
United States Patent

USOO7383583B2

(10) Patent No.: US 7,383,583 B2
(45) Date of Patent: Jun. 3, 2008

(12)
Marr et al.

(54) STATIC AND RUN-TIME
ANT-DISASSEMBLY AND
ANT-DEBUGGING

(75) Inventors: Michael David Marr, Sammamish, WA
(US); Brandon Baker, Redmond, WA
(US)

(73) Assignee: Microsoft Corporation, Redmond, WA
(US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 789 days.

(21) Appl. No.: 10/795,058

(22) Filed: Mar. 5, 2004

(65) Prior Publication Data

US 2005/O198526 A1 Sep. 8, 2005

(51) Int. Cl.
H04L 9/00 (2006.01)
GO6F 9/44 (2006.01)

(52) U.S. Cl. ... 726/26: 717/106
(58) Field of Classification Search 726/26

See application file for complete search history.
(56) References Cited

U.S. PATENT DOCUMENTS

5,764,374. A * 6/1998 Seroussi et al. 382,244
6,006,328 A 12, 1999 Drake T26/23
6,480,959 B1 * 1 1/2002 Granger et al. T13, 189
6,594,761 B1* 7/2003 Chow et al. T13, 190
6,668,325 B1* 12/2003 Collberg et al. T13,194
6,829,710 B1* 12/2004 Venkatesan et al. 713, 176
6,981,146 B1* 12/2005 Sheymov 713, 172

2002/001.6918 A1 2/2002 Tucker et al. T13, 190
2005/0183072 A1* 8/2005 Horning et al. T17,140
2006/0053307 A1 3f2006 Xu et al. T13, 190

OTHER PUBLICATIONS

AucSmith. D., “Tamper Resistant Software: An Implementation'.
Proceedings I International Information Hiding Workshop (IHW),
Cambridge, U.K. 1996, Springer LNCS II 74, 1997, 317-333.
Collberg, C. et al., “A Taxonomy of Obfuscating Transfromations'.
Technical Report No. 148, Department of Computer Science, Uni
versity of Auckland, New Zealand, Jul. 1997, 36 pages.
Horne, B. et al., “Dynamic Self-Checking Techniques for Improved
Tamper Resistance'. Proceedings I ACM Workshop on Digital
Rights Management(DRM2001), Springer LNCS 2320, 2002, 141
159.
Linn, C. et al., “Enhancing Software Tamper-Resistance via
Stealthy Address Computations”, Work in Progress, 19" Annual
Computer Society Applications Conference(ACSAC2003), Dec.
2003, 1-3.
Wang, C. et al., “Software Tamper Resistance: Obstructing Static
Analysis of Programs”, Technical Report CS-2000-12, Department
of Computer Science, University of Virginia, Dec. 2000, 18 pages.

* cited by examiner
Primary Examiner Matthew Heneghan
(74) Attorney, Agent, or Firm Woodcock Washburn LLP

(57) ABSTRACT

In order to prevent analysis by static and dynamic disas
sembly techniques, instruction level code obfuscation is
performed to induce misalignment and mistaken analysis by
disassemblers. Misalignment is induced by including a
bypass which leads, during execution, to a legitimate loca
tion. During analysis, however, bogus data may be analyzed
by the disassembler due to the bypass. Run-time modifica
tions may also be included in code. Code is changed to an
invalid state, and instructions inserted into the code which
will return the code to a valid state during execution. During
analysis, these invalid States may be analyzed by the disas
sembler as invalid instructions. Induced misalignments and
run-time modifications can be chained together to produce
sequences of code that will always produce invalid disas
sembly output from common disassemblers.

22 Claims, 3 Drawing Sheets

400

Insert bypass Code
snippet into Code

410

Insert bogus data into
COce

U.S. Patent Jun. 3, 2008 Sheet 2 of 3 US 7,383,583 B2

21 Ob 21 Od 21 Of 21 Oh 210 210

eboaxxx xxxx xxxx xxxx xxxx.
——

200

FIG. 2

31 Ob 31 Od 31 Of 31 Oh 310 31 Ol

31 Oa 31 Oc 31 Oe | sp 31 Oi is -----|--|--|--|-
Ebo489848A00FF1528 100001 .
— —

-N-
300

FIG. 3

U.S. Patent Jun. 3, 2008 Sheet 3 of 3 US 7,383,583 B2

400

Insert bypass Code
snippet into Code

410

Insert bogus data into
COde

FIG. 4

500

Change an instruction
from a first (valid) state to
an second (invalid) state

insert run-time
510 modification code snippet

which returns the
instruction to the first
state during Code

execution

FIG. 5

US 7,383,583 B2
1.

STATIC AND RUN-TIME
ANT-DISASSEMBLY AND

ANT-DEBUGGNG

FIELD OF THE INVENTION

The present invention relates generally to the field of
computing, and, more particularly, to preventing examina
tion or manipulation of code by implementing instruction
level obfuscation techniques.

BACKGROUND OF THE INVENTION

Generally, computer applications run by executing object
code. The object code controls the actions of the computer
systems on which it is run. Such code may be made public
or otherwise made accessible by its authors, for example by
publishing the original Source code that was compiled to
create the object code. When software is sold publicly, the
object code will be accessible for analysis by others. The
original authors may also choose to make the object code
more accessible by other programmers by including “debug
symbols” which are data files which help to describe the
structure of the object code so that users of the object code
can debug their own programs. However, for some uses, it
is advisable to protect code, including object code, from
examination by possible adversaries. For example, where
the code represents the best available implementation of a
particular algorithm, the code itself may represent a trade
secret. In another example, where code is used to secure
content, it may be useful to protect the code in order to
ensure the security of the content from an adversary.

Maintaining the security of content may be useful in many
contexts. One Such context is where the content is private
information, for example, financial information about a
computer user, user passwords, or other personal informa
tion. Another context in which maintaining the security of
content is useful is when the secure content is content which
is to be used only in a limited way. For example, copyrighted
content may be protected by requiring a license for use.

License provisions may be enforced for secure content by
a digital rights management (DRM) application. In some
DRM applications, content is stored only in an encrypted
form, and then decrypted for use according to an electronic
license which defines the specific user's rights to use the
content. Some or all of the code and associated decryption
data which decrypts the encrypted content is therefore
protected, because if this code which accesses the copy
righted context is compromised, it may be possible to access
the copyright outside of the bounds of the electronic license,
for unlicensed uses.
Code which protects sensitive information or performs

other sensitive operations is, in some contexts, referred to as
a “black box.' The black box may include hardware ele
ments along with software elements. When a black box (or
other sensitive code) is being used on a computer system, an
adversary may use several means in order to attempt to
compromise the security of the operations of the black box.
For example, an adversary may attempt to trace the code
running in the black box. One way in which an adversary
may attempt to do this is by using a debugger to track the
progress of the code. Another way an adversary may attempt
to compromise the security of the black box is by making
modifications to the code in order to provide access to the
secure content to the adversary.

There are numerous tools for discouraging static analysis
of binary images of code. Static analysis is analysis of the

10

15

25

30

35

40

45

50

55

60

65

2
code when it is not executing. For example, certain of these
tools for discouraging static analysis allow sections of
binaries to be rendered unreadable at or after compile time.
For example, Some tools encrypt sections of the binary.
Thus, before run-time, the binary is unreadable. When the
code is to be run, the code is returned to its original state, e.g.
by decryption where the modification was encryption.
Therefore, an adversary will not be able to perform a static
analysis on the binary, but the code will function properly
when it is decrypted for execution.

Increasingly, however, dynamic analysis tools and
dynamic analyzers integrated with debuggers are being
created and used. Such tools allow an adversary to examine
code as it is executing. Because the code, as it is executing,
has been returned to its unmodified State (e.g. by decryption)
it can be analyzed by an adversary using techniques that
exist for static analysis. Therefore, static analysis prevention
tools such as encryption of binaries are not effective pro
tection for sensitive code, which must be protected from
both static and dynamic disassembly techniques.

In view of the foregoing, there is a need for a system that
overcomes the drawbacks of the prior art.

SUMMARY OF THE INVENTION

The present invention prevents analysis by Static and
dynamic disassembly techniques by performing instruction
level code obfuscation. Thus, the sensitive code is modified
by obfuscation of portions of the code at the instruction
level. These code obfuscations are corrected shortly before
the execution point of the code.
The code obfuscations include bogus data injection into

the instruction stream and run-time modifications which
occur just before the execution point of the modified instruc
tions.

Data injection into the instruction stream can fool both
static and run-time disassemblers into treating bogus data
and parts of other instructions as instruction opcodes. This
misinterpretation of the instruction data can be referred to as
“instruction misalignment' because the disassembler can no
longer effectively determine instruction boundaries. This
causes a cascade of misinterpretation by the disassembler
which lasts as long as the disassembler remains misaligned.
Such data injection, in one embodiment, includes a bypass
and bogus data which triggers misalignment of a disassem
bler.

Run-time modification code Snippets inserted into code
change an instruction before it is executed. This is achieved,
e.g., by performing an arithmetic operation on the bytes of
the instruction, writing bytes over parts of the instruction, or
copying bytes from a location in memory over the instruc
tions. The modification makes the instruction valid. In one
embodiment, after execution, the code is modified again to
return it to an invalid state.

Other features of the invention are described below.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing Summary, as well as the following detailed
description of preferred embodiments, is better understood
when read in conjunction with the appended drawings. For
the purpose of illustrating the invention, there is shown in
the drawings example constructions of the invention; how
ever, the invention is not limited to the specific methods and
instrumentalities disclosed. In the drawings:

FIG. 1 is a block diagram of an example computing
environment in which aspects of the invention may be
implemented;

US 7,383,583 B2
3

FIG. 2 is a block diagram of an instruction stream in
which aspects of the invention may be implemented;

FIG. 3 is a block diagram of an instruction stream
according to an example illustrating one embodiment of the
invention;

FIG. 4 is a flow diagram of a method according to one
embodiment for protecting code from disassembly by insert
ing bogus data and associated bypass code; and

FIG. 5 is a diagram of a method according to one
embodiment for protecting code from disassembly perform
ing run-time modifications.

DETAILED DESCRIPTION OF ILLUSTRATIVE
EMBODIMENTS

Overview
Debuggers and static and dynamic disassemblers analyze

code and allow a user to examine its contents. In order to
protect sensitive code from Such disassembly and debugging
by an adversary, code obfuscation is performed. The present
invention provides mechanisms for inserting bogus data and
runtime modifications into sensitive code. Such obfuscation
hinders or prevents examination of the contents of code by
Such static and dynamic disassemblers.
The description of code misalignments and run-time

modifications presented herein relate primarily to assembly
language code. However, the techniques described may be
applicable to code in other programming languages, and it is
contemplated that the application of the mechanisms
described and claimed is not limited to assembly language
code. That is, any system that infers non-executable source
code from executable object code and related data files (for
example, debugging symbol files) might be affected by the
invention herein.

Exemplary Computing Arrangement
FIG. 1 shows an exemplary computing environment in

which aspects of the invention may be implemented. The
computing system environment 100 is only one example of
a suitable computing environment and is not intended to
Suggest any limitation as to the scope of use or functionality
of the invention. Neither should the computing environment
100 be interpreted as having any dependency or requirement
relating to any one or combination of components illustrated
in the exemplary operating environment 100.
The invention is operational with numerous other general

purpose or special purpose computing system environments
or configurations. Examples of well known computing sys
tems, environments, and/or configurations that may be suit
able for use with the invention include, but are not limited
to, personal computers, server computers, hand-held or
laptop devices, multiprocessor Systems, microprocessor
based systems, set top boxes, programmable consumer elec
tronics, network PCs, minicomputers, mainframe comput
ers, embedded systems, distributed computing environments
that include any of the above systems or devices, and the
like.
The invention may be described in the general context of

computer-executable instructions, such as program modules,
being executed by a computer. Generally, program modules
include routines, programs, objects, components, data struc
tures, etc. that perform particular tasks or implement par
ticular abstract data types. The invention may also be
practiced in distributed computing environments where
tasks are performed by remote processing devices that are
linked through a communications network or other data
transmission medium. In a distributed computing environ

10

15

25

30

35

40

45

50

55

60

65

4
ment, program modules and other data may be located in
both local and remote computer storage media including
memory storage devices.

With reference to FIG. 1, an exemplary system for imple
menting the invention includes a general purpose computing
device in the form of a computer 110. Components of
computer 110 may include, but are not limited to, a pro
cessing unit 120, a system memory 130, and a system bus
121 that couples various system components including the
system memory to the processing unit 120. The processing
unit 120 may represent multiple logical processing units
Such as those Supported on a multi-threaded processor. The
system bus 121 may be any of several types of bus structures
including a memory bus or memory controller, a peripheral
bus, and a local bus using any of a variety of bus architec
tures. By way of example, and not limitation, Such archi
tectures include Industry Standard Architecture (ISA) bus,
Micro Channel Architecture (MCA) bus, Enhanced ISA
(EISA) bus, Video Electronics Standards Association
(VESA) local bus, and Peripheral Component Interconnect
(PCI) bus (also known as Mezzanine bus). The system bus
121 may also be implemented as a point-to-point connec
tion, Switching fabric, or the like, among the communicating
devices.
Computer 110 typically includes a variety of computer

readable media. Computer readable media can be any avail
able media that can be accessed by computer 110 and
includes both volatile and nonvolatile media, removable and
non-removable media. By way of example, and not limita
tion, computer readable media may comprise computer
storage media and communication media. Computer storage
media includes both volatile and nonvolatile, removable and
non-removable media implemented in any method or tech
nology for storage of information Such as computer readable
instructions, data structures, program modules or other data.
Computer storage media includes, but is not limited to,
RAM, ROM, EEPROM, flash memory or other memory
technology, CDROM, digital versatile disks (DVD) or other
optical disk storage, magnetic cassettes, magnetic tape,
magnetic disk storage or other magnetic storage devices, or
any other medium which can be used to store the desired
information and which can accessed by computer 110.
Communication media typically embodies computer read
able instructions, data structures, program modules or other
data in a modulated data signal Such as a carrier wave or
other transport mechanism and includes any information
delivery media. The term “modulated data signal” means a
signal that has one or more of its characteristics set or
changed in Such a manner as to encode information in the
signal. By way of example, and not limitation, communi
cation media includes wired media Such as a wired network
or direct-wired connection, and wireless media Such as
acoustic, RF, infrared and other wireless media. Combina
tions of any of the above should also be included within the
Scope of computer readable media.
The system memory 130 includes computer storage media

in the form of volatile and/or nonvolatile memory such as
read only memory (ROM) 131 and random access memory
(RAM) 132. A basic input/output system 133 (BIOS), con
taining the basic routines that help to transfer information
between elements within computer 110, such as during
start-up, is typically stored in ROM 131. RAM 132 typically
contains data and/or program modules that are immediately
accessible to and/or presently being operated on by process
ing unit 120. By way of example, and not limitation, FIG. 1
illustrates operating system 134, application programs 135,
other program modules 136, and program data 137.

US 7,383,583 B2
5

The computer 110 may also include other removable/non
removable, Volatile/nonvolatile computer storage media. By
way of example only, FIG. 1 illustrates a hard disk drive 140
that reads from or writes to non-removable, nonvolatile
magnetic media, a magnetic disk drive 151 that reads from
or writes to a removable, nonvolatile magnetic disk 152, and
an optical disk drive 155 that reads from or writes to a
removable, nonvolatile optical disk 156, such as a CD ROM
or other optical media. Other removable/non-removable,
Volatile/nonvolatile computer storage media that can be used
in the exemplary operating environment include, but are not
limited to, magnetic tape cassettes, flash memory cards,
digital versatile disks, digital video tape, solid state RAM,
solid state ROM, and the like. The hard disk drive 141 is
typically connected to the system bus 121 through a non
removable memory interface such as interface 140, and
magnetic disk drive 151 and optical disk drive 155 are
typically connected to the system bus 121 by a removable
memory interface, such as interface 150.
The drives and their associated computer storage media

discussed above and illustrated in FIG. 1, provide storage of
computer readable instructions, data structures, program
modules and other data for the computer 110. In FIG. 1, for
example, hard disk drive 141 is illustrated as storing oper
ating system 144, application programs 145, other program
modules 146, and program data 147. Note that these com
ponents can either be the same as or different from operating
system 134, application programs 135, other program mod
ules 136, and program data 137. Operating system 144,
application programs 145, other program modules 146, and
program data 147 are given different numbers here to
illustrate that, at a minimum, they are different copies. A user
may enter commands and information into the computer 20
through input devices such as a keyboard 162 and pointing
device 161, commonly referred to as a mouse, trackball or
touch pad. Other input devices (not shown) may include a
microphone, joystick, game pad, satellite dish, Scanner, or
the like. These and other input devices are often connected
to the processing unit 120 through a user input interface 160
that is coupled to the system bus, but may be connected by
other interface and bus structures. Such as a parallel port,
game port or a universal serial bus (USB). A monitor 191 or
other type of display device is also connected to the system
bus 121 via an interface, such as a video interface 190. In
addition to the monitor, computers may also include other
peripheral output devices such as speakers 197 and printer
196, which may be connected through an output peripheral
interface 195.
The computer 110 may operate in a networked environ

ment using logical connections to one or more remote
computers, such as a remote computer 180. The remote
computer 180 may be a personal computer, a server, a router,
a network PC, a peer device or other common network node,
and typically includes many or all of the elements described
above relative to the computer 110, although only a memory
storage device 181 has been illustrated in FIG.1. The logical
connections depicted in FIG. 1 include a local area network
(LAN) 171 and a wide area network (WAN) 173, but may
also include other networks. Such networking environments
are commonplace in offices, enterprise-wide computer net
works, intranets and the Internet.
When used in a LAN networking environment, the com

puter 110 is connected to the LAN 171 through a network
interface or adapter 170. When used in a WAN networking
environment, the computer 110 typically includes a modem
172 or other means for establishing communications over
the WAN 173, such as the Internet. The modem 172, which

10

15

25

30

35

40

45

50

55

60

65

6
may be internal or external, may be connected to the system
bus 121 via the user input interface 160, or other appropriate
mechanism. In a networked environment, program modules
depicted relative to the computer 110, or portions thereof,
may be stored in the remote memory storage device. By way
of example, and not limitation, FIG. 1 illustrates remote
application programs 185 as residing on memory device
181. It will be appreciated that the network connections
shown are exemplary and other means of establishing a
communications link between the computers may be used.
Inducing Misalignments
On computer platforms with variable length instructions,

such as X86 platforms, in order to allow a user to examine
code, a disassembler must determine which bytes of the code
are part of which instructions. Thus, the disassembler must
rely on sequentially decoding instruction streams from a
known valid starting location, like the address of a module
“entry point described in an export table of the portable
executable (PE) header. An instruction stream is a stream of
bytes which is loaded into memory by the operating system
and decoded and executed by the processing unit. FIG. 2 is
a representation of an instruction stream 200 containing
bytes 210.
Where variable length instructions are possible, given a

stream of bytes in an object code instruction stream 200
without an indication of an initial byte for an instruction, it
can not be determined how many bytes or which bytes are
used in one instruction in the object code until the execution
begins on the code and determine an end byte for the
previous instruction. An instruction may consist of an initial
number of bytes which describe the type of instruction (an
opcode), followed optionally by bytes which are arguments
to the instruction (an operand). While byte 210a may be the
opcode for an instruction with byte 210b as its operand, if
the previous instruction ends with byte 210a, then byte 210b
may be the opcode of an instruction, and that instruction
may continue in Succeeding bytes in the instruction stream
200. A program counter is used to control the flow of
execution through the instruction stream 200. The program
counter is a register which stores the address of the next
instruction to be executed.
One possible instruction in most versions of assembly

language is a jump relative instruction. A jump relative
instruction jumps a specified number of bytes forward in the
instruction stream. The jump relative instruction adds the
number of bytes specified by its operand to the program
counter which causes execution to jump ahead by the
specified number of bytes.

Thus, if the byte value “EB' is the opcode for the jump
relative command, the two bytes “EB 04' stored in bytes
210a and 210b will perform a relative jump over the next
four bytes. The program counter will then point to byte
210g, where execution will continue. Other jumps are also
possible, including jumps to a specific location in the
instruction stream ("absolute jump), jumps which are con
ditional, etc. Jumps and other instructions which will cause
execution to transition to another location in the instruction
stream can be used to create a misalignment which will foil
disassembly analysis.
As an example of how Such misalignments may be

caused, a misalignment will be described which prevents a
disassembler from determining that the instruction stream
contains the instruction:
FF 15 28 10 OO O1

which in certain execution environments represents:
call dword ptr imp. GetProcessHeap(a)0 (1001028)

US 7,383,583 B2
7

In order to create the misalignment, a portion of another
instruction will be used. This instruction is a seven-byte
instruction:

89 848A OO 16 OOOO

which represents
mov dword ptredx+ecx*4+1600h, eax
FIG. 3 is a representation of an instruction stream 300

containing bytes 310, certain of which have been injected to
induce a misalignment around the first instruction (call
dword ptr...) discussed above using the fact that the second
instruction (mov dword ptr . . .) discussed above is a
seven-byte instruction. The first instruction is represented in
bytes 310g through 310l. In order to cause a misalignment,
however, only a fragment of the second instruction has been
added.
The result of adding these bytes is a misalignment which

will confuse a disassembler. Disassemblers operate under
the assumption that the instruction stream 300 contains a
sequence of complete instructions. When a disassembler
reaches the instruction in bytes 310a and 310b, it will
decode the “imp 04' instruction represented by the “EB 04
object code. However, the disassembler will continue inter
preting bytes continuing with byte 310c, in order provide a
complete picture of all instructions in the instruction stream
300. Thus, it would attempt to interpret bytes starting with
310c into an instruction.
As a result, instead of interpreting the code in instruction

stream 300 as follows:

EB 04 ; jump to Calladdr
89 84 8AOO ; incomplete instruction

Calladdr:
FF 15 28 10 OO O1 ; call instruction

a disassembler will interpret the code as follows:

EB 04 ; jump to Calladdr
89 84 8A OOFF 15 28 ; bogus mov instruction
10 OOO1 ; bogus add ??? instruction

Generally, in order to perform a misalignment, (1) bogus
incomplete instruction data is inserted into the code, and (2)
a bypass is inserted which allows correct execution to
bypass the bogus incomplete or invalid instruction data.

The bypass may, as described, be a bypass which will be
taken during execution, followed sequentially with bogus
code. Some disassemblers will always assume that a con
ditional jump is not taken, these disassemblers will be
misaligned by conditional jumps contained in Such
bypasses.

However, Some disassemblers will always assume that a
conditional jump is taken. Thus, Some bypasses allow
execution to bypass the bogus code by creating a situation in
which the jump or other bypass leads to the bogus code.
During execution, the bypass will not be taken. However, a
disassembler will take the bypass, which will lead the
disassembler to the bogus data.

To fool both kinds of disassemblers, both styles of bypass
code, that is which assume conditional jumps taken vs. not
taken, can be included sequentially in the instruction stream
with appropriate bogus data. This will guarantee that a
misalignment occurs at that site in the instruction stream no
matter which type of disassembler is analyzing the code.

10

15

25

30

35

40

45

50

55

60

65

8
Bogus Data

In one embodiment, bogus instruction data consists of
random bytes. Upon examination of these random bytes, the
disassembler will attempt to interpret the bogus instruction
data, which will likely cause a misalignment. Additionally,
random bytes may yield a random instruction, which will
confuse the user of the disassembler.

According to another embodiment, bogus instruction data
is chosen to be instruction opcodes whose instructions are
long but are not specified completely. Since such instruction
opcodes signal instructions that are not completely specified,
real instructions that follow are interpreted as being part of
the bogus instruction—and misalignment occurs. For
example, the first four bytes of the instruction “89 848A00
16 00 00' is inserted into the instruction stream; that is, the
seven byte instruction is inserted with the final three bytes
omitted. Three bytes from the following real executable
instruction “FF 15 28 10 00 01' are interpreted as the
omitted three bytes. The resulting instruction appears to be
“89 848A 00FF 15 28” which will be interpreted as “mov
dword ptr edx+ecx*4+2815FF00h, eax”. Since the last
three bytes of the instruction “89 848A00 16 0000” are not
specified, the first three bytes of the instruction “FF 1528 10
00 01” became part of the value “2815FF00h' which is
added in the instruction. Because of this, bytes of the real
instruction will be interpreted as part of an “argument to the
bogus data's partial instruction.
Bypasses

Bypasses may be accomplished by any means which
causes the processor to transition execution to a new loca
tion. Direct bypasses can be accomplished with jump
instructions, as described above. More indirect transitions
include a combination of instructions. For example, in the
X86 instruction set, the following possible indirect transi
tions are possible bypasses:

“push a return address on the stack and “ret' this will
cause the processor to return to the pushed address.
Such a push and return combination may also include
an instruction which, before returning, modifies the
pushed address (e.g. using 'add, “mov', etc.);

Perform a “call to a nearby address (e.g. to the next
instruction). This implicitly causes a return address to
get pushed on to the stack. After the “call, modify the
return address. The return from the call will therefore
be to a different location than the expected return;

Cause a conditional flag to get set by the processor (for
example, using cmp, test, stic, or clc) and then perform
a conditional branch with the intention of always or
never branching.

Use of a combination of bypass transitions reduces the
chances that the disassembler will properly interpret all of
the bypasses, and thus increases the chances that the disas
sembler will encounter the bogus instruction data and
become misaligned.
Random Insertion of Misalignments

In one embodiment, misalignments (bypasses and bogus
data) are generated automatically. Elements of the misalign
ments may be chosen so that a variety of bypasses and bogus
data is used. Such a variety will insure that an adversary who
has figured out one of the misalignments or a disassembler
which is not susceptible to that misalignment may still not
be able to correctly identify or interpret another misalign
ment. The following may be randomly selected for each
insertion of a misalignment:

Instruction fragment The instruction fragment used for the
bogus data may be selected from among a pool of possible

US 7,383,583 B2
9

instruction fragments. Such a pool may consist of a number
of instruction fragments which are not completely specified.
In the case where some bogus data may be random, Such
random bogus data may be randomly generated for each
instruction fragment, or for Some proportion of the instruc
tion fragments required (with others, for example, selected
from a pool as described above.)

Fragment length. The length of the bogus data may also be
random. In the case where instruction fragments are selected
from a predetermined pool, additional bytes or fragments
may be added randomly to increase the length. In the case
where random data is used for the bogus data, different
fragment lengths may be used for the bogus data.

Transition method and instructions used for the transition
method As described above, there are different methods for
performing bypasses—the bypass to be used may be ran
domly selected from among these. Additionally, the method
used to implement the selected transition method may be
selected from among the possibilities. For example, the
method may be one from among the several ways to set
conditional codes for conditional bypass, or one jump from
among several ways to perform a direct jump.

Registers and addressing modes used by each instruction
Different registers may be used by bypass instructions, and
to the extent that the register used is not determined by the
instruction used, the register used may be selected randomly
from a pool of possibilities. Additionally, the addressing
mode, for example using an 8-bit vs. 32-bit relative offset in
a jump, may be randomly selected to the extent that the
addressing mode is not already dictated by the required
bypass or instruction used in the bypass.

Bypass chain length. The number of misalignments (by
pass and bogus data) may also be randomly selected to
create a chain of bypass/bogus data pairs. For example, a
misalignment which assumes disassembly relies on a branch
not taken can be followed by a misalignment which assumes
disassembly relies on a branch being taken in order to cause
both kinds of disassemblers to become misaligned. Gener
ating chains which contain a random number of misalign
ments may be robust against future disassemblers which
might be designed to be resistant to single or paired mis
alignments.
Some adversaries may perform entropy analysis on the

statistical distribution of different registers, instructions, and
addresses in the code in order to try to infer whether
anti-disassembly code has been added. To preserve entropic
distribution and thus hide the insertions, the distribution and
selection of misalignment code may be chosen to so that the
resulting code has the same entropic profile. Thus, in one
embodiment, selection of misalignment code is weighted
according to frequency counts of the code in which anti
disassembly segments will be inserted, and address frag
ments are chosen from likely and/or frequently occurring
addresses of the target code.

FIG. 4 is a diagram of a method according to one
embodiment for protecting code from disassembly by induc
ing misalignments in disassemblers. In step 400, a bypass
code Snippet is inserted into a first location in the code. The
bypass code, upon execution, causes execution to transition
to a second location in said code. This second location may
be elsewhere in code, where bogus data is to follow the
bypass code immediately. The second location may also be
immediately after the bypass code, where the bypass is not
taken during normal execution, but may be taken by a static
disassembler which assumes, e.g., that jumps are taken,
when disassembling code.

10

15

25

30

35

40

45

50

55

60

65

10
In step 410, a bogus instruction Snippet is inserted into a

third location in the code. The execution of the bypass code
Snippet will, as previously mentioned, cause a transition to
the second location, not to the third location. However, a
disassembler may be fooled into assuming execution will
transition to the third location. The bogus data may then
cause a misalignment.

Misalignments according to this method may also be used
in combination with run-time instruction modifications,
described below.

Run-Time Instruction Modification
Run-time instruction modifications are instructions which

make modifications to bytes which make up the instruction
stream. Such modifications change either the instructions
which are being requested or in cases where the instruction
is not completely specified, may change the data being used
with the instruction. These modifications are made to other
instructions involved in critical calculations of the executing
program. In one embodiment, the run-time modification
instructions change the instruction which directly follows in
the instruction stream.

Static disassemblers generally do not track processor or
memory state, and so can not infer run-time modifications to
the instruction stream. Some dynamic disassemblers have
integrated debuggers which allow the user to step through
instruction execution and can correct misalignments once
the proper execution path has been determined. However,
even dynamic disassembly is really static disassembly at a
particular point in time; that is, analysis can only be per
formed on the code when the debugger is halted and asked
to reanalyze the instruction stream. Because run-time modi
fications of the instruction stream are rare, particularly so
close in the instruction stream, disassemblers often simply
ignore changes to the instruction stream as uninteresting to
display to the user. That is, debuggers often don’t reanalyze
parts of their instruction stream, particularly that which has
already been executed. Thus, even dynamic disassemblers
often fail to update instructions that have been modified at
run-time even when the instructions are manually single
stepped through by the user.

Although in principle, Some dynamic disassemblers allow
an adversary to step through the real-time instruction modi
fications and fix the instruction sequences, this would be
unbearably time consuming to do for every instruction.
Without a convenient mechanism for automatically disas
sembling the code, the task of inferring the instruction
stream becomes a labor intensive, error prone chore for the
adversary. The individualized (i.e. performed on individual
instructions) and last minute (i.e. preceding the modified
instruction immediately or only by only a couple instruc
tions) nature of the run-time instruction modifications enable
this technique for foiling adversaries.

In one embodiment, run-time instruction modifications
consist of two parts. The first part contains one or more
instructions which modify an invalid instruction into some
thing valid. The second part contains one or more instruc
tions which modify the valid instruction to something
invalid again. The invalid instruction, in one embodiment,
has a different instruction length than the valid instruction.
This causes misaligniments, as described above.

In another embodiment, the invalid instruction is the same
length as the valid instruction, but represents a different
operation. For example, an “add may be replaced with a
“subtract” or the constant “4” operand of an “add eax, 4”
instruction may become “add eax, 8”. The code would
appear to be performing a logically different computation

US 7,383,583 B2
11

without necessarily misaligning Subsequent disassembly of
the instruction stream. This subtle misinterpretation caused
by obfuscation of the instruction sequence may require the
adversary to spend even more time and effort in an attempt
to reverse engineer the code.

Since the processor will be executing the run-time modi
fication instructions every time the protected code executes,
whether or not a second operation which returns the valid
instruction back to invalid is necessary depends on the
particular method by which the instruction is made valid
from its invalid state. That is, if a run-time modification
Snippet is used which can be executed multiple times
without making the valid instruction invalid, then it is not
necessary (although it may be desirable) to return the target
instruction to its original invalid state. For example, uncon
ditionally overwriting the correct bytes into the instruction
stream to make the invalid instruction valid could be
executed on the valid instruction without turning it invalid
(i.e. it would simply overwrite the correct bytes with the
same correct bytes). However, if the run-time modification
involved XORing the invalid instruction with a constant to
make it valid, a subsequent XOR would make the instruction
invalid in this case, by returning it to its original state
(such is the nature of XOR).

In order to modify an instruction at run-time, either to
make it valid or to make it invalid, a number of techniques
may be used. An arithmetic operation may be performed on
one or more bytes of the instruction. New information may
be written over one or more bytes of an instruction. Bytes
may be copied from a location in memory over the instruc
tion. These methods may be used on the instruction opcodes
themselves, to change the instruction operation, registers, or
addressing mode used. These methods may also be used on
an instruction operand. Such as a constant or target address,
for example, by changing the target address specified in a
jump instruction to a different target address.
As an example, the code in instruction stream 300, as

previously discussed, should be interpreted as follows:

EB 04 ; jump to Calladdr
89 84 8AOO ; incomplete instruction

Calladdr:
FF 15 28 10 OO O1 ; call instruction

However, if the first byte is changed to E9 rather than EB,
the opcode will be interpreted as a five-byte jump relative
instruction rather than a two-byte jump relative instruction.
Hence, a disassembler will interpret this as:

E9 04 89 84 8A
OOFF 15 28 OO O1 . . .

;jmp 8A848904h
; bogus instruction

In this example, a code Snippet would be inserted in the
instruction stream which will change the E9 to an EB at
Some point shortly before the instruction is run, and. In some
situations, a code Snippet would also be inserted which
would change it back to an invalid instruction afterwards. In
addition to hiding the actual instruction, the effect of this is
also to cause a misalignment. As an example of modifying
an operand, the “04” of the “EB 04' instruction above could
have started as an “09 and been changed at run-time to the
valid “04” shortly before executing. This would have the
effect of foiling a static disassembler that might properly
interpreted the bypass jump as taken.

10

15

25

30

35

40

45

50

55

60

65

12
Code Obfuscation Using Both Misalignments and Run-Time
Modifications
As alluded to in the above examples, run-time modifica

tion is particularly powerful when combined with the mis
alignment technique. Instructions which cause a jump
over transition for the bypass of the misalignment can be
toggled to innocuous looking instructions until right before
they are executed.

Additionally, run-time modifications can also be made to
fake jump-over instructions. That is, an instruction which
appears to jump over other code can be changed to not
jump-over or to jump a different number of bytes. This is
useful against disassemblers which assume branches are
taken, for example. Therefore, all combinations of misalign
ment and run-time modifications can be used against
assumptions made by the disassembler. Certain disassem
blers always assume that a jump is taken when one is
encountered during disassembly and other disassemblers
always assume that a jump is not taken. When techniques are
combined to create a situation in which some jumps will be
taken when code is executing and Some jumps will not be
taken, it will be difficult to determine which method applies
and it will be difficult to analyze the code using existing
analysis tools.

FIG. 5 is a diagram of a method according to one
embodiment for protecting code from disassembly perform
ing run-time modifications. In step 500, an instruction from
the code is changed from a first state to a second state. This
change, as described, may change the opcode or the operand
of the instruction, may cause an instruction of a first length
to be changed to have an opcode indicating it will be a
different length, or otherwise will confuse static and
dynamic disassembly.

In order for legitimate execution of the code to not be
hindered, in step 510, a run-time modification code snippet
is inserted into the code, so that when the code is executed,
the run-time modification code snippet will modify said
instruction from the second (invalid) state to the first (valid)
state before execution of the instruction. In one embodiment,
another run-time modification code Snippet may be inserted
which changes the state of the instruction back to an invalid
state after execution.

It is noted that the foregoing examples have been pro
vided merely for the purpose of explanation and are in no
way to be construed as limiting of the present invention.
While the invention has been described with reference to
various embodiments, it is understood that the words which
have been used herein are words of description and illus
tration, rather than words of limitations. Further, although
the invention has been described herein with reference to
particular means, materials and embodiments, the invention
is not intended to be limited to the particulars disclosed
herein; rather, the invention extends to all functionally
equivalent structures, methods and uses, such as are within
the scope of the appended claims. Those skilled in the art,
having the benefit of the teachings of this specification, may
effect numerous modifications thereto and changes may be
made without departing from the scope and spirit of the
invention in its aspects.
What is claimed:
1. A method for protecting code from disassembly, said

method comprising:
inserting a first bypass code Snippet into a first location in

said code, where said first bypass code Snippet, upon
execution, causes execution to transition to a second
location in said code:

US 7,383,583 B2
13

inserting a bogus instruction Snippet into a third location
in said code, such that execution of said code will, as
a result of said bypass, not reach said third location,

wherein the selection of the first bypass code snippet and
the bogus instruction Snippet preserves an entropic
distribution.

2. The method of claim 1 where said first bypass code
Snippet causes said third location to be bypassed during
execution of said code.

3. The method of claim 1, where said first bypass code
Snippet is followed sequentially by said second location in
code, and where said third location is a location referred to
by said bypass code Snippet.

4. The method of claim 1, where said first bypass code
Snippet comprises at least one selected from among the
following: a jump instruction; a return instruction, and a call
instruction.

5. The method of claim 1, where said bogus instruction
Snippet comprises an instruction fragment comprising one or
more opcode bytes describing an instruction of a certain
number of bytes, and where said instruction fragment is of
a length not equal to said certain number of bytes.

6. The method of claim 1, where said bogus instruction
Snippet comprises randomly-selected bytes.

7. A method for protecting code for disassembly, com
prising at least two misalignment insertions, each of said
misalignment insertions comprising the insertion of a first
bypass code Snippet and a bogus instruction Snippet accord
ing to the method of claim 1, wherein the insertion of the
first bypass code Snippet and the bogus instruction Snippet
preserves an entropic distribution.

8. The method of claim 7, where the selection of said first
bypass code Snippets and said bogus instruction Snippets is
performed in order to include a variety among said first
bypass code Snippets and said bogus instruction Snippets.

9. The method of claim 8, where said entropic distribution
is preserved for at least one of the following: a frequency of
instruction types used, frequency counts of address refer
ences, and frequency counts of register references.

10. The method of claim 1, further comprising:
modifying a first instruction of said code from a first state

to a second state;
inserting a run-time modification code Snippet such that
when said code is executed, said run-time modification
code snippet will modify said first instruction from said
second state to said first state before execution of said
first instruction.

11. The method of claim 1, further comprising:
inserting a second bypass code Snippet into a fourth

location in said code, where said second bypass code
Snippet, upon execution, causes execution to transition
to said first location.

12. The method of claim 11, where one of said first bypass
code Snippet and said second bypass code Snippet causes a
non-sequential transition upon execution, and where the
other of said first bypass code Snippet and said second
bypass code Snippet causes a sequential transition upon
execution.

13. A computer readable storage medium having a plu
rality of computer-executable instructions stored thereon,
said instructions for performing the following:

inserting a first bypass code Snippet into a first location in
said code, where said first bypass code Snippet, upon
execution, causes execution to transition to a second
location in said code:

10

15

25

30

35

40

45

50

55

60

14
inserting a bogus instruction Snippet into a third location

in said code, such that execution of said code will, as
a result of said bypass, not reach said third location,

wherein the selection of the first bypass code snippet and
the bogus instruction Snippet preserves an entropic
distribution.

14. A system for protecting code from disassembly, said
system comprising:

a computing processor adapted to receive and execute
computer-readable instructions;

computing memory, said computing memory having
instructions stored therein for performing the following
when executed by said computing processor:

inserting a first bypass code Snippet into a first location in
said code, said first bypass code Snippet, upon execu
tion, causing execution to transition to a second loca
tion in said code; and

inserting a bogus instruction Snippet into a third location
in said code, such that execution of said code will, as
a result of said bypass, not reach said third location,

wherein the selection of the first bypass code snippet and
the bogus instruction Snippet preserves an entropic
distribution.

15. The system of claim 14 where said first bypass code
Snippet causes said third location to be bypassed during
execution of said code.

16. The system of claim 14, where said first bypass code
Snippet is followed sequentially by said second location in
code, and where said third location is a location referred to
by said bypass code Snippet.

17. The system of claim 14, where said first bypass code
Snippet comprises at least one selected from among the
following: a jump instruction; a return instruction, and a call
instruction.

18. The system of claim 14, where said bogus instruction
Snippet comprises an instruction fragment comprising one or
more opcode bytes describing an instruction of a certain
number of bytes, and where said instruction fragment is of
a length not equal to said certain number of bytes.

19. The system of claim 14, where said bogus instruction
Snippet comprises randomly-selected bytes.

20. The system of claim 14, further comprising instruc
tions for performing the following:

modifying a first instruction of said code from a first state
to a second state; and

inserting a run-time modification code Snippet such that
when said code is executed, said run-time modification
code snippet will modify said first instruction from said
second state to said first state before execution of said
first instruction.

21. The system of claim 14, further comprising instruc
tions for performing the following:

inserting a second bypass code Snippet into a fourth
location in said code, where said second bypass code
Snippet, upon execution, causes execution to transition
to said first location.

22. The system of claim 21, where one of said first bypass
code Snippet and said second bypass code Snippet causes a
non-sequential transition upon execution, and where the
other of said first bypass code Snippet and said second
bypass code Snippet causes a sequential transition upon
execution.

