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(57) ABSTRACT 

In order to prevent analysis by static and dynamic disas 
sembly techniques, instruction level code obfuscation is 
performed to induce misalignment and mistaken analysis by 
disassemblers. Misalignment is induced by including a 
bypass which leads, during execution, to a legitimate loca 
tion. During analysis, however, bogus data may be analyzed 
by the disassembler due to the bypass. Run-time modifica 
tions may also be included in code. Code is changed to an 
invalid state, and instructions inserted into the code which 
will return the code to a valid state during execution. During 
analysis, these invalid States may be analyzed by the disas 
sembler as invalid instructions. Induced misalignments and 
run-time modifications can be chained together to produce 
sequences of code that will always produce invalid disas 
sembly output from common disassemblers. 

22 Claims, 3 Drawing Sheets 
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1. 

STATIC AND RUN-TIME 
ANT-DISASSEMBLY AND 

ANT-DEBUGGNG 

FIELD OF THE INVENTION 

The present invention relates generally to the field of 
computing, and, more particularly, to preventing examina 
tion or manipulation of code by implementing instruction 
level obfuscation techniques. 

BACKGROUND OF THE INVENTION 

Generally, computer applications run by executing object 
code. The object code controls the actions of the computer 
systems on which it is run. Such code may be made public 
or otherwise made accessible by its authors, for example by 
publishing the original Source code that was compiled to 
create the object code. When software is sold publicly, the 
object code will be accessible for analysis by others. The 
original authors may also choose to make the object code 
more accessible by other programmers by including “debug 
symbols” which are data files which help to describe the 
structure of the object code so that users of the object code 
can debug their own programs. However, for some uses, it 
is advisable to protect code, including object code, from 
examination by possible adversaries. For example, where 
the code represents the best available implementation of a 
particular algorithm, the code itself may represent a trade 
secret. In another example, where code is used to secure 
content, it may be useful to protect the code in order to 
ensure the security of the content from an adversary. 

Maintaining the security of content may be useful in many 
contexts. One Such context is where the content is private 
information, for example, financial information about a 
computer user, user passwords, or other personal informa 
tion. Another context in which maintaining the security of 
content is useful is when the secure content is content which 
is to be used only in a limited way. For example, copyrighted 
content may be protected by requiring a license for use. 

License provisions may be enforced for secure content by 
a digital rights management (DRM) application. In some 
DRM applications, content is stored only in an encrypted 
form, and then decrypted for use according to an electronic 
license which defines the specific user's rights to use the 
content. Some or all of the code and associated decryption 
data which decrypts the encrypted content is therefore 
protected, because if this code which accesses the copy 
righted context is compromised, it may be possible to access 
the copyright outside of the bounds of the electronic license, 
for unlicensed uses. 
Code which protects sensitive information or performs 

other sensitive operations is, in some contexts, referred to as 
a “black box.' The black box may include hardware ele 
ments along with software elements. When a black box (or 
other sensitive code) is being used on a computer system, an 
adversary may use several means in order to attempt to 
compromise the security of the operations of the black box. 
For example, an adversary may attempt to trace the code 
running in the black box. One way in which an adversary 
may attempt to do this is by using a debugger to track the 
progress of the code. Another way an adversary may attempt 
to compromise the security of the black box is by making 
modifications to the code in order to provide access to the 
secure content to the adversary. 

There are numerous tools for discouraging static analysis 
of binary images of code. Static analysis is analysis of the 
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2 
code when it is not executing. For example, certain of these 
tools for discouraging static analysis allow sections of 
binaries to be rendered unreadable at or after compile time. 
For example, Some tools encrypt sections of the binary. 
Thus, before run-time, the binary is unreadable. When the 
code is to be run, the code is returned to its original state, e.g. 
by decryption where the modification was encryption. 
Therefore, an adversary will not be able to perform a static 
analysis on the binary, but the code will function properly 
when it is decrypted for execution. 

Increasingly, however, dynamic analysis tools and 
dynamic analyzers integrated with debuggers are being 
created and used. Such tools allow an adversary to examine 
code as it is executing. Because the code, as it is executing, 
has been returned to its unmodified State (e.g. by decryption) 
it can be analyzed by an adversary using techniques that 
exist for static analysis. Therefore, static analysis prevention 
tools such as encryption of binaries are not effective pro 
tection for sensitive code, which must be protected from 
both static and dynamic disassembly techniques. 

In view of the foregoing, there is a need for a system that 
overcomes the drawbacks of the prior art. 

SUMMARY OF THE INVENTION 

The present invention prevents analysis by Static and 
dynamic disassembly techniques by performing instruction 
level code obfuscation. Thus, the sensitive code is modified 
by obfuscation of portions of the code at the instruction 
level. These code obfuscations are corrected shortly before 
the execution point of the code. 
The code obfuscations include bogus data injection into 

the instruction stream and run-time modifications which 
occur just before the execution point of the modified instruc 
tions. 

Data injection into the instruction stream can fool both 
static and run-time disassemblers into treating bogus data 
and parts of other instructions as instruction opcodes. This 
misinterpretation of the instruction data can be referred to as 
“instruction misalignment' because the disassembler can no 
longer effectively determine instruction boundaries. This 
causes a cascade of misinterpretation by the disassembler 
which lasts as long as the disassembler remains misaligned. 
Such data injection, in one embodiment, includes a bypass 
and bogus data which triggers misalignment of a disassem 
bler. 

Run-time modification code Snippets inserted into code 
change an instruction before it is executed. This is achieved, 
e.g., by performing an arithmetic operation on the bytes of 
the instruction, writing bytes over parts of the instruction, or 
copying bytes from a location in memory over the instruc 
tions. The modification makes the instruction valid. In one 
embodiment, after execution, the code is modified again to 
return it to an invalid state. 

Other features of the invention are described below. 

BRIEF DESCRIPTION OF THE DRAWINGS 

The foregoing Summary, as well as the following detailed 
description of preferred embodiments, is better understood 
when read in conjunction with the appended drawings. For 
the purpose of illustrating the invention, there is shown in 
the drawings example constructions of the invention; how 
ever, the invention is not limited to the specific methods and 
instrumentalities disclosed. In the drawings: 

FIG. 1 is a block diagram of an example computing 
environment in which aspects of the invention may be 
implemented; 
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FIG. 2 is a block diagram of an instruction stream in 
which aspects of the invention may be implemented; 

FIG. 3 is a block diagram of an instruction stream 
according to an example illustrating one embodiment of the 
invention; 

FIG. 4 is a flow diagram of a method according to one 
embodiment for protecting code from disassembly by insert 
ing bogus data and associated bypass code; and 

FIG. 5 is a diagram of a method according to one 
embodiment for protecting code from disassembly perform 
ing run-time modifications. 

DETAILED DESCRIPTION OF ILLUSTRATIVE 
EMBODIMENTS 

Overview 
Debuggers and static and dynamic disassemblers analyze 

code and allow a user to examine its contents. In order to 
protect sensitive code from Such disassembly and debugging 
by an adversary, code obfuscation is performed. The present 
invention provides mechanisms for inserting bogus data and 
runtime modifications into sensitive code. Such obfuscation 
hinders or prevents examination of the contents of code by 
Such static and dynamic disassemblers. 
The description of code misalignments and run-time 

modifications presented herein relate primarily to assembly 
language code. However, the techniques described may be 
applicable to code in other programming languages, and it is 
contemplated that the application of the mechanisms 
described and claimed is not limited to assembly language 
code. That is, any system that infers non-executable source 
code from executable object code and related data files (for 
example, debugging symbol files) might be affected by the 
invention herein. 

Exemplary Computing Arrangement 
FIG. 1 shows an exemplary computing environment in 

which aspects of the invention may be implemented. The 
computing system environment 100 is only one example of 
a suitable computing environment and is not intended to 
Suggest any limitation as to the scope of use or functionality 
of the invention. Neither should the computing environment 
100 be interpreted as having any dependency or requirement 
relating to any one or combination of components illustrated 
in the exemplary operating environment 100. 
The invention is operational with numerous other general 

purpose or special purpose computing system environments 
or configurations. Examples of well known computing sys 
tems, environments, and/or configurations that may be suit 
able for use with the invention include, but are not limited 
to, personal computers, server computers, hand-held or 
laptop devices, multiprocessor Systems, microprocessor 
based systems, set top boxes, programmable consumer elec 
tronics, network PCs, minicomputers, mainframe comput 
ers, embedded systems, distributed computing environments 
that include any of the above systems or devices, and the 
like. 
The invention may be described in the general context of 

computer-executable instructions, such as program modules, 
being executed by a computer. Generally, program modules 
include routines, programs, objects, components, data struc 
tures, etc. that perform particular tasks or implement par 
ticular abstract data types. The invention may also be 
practiced in distributed computing environments where 
tasks are performed by remote processing devices that are 
linked through a communications network or other data 
transmission medium. In a distributed computing environ 
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4 
ment, program modules and other data may be located in 
both local and remote computer storage media including 
memory storage devices. 

With reference to FIG. 1, an exemplary system for imple 
menting the invention includes a general purpose computing 
device in the form of a computer 110. Components of 
computer 110 may include, but are not limited to, a pro 
cessing unit 120, a system memory 130, and a system bus 
121 that couples various system components including the 
system memory to the processing unit 120. The processing 
unit 120 may represent multiple logical processing units 
Such as those Supported on a multi-threaded processor. The 
system bus 121 may be any of several types of bus structures 
including a memory bus or memory controller, a peripheral 
bus, and a local bus using any of a variety of bus architec 
tures. By way of example, and not limitation, Such archi 
tectures include Industry Standard Architecture (ISA) bus, 
Micro Channel Architecture (MCA) bus, Enhanced ISA 
(EISA) bus, Video Electronics Standards Association 
(VESA) local bus, and Peripheral Component Interconnect 
(PCI) bus (also known as Mezzanine bus). The system bus 
121 may also be implemented as a point-to-point connec 
tion, Switching fabric, or the like, among the communicating 
devices. 
Computer 110 typically includes a variety of computer 

readable media. Computer readable media can be any avail 
able media that can be accessed by computer 110 and 
includes both volatile and nonvolatile media, removable and 
non-removable media. By way of example, and not limita 
tion, computer readable media may comprise computer 
storage media and communication media. Computer storage 
media includes both volatile and nonvolatile, removable and 
non-removable media implemented in any method or tech 
nology for storage of information Such as computer readable 
instructions, data structures, program modules or other data. 
Computer storage media includes, but is not limited to, 
RAM, ROM, EEPROM, flash memory or other memory 
technology, CDROM, digital versatile disks (DVD) or other 
optical disk storage, magnetic cassettes, magnetic tape, 
magnetic disk storage or other magnetic storage devices, or 
any other medium which can be used to store the desired 
information and which can accessed by computer 110. 
Communication media typically embodies computer read 
able instructions, data structures, program modules or other 
data in a modulated data signal Such as a carrier wave or 
other transport mechanism and includes any information 
delivery media. The term “modulated data signal” means a 
signal that has one or more of its characteristics set or 
changed in Such a manner as to encode information in the 
signal. By way of example, and not limitation, communi 
cation media includes wired media Such as a wired network 
or direct-wired connection, and wireless media Such as 
acoustic, RF, infrared and other wireless media. Combina 
tions of any of the above should also be included within the 
Scope of computer readable media. 
The system memory 130 includes computer storage media 

in the form of volatile and/or nonvolatile memory such as 
read only memory (ROM) 131 and random access memory 
(RAM) 132. A basic input/output system 133 (BIOS), con 
taining the basic routines that help to transfer information 
between elements within computer 110, such as during 
start-up, is typically stored in ROM 131. RAM 132 typically 
contains data and/or program modules that are immediately 
accessible to and/or presently being operated on by process 
ing unit 120. By way of example, and not limitation, FIG. 1 
illustrates operating system 134, application programs 135, 
other program modules 136, and program data 137. 
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The computer 110 may also include other removable/non 
removable, Volatile/nonvolatile computer storage media. By 
way of example only, FIG. 1 illustrates a hard disk drive 140 
that reads from or writes to non-removable, nonvolatile 
magnetic media, a magnetic disk drive 151 that reads from 
or writes to a removable, nonvolatile magnetic disk 152, and 
an optical disk drive 155 that reads from or writes to a 
removable, nonvolatile optical disk 156, such as a CD ROM 
or other optical media. Other removable/non-removable, 
Volatile/nonvolatile computer storage media that can be used 
in the exemplary operating environment include, but are not 
limited to, magnetic tape cassettes, flash memory cards, 
digital versatile disks, digital video tape, solid state RAM, 
solid state ROM, and the like. The hard disk drive 141 is 
typically connected to the system bus 121 through a non 
removable memory interface such as interface 140, and 
magnetic disk drive 151 and optical disk drive 155 are 
typically connected to the system bus 121 by a removable 
memory interface, such as interface 150. 
The drives and their associated computer storage media 

discussed above and illustrated in FIG. 1, provide storage of 
computer readable instructions, data structures, program 
modules and other data for the computer 110. In FIG. 1, for 
example, hard disk drive 141 is illustrated as storing oper 
ating system 144, application programs 145, other program 
modules 146, and program data 147. Note that these com 
ponents can either be the same as or different from operating 
system 134, application programs 135, other program mod 
ules 136, and program data 137. Operating system 144, 
application programs 145, other program modules 146, and 
program data 147 are given different numbers here to 
illustrate that, at a minimum, they are different copies. A user 
may enter commands and information into the computer 20 
through input devices such as a keyboard 162 and pointing 
device 161, commonly referred to as a mouse, trackball or 
touch pad. Other input devices (not shown) may include a 
microphone, joystick, game pad, satellite dish, Scanner, or 
the like. These and other input devices are often connected 
to the processing unit 120 through a user input interface 160 
that is coupled to the system bus, but may be connected by 
other interface and bus structures. Such as a parallel port, 
game port or a universal serial bus (USB). A monitor 191 or 
other type of display device is also connected to the system 
bus 121 via an interface, such as a video interface 190. In 
addition to the monitor, computers may also include other 
peripheral output devices such as speakers 197 and printer 
196, which may be connected through an output peripheral 
interface 195. 
The computer 110 may operate in a networked environ 

ment using logical connections to one or more remote 
computers, such as a remote computer 180. The remote 
computer 180 may be a personal computer, a server, a router, 
a network PC, a peer device or other common network node, 
and typically includes many or all of the elements described 
above relative to the computer 110, although only a memory 
storage device 181 has been illustrated in FIG.1. The logical 
connections depicted in FIG. 1 include a local area network 
(LAN) 171 and a wide area network (WAN) 173, but may 
also include other networks. Such networking environments 
are commonplace in offices, enterprise-wide computer net 
works, intranets and the Internet. 
When used in a LAN networking environment, the com 

puter 110 is connected to the LAN 171 through a network 
interface or adapter 170. When used in a WAN networking 
environment, the computer 110 typically includes a modem 
172 or other means for establishing communications over 
the WAN 173, such as the Internet. The modem 172, which 
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6 
may be internal or external, may be connected to the system 
bus 121 via the user input interface 160, or other appropriate 
mechanism. In a networked environment, program modules 
depicted relative to the computer 110, or portions thereof, 
may be stored in the remote memory storage device. By way 
of example, and not limitation, FIG. 1 illustrates remote 
application programs 185 as residing on memory device 
181. It will be appreciated that the network connections 
shown are exemplary and other means of establishing a 
communications link between the computers may be used. 
Inducing Misalignments 
On computer platforms with variable length instructions, 

such as X86 platforms, in order to allow a user to examine 
code, a disassembler must determine which bytes of the code 
are part of which instructions. Thus, the disassembler must 
rely on sequentially decoding instruction streams from a 
known valid starting location, like the address of a module 
“entry point described in an export table of the portable 
executable (PE) header. An instruction stream is a stream of 
bytes which is loaded into memory by the operating system 
and decoded and executed by the processing unit. FIG. 2 is 
a representation of an instruction stream 200 containing 
bytes 210. 
Where variable length instructions are possible, given a 

stream of bytes in an object code instruction stream 200 
without an indication of an initial byte for an instruction, it 
can not be determined how many bytes or which bytes are 
used in one instruction in the object code until the execution 
begins on the code and determine an end byte for the 
previous instruction. An instruction may consist of an initial 
number of bytes which describe the type of instruction (an 
opcode), followed optionally by bytes which are arguments 
to the instruction (an operand). While byte 210a may be the 
opcode for an instruction with byte 210b as its operand, if 
the previous instruction ends with byte 210a, then byte 210b 
may be the opcode of an instruction, and that instruction 
may continue in Succeeding bytes in the instruction stream 
200. A program counter is used to control the flow of 
execution through the instruction stream 200. The program 
counter is a register which stores the address of the next 
instruction to be executed. 
One possible instruction in most versions of assembly 

language is a jump relative instruction. A jump relative 
instruction jumps a specified number of bytes forward in the 
instruction stream. The jump relative instruction adds the 
number of bytes specified by its operand to the program 
counter which causes execution to jump ahead by the 
specified number of bytes. 

Thus, if the byte value “EB' is the opcode for the jump 
relative command, the two bytes “EB 04' stored in bytes 
210a and 210b will perform a relative jump over the next 
four bytes. The program counter will then point to byte 
210g, where execution will continue. Other jumps are also 
possible, including jumps to a specific location in the 
instruction stream ("absolute jump), jumps which are con 
ditional, etc. Jumps and other instructions which will cause 
execution to transition to another location in the instruction 
stream can be used to create a misalignment which will foil 
disassembly analysis. 
As an example of how Such misalignments may be 

caused, a misalignment will be described which prevents a 
disassembler from determining that the instruction stream 
contains the instruction: 
FF 15 28 10 OO O1 

which in certain execution environments represents: 
call dword ptr imp. GetProcessHeap(a)0 (1001028) 
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In order to create the misalignment, a portion of another 
instruction will be used. This instruction is a seven-byte 
instruction: 

89 848A OO 16 OOOO 

which represents 
mov dword ptredx+ecx*4+1600h, eax 
FIG. 3 is a representation of an instruction stream 300 

containing bytes 310, certain of which have been injected to 
induce a misalignment around the first instruction (call 
dword ptr...) discussed above using the fact that the second 
instruction (mov dword ptr . . . ) discussed above is a 
seven-byte instruction. The first instruction is represented in 
bytes 310g through 310l. In order to cause a misalignment, 
however, only a fragment of the second instruction has been 
added. 
The result of adding these bytes is a misalignment which 

will confuse a disassembler. Disassemblers operate under 
the assumption that the instruction stream 300 contains a 
sequence of complete instructions. When a disassembler 
reaches the instruction in bytes 310a and 310b, it will 
decode the “imp 04' instruction represented by the “EB 04 
object code. However, the disassembler will continue inter 
preting bytes continuing with byte 310c, in order provide a 
complete picture of all instructions in the instruction stream 
300. Thus, it would attempt to interpret bytes starting with 
310c into an instruction. 
As a result, instead of interpreting the code in instruction 

stream 300 as follows: 

EB 04 ; jump to Calladdr 
89 84 8AOO ; incomplete instruction 

Calladdr: 
FF 15 28 10 OO O1 ; call instruction 

a disassembler will interpret the code as follows: 

EB 04 ; jump to Calladdr 
89 84 8A OOFF 15 28 ; bogus mov instruction 
10 OOO1 ; bogus add ??? instruction 

Generally, in order to perform a misalignment, (1) bogus 
incomplete instruction data is inserted into the code, and (2) 
a bypass is inserted which allows correct execution to 
bypass the bogus incomplete or invalid instruction data. 

The bypass may, as described, be a bypass which will be 
taken during execution, followed sequentially with bogus 
code. Some disassemblers will always assume that a con 
ditional jump is not taken, these disassemblers will be 
misaligned by conditional jumps contained in Such 
bypasses. 

However, Some disassemblers will always assume that a 
conditional jump is taken. Thus, Some bypasses allow 
execution to bypass the bogus code by creating a situation in 
which the jump or other bypass leads to the bogus code. 
During execution, the bypass will not be taken. However, a 
disassembler will take the bypass, which will lead the 
disassembler to the bogus data. 

To fool both kinds of disassemblers, both styles of bypass 
code, that is which assume conditional jumps taken vs. not 
taken, can be included sequentially in the instruction stream 
with appropriate bogus data. This will guarantee that a 
misalignment occurs at that site in the instruction stream no 
matter which type of disassembler is analyzing the code. 
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8 
Bogus Data 

In one embodiment, bogus instruction data consists of 
random bytes. Upon examination of these random bytes, the 
disassembler will attempt to interpret the bogus instruction 
data, which will likely cause a misalignment. Additionally, 
random bytes may yield a random instruction, which will 
confuse the user of the disassembler. 

According to another embodiment, bogus instruction data 
is chosen to be instruction opcodes whose instructions are 
long but are not specified completely. Since such instruction 
opcodes signal instructions that are not completely specified, 
real instructions that follow are interpreted as being part of 
the bogus instruction—and misalignment occurs. For 
example, the first four bytes of the instruction “89 848A00 
16 00 00' is inserted into the instruction stream; that is, the 
seven byte instruction is inserted with the final three bytes 
omitted. Three bytes from the following real executable 
instruction “FF 15 28 10 00 01' are interpreted as the 
omitted three bytes. The resulting instruction appears to be 
“89 848A 00FF 15 28” which will be interpreted as “mov 
dword ptr edx+ecx*4+2815FF00h, eax”. Since the last 
three bytes of the instruction “89 848A00 16 0000” are not 
specified, the first three bytes of the instruction “FF 1528 10 
00 01” became part of the value “2815FF00h' which is 
added in the instruction. Because of this, bytes of the real 
instruction will be interpreted as part of an “argument to the 
bogus data's partial instruction. 
Bypasses 

Bypasses may be accomplished by any means which 
causes the processor to transition execution to a new loca 
tion. Direct bypasses can be accomplished with jump 
instructions, as described above. More indirect transitions 
include a combination of instructions. For example, in the 
X86 instruction set, the following possible indirect transi 
tions are possible bypasses: 

“push a return address on the stack and “ret' this will 
cause the processor to return to the pushed address. 
Such a push and return combination may also include 
an instruction which, before returning, modifies the 
pushed address (e.g. using 'add, “mov', etc.); 

Perform a “call to a nearby address (e.g. to the next 
instruction). This implicitly causes a return address to 
get pushed on to the stack. After the “call, modify the 
return address. The return from the call will therefore 
be to a different location than the expected return; 

Cause a conditional flag to get set by the processor (for 
example, using cmp, test, stic, or clc) and then perform 
a conditional branch with the intention of always or 
never branching. 

Use of a combination of bypass transitions reduces the 
chances that the disassembler will properly interpret all of 
the bypasses, and thus increases the chances that the disas 
sembler will encounter the bogus instruction data and 
become misaligned. 
Random Insertion of Misalignments 

In one embodiment, misalignments (bypasses and bogus 
data) are generated automatically. Elements of the misalign 
ments may be chosen so that a variety of bypasses and bogus 
data is used. Such a variety will insure that an adversary who 
has figured out one of the misalignments or a disassembler 
which is not susceptible to that misalignment may still not 
be able to correctly identify or interpret another misalign 
ment. The following may be randomly selected for each 
insertion of a misalignment: 

Instruction fragment The instruction fragment used for the 
bogus data may be selected from among a pool of possible 
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instruction fragments. Such a pool may consist of a number 
of instruction fragments which are not completely specified. 
In the case where some bogus data may be random, Such 
random bogus data may be randomly generated for each 
instruction fragment, or for Some proportion of the instruc 
tion fragments required (with others, for example, selected 
from a pool as described above.) 

Fragment length. The length of the bogus data may also be 
random. In the case where instruction fragments are selected 
from a predetermined pool, additional bytes or fragments 
may be added randomly to increase the length. In the case 
where random data is used for the bogus data, different 
fragment lengths may be used for the bogus data. 

Transition method and instructions used for the transition 
method As described above, there are different methods for 
performing bypasses—the bypass to be used may be ran 
domly selected from among these. Additionally, the method 
used to implement the selected transition method may be 
selected from among the possibilities. For example, the 
method may be one from among the several ways to set 
conditional codes for conditional bypass, or one jump from 
among several ways to perform a direct jump. 

Registers and addressing modes used by each instruction 
Different registers may be used by bypass instructions, and 
to the extent that the register used is not determined by the 
instruction used, the register used may be selected randomly 
from a pool of possibilities. Additionally, the addressing 
mode, for example using an 8-bit vs. 32-bit relative offset in 
a jump, may be randomly selected to the extent that the 
addressing mode is not already dictated by the required 
bypass or instruction used in the bypass. 

Bypass chain length. The number of misalignments (by 
pass and bogus data) may also be randomly selected to 
create a chain of bypass/bogus data pairs. For example, a 
misalignment which assumes disassembly relies on a branch 
not taken can be followed by a misalignment which assumes 
disassembly relies on a branch being taken in order to cause 
both kinds of disassemblers to become misaligned. Gener 
ating chains which contain a random number of misalign 
ments may be robust against future disassemblers which 
might be designed to be resistant to single or paired mis 
alignments. 
Some adversaries may perform entropy analysis on the 

statistical distribution of different registers, instructions, and 
addresses in the code in order to try to infer whether 
anti-disassembly code has been added. To preserve entropic 
distribution and thus hide the insertions, the distribution and 
selection of misalignment code may be chosen to so that the 
resulting code has the same entropic profile. Thus, in one 
embodiment, selection of misalignment code is weighted 
according to frequency counts of the code in which anti 
disassembly segments will be inserted, and address frag 
ments are chosen from likely and/or frequently occurring 
addresses of the target code. 

FIG. 4 is a diagram of a method according to one 
embodiment for protecting code from disassembly by induc 
ing misalignments in disassemblers. In step 400, a bypass 
code Snippet is inserted into a first location in the code. The 
bypass code, upon execution, causes execution to transition 
to a second location in said code. This second location may 
be elsewhere in code, where bogus data is to follow the 
bypass code immediately. The second location may also be 
immediately after the bypass code, where the bypass is not 
taken during normal execution, but may be taken by a static 
disassembler which assumes, e.g., that jumps are taken, 
when disassembling code. 
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10 
In step 410, a bogus instruction Snippet is inserted into a 

third location in the code. The execution of the bypass code 
Snippet will, as previously mentioned, cause a transition to 
the second location, not to the third location. However, a 
disassembler may be fooled into assuming execution will 
transition to the third location. The bogus data may then 
cause a misalignment. 

Misalignments according to this method may also be used 
in combination with run-time instruction modifications, 
described below. 

Run-Time Instruction Modification 
Run-time instruction modifications are instructions which 

make modifications to bytes which make up the instruction 
stream. Such modifications change either the instructions 
which are being requested or in cases where the instruction 
is not completely specified, may change the data being used 
with the instruction. These modifications are made to other 
instructions involved in critical calculations of the executing 
program. In one embodiment, the run-time modification 
instructions change the instruction which directly follows in 
the instruction stream. 

Static disassemblers generally do not track processor or 
memory state, and so can not infer run-time modifications to 
the instruction stream. Some dynamic disassemblers have 
integrated debuggers which allow the user to step through 
instruction execution and can correct misalignments once 
the proper execution path has been determined. However, 
even dynamic disassembly is really static disassembly at a 
particular point in time; that is, analysis can only be per 
formed on the code when the debugger is halted and asked 
to reanalyze the instruction stream. Because run-time modi 
fications of the instruction stream are rare, particularly so 
close in the instruction stream, disassemblers often simply 
ignore changes to the instruction stream as uninteresting to 
display to the user. That is, debuggers often don’t reanalyze 
parts of their instruction stream, particularly that which has 
already been executed. Thus, even dynamic disassemblers 
often fail to update instructions that have been modified at 
run-time even when the instructions are manually single 
stepped through by the user. 

Although in principle, Some dynamic disassemblers allow 
an adversary to step through the real-time instruction modi 
fications and fix the instruction sequences, this would be 
unbearably time consuming to do for every instruction. 
Without a convenient mechanism for automatically disas 
sembling the code, the task of inferring the instruction 
stream becomes a labor intensive, error prone chore for the 
adversary. The individualized (i.e. performed on individual 
instructions) and last minute (i.e. preceding the modified 
instruction immediately or only by only a couple instruc 
tions) nature of the run-time instruction modifications enable 
this technique for foiling adversaries. 

In one embodiment, run-time instruction modifications 
consist of two parts. The first part contains one or more 
instructions which modify an invalid instruction into some 
thing valid. The second part contains one or more instruc 
tions which modify the valid instruction to something 
invalid again. The invalid instruction, in one embodiment, 
has a different instruction length than the valid instruction. 
This causes misaligniments, as described above. 

In another embodiment, the invalid instruction is the same 
length as the valid instruction, but represents a different 
operation. For example, an “add may be replaced with a 
“subtract” or the constant “4” operand of an “add eax, 4” 
instruction may become “add eax, 8”. The code would 
appear to be performing a logically different computation 
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without necessarily misaligning Subsequent disassembly of 
the instruction stream. This subtle misinterpretation caused 
by obfuscation of the instruction sequence may require the 
adversary to spend even more time and effort in an attempt 
to reverse engineer the code. 

Since the processor will be executing the run-time modi 
fication instructions every time the protected code executes, 
whether or not a second operation which returns the valid 
instruction back to invalid is necessary depends on the 
particular method by which the instruction is made valid 
from its invalid state. That is, if a run-time modification 
Snippet is used which can be executed multiple times 
without making the valid instruction invalid, then it is not 
necessary (although it may be desirable) to return the target 
instruction to its original invalid state. For example, uncon 
ditionally overwriting the correct bytes into the instruction 
stream to make the invalid instruction valid could be 
executed on the valid instruction without turning it invalid 
(i.e. it would simply overwrite the correct bytes with the 
same correct bytes). However, if the run-time modification 
involved XORing the invalid instruction with a constant to 
make it valid, a subsequent XOR would make the instruction 
invalid in this case, by returning it to its original state 
(such is the nature of XOR). 

In order to modify an instruction at run-time, either to 
make it valid or to make it invalid, a number of techniques 
may be used. An arithmetic operation may be performed on 
one or more bytes of the instruction. New information may 
be written over one or more bytes of an instruction. Bytes 
may be copied from a location in memory over the instruc 
tion. These methods may be used on the instruction opcodes 
themselves, to change the instruction operation, registers, or 
addressing mode used. These methods may also be used on 
an instruction operand. Such as a constant or target address, 
for example, by changing the target address specified in a 
jump instruction to a different target address. 
As an example, the code in instruction stream 300, as 

previously discussed, should be interpreted as follows: 

EB 04 ; jump to Calladdr 
89 84 8AOO ; incomplete instruction 

Calladdr: 
FF 15 28 10 OO O1 ; call instruction 

However, if the first byte is changed to E9 rather than EB, 
the opcode will be interpreted as a five-byte jump relative 
instruction rather than a two-byte jump relative instruction. 
Hence, a disassembler will interpret this as: 

E9 04 89 84 8A 
OOFF 15 28 OO O1 . . . 

;jmp 8A848904h 
; bogus instruction 

In this example, a code Snippet would be inserted in the 
instruction stream which will change the E9 to an EB at 
Some point shortly before the instruction is run, and. In some 
situations, a code Snippet would also be inserted which 
would change it back to an invalid instruction afterwards. In 
addition to hiding the actual instruction, the effect of this is 
also to cause a misalignment. As an example of modifying 
an operand, the “04” of the “EB 04' instruction above could 
have started as an “09 and been changed at run-time to the 
valid “04” shortly before executing. This would have the 
effect of foiling a static disassembler that might properly 
interpreted the bypass jump as taken. 
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12 
Code Obfuscation Using Both Misalignments and Run-Time 
Modifications 
As alluded to in the above examples, run-time modifica 

tion is particularly powerful when combined with the mis 
alignment technique. Instructions which cause a jump 
over transition for the bypass of the misalignment can be 
toggled to innocuous looking instructions until right before 
they are executed. 

Additionally, run-time modifications can also be made to 
fake jump-over instructions. That is, an instruction which 
appears to jump over other code can be changed to not 
jump-over or to jump a different number of bytes. This is 
useful against disassemblers which assume branches are 
taken, for example. Therefore, all combinations of misalign 
ment and run-time modifications can be used against 
assumptions made by the disassembler. Certain disassem 
blers always assume that a jump is taken when one is 
encountered during disassembly and other disassemblers 
always assume that a jump is not taken. When techniques are 
combined to create a situation in which some jumps will be 
taken when code is executing and Some jumps will not be 
taken, it will be difficult to determine which method applies 
and it will be difficult to analyze the code using existing 
analysis tools. 

FIG. 5 is a diagram of a method according to one 
embodiment for protecting code from disassembly perform 
ing run-time modifications. In step 500, an instruction from 
the code is changed from a first state to a second state. This 
change, as described, may change the opcode or the operand 
of the instruction, may cause an instruction of a first length 
to be changed to have an opcode indicating it will be a 
different length, or otherwise will confuse static and 
dynamic disassembly. 

In order for legitimate execution of the code to not be 
hindered, in step 510, a run-time modification code snippet 
is inserted into the code, so that when the code is executed, 
the run-time modification code snippet will modify said 
instruction from the second (invalid) state to the first (valid) 
state before execution of the instruction. In one embodiment, 
another run-time modification code Snippet may be inserted 
which changes the state of the instruction back to an invalid 
state after execution. 

It is noted that the foregoing examples have been pro 
vided merely for the purpose of explanation and are in no 
way to be construed as limiting of the present invention. 
While the invention has been described with reference to 
various embodiments, it is understood that the words which 
have been used herein are words of description and illus 
tration, rather than words of limitations. Further, although 
the invention has been described herein with reference to 
particular means, materials and embodiments, the invention 
is not intended to be limited to the particulars disclosed 
herein; rather, the invention extends to all functionally 
equivalent structures, methods and uses, such as are within 
the scope of the appended claims. Those skilled in the art, 
having the benefit of the teachings of this specification, may 
effect numerous modifications thereto and changes may be 
made without departing from the scope and spirit of the 
invention in its aspects. 
What is claimed: 
1. A method for protecting code from disassembly, said 

method comprising: 
inserting a first bypass code Snippet into a first location in 

said code, where said first bypass code Snippet, upon 
execution, causes execution to transition to a second 
location in said code: 
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inserting a bogus instruction Snippet into a third location 
in said code, such that execution of said code will, as 
a result of said bypass, not reach said third location, 

wherein the selection of the first bypass code snippet and 
the bogus instruction Snippet preserves an entropic 
distribution. 

2. The method of claim 1 where said first bypass code 
Snippet causes said third location to be bypassed during 
execution of said code. 

3. The method of claim 1, where said first bypass code 
Snippet is followed sequentially by said second location in 
code, and where said third location is a location referred to 
by said bypass code Snippet. 

4. The method of claim 1, where said first bypass code 
Snippet comprises at least one selected from among the 
following: a jump instruction; a return instruction, and a call 
instruction. 

5. The method of claim 1, where said bogus instruction 
Snippet comprises an instruction fragment comprising one or 
more opcode bytes describing an instruction of a certain 
number of bytes, and where said instruction fragment is of 
a length not equal to said certain number of bytes. 

6. The method of claim 1, where said bogus instruction 
Snippet comprises randomly-selected bytes. 

7. A method for protecting code for disassembly, com 
prising at least two misalignment insertions, each of said 
misalignment insertions comprising the insertion of a first 
bypass code Snippet and a bogus instruction Snippet accord 
ing to the method of claim 1, wherein the insertion of the 
first bypass code Snippet and the bogus instruction Snippet 
preserves an entropic distribution. 

8. The method of claim 7, where the selection of said first 
bypass code Snippets and said bogus instruction Snippets is 
performed in order to include a variety among said first 
bypass code Snippets and said bogus instruction Snippets. 

9. The method of claim 8, where said entropic distribution 
is preserved for at least one of the following: a frequency of 
instruction types used, frequency counts of address refer 
ences, and frequency counts of register references. 

10. The method of claim 1, further comprising: 
modifying a first instruction of said code from a first state 

to a second state; 
inserting a run-time modification code Snippet such that 
when said code is executed, said run-time modification 
code snippet will modify said first instruction from said 
second state to said first state before execution of said 
first instruction. 

11. The method of claim 1, further comprising: 
inserting a second bypass code Snippet into a fourth 

location in said code, where said second bypass code 
Snippet, upon execution, causes execution to transition 
to said first location. 

12. The method of claim 11, where one of said first bypass 
code Snippet and said second bypass code Snippet causes a 
non-sequential transition upon execution, and where the 
other of said first bypass code Snippet and said second 
bypass code Snippet causes a sequential transition upon 
execution. 

13. A computer readable storage medium having a plu 
rality of computer-executable instructions stored thereon, 
said instructions for performing the following: 

inserting a first bypass code Snippet into a first location in 
said code, where said first bypass code Snippet, upon 
execution, causes execution to transition to a second 
location in said code: 
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14 
inserting a bogus instruction Snippet into a third location 

in said code, such that execution of said code will, as 
a result of said bypass, not reach said third location, 

wherein the selection of the first bypass code snippet and 
the bogus instruction Snippet preserves an entropic 
distribution. 

14. A system for protecting code from disassembly, said 
system comprising: 

a computing processor adapted to receive and execute 
computer-readable instructions; 

computing memory, said computing memory having 
instructions stored therein for performing the following 
when executed by said computing processor: 

inserting a first bypass code Snippet into a first location in 
said code, said first bypass code Snippet, upon execu 
tion, causing execution to transition to a second loca 
tion in said code; and 

inserting a bogus instruction Snippet into a third location 
in said code, such that execution of said code will, as 
a result of said bypass, not reach said third location, 

wherein the selection of the first bypass code snippet and 
the bogus instruction Snippet preserves an entropic 
distribution. 

15. The system of claim 14 where said first bypass code 
Snippet causes said third location to be bypassed during 
execution of said code. 

16. The system of claim 14, where said first bypass code 
Snippet is followed sequentially by said second location in 
code, and where said third location is a location referred to 
by said bypass code Snippet. 

17. The system of claim 14, where said first bypass code 
Snippet comprises at least one selected from among the 
following: a jump instruction; a return instruction, and a call 
instruction. 

18. The system of claim 14, where said bogus instruction 
Snippet comprises an instruction fragment comprising one or 
more opcode bytes describing an instruction of a certain 
number of bytes, and where said instruction fragment is of 
a length not equal to said certain number of bytes. 

19. The system of claim 14, where said bogus instruction 
Snippet comprises randomly-selected bytes. 

20. The system of claim 14, further comprising instruc 
tions for performing the following: 

modifying a first instruction of said code from a first state 
to a second state; and 

inserting a run-time modification code Snippet such that 
when said code is executed, said run-time modification 
code snippet will modify said first instruction from said 
second state to said first state before execution of said 
first instruction. 

21. The system of claim 14, further comprising instruc 
tions for performing the following: 

inserting a second bypass code Snippet into a fourth 
location in said code, where said second bypass code 
Snippet, upon execution, causes execution to transition 
to said first location. 

22. The system of claim 21, where one of said first bypass 
code Snippet and said second bypass code Snippet causes a 
non-sequential transition upon execution, and where the 
other of said first bypass code Snippet and said second 
bypass code Snippet causes a sequential transition upon 
execution. 


