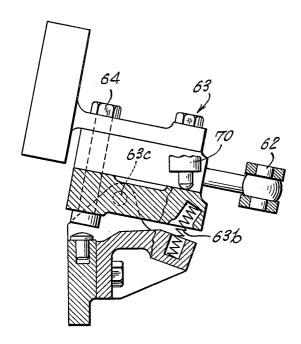
DISTRIBUTORS NOTABLY FOR FEEDING MACHINE-TOOLS AND THE LIKE
Filed Sept. 24, 1959 7 Sheets-Sheet 1

INVENTOR ERNEST SOSOLIC

BY

olte and Note

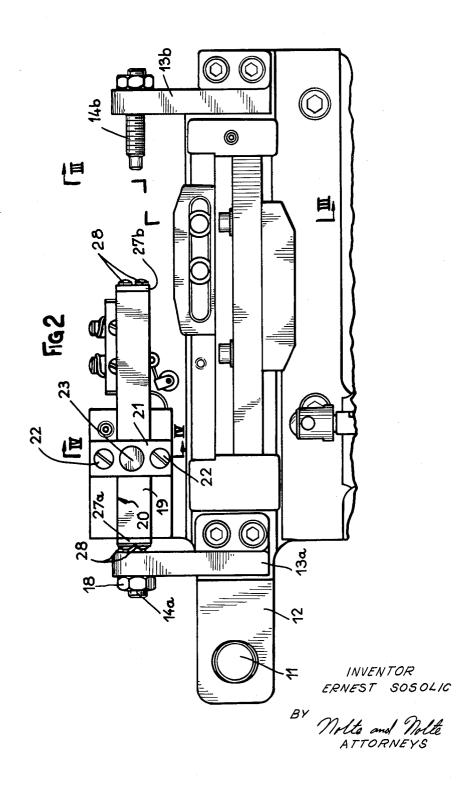

June 11, 1963

E. SOSOLIC

3,093,250

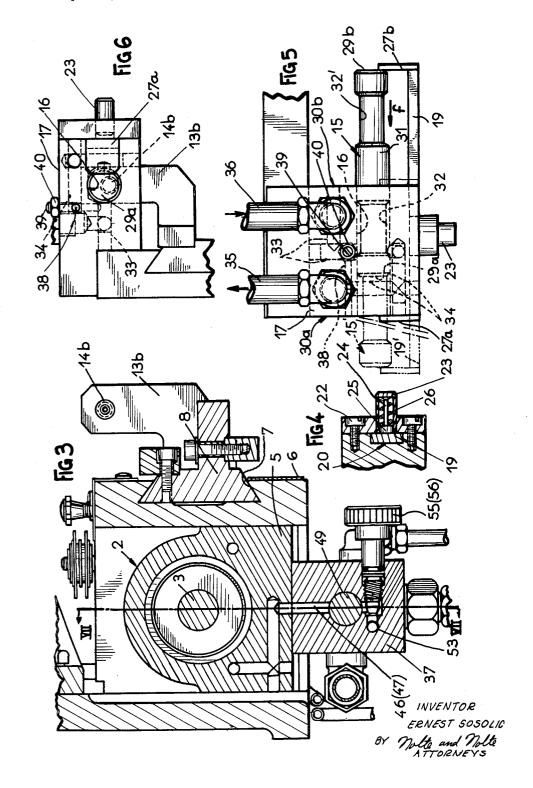
DISTRIBUTORS NOTABLY FOR FEEDING MACHINE-TOOLS AND THE LIKE
Filed Sept. 24, 1959 7 Sheets-Sheet 2

T - 9-la -

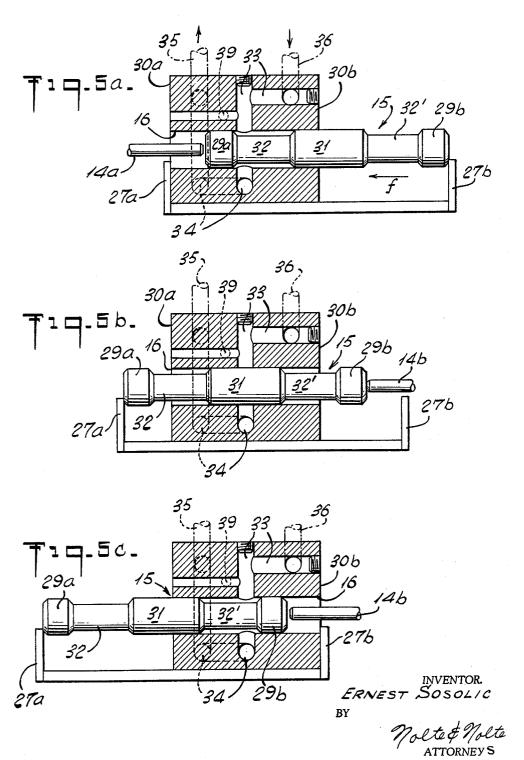


INVENTOR. Ernest Sosolic

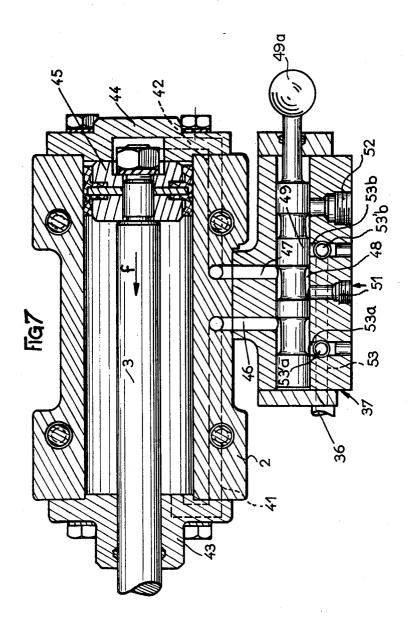
BY


ATTORNEVS

DISTRIBUTORS NOTABLY FOR FEEDING MACHINE-TOOLS AND THE LIKE
Filed Sept. 24, 1959 7 Sheets-Sheet 3

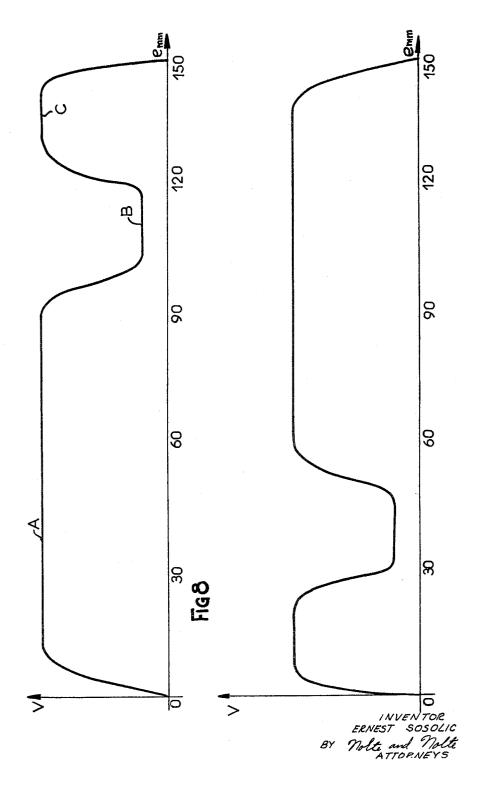

Filed Sept. 24, 1959

7 Sheets-Sheet 4


Filed Sept. 24, 1959

7 Sheets-Sheet 5

Filed Sept. 24, 1959


7 Sheets-Sheet 6

INVENTOR
ERNEST SOSOLIC
Molto and Nolte

Filed Sept. 24, 1959

7 Sheets-Sheet 7

1

3,093,250 DISTRIBUTORS NOTABLY FOR FEEDING MACHINE-TOOLS AND THE LIKE Ernest Sosolic, Ornans, France, assignor to Societe Ornanaise de Constructions Mecaniques (S.O.C.), Or-

nans, France

Filed Sept. 24, 1959, Ser. No. 842,030 Claims priority, application France June 29, 1959 8 Claims. (Cl. 214—1)

The present invention is concerned chiefly with improvements in distributors constituting automatic feed means for machine-tools and miscellaneous apparatus.

This invention relates more specifically to distributors to be reciprocated between two end positions, the movements of this arm being controlled by means of a pneumatic or like fluid-actuator.

In a distributor of this type the gripping arm travels according to a continuous cycle between a piece-containing reserve or magazine and the bed or working surface or station of the machine associated therewith, on which the pieces to be machined, shaped or otherwise worked

are deposited by turns.

A typical example of a distributor of this character is 25 described in the U.S.A. patent application Ser. No. 776,-017, filed on November 24, 1958, by the same applicant and entitled "Distributor Device." The gripping arm of this prior device, which rotates about a vertical axis during its feed and return movements, travels between two 30 line IV—IV of FIGURE 2; extreme angular positions determined in a positive manner by a pair of stop or abutment members engaged by turns by the aforesaid arm. This angular movement is followed by a firstly downward and then upward movement (or vice versa) in order for example to lay the piece 35 thus transported onto the bed or like position of the machine associated with the device. If the associated machine has to be fed at a relatively high rate, it is advantageous to apply some retarding force to the gripping arm at the end of the feed and return strokes, in order to 40 damp out its shock against the aforesaid abutment means.

The improvement according to this invention is remarkable notably in that the exhaust of the actuator controlling the reciprocations of the gripping arm is directed through a braking device of the slide-valve type controlled 45 by the piston ram of said cylinder and adapted to retard the stroke of the piston movable in said cylinder, during a predetermined time period preceding the completion of

its stroke in either direction.

Practically, this braking device is designed with a view 50 to retard the movement of the piston in said cylinder only when the gripping arm engages the corresponding end abutments, the subsequent movement of the piston controlling the vertical movement of the gripping arm which takes place at a normal speed.

The advantage arising from this improved arrangement is considerable for, as will be readily appreciated by anybody conversant with the art, it affords the maximum speeding up of the movements and therefore increases the rate of operation of the gripping arm accordingly.

According to a further feature characterizing this invention, the aforesaid braking device consists essentially of a distribution block formed with at least two inner passages for the inlet air and the exhaust air to and from the pneumatic cylinder, respectively, of an inner bore communicating with said passages and having slidably mounted therein a slide-valve member operatively connected to the piston ram of said cylinder, and, between the aforesaid pair of passages, of an inner by-pass duct of relatively reduced diameter in which the fluid is caused to flow dur- 70 ing the braking period.

Preferably, the aforesaid by-pass duct comprises a

needle valve or like throttling member for adjusting at will, from the outside, the cross-sectional area of this duct and therefore the braking time, whereby the duration of the feed and return strokes or cycles of the gripping arm can be adjusted as required.

This invention is also concerned, by way of novel industrial products, with the distributor devices for automatically feeding miscellaneous machines, of the type comprising a gripping arm effecting alternate movements 10 or cycles under the control of a fluid-actuated cylinder or the like, these devices being provided with a braking system of the type broadly set forth hereinabove.

Other features and advantages of this invention will become apparent as the following description proceeds with of the type comprising at least one gripping arm adapted 15 reference to the accompanying drawings forming part of this specification and illustrating diagrammatically by way of example a typical form of embodiment of the braking device arrangement constituting the subject-matter of this invention. In the drawings:

FIGURE 1 is a fragmentary perspective view of the distributor, showing more particularly the braking device of this invention;

FIGURE 1a is a fragmentary cross-sectional view showing the tiltability of the distributor;

FIGURE 2 is an elevational view showing the braking device of FIGURE 1;

FIGURE 3 is a vertical section taken upon the line III—III of FIGURE 2;

FIGURE 4 is a fragmentary section taken upon the

braking device;

FIGURES 5a-5c are horizontal sections showing details of the braking device of FIGURE 5;

FIGURE 6 is a side view showing the block illustrated in FIGURE 5;

FIGURE 7 is a vertical section taken upon the line VII—VII of FIGURE 3; and

FIGURE 8 is a diagram wherein the speed V is plotted against the stroke e during the feed and return strokes respectively of the gripping arm responsive to the braking device of this invention.

Referring first to FIGURE 1, there is shown diagrammatically therein a distributor of the type described in the aforesaid patent application, this distributor, as will be explained presently, having associated therewith a braking device constituting the improvement of this invention.

The distributor comprises essentially an oscillating disc I movable angularly about a fixed central shaft 57, the alternate movements or reciprocations of this disc being controlled by a cylinder 2 the piston ram 3 of which actuates a rack-forming rod 4 in meshing engagement with a pinion 58 coaxial and solid with the disc 1. This oscillating disc 1 controls in turn the alternate movements of the gripping arm 59 by means of a connecting rod 60 pivotally connected at one end to a peripheral pin 61 carried by the disc 1 and at its other end to a pin 62 carried by the support 63 of the gripping arm. This support 63 is also pivotally mounted about a fixed vertical axis consisting for example of a pin or bolt 64, and is adapted to move angularly between two end positions defined by a pair of fixed or adjustable stop or abutment members 65, 65'.

The vertical reciprocations of the gripping arm are controlled by a peripheral cam face 66 formed on or carried by the disc 1; to this end, this cam face is engaged by a follower 68 secured on one end of a bent lever 67 fulcrumed at 69 and having its other end 70 adapted to act upon the base of the aforesaid support 63 of the gripping arm. This case is also adapted to tilt vertically to a limited extent about a pivot 63c, and is biased in the tilting direction by a compression spring 63b, the

spring also maintaining the cam follower against the cam 66. When the follower 68 rides on the elevated portion of the cam, the support 63 is tilted against the bias of the spring 63b due to the pressure of the fulcruming end 70 of the lever 67 (FIGURE 1a).

Secured on the front face of the block 5 of cylinder 2 is a mounting plate 6 in which a longitudinal dovetail-sectioned guide way 7 is formed and adapted to receive a slide 8 (FIGURE 3) which, as will be explained presently, constitutes a driving member for actuating the braking device shown in block form at 9 in FIGURE 1. This slide moves constantly in unison with the ram 3 of cylinder 2, and is driven for example by means of the pin 10 connecting the piston ram 3 to the rack 4, this pin also engaging a hole 11 provided in the end 12 of slide 8.

This slide 8 carries at either end a bent lug 13a, 13b disposed in a vertical plane, each lug carrying at its upper end a driving pin or screw 14a, 14b, these two pins or screws being in axial alignment not only with each other but also with an intermediate slide-valve 20 member 15 slidably mounted in a bore 16 formed in the block or body 17 of the braking device 9 and constituting the distribution block proper. The axis of this bore 16 and therefore the direction of movement of the slide valve member 15 as well as the direction of movement of 25 the slide 8 are parallel to the axis of the actuator cylinder 2.

Preferably, the driving members 14a, 14b of the slide valve 15 consist as shown of screws engaging tapped holes formed in the lugs 13a, 13b; these screws being 30 adapted to be locked in position by nuts 18 or like members

The displacements of the slide valve 15 in the bore 16 of braking block 17 are retarded or damped by a plate or bar 19 slidably mounted in a groove 20 formed in the 35 front face of the braking block 17 and extending in a direction parallel to the guide way 7. This bar 19 is held in position by a transverse piece 21 disposed straddlewise thereon and secured on the front face of the braking block 17 by a pair of screws or like fastening members 22. In its center this transverse piece 21 is formed with a tapped hole engaged by a hollow screw-threaded stud 23 (FIGURE 4) carrying an internal braking pad 24 formed with a head 25 resiliently urged by a spring 26 against the front face of the bar 19, the spring 26 being co-axial to the pad 24 and housed in the hollow stud 23.

With this arrangement, the to-and-fro movements of the bar 19 in groove 20 of the braking block are constantly retarded by the friction thus set up.

At either end the bar 19 carries a small abutment plate 27a, 27b projecting rearwardly and secured on this bar by a pair of screws or like fastening members 28. These plates 27a, 27b act firstly as retarding members as they carry along the bar 19 by being located in the path of movement of the end portions 29a, 29b of slide valve 55 to this slide valve and to the plate 19 by engaging upon completion of their stroke either of the lateral faces 30a, 30b of braking block 17 (see FIGURE 5).

The slide valve 15, on either side of a central portion 31 having an outer diameter corresponding to the inner diameter of the bore 16 is formed with two portions 32, 32' of reduced diameter adapted to allow the free communication, in a given position of the slide valve 15, between two inner passages 33, 34 provided in the braking block 17 and opening into the bore 16. The passage 34 leads into a discharge pipe 35 emerging from the top face of this block 17, and the other passage 33 leads into a pipe 36 also emerging from the top face of block 17 and connected through a slave valve 37 (FIGURE 7) to 70 the exhaust side of cylinder 2.

The braking block 17 is also provided with another inner passage 38 of smaller diameter than the passages 33, 34 and constituting therebetween a by-pass duct the cross-sectional area of which can be adjusted at will by means 75

4

of a needle-valve or like throttle member 39 projecting from the top face of the braking block (see FIGURE 6). A nut 40 is provided for locking this needle-valve 39 in the desired adjustment position.

As illustrated in FIGURE 7 the cylinder 2 of the actuator has two longitudinal passages 41, 42 formed therein which on the one hand open at either end of the chamber of piston 45 respectively, through end plates 43, 44 of this cylinder, and on the other hand communicate with a pair of inner passages 46, 47 of the slave valve 37, these passages leading in turn into the cylindrical bore 48 of this valve, in which the slide valve member 49 is slidably mounted. This slave valve 37 actuated by a master valve shown diagrammatically at 50 in FIGURE 1, which in turn is governed by the reciprocating movement of the disc 1, is adapted to cause the inner passages 41 and 42 of cylinder 2 to communicate by turn either with the exhaust pipe 36 through the passages 53, 53a, 53b, or with a pipe 51 connected to a source of compressed air.

Moreover, there is shown at 52 in FIGURE 7 a distributing outlet leading from the slave valve 37 to the blowing device.

The movement of piston 45 in cylinder 2 is reversed by moving the slide valve member 49 in the bore 48. This can be either accomplished manually by means of a handle 49a, integral with the slide valve member 49, or by automatic means. The automatic reversing operation can be accomplished e.g. by introducing compressed air alternately on opposite sides of the bore 48. The alternation of the air can be governed by the master valve 50.

A pair of tapped orifices 53'a and 53'b leading into the inner exhaust passages 53a, 53b and shown in FIG-URE 7 are also adapted to receive a pair of screws 55, 56 (FIGURE 1) formed with knurled heads whereby the cross-sectional area of the cylinder exhaust may be adjusted from the outside.

Under these conditions it is clear that by rotating the heads of these screws 55, 56 in one or the other direction the speed of the piston in cylinder 2 can be adjusted at will independently of the braking time which, as already explained, is adjusted by means of the needle-valve 39 in the braking block.

The braking device described hereinabove operates as follows:

At the beginning of a feed stroke (the members being in the positions shown in FIGURES 2, 5 and 7) the slave valve 37 connects the compressed air inlet 51 to the inner passages 47, 42 while the passages 41, 46 communicate with the exhaust pipe 36 through the inner passages 53a, 53 of valve 37. The slide valve 15 of the braking device occupies the end position shown in solid line in FIGURE 5 and the pipe 36 communicates freely with the discharge pipe 35 through the inner passages 33 and 34 of the braking block. The piston 45 will then move to the left (as shown by the arrow f, FIGURE 7) and carry along the slide 8. As the driving screw 14b of this slide engages the end 29b of slide valve 15, the latter is carried along in turn in the direction of the arrow f (FIGURE 5) and this movement continues at a relatively fast rate (portion A of the "feed" stroke in FIGURE 8) until the central portion 31 of slide valve 15 blocks the ports through which the inner passages 33 and 34 of block 17 lead into the inner bore 16.

It will be seen (FIGURES 5-5c) that the distance between the two retarding plates 27a, 27b of bar 19 is substantially greater than the length of the slide valve 15, so that this bar 19 will not be carried along immediately in the direction of the arrow f by the slide valve 15 when the latter commences its movements. Therefore, to prevent this slide valve 15, during the initial portion of its travel and under the influence of the shock applied initially thereto, from moving faster than the ram and block prematurely, the positioning of the outlet ports of passages 33 and 34 in bore 16 is so calculated that the distance between them and the side face 30a of block 17

5

be smaller than the total length of portions 29a and 32 of the slide valve 15, so that in case the slide valve engaged prematurely the plate 27a of bar 19, the inner passage 34 would still communicate with the inner passage 33.

Under these conditions, this communication is discontinued only when the slide valve 15, after engaging with its end 29a the abutment plate 27a, continues its travel (while being retarded by the bar 19) and blocks with its central portion 31 the ports corresponding to these passages 33, 34. In this case, the exhaust takes place through the by-pass duct 38 whereby the movement of the piston 45 will be retarded during a time period corresponding to the portion B of the diagram of FIGURE 8. This retarding action continues as long as the central portion 31 15 of slide valve 15 registers with the ports of passages 33, 34. This position of the slide valve 15 is also calculated with a view to cause this retarding action to take place immediately before the support of the gripping arm or member engages its corresponding end stop. However, in 20 the case contemplated herein, this lagging action has a limited duration and is followed by a relatively fast end portion of the stroke during the downward movement of the gripping member on the machine bed or like working place, this fast movement being allowed by the fact that the portion 32' of reduced diameter of slide valve 15 registers in turn, at the end of the stroke (portion C of the diagram of FIGURE 8), with the ports of passages 33 and 34, thus reestablishing the free communication between the cylinder exhaust and the outlet pipe 35.

During the return stroke the movements just described take place in a similar way but their order is reversed.

During this return stroke the slide driving screw 14a

moves the slide valve 15 to its initial position.

Then the cylinder exhaust takes place, for a reversed 35 position of the valve member 49 of slave valve 37, through the other end passage 42 of cylinder 2.

Of course, the braking device described hereinabove may also be associated with distributors different in type and construction from the one described and illustrated herein by way of example, provided that they comprise at least and generally a gripping member or arm reciprocated under the control of a pneumatic or like fluid-actuated cylinder.

Besides, the invention should not be construed as being limited to the specific form of embodiment shown and described herein, as many modifications may be brought thereto without departing from the spirit and scope of the invention as set forth in the appended claims.

What I claim is:

1. In a distributor for automatically feeding pieces to machine-tools comprising at least one gripping arm, two end abutments for limiting the oscillation of said arm, a fluid actuator, piston means in said actuator for reciprocating said arm, a braking device on the exhaust passage of said fluid actuator, slide-valve means in said braking device controlled by the piston means in said actuator and consisting of a distributing block, an inner bore in said block, a slide-valve member slidably mounted in said inner bore and responsive to the motion of said piston means, at least two inner passages opening in said inner bore constituting the inlet and outlet passages for the actuator exhaust fluid through said distributing block, a by-pass duct of a variable cross-sectional area smaller than the one of said two inner passages connecting di- 65 rectly said inlet passage with said outlet passage to allow a reduced flow of fluid between said passages when their

F

openings into said inner bore are closed by said slide valve member, said reduced flow corresponding to a breaking period which occurs, during a predetermined time prior to the completion of every stroke of said actuator in either direction.

2. Braking device as claimed in claim 1, wherein needle-valve means are provided in said by-pass duct whereby the cross-sectional area of the latter may be

adjusted from the outside.

3. Braking device as claimed in claim 2 wherein a central portion having substantially the same diameter as said inner bore and two portions of a smaller diameter adjacent to the ends of said slide-valve member are provided on the latter to form a direct connection between said inlet and outlet passages when said portions of a smaller diameter register with said openings, said direct connection being prohibited when the latter are closed by said central portion.

4. In a braking device as claimed in claim 3, a slide movable in a direction parallel to said piston means motion and carried along by said piston means, a pair of pin means mounted on said slide substantially coaxial to said slide-valve member, the distance between said pin means being greater than the length of said slide-valve member so that the latter is driven only during one part of the piston means stroke by said piston means.

5. Braking device as claimed in claim 4 wherein the arrangement of said pin means in relation to said slide-valve member is executed to ensure that during any cycle the braking period takes place before the end of a stroke and before said gripping arm engages one of said end abutments and is followed by a short time period corresponding to the end of the stroke at a normal speed.

6. In a braking device as claimed in claim 5, a guide groove provided in said distributing block, a friction plate means, slidably mounted in said guide groove, small plate means extending at either end of said friction plate means and abutting on the one hand against one end of said slide-valve member to follow its motion, and on the other hand, at the end of the slide-valve member travel, against one face of said block acting as a limit stop, the reciprocating motion of said slide-valve member in said inner bore being thus limited and retarded.

7. In a braking device as claimed in claim 6, a transverse plate secured to said distributing block straddlewise on said friction plate means to hold the latter in position in said guide groove, a retaining friction pad on said transverse plate, and resilient means urging said trans-

verse plate against said friction plate.

8. In a distributor comprising a braking device according to claim 7, a fixed guide way fastened to the body of said fluid actuator in which said slide is mounted, an orifice provided in the end portion of said slide, a pin engaging said orifice, whereby said piston means is controlling said slide and consequently said slide-valve member which controls in turn the motion of the distributor gripping means.

References Cited in the file of this patent

	UNITED STATES PATENTS
1,877,102	Whitesell Sept. 13, 1932
1,943,061	Douglas Jan. 9, 1934
2,081,580	Diffenderffer May 25, 1937
2,811,267	Bock Oct. 29, 1957

FOREIGN PATENTS 216,559 Australia ______ July 2, 1958