unit 23 (voltage-command-value input unit) and the voltage-command correction value Kv calculated by the voltage-command correction-value
computation unit 40 as a voltage command value \(V^* \). The voltage-command generation unit 25 uses the voltage command value \(V^* \) calculated by the multiplier 41 as an input to generate the voltage command values \(V_u^* \), \(V_v^* \) and \(V_w^* \).

[0055] FIG. 18 is a diagram showing a configuration of the voltage-command correction-value computation unit 40 according to the third embodiment.

The voltage-command correction-value computation unit 40 includes a voltage-command-value selection unit 42 and a voltage-command correction-value storage unit 43. The voltage-command-value selection unit 42 is set to any one of the voltage command value \(V^* \) outputted by the selection unit 23 and an N/C (No Connection). The voltage-command correction-value storage unit 43 stores therein a table of the voltage-command correction value \(K_v \) according to the setting of the voltage-command-value selection unit 42.

[0056] FIG. 19 is a figure showing a graph of power of the motor 8 (motor power \(P \)) with respect to the voltage command value \(V^* \) when the bus voltage \(V_{dc} \) takes the smallest, standard and largest values.

For example, when the motor 8 is operated at a voltage command value \(V^*1 \), \(P1 \) is acquired when the bus voltage \(V_{dc} \) is standard. However, when the bus voltage \(V_{dc} \) changes, the same value can not be acquired. Therefore, the voltage command value \(V^* \) needs to be adjusted in order to apply the same power \(P1 \) to the motor 8 regardless of the bus voltage \(V_{dc} \).

[0057] When the voltage-command-value selection unit 42 is set to the voltage command value \(V^* \), the voltage-command correction-value storage unit 43 stores therein the corresponding voltage-command correction value \(K_v \) for each of the voltage command value \(V^* \) and the bus voltage \(V_{dc} \).
As shown in FIG. 20, the voltage-command correction value \(K_v \) for correcting the voltage command value \(V^* \) according to the bus voltage \(V_{dc} \) can be acquired for each voltage command value \(V^* \), with setting "1" in the case where the bus voltage \(V_{dc} \) is standard. The voltage-command correction-value storage unit 43 stores therein a table in which the voltage-command correction value \(K_v \) is associated with the bus voltage \(V_{dc} \), for each voltage command value \(V^* \).

The voltage-command correction-value computation unit 40 then acquires the voltage-command correction value \(K_v \) associated with the voltage command value \(V^* \) and the bus voltage \(V_{dc} \) from the voltage-command correction-value storage unit 43 and outputs the voltage-command correction value \(K_v \). The same power can be applied to the motor 8 regardless of the bus voltage \(V_{dc} \) by correcting the voltage command value \(V^* \) based on the outputted voltage-command correction value \(K_v \). As a result, insufficient heating is prevented and the compressor can be reliably protected.

[0058] In practice, if the number of tables mentioned above is increased, then the memory for storing the tables needs to be considerably large in capacity, and the memory may be insufficient. In this case, the voltage-command-value selection unit 42 is set to N/C.

When the voltage-command-value selection unit 42 is set to N/C, as shown in FIG. 21, a mean value of the voltage-command correction values \(K_v \) in the respective voltage command values \(V^* \) is calculated for each bus voltage \(V_{dc} \). Then, a table in which the mean value is associated with each bus voltage \(V_{dc} \) is created.

Accordingly, one table in which the voltage-command correction value \(K_v \) is associated with the bus voltage \(V_{dc} \) can be created, regardless of the voltage command value \(V^* \).
The voltage-command correction-value storage unit 43 stores therein one table in which the voltage-command correction value \(K_v \) is associated with the bus voltage \(V_{dc} \). By doing so, even in an inexpensive system with the memory capacity being limited, insufficient heating is prevented, thereby enabling to protect the compressor reliably.

In FIGS. 20 and 21, when the bus voltage \(V_{dc} \) is standard, the voltage-command correction value \(K_v \) is set to 1. However, as shown in FIG. 22, when the bus voltage \(V_{dc} \) takes the smallest value, the voltage-command correction value \(K_v \) may be set to 1, or when the bus voltage \(V_{dc} \) takes the largest value, the voltage-command correction value \(K_v \) may be set to 1.

[0059] In the above explanations, it is assumed that the corrected voltage command value \(V^* \) is acquired by multiplying the voltage-command correction value \(K_v \) by the voltage command value \(V^* \) in the multiplier 41.

However, as shown in FIG. 23, the voltage-command correction-value computation unit 40 may include a corrected voltage-command-value storage unit 44 instead of the voltage-command correction-value storage unit 43. As shown in FIG. 24, the corrected voltage-command-value storage unit 44 stores therein the corrected voltage command value \(V_{v^*} \) associated with the bus voltage \(V_{dc} \).

Then, the voltage-command correction-value computation unit 40 may acquire the voltage command value \(V^* \) associated with the voltage command value \(V^* \) and the bus voltage \(V_{dc} \) from the corrected voltage-command-value storage unit 44 and output the acquired voltage command value \(V^* \). In this case, the multiplier 41 is not required.

[0060] Furthermore, the table data may be obtained theoretically in other manners than the manner of creating
the table data based on actual measurement values.

The table data relate to a two-dimensional table of
the voltage command value \(V^* \) and the bus voltage \(V_{dc} \), and
so requires a large memory capacity. Therefore, the table
data may be replaced by mathematical expressions.
Furthermore, an interpolation process may be performed
using a small amount of table data according to bilinear
interpolation or the like, that is a generally known
interpolation method.

[0061] As described above, in the heat pump device 100
according to the third embodiment, the voltage command
value \(V^* \) is corrected according to the bus voltage \(V_{dc} \),
thereby enabling to maintain a constant heat generation
amount of the motor 8, regardless of change in the bus
voltage \(V_{dc} \). Accordingly, the heat generation amount of
the motor 8 can be maintained constant even in an
environment in which power supply conditions are poor, and
the required heat generation amount can be acquired even
when the voltage is low, thereby enabling to protect the
compressor reliably.

[0062] Fourth embodiment.

In the third embodiment, control is made to apply the
same power to the motor 8 using the bus voltage \(V_{dc} \).
However, the bus voltage \(V_{dc} \) is produced by rectifying the
AC power supply 13 in the rectifier 14, and smoothing the
voltage in the smoothing capacitor 15. Therefore, the bus
voltage \(V_{dc} \) depends on a value of the AC power supply 13.
Accordingly, an AC power-supply voltage \(V_{ac} \), that is a
voltage of the AC power supply 13, may be used instead of
the bus voltage \(V_{dc} \) to perform the same control as that in
the third embodiment. In a fourth embodiment, there is
described a method of regularly outputting the motor power
\(P \) by making the correction using the AC power-supply
voltage Vac.

[0063] FIG. 25 is a diagram showing a configuration of the inverter 9 according to the fourth embodiment.

The inverter 9 according to the fourth embodiment is the same as the inverter 9 according to the first embodiment shown in FIG. 2, except that the former inverter 9 has an AC-voltage detection unit 45 that detects the AC power-supply voltage Vac. Therefore, constituent elements identical to those of the above embodiments are denoted by the same reference signs and explanations thereof will be omitted, and only different points are explained.

As shown in FIG. 26, the AC-voltage detection unit 45 detects a voltage value for at least one phase. Data measured at a certain timing are designated as $V[0]$, $V[1]$, $V[2]$, ..., $V[n-1]$ and $V[n]$ in sequence. For example, a mean value of the AC power-supply voltage Vac can be determined by determining a mean value of absolute values of all pieces of detected data. Furthermore, the effective value can be acquired by determining a mean value of a square root of data acquired by squaring and totaling all the pieces of data. The AC-voltage detection unit 45 designates the acquired voltage value as the AC power-supply voltage Vac.

Herein the description is made for a method of determining the AC power-supply voltage Vac by acquiring data discretely in a digital controller such as a microcomputer, but the same calculation may be performed by a continuous system such as an analog circuit.

[0064] FIG. 27 is a diagram showing a configuration of the inverter control unit 10 according to the fourth embodiment.

The inverter control unit 10 according to the fourth embodiment is the same as the inverter control unit 10
according to the third embodiment shown in FIG. 17, except that the AC power-supply voltage \(V_{ac} \) detected by the AC-voltage detection unit 45 is used as an input of the voltage-command correction-value computation unit 40.

Therefore, constituent elements identical to those of the above embodiments are denoted by the same reference signs and explanations thereof will be omitted, and only different points are explained.

FIG. 28 is a diagram showing a configuration of the voltage-command correction-value computation unit 40 according to the fourth embodiment.

The voltage-command correction-value computation unit 40 according to the fourth embodiment is the same as the voltage-command correction-value computation unit 40 according to the third embodiment shown in FIG. 18, except that the AC power-supply voltage \(V_{ac} \) detected by the AC-voltage detection unit 45 is used as an input. Therefore, constituent elements identical to those of the third embodiment are denoted by the same reference signs and explanations thereof will be omitted, and only different points are explained. As shown in FIG. 29, the voltage-command correction-value storage unit 43 stores therein a table in which the voltage-command correction value \(K_v \) is stored corresponding to the AC power-supply voltage \(V_{ac} \).

As described above, in the heat pump device 100 according to the fourth embodiment, control is made using the AC power-supply voltage \(V_{ac} \) instead of the bus voltage \(V_{dc} \). Accordingly, effects identical to those of the third embodiment can be achieved.

In a fifth embodiment, one example of a circuit configuration of the heat pump device 100 is explained.

For example, in FIG. 1, there is shown the heat pump
device 100 in which the compressor 1, the four-way valve 2, the heat exchanger 3, the expansion mechanism 4 and the heat exchanger 5 are sequentially connected by the piping. In the fifth embodiment, the heat pump device 100 having a more specific configuration is explained.

[0068] FIG. 30 is a circuit configuration diagram of the heat pump device 100 according to the third embodiment.

FIG. 31 is a Mollier diagram of a state of the refrigerant of the heat pump device 100 shown in FIG. 30.

In FIG. 31, a specific enthalpy is indicated on a horizontal axis, and a refrigerant pressure is indicated on a vertical axis.

In the heat pump device 100, a compressor 51, a heat exchanger 52, an expansion mechanism 53, a receiver 54, an internal heat exchanger 55, an expansion mechanism 56, and a heat exchanger 57 are sequentially connected by piping, and the heat pump device 100 includes a main refrigerant circuit 58 through which the refrigerant circulates. In the main refrigerant circuit 58, a four-way valve 59 is provided on a discharge side of the compressor 51, so that a circulation direction of the refrigerant can be switched. A fan 60 is provided near the heat exchanger 57. The compressor 51 is the compressor 1 explained in the embodiment described above, and includes the motor 8 driven by the inverter 9 and the compression mechanism 7.

Furthermore, the heat pump device 100 includes an injection circuit 62 that connects from between the receiver 54 and the internal heat exchanger 55 to an injection pipe of the compressor 51 by the piping. An expansion mechanism 61 and the internal heat exchanger 55 are sequentially connected to the injection circuit 62.

A water circuit 63 in which water is circulated is connected to the heat exchanger 52. A device that uses
water from a hot water dispenser, a radiator, a radiator for floor heating, or the like is connected to the water circuit 63.

[0069] An operation of the heat pump device 100 at the time of a heating operation is explained first. At the time of the heating operation, the four-way valve 59 is set in a direction of a solid line. The heating operation includes not only heating used for air conditioning but also hot-water supply for applying heat to water to make hot water.

[0070] A gas-phase refrigerant (at a point 1 in FIG. 31), which has become a refrigerant having a high temperature and a high pressure in the compressor 51, is discharged from the compressor 51, and heat exchanged by the heat exchanger 52, which is a condenser and a radiator, to be liquefied (at a point 2 in FIG. 31). At this time, water circulating in the water circuit 63 is heated by heat radiated from the refrigerant, and used for heating and hot-water supply.

The liquid-phase refrigerant liquefied by the heat exchanger 52 is pressure-reduced by the expansion mechanism 53, and becomes a gas-liquid two-phase state (at a point 3 in FIG. 31). The refrigerant, which has become the gas-liquid two-phase state in the expansion mechanism 53, is heat exchanged with the refrigerant sucked into the compressor 51 by the receiver 54, and is cooled and liquefied (at a point 4 in FIG. 31). The liquid-phase refrigerant liquefied by the receiver 54 is branched to the main refrigerant circuit 58 and the injection circuit 62 to flow therein.

The liquid-phase refrigerant flowing in the main refrigerant circuit 58 is heat exchanged with the refrigerant flowing in the injection circuit 62, which is
pressure-reduced by the expansion mechanism 61 and has become the gas-liquid two-phase state, by the internal heat exchanger 55 and is further cooled (at a point 5 in FIG. 31). The liquid-phase refrigerant cooled by the internal heat exchanger 55 is pressure-reduced by the expansion mechanism 56 and becomes the gas-liquid two-phase state (at a point 6 in FIG. 31). The refrigerant, which has become the gas-liquid two-phase state in the expansion mechanism 56, is heat exchanged with ambient air by the heat exchanger 57, which is an evaporator, and is heated (at a point 7 in FIG. 31). The refrigerant heated by the heat exchanger 57 is further heated by the receiver 54 (at a point 8 in FIG. 31), and is sucked into the compressor 51.

On the other hand, as described above, the refrigerant flowing in the injection circuit 62 is pressure-reduced by the expansion mechanism 61 (at a point 9 in FIG. 31), and heat exchanged by the internal heat exchanger 55 (at a point 10 in FIG. 31). A refrigerant (injection refrigerant) in the gas-liquid two-phase state, which has been subjected to thermal exchange by the internal heat exchanger 55, flows into inside of the compressor 51 from the injection pipe of the compressor 51 keeping in the gas-liquid two-phase state.

In the compressor 51, the refrigerant sucked in from the main refrigerant circuit 38 (at the point 8 in FIG. 31) is compressed up to an intermediate pressure and heated (at a point 11 in FIG. 31). The injection refrigerant (at the point 10 in FIG. 31) joins the refrigerant compressed to the intermediate pressure and heated (at the point 11 in FIG. 31), thereby decreasing the temperature (at a point 12 in FIG. 31). The refrigerant having the decreased temperature (at the point 12 in FIG. 31) is further compressed and heated to have a high temperature and a high
pressure, and is discharged (at the point 1 in FIG. 31).

When the injection operation is not performed, an aperture of the expansion mechanism 61 is fully closed. That is, when the injection operation is performed, the aperture of the expansion mechanism 61 is larger than a predetermined aperture. However, when the injection operation is not performed, the aperture of the expansion mechanism 61 is set to be smaller than the predetermined aperture. Accordingly, the refrigerant does not flow into the injection pipe of the compressor 51.

The aperture of the expansion mechanism 61 here is controlled by electronic control by a control unit such as a microcomputer.

The operation of the heat pump device 100 at the time of a cooling operation is explained next. At the time of the cooling operation, the four-way valve 59 is set in a direction of a broken line. The cooling operation includes not only cooling used for air conditioning, but also drawing heat from water to make cold water, refrigeration, and the like.

The gas-phase refrigerant, which has become a refrigerant having a high temperature and a high pressure in the compressor 51 (at the point 1 in FIG. 31), is discharged from the compressor 51, and is heat exchanged by the heat exchanger 57, which functions as the condenser and the radiator, to be liquefied (at the point 2 in FIG. 31). The liquid-phase refrigerant liquefied by the heat exchanger 57 is pressure-reduced by the expansion mechanism 56, and becomes a gas-liquid two-phase state (at the point 3 in FIG. 31). The refrigerant, which has become the gas-liquid two-phase state in the expansion mechanism 56, is heat exchanged by the internal heat exchanger 55, and is cooled and liquefied (at the point 4 in FIG. 31). In the
internal heat exchanger 55, the refrigerant, which has become the gas-liquid two-phase state in the expansion mechanism 56, is heat exchanged with the refrigerant (the point 9 in FIG. 31), which has become the gas-liquid two-phase state by pressure-reducing the liquid-phase refrigerant liquefied by the internal heat exchanger 55, by the expansion mechanism 56. The liquid-phase refrigerant (the point 4 in FIG. 31) heat exchanged by the internal heat exchanger 55 is branched to the main refrigerant circuit 58 and the injection circuit 62 to flow therein.

The liquid-phase refrigerant flowing in the main refrigerant circuit 58 is then heat exchanged with the refrigerant sucked into the compressor 51 by the receiver 54, and is further cooled (at the point 5 in FIG. 31). The liquid-phase refrigerant cooled by the receiver 54 is pressure-reduced by the expansion mechanism 53 and becomes the gas-liquid two-phase state (at the point 6 in FIG. 31). The refrigerant, which has become the gas-liquid two-phase state in the expansion mechanism 53, is heat exchanged by the heat exchanger 52, which functions as the evaporator, and is heated (at the point 7 in FIG. 31). At this time, because the refrigerant absorbs heat, water circulating in the water circuit 63 is cooled and used for cooling and refrigeration.

The refrigerant heated by the heat exchanger 52 is further heated by the receiver 54 (at the point 8 in FIG. 31), and is sucked into the compressor 51.

On the other hand, the refrigerant flowing in the injection circuit 62 is pressure-reduced by the expansion mechanism 61 (at the point 9 in FIG. 31) as described above, and heat exchanged by the internal heat exchanger 55 (at the point 10 in FIG. 31). A refrigerant (injection refrigerant) in the gas-liquid two-phase state, which has
been heat exchanged by the internal heat exchanger 55, flows in from the injection pipe of the compressor 51 keeping in the gas-liquid two-phase state.

The compression operation in the compressor 51 is the same as that of the heating operation.

[0074] When the injection operation is not performed, as in the heating operation, the aperture of the expansion mechanism 61 is fully closed, so as not to result in the refrigerant flowing into the injection pipe of the compressor 51.

[0075] In the above explanations, the heat exchanger 52 has been explained as a heat exchanger like a plate type heat exchanger that performs heat exchange between the refrigerant and water circulating in the water circuit 63. However, the heat exchanger 52 is not limited thereto, and may be other types of heat exchangers that perform heat exchange between a refrigerant and air.

The water circuit 63 may not be a circuit in which water is circulated, but may be a circuit in which another type of fluid is circulated.

[0076] As described above, the heat pump device 100 can be used for a heat pump device using an inverter compressor, such as an air conditioner, a heat pump water heater, a refrigerator, a freezer, and the like.

Reference Signs List

[0077] 1 compressor, 2 four-way valve, 3 heat exchanger, 4 expansion mechanism, 5 heat exchanger, 6 refrigerant pipe, 7 compression mechanism, 8 motor, 9 inverter, 10 inverter control unit, 11 high-frequency-voltage generation unit, 12 heating determination unit, 13 AC power supply, 14 rectifier, 15 smoothing capacitor, 16 bus-voltage detection unit, 17 switching element, 18 reflux diode, 19 voltage application unit, 20 current
detection unit, 21 table data, 22 external input unit, 23
selection unit, 24 integrator, 25 voltage-command
generation unit, 26 PWM-signal generation unit, 27
current comparison unit, 28 voltage comparison unit, 29
temperature detection unit, 30 temperature comparison unit,
31 first logical-product calculation unit, 32 pooling
determination unit, 33 elapsed-time measurement unit, 34
time comparison unit, 35 resetting unit, 36 logical-sum
calculation unit, 37 second logical-product calculation
unit, 38 heating-amount determination unit, 39 addition
unit, 40 voltage-command correction-value computation unit,
41 multiplier, 42 voltage-command-value selection unit,
43 voltage-command correction-value storage unit, 44
corrected voltage-command-value storage unit, 45 AC-
voltage detection unit, 51 compressor, 52, 57 heat
exchanger, 53, 56, 61 expansion mechanism, 54 receiver,
55 internal heat exchanger, 58 main refrigerant circuit,
59 four-way valve, 60 fan, 62 injection circuit, 63
water circuit, 100 heat pump device.
CLAIMS

1. A heat pump device comprising:
 a compressor having a compression mechanism for
 compressing a refrigerant;
 a motor that actuates the compression mechanism of the
 compressor;
 a three-phase inverter that applies a predetermined
 voltage to the motor and is configured to parallel-connect
 three serial connection parts each having two switching
 elements; and
 a voltage detection unit that detects a voltage value
 of a voltage supplied to the three-phase inverter; and
 an inverter control unit that controls the three-phase
 inverter to cause the three-phase inverter to generate a
 high-frequency AC voltage, wherein
 the inverter control unit includes:
 - a voltage-command-value input unit that inputs a
 voltage command value V*;
 - a voltage-command-correction unit that calculates a
 voltage command value V*' obtained by correcting the
 voltage command value V* inputted by the voltage-command-
 value input unit based on the voltage value detected by the
 voltage detection unit;
 - a phase switching unit that switches between a phase
 0p and a phase 0n different from the phase 0p substantially
 by 180 degrees and outputs one of them in synchronization
 with a reference signal having a predetermined frequency;
 - a voltage-command generation unit that generates and
 outputs three-phase voltage command values Vv*, Vw* and Vv*,
 based on the voltage command value V*' calculated by the
 voltage-command correction unit and the phase outputted by
 the phase switching unit; and
- a drive-signal generation unit that generates six drive signals corresponding to the respective switching elements of the three-phase inverter based on the three-phase voltage command values V_u^*, V_v^* and V_w^* outputted by the voltage-command generation unit and the reference signal, and outputs the generated respective drive signals to the corresponding switching elements of the three-phase inverter, to cause the three-phase inverter to generate a high-frequency AC voltage.

2. The heat pump device according to claim 1, wherein the voltage-command correction unit calculates the voltage command value V'' obtained by correcting the voltage command value V^* so that power inputted to the motor becomes substantially constant regardless of the voltage value detected by the voltage detection unit.

3. The heat pump device according to claim 1 or 2, wherein the voltage-command correction unit calculates the voltage command value V'' obtained by correcting the voltage command value V^* so that the voltage command value V'' has a lower value than the voltage command value V^*, as the voltage value detected by the voltage detection unit becomes higher than a reference voltage value using a predetermined voltage value as the reference voltage value.

4. The heat pump device according to claim 3, wherein the voltage-command correction unit designates the lowest value of the voltage value supplied to the three-phase inverter as the reference voltage value.

5. The heat pump device according to any one of claims 1 to 4, wherein
the voltage-command correction unit includes
a correction-value storage unit that stores therein a
correction value corresponding to a voltage value, and
a voltage-command-value calculation unit that corrects
the voltage command value V^* inputted by the voltage-
command-value input unit based on the correction value
stored in the correction-value storage unit with respect to
the voltage value detected by the voltage detection unit,
to calculate the voltage command value V^*.

6. The heat pump device according to any one of claims 1
to 4, wherein
the voltage-command correction unit includes
a correction-value storage unit that stores therein
correction-value calculation information for calculating a
correction value corresponding to a voltage value, and
a voltage-command-value calculation unit that
calculates a correction value from the voltage value
detected by the voltage detection unit, based on the
correction-value calculation information stored in the
correction-value storage unit, and corrects the voltage
command value V^* inputted by the voltage-command-value
input unit according to the calculated correction value, so
as to calculate the voltage command value V^*.

7. The heat pump device according to any one of claims 1
to 6, wherein the voltage detection unit detects a voltage
supplied from an AC power supply or a DC voltage acquired
by rectifying a voltage supplied from the AC power supply.

8. The heat pump device according to any one of claims 1
to 7, wherein the phase switching unit switches the phase
θ_p for each predetermined time, and switches between the
phase \(\Theta_p \) and the phase \(\Theta_n \) and outputs one of them in synchronization with the reference signal, while changing the phase \(\Theta_n \) to a phase different from the phase \(\Theta_p \) substantially by 180 degrees in accordance with the change of the phase \(\Theta_p \).

9. The heat pump device according to any one of claims 1 to 8, wherein

the drive-signal generation unit

outputs a drive signal for switching on one switching element of the two switching elements and switching off the other in each serial connection part of the three-phase inverter, and

outputs a drive signal having a switching pattern for switching on any one or two of the switching elements on the positive voltage side of the three-phase inverter, on the basis of one pattern for a half cycle of the reference signal.

10. The heat pump device according to any one of claims 1 to 9, wherein

the inverter control unit further includes a state detection unit that detects a state where an outside air temperature rises by a predetermined temperature or more as compared to an outside air temperature a predetermined time prior thereto, and

the voltage-command generation unit outputs a voltage command value when the state detection unit detects the state.

11. The heat pump device according to any one of claims 1 to 10, wherein a switching element that constitutes the
three-phase inverter is a wide gap semiconductor.

12. The heat pump device according to claim 11, wherein the wide gap semiconductor is made from SiC, GaN, or diamond.

13. The heat pump device according to any one of claims 1 to 10, wherein the switching element that constitutes the three-phase inverter is a MOSFET having a super junction structure.

14. A heat pump system comprising: a heat pump device including a refrigerant circuit in which a compressor having a compression mechanism that compresses a refrigerant, a first heat exchanger, an expansion mechanism, and a second heat exchanger are sequentially connected by piping; and a fluid utilization device that utilizes fluid heat-exchanged with the refrigerant by the first heat exchanger connected to the refrigerant circuit, wherein the heat pump device further includes:
 - a motor that actuates the compression mechanism provided in the compressor;
 - a three-phase inverter that applies a predetermined voltage to the motor and is configured by parallel-connecting three serial connection parts each having two switching elements;
 - a voltage detection unit that detects a voltage value of a voltage supplied to the three-phase inverter; and
 - an inverter control unit that controls the three-phase inverter to cause the three-phase inverter to generate a high-frequency AC voltage, and wherein the inverter control unit includes:

* a voltage-command-value input unit that inputs a
voltage command value V^*;
* a voltage-command correction unit that corrects the voltage command value V^* inputted by the voltage-command-value input unit based on the voltage value detected by the voltage detection unit to calculate a voltage command value V'';
* a phase switching unit that switches between a phase θ_p and a phase θ_n different from the phase θ_p substantially by 180 degrees and outputs one of them in synchronization with a reference signal having a predetermined frequency;
* a voltage-command generation unit that generates and outputs three-phase voltage command values V_u^*, V_v^* and V_w^* based on the voltage command value V'' calculated by the voltage-command correction unit and the phase outputted by the phase switching unit;
* a drive-signal generation unit that generates six drive signals corresponding to the respective switching elements of the three-phase inverter based on the three-phase voltage command values V_u^*, V_v^* and V_w^* outputted by the voltage-command generation unit and the reference signal, and outputs the generated drive signals to the corresponding switching elements of the three-phase inverter, to cause the three-phase inverter to generate a high-frequency AC voltage.

15. A method for controlling a three-phase inverter in a heat pump device including:
 a compressor having a compression mechanism that compresses a refrigerant;
 a motor that actuates the compression mechanism provided in the compressor; and
 a three-phase inverter that applies a predetermined voltage to the motor and is configured by parallel-
connecting three serial connection parts each having two switching elements, the method comprising:

- a voltage-command-value inputting step of inputting a voltage command value V^*;

- a voltage-command correction-value calculating step of calculating the voltage command value V^{**} obtained by correcting the voltage command value V^* inputted at the voltage-command-value inputting step based on the voltage value of a voltage supplied to the three-phase inverter;

- a phase switching step of switching between a phase θ_p and a phase θ_n different from the phase θ_p substantially by 180 degrees and outputting one of them in synchronization with a reference signal having a predetermined frequency;

- a voltage-command generating step of generating and outputting three-phase voltage command values V_{u}^*, V_{v}^* and V_{w}^* based on the voltage command value V^{**} calculated at the voltage-command correction-value calculating step and the phase outputted at the phase switching step; and

- a drive-signal generating step of generating six drive signals corresponding to the respective switching elements of the three-phase inverter based on the three-phase voltage command values V_{u}^*, V_{v}^* and V_{w}^* outputted at the voltage-command generating step and the reference signal, and outputting the generated respective drive signals to the corresponding switching elements of the three-phase inverter, to cause the three-phase inverter to generate a high-frequency AC voltage.
FIG. 13

ROTOR POSITION [deg] (DIRECTION OF N POLE)

PEAK OF PHASE CURRENT [Apeak]
FIG. 14
FIG. 15
FIG. 16

VOLTAGE WAVEFORM BETWEEN U AND V PHASES

SAME CURRENT VALUE

DIFFERENCE IN TIME

DIFFERENCE IN VOLTAGE AMPLITUDE

LONG DIFFERENCE IN ENERGIZATION TIME

SHORT DIFFERENCE IN ENERGIZATION TIME

Vdc LARGE

Vdc SMALL
FIG. 24