
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2017/0060538 A1

Barsness et al.

US 20170060538A1

(43) Pub. Date: Mar. 2, 2017

(54)

(71)

(72)

(21)

(22)

(63)

FUSION RECOMMENDATION FOR
PERFORMANCE MANAGEMENT IN
STREAMS

Applicant: International Business Machines
Corporation, Armonk, NY (US)

Inventors: Eric L. Barsness, Pine Island, MN
(US); Michael J. Branson, Rochester,
MN (US); John M. Santosuosso,
Rochester, MN (US)

Appl. No.: 14/868,679

Filed: Sep. 29, 2015

Related U.S. Application Data
Continuation of application No. 14/838,585, filed on
Aug. 28, 2015.

Fusion
Candidate

SOURCE
710

Publication Classification

(51) Int. Cl.
G06F 9/44 (2006.01)

(52) U.S. Cl.
CPC G06F 8/20 (2013.01)

(57) ABSTRACT

Fusion hints can be generated in order to recommend
streams application actors (like streams operators) for fusion
or separation in a streams computing environment. Profiles
can be made for the streams application actors, and fusion
candidates can be determined from the profiles, based on
fusion candidate rules. Based on the fusion candidate rule
satisfied, a particular associated fusion recommendation can
be identified and made to the user via a user interface. The
recommendation can be displayed, along with the identities
of the streams application actors identified as fusion candi
dates.

Performance Metrics
Performance Performance | | | Pope Pilge

1
2

Patent Application Publication Mar. 2, 2017 Sheet 1 of 13 US 2017/0060538A1

COMPLER 136

DEBUGGER 137
DEVELOPMENT
SYSTEM 102

FIG. 1

Patent Application Publication Mar. 2, 2017 Sheet 2 of 13 US 2017/0060538A1

212

TO
I/O DEVICES COMMUNICATIONS

NETWORK 120

2OS
215

CPU I/O DEVICE NETWORK
INTERFACE INTERFACE

INTERCONNECT (BUS) 220

225 230

MEMORY STORAGE

PROCESSING
ELEMENTS 235 BUFFER 260

STREAM 40
OPERATOR OPERATING

SYSTEM 262

FIG. 2 110

Patent Application Publication Mar. 2, 2017 Sheet 3 of 13 US 2017/0060538A1

312

TO
I/O DEVICES COMMUNICATIONS

NETWORK 120

330

MEMORY STORAGE

STREAM OPERATOR
MANAGER GRAPH

FUSION
MANAGER

MANAGEMENT SYSTEM 105

FIG 3

Patent Application Publication Mar. 2, 2017 Sheet 4 of 13 US 2017/0060538A1

412

TO
I/O DEVICES COMMUNICATIONS

NETWORK 120

405
415

CPU I/O DEVICE NETWORK
d INTERFACE INTERFACE

INTERCONNECT (BUS)

MEMORY STORAGE

COMPLER OPERATING
SYSTEM 432

DEVELOPMENT SYSTEM

FG. 4

US 2017/0060538A1 Mar. 2, 2017. Sheet 5 of 13 Patent Application Publication

Z?S CHORI[IOS

Patent Application Publication Mar. 2, 2017 Sheet 6 of 13 US 2017/0060538A1

600 1.

604
generate streams

application actor profiles

606
identify set of fusion

candidates from profiles

608 display identity of streams
application actors and
fusion recommendation

F.G. 6

US 2017/0060538A1 Mar. 2, 2017. Sheet 7 of 13 Patent Application Publication

US 2017/0060538A1 Mar. 2, 2017. Sheet 8 of 13

008

Patent Application Publication

US 2017/0060538A1 Mar. 2, 2017. Sheet 9 of 13 Patent Application Publication

006_/

US 2017/0060538A1

seÃ

Mar. 2, 2017. Sheet 10 of 13 Patent Application Publication

II º OIH

US 2017/0060538A1

~~~~ is, 
o 
x 

Mar. 2, 2017. Sheet 11 of 13 

¿<<<<<<!--***************<<<<). xxx----**:\;. 

Patent Application Publication 

  

  

  

  

  

  



US 2017/0060538A1 Mar. 2, 2017. Sheet 12 of 13 Patent Application Publication 

ZI “SOIH 

NJ 

2 

www.w. 

saaaaaaaaaaaa. 

x: 

******<<<<<»****** 

š?: 

    

  

  

  

  

  

    

  

  

  

  

  

  

  



US 2017/0060538A1 

2 

<!!!!!! 

wea: 

to: ava. 

<<<<<<<<<<) 

a. 

2% 

a 
awa 

ww.------------------- 

a 

assass 
8% 

3. 
: 
3. 

. 

: 
3 

****----****** 

www. 

a/a, 

www. 
8---------- 

WWWWWWWWWWWW-8 
areer-rever 

*<<<<<<<<<<<<<<<<? 

Mar. 2, 2017. Sheet 13 of 13 

?wwwwwwwwwwwwwwwwwwwwwww? ?wwwwwwwwwwwwwwwwwwwwwww» 
? ?wwwwwwwwwwwwwwwwwwwwww! ?ºwwwwwwwwwwwwwwwwwwwwww» 

wwwwwwwwwwwwwwww? 

Patent Application Publication 

  

  

  

  

  

  

    

  

  

  

  

    

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  



US 2017/0060538 A1 

FUSION RECOMMENDATION FOR 
PERFORMANCE MANAGEMENT IN 

STREAMS 

BACKGROUND 

0001. The present disclosure relates to stream computing, 
and more particularly to the use of an integrated develop 
ment environment in streams computing. 
0002 Database systems are typically configured to sepa 
rate the process of storing data from accessing, manipulat 
ing, or using data stored in a database. More specifically, 
database systems use a model in which data is first stored 
and indexed in a memory before Subsequent querying and 
analysis. In general, database systems may not be well Suited 
for performing real-time processing and analyzing stream 
ing data. In particular, database systems may be unable to 
store, index, and analyze large amounts of streaming data 
efficiently or in real time. 
0003. An integrated development environment (IDE) 
may be a software application that provides facilities to 
computer programmers for Software development. An IDE 
may be designed to facilitate programmer productivity. An 
IDE may consist of a source code editor, build automation 
tools, and a debugger. An IDE may also have intelligent code 
completion capabilities. 
0004 While database systems that are configured to 
analyze large amounts of streaming data efficiently in real 
time may provide a number of benefits, their introduction to 
the development world is relatively new. Thus, programmers 
and developers may be unfamiliar with a data streaming 
environment, which can make it difficult for developers to 
best design, troubleshoot, and optimize a system. Without an 
advanced understanding of arrangement and compartmen 
talization of streams operations in a streams operator graph, 
many of the benefits of streams applications may be lost. 

SUMMARY 

0005 Embodiments of the present disclosure may be 
directed toward a method for recommending streams appli 
cation actors for fusion, where the streams application actors 
are dispersed on an operator graph within a streaming 
environment. A system may generate a streams application 
actor profile for each of two or more streams application 
actors. The two or more streams application actors may be 
determined to be fusion candidates, based on the streams 
application actors satisfying a fusion candidate rule. Each of 
the fusion candidate rules may be associated with one or 
more fusion recommendations. A fusion recommendation 
associated with the rule may be identified and an identity of 
each of the two or more streams application actors along 
with the fusion recommendation may be displayed. Embodi 
ments of the present disclosure may also be directed toward 
a system or computer program product for recommending 
streams application actors for fusion. 
0006 Advantages of the invention over other art includes 
the ability to hint to developers an improvement or improve 
ments for the streams system. Rather than requiring a 
developer have full understanding of both the streams cod 
ing environment as well as the current deficiencies or 
strengths of a particular streams operator graph, the system 
can identify fusion candidates and make recommendations 
to combine or separate the streams application actors 

Mar. 2, 2017 

according to parameters. In this way, a developer can make 
modifications and improvements to a system using current 
and informed metrics. 
0007. In some embodiments, the fusion recommendation 
may be to fuse the fusion candidates together in the same 
processing element. In other embodiments, the fusion rec 
ommendation may be to separate the two fusion candidates 
from the same processing element. For example only, some 
of the data in the streams application actor profile on which 
the fusion candidates can be identified can include historical 
central processing unit (CPU) usage, processing time, tuple 
rates, machine configuration, and current CPU usage. In this 
way, in Some embodiments of the disclosed, the system can 
analyze historical and real time data like CPU usage and 
processing time when determining which streams applica 
tion actors can be identified as fusion candidates. This data 
or analysis of this data can be provided to a developer so the 
developer can make informed decisions. 
0008. The above summary is not intended to describe 
each illustrated embodiment or every implementation of the 
present disclosure. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0009. The drawings included in the present application 
are incorporated into, and form part of the specification. 
They illustrate embodiments of the present disclosure and, 
along with the description, serve to explain the principles of 
the disclosure. The drawings are only illustrative of certain 
embodiments and do not limit the disclosure. 
0010 FIG. 1 illustrates a computing infrastructure con 
figured to execute a stream computing application, accord 
ing to various embodiments. 
0011 FIG. 2 illustrates a more detailed view of a compute 
node of FIG. 1, according to various embodiments. 
0012 FIG. 3 illustrates a more detailed view of the 
management system of FIG. 1, according to various embodi 
mentS. 

0013 FIG. 4 illustrates a more detailed view of the 
development system of FIG. 1, according to various embodi 
mentS. 

0014 FIG. 5 illustrates an operator graph for a stream 
computing application, according to various embodiments. 
0015 FIG. 6 illustrates a flow diagram for making fusion 
recommendations for streams application actors, according 
to various embodiments. 
0016 FIG. 7 illustrates a block diagram of a user inter 
face, according to various embodiments. 
0017 FIG. 8 illustrates a block diagram of a user inter 
face, according to various embodiments. 
0018 FIG. 9 illustrates a tabular display, according to 
various embodiments. 
0019 FIG. 10 illustrates a method for recommending 
fusion candidates in a streams computing environment, 
according to various embodiments. 
0020 FIG. 11 depicts a cloud computing node according 
to an embodiment of the present invention. 
0021 FIG. 12 depicts a cloud computing environment 
according to an embodiment of the present invention. 
0022 FIG. 13 depicts abstraction model layers according 
to an embodiment of the present invention. 
0023. While the invention is amenable to various modi 
fications and alternative forms, specifics thereof have been 
shown by way of example in the drawings and will be 
described in detail. It should be understood, however, that 



US 2017/0060538 A1 

the intention is not to limit the invention to the particular 
embodiments described. On the contrary, the intention is to 
cover all modifications, equivalents, and alternatives falling 
within the spirit and scope of the invention. 

DETAILED DESCRIPTION 

0024 Aspects of the present disclosure relate to stream 
computing, and in particular, to the use of an integrated 
development environment in streams computing. While the 
present disclosure is not necessarily limited to Such appli 
cations, various aspects of the disclosure may be appreciated 
through a discussion of various examples using this context. 
0025 Stream-based computing and stream-based data 
base computing are emerging as a developing technology for 
database systems. Products are available which allow users 
to create applications that process and query streaming data 
before it reaches a database file. With this emerging tech 
nology, users can specify processing logic to apply to 
inbound data records while they are “in flight, with the 
results available in a very short amount of time, often in 
fractions of a second. Constructing an application using this 
type of processing has opened up a new programming 
paradigm that will allow for development of a broad variety 
of innovative applications, systems, and processes, as well 
as present new challenges for application programmers and 
database developers. 
0026. In a stream computing application, stream opera 
tors are connected to one another such that data flows from 
one stream operator to the next (e.g., over a TCP/IP socket). 
When a stream operator receives data, it may perform 
operations, such as analysis logic, which may change the 
tuple by adding or subtracting attributes, or updating the 
values of existing attributes within the tuple. When the 
analysis logic is complete, a new tuple is then sent to the 
next stream operator. Scalability is achieved by distributing 
an application across nodes by creating executables (i.e., 
processing elements), as well as replicating processing ele 
ments on multiple nodes and load balancing among them. 
Stream operators in a stream computing application can be 
fused together to form a processing element that is execut 
able. Doing so allows processing elements to share a com 
mon process space, resulting in much faster communication 
between stream operators than is available using inter 
process communication techniques (e.g., using a TCP/IP 
Socket). Further, processing elements can be inserted or 
removed dynamically from an operator graph representing 
the flow of data through the stream computing application. 
A particular stream operator may not reside within the same 
operating system process as other stream operators. In 
addition, stream operators in the same operator graph may 
be hosted on different nodes, e.g., on different compute 
nodes or on different cores of a compute node. 
0027 Data flows from one stream operator to another in 
the form of a “tuple.” A tuple is a sequence of one or more 
attributes associated with an entity. Attributes may be any of 
a variety of different types, e.g., integer, float, Boolean, 
string, etc. The attributes may be ordered. In addition to 
attributes associated with an entity, a tuple may include 
metadata, i.e., data about the tuple. A tuple may be extended 
by adding one or more additional attributes or metadata to it. 
As used herein, “stream” or "data stream” refers to a 
sequence of tuples. Generally, a stream may be considered 
a pseudo-infinite sequence of tuples. 

Mar. 2, 2017 

0028 Tuples are received and output by stream operators 
and processing elements. An input tuple corresponding with 
a particular entity that is received by a stream operator or 
processing element, however, is generally not considered to 
be the same tuple that is output by the stream operator or 
processing element, even if the output tuple corresponds 
with the same entity or data as the input tuple. An output 
tuple need not be changed in some way from the input tuple. 
0029 Nonetheless, an output tuple may be changed in 
Some way by a stream operator or processing element. An 
attribute or metadata may be added, deleted, or modified. 
For example, a tuple will often have two or more attributes. 
A stream operator or processing element may receive the 
tuple having multiple attributes and output a tuple corre 
sponding with the input tuple. The stream operator or 
processing element may only change one of the attributes so 
that all of the attributes of the output tuple except one are the 
same as the attributes of the input tuple. 
0030 Generally, a particular tuple output by a stream 
operator or processing element may not be considered to be 
the same tuple as a corresponding input tuple even if the 
input tuple is not changed by the processing element. 
However, to simplify the present description and the claims, 
an output tuple that has the same data attributes or is 
associated with the same entity as a corresponding input 
tuple will be referred to herein as the same tuple unless the 
context or an express statement indicates otherwise. 
0031 Stream computing applications handle massive 
volumes of data that need to be processed efficiently and in 
real time. For example, a stream computing application may 
continuously ingest and analyze hundreds of thousands of 
messages per second and up to petabytes of data per day. 
Accordingly, each stream operator in a stream computing 
application may be required to process a received tuple 
within fractions of a second. Unless the stream operators are 
located in the same processing element, it is necessary to use 
an inter-process communication path each time a tuple is 
sent from one stream operator to another. Inter-process 
communication paths can be a critical resource in a stream 
computing application. According to various embodiments, 
the available bandwidth on one or more inter-process com 
munication paths may be conserved. Efficient use of inter 
process communication bandwidth can speed up processing. 
0032. An operator graph can be an execution path for a 
plurality of stream operators to process a stream of tuples. In 
addition to stream operators, the operator graph can refer to 
an execution path for processing elements and the dependent 
stream operators of the processing elements to process the 
stream of tuples. Generally, the operator graph can have a 
plurality of stream operators that produce a particular end 
result, e.g., calculate an average. 
0033. In stream based computing, as described herein, 
computing applications may be distributed over a series of 
nodes by distributing processing elements that are connected 
together. Thus, a streams computing environment may devi 
ate from a traditional computing environment. As such, a 
computer programmer may not understand performance 
implications of the streams environment, including under 
utilized CPU usage and distribution of processing tasks over 
a variety of streams application actors (e.g., operators, 
processing elements, or others). Processing tasks could also 
be distributed over a variety of streams operators including 
functors, joins, or other operators designed for a particular 
task or tasks. 



US 2017/0060538 A1 

0034. In particular, fusion, a process where streams appli 
cation actors can be joined together within a single actor, 
may be recommended to a programmer in order to better 
distribute executables. Alternatively, separation of streams 
application actors may be recommended to a programmer. 
These recommendations, referred to herein as fusion rec 
ommendations, may be made in a performance management 
system or on a user interface as part of an integrated 
development environment. 
0035. These fusion recommendations may recommend 
two or more streams application actors as fusion candidates. 
Fusion candidates may be streams application actors (e.g., 
operators) that are recommended to be fused together or be 
separated from each other or from a particular configuration 
(e.g., a same processing element). In this way, a fusion 
recommendation may indicate or "hint at a combination or 
separation of fusion candidates, as is appropriate based on 
parameters and described herein. 
0036. The streams application actors may be identified as 
fusion candidates based on profiles associated with the 
streams application actors. The profiles can include histori 
cal runtime data, real-time processing data, tuple flow data, 
machine configuration, or other data relevant processing 
time, processing demand, or capacity for each streams 
application actor. The data included in the profile for each 
streams application actor could also include data about the 
types of processes conducted by each streams application 
actor. The profile data could include other data deemed 
relevant by a system administrator or user to fusion recom 
mendations. 

0037 Based on the streams application actor profiles, the 
system can detect a set of two or more streams application 
actors that is a potential fusion candidate. The two or more 
candidates may be identified based on one or more fusion 
candidate rules. These rules can be set by an administrator, 
determined by an individual programmer, or in another way. 
For example, a rule could be that if two operators are 
performing a similar function, and the input and output time 
of the first operator is a majority of the processing time for 
the operation, the first and second operators may be identi 
fied as the fusion candidate set. Once the set is identified as 
satisfying a fusion candidate rule, the identity of each of the 
streams application actors (e.g., operators one and two), 
along with the recommendation to fuse the two, may be 
displayed on a user interface. Other data useful to a devel 
oper could also be displayed on the user interface, as 
described herein. This user interface may be a part of an 
integrated development environment. It could also be a part 
of another type of performance management display. Thus, 
a developer could receive indications or “hints' as to how 
the distribution of process across an operator graph may be 
improved. The developer can also be provided with real 
time and historical data, and analysis of this data, to deter 
mine the appropriateness of the fusion recommendation to 
the particular operator graph. 
0038 FIG. 1 illustrates one exemplary computing infra 
structure 100 that may be configured to execute a stream 
computing application, according to some embodiments. 
The computing infrastructure 100 includes a management 
system 105 and two or more compute nodes 110A 110D 
i.e., hosts—which are communicatively coupled to each 
other using one or more communications networks 120. The 
communications network 120 may include one or more 
servers, networks, or databases, and may use a particular 

Mar. 2, 2017 

communication protocol to transfer data between the com 
pute nodes 110A-110D. A development system 102 may be 
communicatively coupled with the management system 105 
and the compute nodes 110 either directly or via the com 
munications network 120. 

0039. The communications network 120 may include a 
variety of types of physical communication channels or 
“links.” The links may be wired, wireless, optical, or any 
other Suitable media. In addition, the communications net 
work 120 may include a variety of network hardware and 
Software for performing routing, Switching, and other func 
tions, such as routers, Switches, or bridges. The communi 
cations network 120 may be dedicated for use by a stream 
computing application or shared with other applications and 
users. The communications network 120 may be any size. 
For example, the communications network 120 may include 
a single local area network or a wide area network spanning 
a large geographical area, such as the Internet. The links may 
provide different levels of bandwidth or capacity to transfer 
data at a particular rate. The bandwidth that a particular link 
provides may vary depending on a variety of factors, includ 
ing the type of communication media and whether particular 
network hardware or Software is functioning correctly or at 
full capacity. In addition, the bandwidth that a particular link 
provides to a stream computing application may vary if the 
link is shared with other applications and users. The avail 
able bandwidth may vary depending on the load placed on 
the link by the other applications and users. The bandwidth 
that a particular link provides may also vary depending on 
a temporal factor. Such as time of day, day of week, day of 
month, or season. 
0040 FIG. 2 is a more detailed view of a compute node 
110, which may be the same as one of the compute nodes 
110A-110D of FIG. 1, according to various embodiments. 
The compute node 110 may include, without limitation, one 
or more processors (CPUs) 205, a network interface 215, an 
interconnect 220, a memory 225, and a storage 230. The 
compute node 110 may also include an I/O device interface 
210 used to connect I/O devices 212, e.g., keyboard, display, 
and mouse devices, to the compute node 110. 
0041. Each CPU 205 retrieves and executes program 
ming instructions stored in the memory 225 or storage 230. 
Similarly, the CPU 205 stores and retrieves application data 
residing in the memory 225. The interconnect 220 is used to 
transmit programming instructions and application data 
between each CPU 205, I/O device interface 210, storage 
230, network interface 215, and memory 225. The intercon 
nect 220 may be one or more busses. The CPUs 205 may be 
a single CPU, multiple CPUs, or a single CPU having 
multiple processing cores in various embodiments. In one 
embodiment, a processor 205 may be a digital signal pro 
cessor (DSP). One or more processing elements 235 (de 
scribed below) may be stored in the memory 225. A pro 
cessing element 235 may include one or more stream 
operators 240 (described below). In one embodiment, a 
processing element 235 is assigned to be executed by only 
one CPU 205, although in other embodiments the stream 
operators 240 of a processing element 235 may include one 
or more threads that are executed on two or more CPUs 205. 
The memory 225 is generally included to be representative 
of a random access memory, e.g., Static Random Access 
Memory (SRAM), Dynamic Random Access Memory 
(DRAM), or Flash. The storage 230 is generally included to 
be representative of a non-volatile memory, Such as a hard 



US 2017/0060538 A1 

disk drive, solid state device (SSD), or removable memory 
cards, optical storage, flash memory devices, network 
attached storage (NAS), or connections to storage area 
network (SAN) devices, or other devices that may store 
non-volatile data. The network interface 215 is configured to 
transmit data via the communications network 120. 
0.042 A stream computing application may include one 
or more stream operators 240 that may be compiled into a 
“processing element container 235. Two or more process 
ing elements 235 may run on the same memory 225, each 
processing element having one or more stream operators 
240. Each stream operator 240 may include a portion of code 
that processes tuples flowing into a processing element and 
outputs tuples to other stream operators 240 in the same 
processing element, in other processing elements, or in both 
the same and other processing elements in a stream com 
puting application. Processing elements 235 may pass tuples 
to other processing elements that are on the same compute 
node 110 or on other compute nodes that are accessible via 
communications network 120. For example, a processing 
element 235 on compute node 110A may output tuples to a 
processing element 235 on compute node 110B. 
0043. The storage 230 may include a buffer 260. 
Although shown as being in storage, the buffer 260 may be 
located in the memory 225 of the compute node 110 or in a 
combination of both memories. Moreover, storage 230 may 
include storage space that is external to the compute node 
110, such as in a cloud. 
0044. The compute node 110 may include one or more 
operating systems 262. An operating system 262 may be 
stored partially in memory 225 and partially in storage 230. 
Alternatively, an operating system may be stored entirely in 
memory 225 or entirely in storage 230. The operating 
system provides an interface between various hardware 
resources, including the CPU 205, and processing elements 
and other components of the stream computing application. 
In addition, an operating system provides common services 
for application programs, such as providing a time function. 
0045 FIG. 3 is a more detailed view of the management 
system 105 of FIG. 1 according to some embodiments. The 
management system 105 may include, without limitation, 
one or more processors (CPUs) 305, a network interface 
315, an interconnect 320, a memory 325, and a storage 330. 
The management system 105 may also include an I/O device 
interface 310 connecting I/O devices 312, e.g., keyboard, 
display, and mouse devices, to the management system 105. 
0046 Each CPU 305 retrieves and executes program 
ming instructions stored in the memory 325 or storage 330. 
Similarly, each CPU 305 stores and retrieves application 
data residing in the memory 325 or storage 330. The 
interconnect 320 is used to move data, Such as programming 
instructions and application data, between the CPU 305, I/O 
device interface 310, storage unit 330, network interface 
315, and memory 325. The interconnect 320 may be one or 
more busses. The CPUs 305 may be a single CPU, multiple 
CPUs, or a single CPU having multiple processing cores in 
various embodiments. In one embodiment, a processor 305 
may be a DSP Memory 325 is generally included to be 
representative of a random access memory, e.g., SRAM, 
DRAM, or Flash. The storage 330 is generally included to 
be representative of a non-volatile memory, Such as a hard 
disk drive, solid state device (SSD), removable memory 
cards, optical storage, Flash memory devices, network 
attached storage (NAS), connections to storage area-net 

Mar. 2, 2017 

work (SAN) devices, or the cloud. The network interface 
315 is configured to transmit data via the communications 
network 120. 
0047. The memory 325 may store a stream manager 134. 
Additionally, the storage 330 may store an operator graph 
132. The operator graph 132 may define how tuples are 
routed to processing elements 235 (FIG. 2) for processing. 
0048. The management system 105 may include one or 
more operating systems 332. An operating system 332 may 
be stored partially in memory 325 and partially in storage 
330. Alternatively, an operating system may be stored 
entirely in memory 325 or entirely in storage 330. The 
operating system provides an interface between various 
hardware resources, including the CPU 305, and processing 
elements and other components of the stream computing 
application. In addition, an operating system provides com 
mon services for application programs, such as providing a 
time function. 
0049 FIG. 4 is a more detailed view of the development 
system 102 of FIG. 1 according to some embodiments. The 
development system 102 may include, without limitation, 
one or more processors (CPUs) 405, a network interface 
415, an interconnect 420, a memory 425, and storage 430. 
The development system 102 may also include an I/O device 
interface 410 connecting I/O devices 412, e.g., keyboard, 
display, and mouse devices, to the development system 102. 
0050. Each CPU 405 retrieves and executes program 
ming instructions stored in the memory 425 or storage 430. 
Similarly, each CPU 405 stores and retrieves application 
data residing in the memory 425 or storage 430. The 
interconnect 420 is used to move data, Such as programming 
instructions and application data, between the CPU 405, I/O 
device interface 410, storage unit 430, network interface 
415, and memory 425. The interconnect 420 may be one or 
more busses. The CPUs 405 may be a single CPU, multiple 
CPUs, or a single CPU having multiple processing cores in 
various embodiments. In one embodiment, a processor 405 
may be a DSP Memory 425 is generally included to be 
representative of a random access memory, e.g., SRAM. 
DRAM, or Flash. The storage 430 is generally included to 
be representative of a non-volatile memory, Such as a hard 
disk drive, solid state device (SSD), removable memory 
cards, optical storage, flash memory devices, network 
attached storage (NAS), connections to storage area-net 
work (SAN) devices, or to the cloud. The network interface 
415 is configured to transmit data via the communications 
network 120. 
0051. The development system 102 may include one or 
more operating systems 432. An operating system 432 may 
be stored partially in memory 425 and partially in storage 
430. Alternatively, an operating system may be stored 
entirely in memory 425 or entirely in storage 430. The 
operating system provides an interface between various 
hardware resources, including the CPU 405, and processing 
elements and other components of the stream computing 
application. In addition, an operating system provides com 
mon services for application programs, such as providing a 
time function. 
0052. The memory 425 may store a compiler 136. The 
compiler 136 compiles modules, which include source code 
or statements, into the object code, which includes machine 
instructions that execute on a processor. In one embodiment, 
the compiler 136 may translate the modules into an inter 
mediate form before translating the intermediate form into 



US 2017/0060538 A1 

object code. The compiler 136 may output a set of deploy 
able artifacts that may include a set of processing elements 
and an application description language file (ADL file), 
which is a configuration file that describes the stream 
computing application. In some embodiments, the compiler 
136 may be a just-in-time compiler that executes as part of 
an interpreter. In other embodiments, the compiler 136 may 
be an optimizing compiler. In various embodiments, the 
compiler 136 may perform peephole optimizations, local 
optimizations, loop optimizations, inter-procedural or 
whole-program optimizations, machine code optimizations, 
or any other optimizations that reduce the amount of time 
required to execute the object code, to reduce the amount of 
memory required to execute the object code, or both. The 
output of the compiler 136 may be represented by an 
operator graph, e.g., the operator graph 132 of FIG. 1. 
0053. The compiler 136 may also provide the application 
administrator with the ability to optimize performance 
through profile-driven fusion optimization. Fusing operators 
may improve performance by reducing the number of calls 
to a transport. While fusing stream operators may provide 
faster communication between operators than is available 
using inter-process communication techniques, any decision 
to fuse operators requires balancing the benefits of distrib 
uting processing across multiple compute nodes with the 
benefit of faster inter-operator communications. The com 
piler 136 may automate the fusion process to determine how 
to best fuse the operators to be hosted by one or more 
processing elements, while respecting user-specified con 
straints. This may be a two-step process, including compil 
ing the application in a profiling mode and running the 
application, then re-compiling and using the optimizer dur 
ing this Subsequent compilation. The end result may, how 
ever, be a compiler-supplied deployable application with an 
optimized application configuration. 
0054 FIG. 5 illustrates an exemplary operator graph 500 
for a stream computing application beginning from one or 
more sources 502 through to one or more sinks 504, 506, 
according to Some embodiments. This flow from source to 
sink may also be generally referred to herein as an execution 
path. In addition, a flow from one processing element to 
another may be referred to as an execution path in various 
contexts. Although FIG. 5 is abstracted to show connected 
processing elements PE1-PE10, the operator graph. 500 may 
include data flows between stream operators 240 (FIG. 2) 
within the same or different processing elements. Typically, 
processing elements, such as processing element 235 (FIG. 
2), receive tuples from the stream as well as output tuples 
into the stream (except for a sink where the stream termi 
nates, or a source where the stream begins). While the 
operator graph 500 includes a relatively small number of 
components, an operator graph may be much more complex 
and may include many individual operator graphs that may 
be statically or dynamically linked together. 
0055. The example operator graph shown in FIG. 5 
includes ten processing elements (labeled as PE1-PE10) 
dispersed over and running on the compute nodes 110A 
110D. A processing element may include one or more stream 
operators fused together to form an independently running 
process with its own process ID (PID) and memory space. 
In cases where two (or more) processing elements are 
running independently, inter-process communication may 
occur using a “transport, e.g., a network socket, a TCP/IP 
Socket, or shared memory. Inter-process communication 

Mar. 2, 2017 

paths used for inter-process communications can be a criti 
cal resource in a stream computing application. However, 
when stream operators are fused together, the fused stream 
operators can use more rapid communication techniques for 
passing tuples among stream operators in each processing 
element. 

0056. The operator graph 500 begins at a source 502 and 
ends at a sink 504, 506. Compute node 110A includes the 
processing elements PE1, PE2, and PE3. Source 502 flows 
into the processing element PE1, which in turn outputs 
tuples that are received by PE2 and PE3. For example, PE1 
may split data attributes received in a tuple and pass some 
data attributes in a new tuple to PE2, while passing other 
data attributes in another new tuple to PE3. As a second 
example, PE1 may pass some received tuples to PE2 while 
passing other tuples to PE3. Tuples that flow to PE2 are 
processed by the stream operators contained in PE2, and the 
resulting tuples are then output to PE4 on compute node 
110B. Likewise, the tuples output by PE4 flow to PE6 before 
being transmitted to a sink 504. Similarly, tuples flowing 
from PE3 to PES also reach PE6 and are sent to a sink 504. 
Thus, PE6 could be configured to perform a join operation, 
combining tuples received from PE4 and PE5, before send 
ing the data to the sink 504. This example operator graph 
also shows tuples flowing from PE3 to PE7 on compute node 
110C, which itself shows tuples flowing to PE8 and looping 
back to PE7. Tuples output from PE8 flow to PE9 on 
compute node 110D, which in turn outputs tuples to be 
processed by operators in PE10 before being sent to a sink 
SO6. 

0057 The tuple received by a particular processing ele 
ment 235 (FIG. 2) is generally not considered to be the same 
tuple that is output downstream. Typically, the output tuple 
is changed in Some way. An attribute or metadata may be 
added, deleted, or changed. However, it is not required that 
the output tuple be changed in Some way. Generally, a 
particular tuple output by a processing element may not be 
considered to be the same tuple as a corresponding input 
tuple even if the input tuple is not changed by the processing 
element. 

0058 Processing elements 235 (FIG. 2) may be config 
ured to receive or output tuples in various formats, e.g., the 
processing elements or stream operators could exchange 
data marked up as XML documents. Furthermore, each 
stream operator 240 within a processing element 235 may be 
configured to carry out any form of data processing func 
tions on received tuples, including, for example, writing to 
database tables or performing other database operations such 
as data joins, splits, reads, etc., as well as performing other 
data analytic functions or operations. 
0059. The stream manager 134 of FIG. 1 may be con 
figured to monitor a stream computing application running 
on compute nodes, e.g., compute nodes 110A-110D, as well 
as to change the deployment of an operator graph, e.g., 
operator graph 132. The stream manager 134 may move 
processing elements from one compute node 110 to another, 
for example, to manage the processing loads of the compute 
nodes 110A-110D in the computing infrastructure 100. 
Further, stream manager 134 may control the stream com 
puting application by inserting, removing, fusing, un-fusing, 
or otherwise modifying the processing elements and stream 
operators (or what tuples flow to the processing elements) 
running on the compute nodes 110A-110D. 



US 2017/0060538 A1 

0060. Because a processing element may be a collection 
of fused stream operators, it is equally correct to describe the 
operator graph as one or more execution paths between 
specific stream operators, which may include execution 
paths to different stream operators within the same process 
ing element. FIG. 5 illustrates execution paths between 
processing elements for the sake of clarity. 
0061 FIG. 6 illustrates a flow diagram for recommending 
streams application actors as fusion candidates, according to 
various embodiments. The method 600 can start, per 602, 
when profiles are generated for each streams application 
actor, per 604. A streams application actor could be, for 
example, a streams operator, a processing element, or 
another processing entity in a streams operator graph. Each 
profile can include data relevant to the particular streams 
application actor. For example, a profile could include 
historical central processing unit (CPU) usage, current or 
real-time CPU usage, processing speeds, tuple rates, and 
other data relevant to the data processing occurring over a 
particular streams application actor. A profile can be created 
for each streams application actor on a particular operating 
graph within a streams processing environment. 
0062 From the profiles, a set of fusion candidates may be 
identified, per 606. For example, three streams operators 
could have profiles with historical usage data that indicates 
that, when running on the same hardware configuration as in 
the past, the operators would be able to more quickly process 
data (e.g., with fewer delays) if they were fused together in 
a single processing element. This could be based on a 
parameter or set of parameters established by an application 
manager or a system administrator, or in another way. A 
determination that two or more streams application actors 
(e.g., stream operators) are fusion candidates may also 
indicate that the streams application actors can be separated 
from a same processing element (e.g., “un-fused’). Thus, a 
fusion candidate recommendation can recommend that the 
streams application actors be merged or separated. 
0063. The identity of the streams application actors and 
the fusion candidate recommendation may then be dis 
played, per 608. The fusion candidate rule satisfied by the 
streams application actors can also be displayed. For 
example, identifying data about each of the three streams 
operators can be displayed. The recommendation to fuse the 
three operators into a single processing element can also be 
displayed. The rule or parameter that was met in order to 
qualify them as fusion candidates could also be displayed. 
Other data which could be helpful to a developer or other 
user in determining whether or not the fusion candidate 
recommendation should be accepted can also be displayed. 
As indicated herein, the display can be a part of a user 
interface that is part of a job execution recommendation of 
a performance management system. Or, for example, an 
integrated development environment (IDE) could display 
the results to a developer, in order to hint to the developer 
an appropriate configuration or reconfiguration for a par 
ticular portion of an operator graph. The method can then 
end, per 610. The system can also continue to monitor for 
fusion candidates, continue to update the streams application 
actor profiles, and generate new profiles as streams appli 
cation actors are added to a graph. 
0064 FIG. 7 illustrates a block diagram of a user inter 
face 700, according to various embodiments. The user 
interface 700 may be a graphical user interface and may be 
displayed on one or more I/O devices (e.g., I/O devices 212 

Mar. 2, 2017 

in FIG. 2), and the user interface 700 may be generated by 
one or more processors (e.g., processors 205 in FIG. 2) 
executing instructions contained in a stream manager or 
stream computing application (e.g., stream manager 134 in 
FIG. 1 or stream computing application 232 in FIG. 2). 
0065. A user presented with the user interface 700 can 
monitor a stream computing application. The user interface 
700 can also provide a visual representation of the processes 
of the various streams computing elements including 
streams application actors. The user interface 700 can also 
present a user with one or more fusion candidate recom 
mendations and relevant metrics associated with the fusion 
candidate recommendation. 
0066. The user interface 700 can include, individually or 
in combination, a graphical display (e.g., 702 and 704), a 
tabulated display (e.g., 718b), or any other representation 
suitable for a user. For example, graphical display 702 can 
provide a graphical overview of a current operator graph 706 
that is being developed, monitored, or edited. As described 
herein, within a streams computing environment operator 
graph 706 can comprise a number of compute nodes 708A, 
708B, 708C, and 708D. Each compute node can host a 
number of processing elements (PE1-10) that process tuples 
of data as they flow from a source 710 to a sink 712 or 714. 
Not pictured in graphical display 702 of the operator graph 
706 are individual stream operators, which may comprise 
one or more processing element (PE1-10). In embodiments, 
each processing element (e.g., PE1), may be a selectable 
option, which allows a user to select the processing element 
in order to see the one or more stream operators or other 
streams application actors that comprise the processing 
element. 
0067. The operator graph 706 depicted herein may cor 
respond to the graph illustrated in FIG. 5. Data points or 
performance metrics for a compute node 708 or each par 
ticular processing element may also be included on the 
operator graph 706. In this way, a user presented with the 
user interface 700 can view particular operations in the 
operator graph 706, while still maintaining a perspective of 
the overall data processing occurring over the entire operator 
graph 706. 
0068. The user interface 700 can also include a graphical 
display 704 that includes a fusion candidate recommenda 
tion 718. The graphical display 704, which herein may be 
referred to as a “fusion recommendation window’ can 
include both the fusion candidate recommendation 718 and 
a data window 716, which can include additional data 
related to the fusion candidate recommendation. 

0069. For example, the fusion recommendation window 
716 may include a graphical representation of the two or 
more streams operators for which fusion or separation is 
being recommended (e.g., OP4 and OP5). It may also 
include text or a graphical depiction which indicates that the 
operators are to be fused or separated. It may also include 
tabular data for each of these operators, here 718a-b. An 
example of this tabular data 718b is depicted for illustrative 
purposes. This tabular data 718b can include data specific to 
each particular streams application actor that has been 
identified as a fusion candidate (e.g. OP5). Example non 
limiting performance metrics can include: tuple flow rates, 
processing power demand, location of operator processing, 
hardware configurations, or other data. Further discussion of 
the performance metrics that may be included in a tabular 
display 718b may be found at FIG. 9. 



US 2017/0060538 A1 

0070 The graphical and tabular displays depicted in FIG. 
7 are intended to provide examples only and are not intended 
to restrict the appearance or values present on the user 
interface 700. Rather, the various displays, arrangement of 
the displays, types of data shown, and other features may be 
configured to accommodate user needs or preferences. 
0071 FIG. 8 illustrates a graphical display, according to 
embodiments. The graphical display 800 can be a part or the 
whole of a user interface. The user interface may be a part 
of an IDE for a streams computing application. The graphi 
cal display 800 may be phase-integrated into a more com 
plex user interface (e.g., graphical display 704 in FIG. 7). 
Like its counterpart graphical display 704 in FIG. 7, graphi 
cal display 800 may be referred to as a fusion recommen 
dation window 800. 

0072 For example, the fusion recommendation window 
800 can include one or more graphical depictions of streams 
operators 804a, 804b. 804c, or other streams application 
actors that may be candidates for fusion. Here, operators 
804a and 804b have been identified as candidates for fusion, 
as described herein. In the example illustrated here, streams 
operator 804c has not been selected as a candidate for 
fusion. However, one or more Surrounding but not recom 
mended streams operators (e.g., 804c) may be included in 
the fusion recommendation window 800. These may be 
displayed based on a setting or based on a threshold value, 
or in another way. For example, a user may set a threshold 
that if reached, indicates that the recommended operators are 
extremely strong candidates for fusion. If that threshold is 
reached, then Surrounding operators that are not candidates 
for fusion (here 804c) may not be displayed. However, if the 
threshold is not reached based on various metrics, then the 
failure to meet the threshold could indicate that the recom 
mended operators are only moderately strong candidates for 
fusion. In this case, where the threshold is not reached, one 
or more Surrounding operators (and the performance metrics 
806c of those one or more surrounding operators) may be 
displayed in the fusion recommendation window 800. This 
way, a user (e.g., a developer) can, with relative ease, access 
and use Surrounding performance data in confirming or 
denying fusion recommendations. 
0073. Each streams operator 804 (or other streams appli 
cation actor) may be displayed with performance metrics or 
other relevant data associated with the stream operator. This 
data may be displayed in one or more tables 806a-c. 
Performance metrics can be displayed to assist a user in 
understanding the reasoning or confidence of a fusion rec 
ommendation. FIG. 9 includes more details on this data. 
0074. A graphical representation may indicate to a user 
that the one or more streams operators 804a and 804b are 
candidates for fusion. This recommendation 802 may appear 
as a selectable option, a graphic, or in other manner. For 
example, the recommendation 802 may include a selectable 
option 808. This option could link to performance metrics, 
analysis, or other data that can help the user understand why 
the recommendation was made. The data in selectable option 
808 could also indicate performance benefits from fusing or 
separating the operators, or other data. Elements described 
herein are provided for illustrative purposes only, and a 
graphical display or fusion recommendation window 800 
may be configured to any appearance or design deemed 
useful. For example, if the IDE in which the fusion recom 
mendation window 800 is contained is for a streams com 
puting environment that is very complex and developed with 

Mar. 2, 2017 

little human interaction, the fusion recommendation window 
800 may be configured to display fewer performance met 
rics, and the fusion may occur automatically (i.e., without 
additional user input) upon, for example, exceeding a par 
ticular threshold. However, in an IDE for a streams com 
puting application that is less complex or where more 
precision or severability may be desired, the system may 
display the aforementioned data and more, in order to 
provide the developer with as much useful data as possible, 
so that the developer can be well-informed to make a 
decision relatively independent of the system's recommen 
dation. 

(0075 FIG. 9 illustrates a tabular display 900 according to 
embodiments. The tabular display 900 may be a table like 
the example one shown here. The table is not limited to the 
categories given here, and may include performance metrics, 
analytics, fusion details, or other categories. The table 
shown here indicates performance metrics for a particular 
streams operator, OP1. As described herein, example per 
formance metrics include: tuple flow rates, processing 
power demand, location of operator processing, hardware 
configurations of processing, or other data. These metrics 
may be displayed in a table for each particular operator of 
interest. 

0076 For example and as illustrated here, the perfor 
mance metrics may be listed as an individual column, 
including: Performance metric A. Performance metric B, 
Performance metric C, and Performance metric D. Addi 
tional or fewer columns may be included, in order to suit the 
preferences of a particular user. Another column, here 
including “1”. “2, 3, ... “current indicates the particular 
processing cycle for which the performance metrics were 
calculated. Additional rows including projected or specula 
tive metrics for future processing cycles could also be 
included. The column may be configured to display between 
one or all processing cycles, may be selectable in order to 
See additional data (e.g., hardware configurations) associ 
ated with the particular cycle, and may be updated in 
real-time to reflect the most current processing metrics. In 
this way, historical data can be observed and used by a user 
in analysis of a fusion recommendation. The table 900 could 
also be used in making other determinations. In other 
embodiments, performance metrics may be listed in another 
type of visual display, including a graph, chart, or other type 
of visual display. 
0077. Additionally, the tabular data updated in real-time 
and displayed in table 900 can be used by a developer in 
order to monitor the effects of a fusion or separation, after 
the fact and in real-time. For example, if a fusion recom 
mendation window (e.g., 800 in FIG. 8) contained predictive 
data that indicated CPU usage would be decreased by X % 
upon a fusion of three particular operators, the developer 
could accept the fusion recommendation and monitor the 
processing consumption for the next y number of cycles to 
determine whether or not the predication was accurate. In 
this way, a developer can monitor in real-time the impact 
and efficacy of the fusion or separation of particular types of 
operators, and adjust thresholds or other recommendation 
configurations accordingly. 
0078 FIG. 10 illustrates a method 1000 for recommend 
ing fusion candidates in a streams computing environment, 
according to various embodiments. The method 1000 begins 
when a first streams application actor profile is generated, 
per 1002, and a second streams application actor profile is 



US 2017/0060538 A1 

generated, per 1004. These profiles can be generated simul 
taneously or in any order. For ease of discussion, only two 
streams application actors, and only two streams application 
actor profiles are being described, however, profiles may be 
developed and maintained for each streams application actor 
(e.g., stream operators, processing elements, or other actors) 
in an operator graph. If two or more profiles satisfy a fusion 
candidate rule, per 1006, the streams application actors 
associated with the profiles may be identified as fusion 
candidates, per 1008. The fusion candidates’ identities could 
then be displayed as recommended candidates for fusion or 
separation, along with the recommendation to fuse or sepa 
rate the actors, per 1010. Other data could be displayed with 
this recommendation including data regarding the recom 
mendation like detected or evaluated inefficiencies that 
could be alleviated by the fusion or other data. 
007.9 The present invention may be a system, a method, 
and/or a computer program product. The computer program 
product may include a computer readable storage medium 
(or media) having computer readable program instructions 
thereon for causing a processor to carry out aspects of the 
present invention. 
0080. The computer readable storage medium can be a 
tangible device that can retain and store instructions for use 
by an instruction execution device. The computer readable 
storage medium may be, for example, but is not limited to, 
an electronic storage device, a magnetic storage device, an 
optical storage device, an electromagnetic storage device, a 
semiconductor storage device, or any suitable combination 
of the foregoing. A non-exhaustive list of more specific 
examples of the computer readable storage medium includes 
the following: a portable computer diskette, a hard disk, a 
random access memory (RAM), a read-only memory 
(ROM), an erasable programmable read-only memory 
(EPROM or Flash memory), a static random access memory 
(SRAM), a portable compact disc read-only memory (CD 
ROM), a digital versatile disk (DVD), a memory stick, a 
floppy disk, a mechanically encoded device such as punch 
cards or raised structures in a groove having instructions 
recorded thereon, and any suitable combination of the fore 
going. A computer readable storage medium, as used herein, 
is not to be construed as being transitory signals perse. Such 
as radio waves or other freely propagating electromagnetic 
waves, electromagnetic waves propagating through a wave 
guide or other transmission media (e.g., light pulses passing 
through a fiber-optic cable), or electrical signals transmitted 
through a wire. 
0081 Computer readable program instructions described 
herein can be downloaded to respective computing/process 
ing devices from a computer readable storage medium or to 
an external computer or external storage device via a net 
work, for example, the Internet, a local area network, a wide 
area network and/or a wireless network. The network may 
comprise copper transmission cables, optical transmission 
fibers, wireless transmission, routers, firewalls, Switches, 
gateway computers and/or edge servers. A network adapter 
card or network interface in each computing/processing 
device receives computer readable program instructions 
from the network and forwards the computer readable 
program instructions for storage in a computer readable 
storage medium within the respective computing/processing 
device. 
0082 Computer readable program instructions for carry 
ing out operations of the present invention may be assembler 

Mar. 2, 2017 

instructions, instruction-set-architecture (ISA) instructions, 
machine instructions, machine dependent instructions, 
microcode, firmware instructions, state-setting data, or 
either source code or object code written in any combination 
of one or more programming languages, including an object 
oriented programming language Such as Smalltalk, C++ or 
the like, and conventional procedural programming lan 
guages, such as the “C” programming language or similar 
programming languages. The computer readable program 
instructions may execute entirely on the users computer, 
partly on the user's computer, as a stand-alone software 
package, partly on the user's computer and partly on a 
remote computer or entirely on the remote computer or 
server. In the latter scenario, the remote computer may be 
connected to the user's computer through any type of 
network, including a local area network (LAN) or a wide 
area network (WAN), or the connection may be made to an 
external computer (for example, through the Internet using 
an Internet Service Provider). In some embodiments, elec 
tronic circuitry including, for example, programmable logic 
circuitry, field-programmable gate arrays (FPGA), or pro 
grammable logic arrays (PLA) may execute the computer 
readable program instructions by utilizing state information 
of the computer readable program instructions to personalize 
the electronic circuitry, in order to perform aspects of the 
present invention. 
I0083 Aspects of the present invention are described 
herein with reference to flowchart illustrations and/or block 
diagrams of methods, apparatus (systems), and computer 
program products according to embodiments of the inven 
tion. It will be understood that each block of the flowchart 
illustrations and/or block diagrams, and combinations of 
blocks in the flowchart illustrations and/or block diagrams, 
can be implemented by computer readable program instruc 
tions. 
I0084. These computer readable program instructions may 
be provided to a processor of a general purpose computer, 
special purpose computer, or other programmable data pro 
cessing apparatus to produce a machine, Such that the 
instructions, which execute via the processor of the com 
puter or other programmable data processing apparatus, 
create means for implementing the functions/acts specified 
in the flowchart and/or block diagram block or blocks. These 
computer readable program instructions may also be stored 
in a computer readable storage medium that can direct a 
computer, a programmable data processing apparatus, and/ 
or other devices to function in a particular manner, such that 
the computer readable storage medium having instructions 
stored therein comprises an article of manufacture including 
instructions which implement aspects of the function/act 
specified in the flowchart and/or block diagram block or 
blocks. 
I0085. The computer readable program instructions may 
also be loaded onto a computer, other programmable data 
processing apparatus, or other device to cause a series of 
operational steps to be performed on the computer, other 
programmable apparatus or other device to produce a com 
puter implemented process. Such that the instructions which 
execute on the computer, other programmable apparatus, or 
other device implement the functions/acts specified in the 
flowchart and/or block diagram block or blocks. 
I0086. The flowchart and block diagrams in the Figures 
illustrate the architecture, functionality, and operation of 
possible implementations of systems, methods, and com 



US 2017/0060538 A1 

puter program products according to various embodiments 
of the present invention. In this regard, each block in the 
flowchart or block diagrams may represent a module, seg 
ment, or portion of instructions, which comprises one or 
more executable instructions for implementing the specified 
logical function(s). In some alternative implementations, the 
functions noted in the block may occur out of the order noted 
in the figures. For example, two blocks shown in Succession 
may, in fact, be executed Substantially concurrently, or the 
blocks may sometimes be executed in the reverse order, 
depending upon the functionality involved. It will also be 
noted that each block of the block diagrams and/or flowchart 
illustration, and combinations of blocks in the block dia 
grams and/or flowchart illustration, can be implemented by 
special purpose hardware-based systems that perform the 
specified functions or acts or carry out combinations of 
special purpose hardware and computer instructions. 
0087. It is understood in advance that although this 
disclosure includes a detailed description on cloud comput 
ing, implementation of the teachings recited herein are not 
limited to a cloud computing environment. Rather, embodi 
ments of the present invention are capable of being imple 
mented in conjunction with any other type of computing 
environment now known or later developed. 
0088 Cloud computing is a model of service delivery for 
enabling convenient, on-demand network access to a shared 
pool of configurable computing resources (e.g. networks, 
network bandwidth, servers, processing, memory, storage, 
applications, virtual machines, and services) that can be 
rapidly provisioned and released with minimal management 
effort or interaction with a provider of the service. This cloud 
model may include at least five characteristics, at least three 
service models, and at least four deployment models. 
0089 Characteristics are as follows: 
0090. On-demand self-service: a cloud consumer can 
unilaterally provision computing capabilities, such as server 
time and network storage, as needed automatically without 
requiring human interaction with the service's provider. 
0091 Broad network access: capabilities are available 
over a network and accessed through standard mechanisms 
that promote use by heterogeneous thin or thick client 
platforms (e.g., mobile phones, laptops, and PDAs). 
0092 Resource pooling: the provider's computing 
resources are pooled to serve multiple consumers using a 
multi-tenant model, with different physical and virtual 
resources dynamically assigned and reassigned according to 
demand. There is a sense of location independence in that 
the consumer generally has no control or knowledge over 
the exact location of the provided resources but may be able 
to specify location at a higher level of abstraction (e.g., 
country, state, or datacenter). 
0093. Rapid elasticity: capabilities can be rapidly and 
elastically provisioned, in Some cases automatically, to 
quickly scale out and rapidly released to quickly scale in. To 
the consumer, the capabilities available for provisioning 
often appear to be unlimited and can be purchased in any 
quantity at any time. 
0094. Measured service: cloud systems automatically 
control and optimize resource use by leveraging a metering 
capability at Some level of abstraction appropriate to the 
type of Service (e.g., storage, processing, bandwidth, and 
active user accounts). Resource usage can be monitored, 
controlled, and reported providing transparency for both the 
provider and consumer of the utilized service. 

Mar. 2, 2017 

0095 Service Models are as follows: 
0096 Software as a Service (SaaS): the capability pro 
vided to the consumer is to use the provider's applications 
running on a cloud infrastructure. The applications are 
accessible from various client devices through a thin client 
interface Such as a web browser (e.g., web-based e-mail). 
The consumer does not manage or control the underlying 
cloud infrastructure including network, servers, operating 
systems, storage, or even individual application capabilities, 
with the possible exception of limited user-specific applica 
tion configuration settings. 
(0097 Platform as a Service (PaaS): the capability pro 
vided to the consumer is to deploy onto the cloud infra 
structure consumer-created or acquired applications created 
using programming languages and tools Supported by the 
provider. The consumer does not manage or control the 
underlying cloud infrastructure including networks, servers, 
operating systems, or storage, but has control over the 
deployed applications and possibly application hosting envi 
ronment configurations. 
0.098 Infrastructure as a Service (IaaS): the capability 
provided to the consumer is to provision processing, storage, 
networks, and other fundamental computing resources 
where the consumer is able to deploy and run arbitrary 
Software, which can include operating systems and applica 
tions. The consumer does not manage or control the under 
lying cloud infrastructure but has control over operating 
systems, storage, deployed applications, and possibly lim 
ited control of select networking components (e.g., host 
firewalls). 
(0099. Deployment Models are as follows: 
0100 Private cloud: the cloud infrastructure is operated 
solely for an organization. It may be managed by the 
organization or a third party and may exist on-premises or 
off-premises. 
0101 Community cloud: the cloud infrastructure is 
shared by several organizations and Supports a specific 
community that has shared concerns (e.g., mission, security 
requirements, policy, and compliance considerations). It 
may be managed by the organizations or a third party and 
may exist on-premises or off-premises. 
0102 Public cloud: the cloud infrastructure is made 
available to the general public or a large industry group and 
is owned by an organization selling cloud services. 
0103 Hybrid cloud: the cloud infrastructure is a compo 
sition of two or more clouds (private, community, or public) 
that remain unique entities but are bound together by stan 
dardized or proprietary technology that enables data and 
application portability (e.g., cloud bursting for load-balanc 
ing between clouds). 
0104. A cloud computing environment is service oriented 
with a focus on statelessness, low coupling, modularity, and 
semantic interoperability. At the heart of cloud computing is 
an infrastructure comprising a network of interconnected 
nodes. 

0105 Referring now to FIG. 11, a schematic of an 
example of a cloud computing node is shown. Cloud com 
puting node 10 is only one example of a suitable cloud 
computing node and is not intended to suggest any limitation 
as to the scope of use or functionality of embodiments of the 
invention described herein. Regardless, cloud computing 
node 10 is capable of being implemented and/or performing 
any of the functionality set forth hereinabove. 



US 2017/0060538 A1 

0106. In cloud computing node 10 there is a computer 
system/server 12, which is operational with numerous other 
general purpose or special purpose computing system envi 
ronments or configurations. Examples of well-known com 
puting systems, environments, and/or configurations that 
may be suitable for use with computer system/server 12 
include, but are not limited to, personal computer systems, 
server computer systems, thin clients, thick clients, hand 
held or laptop devices, multiprocessor systems, micropro 
cessor-based systems, set top boxes, programmable con 
Sumer electronics, network PCs, minicomputer systems, 
mainframe computer systems, and distributed cloud com 
puting environments that include any of the above systems 
or devices, and the like. 
0107 Computer system/server 12 may be described in 
the general context of computer system-executable instruc 
tions, such as program modules, being executed by a com 
puter system. Generally, program modules may include 
routines, programs, objects, components, logic, data struc 
tures, and so on that perform particular tasks or implement 
particular abstract data types. Computer system/server 12 
may be practiced in distributed cloud computing environ 
ments where tasks are performed by remote processing 
devices that are linked through a communications network. 
In a distributed cloud computing environment, program 
modules may be located in both local and remote computer 
system storage media including memory storage devices. 
0108. As shown in FIG. 11, computer system/server 12 in 
cloud computing node 10 is shown in the form of a general 
purpose computing device. The components of computer 
system/server 12 may include, but are not limited to, one or 
more processors or processing units 16, a system memory 
28, and a bus 18 that couples various system components 
including system memory 28 to processor 16. 
0109 Bus 18 represents one or more of any of several 
types of bus structures, including a memory bus or memory 
controller, a peripheral bus, an accelerated graphics port, and 
a processor or local bus using any of a variety of bus 
architectures. By way of example, and not limitation, Such 
architectures include Industry Standard Architecture (ISA) 
bus, Micro Channel Architecture (MCA) bus, Enhanced ISA 
(EISA) bus, Video Electronics Standards Association 
(VESA) local bus, and Peripheral Component Interconnects 
(PCI) bus. 
0110 Computer system/server 12 typically includes a 
variety of computer system readable media. Such media 
may be any available media that is accessible by computer 
system/server 12, and it includes both volatile and non 
Volatile media, removable and non-removable media. 
0111 System memory 28 can include computer system 
readable media in the form of volatile memory, such as 
random access memory (RAM)30 and/or cache memory 32. 
Computer system/server 12 may further include other 
removable/non-removable, volatile/non-volatile computer 
system storage media. By way of example only, storage 
system 34 can be provided for reading from and writing to 
a non-removable, non-volatile magnetic media (not shown 
and typically called a “hard drive”). Although not shown, a 
magnetic disk drive for reading from and writing to a 
removable, non-volatile magnetic disk (e.g., a "floppy 
disk”), and an optical disk drive for reading from or writing 
to a removable, non-volatile optical disk such as a CD 
ROM, DVD-ROM or other optical media can be provided. 
In Such instances, each can be connected to bus 18 by one 

Mar. 2, 2017 

or more data media interfaces. As will be further depicted 
and described below, memory 28 may include at least one 
program product having a set (e.g., at least one) of program 
modules that are configured to carry out the functions of 
embodiments of the invention. 
0112 Program/utility 40, having a set (at least one) of 
program modules 42, may be stored in memory 28 by way 
of example, and not limitation, as well as an operating 
system, one or more application programs, other program 
modules, and program data. Each of the operating system, 
one or more application programs, other program modules, 
and program data or some combination thereof, may include 
an implementation of a networking environment. Program 
modules 42 generally carry out the functions and/or meth 
odologies of embodiments of the invention as described 
herein. 
0113 Computer system/server 12 may also communicate 
with one or more external devices 14 Such as a keyboard, a 
pointing device, a display 24, etc.; one or more devices that 
enable a user to interact with computer system/server 12; 
and/or any devices (e.g., network card, modem, etc.) that 
enable computer system/server 12 to communicate with one 
or more other computing devices. Such communication can 
occur via Input/Output (I/O) interfaces 22. Still yet, com 
puter system/server 12 can communicate with one or more 
networks such as a local area network (LAN), a general wide 
area network (WAN), and/or a public network (e.g., the 
Internet) via network adapter 20. As depicted, network 
adapter 20 communicates with the other components of 
computer system/server 12 via bus 18. It should be under 
stood that although not shown, other hardware and/or soft 
ware components could be used in conjunction with com 
puter system/server 12. Examples, include, but are not 
limited to: microcode, device drivers, redundant processing 
units, external disk drive arrays, RAID systems, tape drives, 
and data archival storage systems, etc. 
0114 Referring now to FIG. 12, illustrative cloud com 
puting environment 50 is depicted. As shown, cloud com 
puting environment 50 comprises one or more cloud com 
puting nodes 10 with which local computing devices used by 
cloud consumers, such as, for example, personal digital 
assistant (PDA) or cellular telephone 54A, desktop com 
puter 54B, laptop computer 54C, and/or automobile com 
puter system 54N may communicate. Nodes 10 may com 
municate with one another. They may be grouped (not 
shown) physically or virtually, in one or more networks, 
such as Private, Community, Public, or Hybrid clouds as 
described hereinabove, or a combination thereof. This 
allows cloud computing environment 50 to offer infrastruc 
ture, platforms and/or software as services for which a cloud 
consumer does not need to maintain resources on a local 
computing device. It is understood that the types of com 
puting devices 54A-N shown in FIG. 12 are intended to be 
illustrative only and that computing nodes 10 and cloud 
computing environment 50 can communicate with any type 
of computerized device over any type of network and/or 
network addressable connection (e.g., using a web browser). 
0115 Referring now to FIG. 13, a set of functional 
abstraction layers provided by cloud computing environ 
ment 50 (FIG. 12) is shown. It should be understood in 
advance that the components, layers, and functions shown in 
FIG. 13 are intended to be illustrative only and embodiments 
of the invention are not limited thereto. As depicted, the 
following layers and corresponding functions are provided: 



US 2017/0060538 A1 

0116. Hardware and software layer 60 includes hardware 
and Software components. Examples of hardware compo 
nents include: mainframes 61; RISC (Reduced Instruction 
Set Computer) architecture based servers 62; servers 63; 
blade servers 64; storage devices 65; and networks and 
networking components 66. In some embodiments, software 
components include network application server software 67 
and database software 68. 
0117 Virtualization layer 70 provides an abstraction 
layer from which the following examples of virtual entities 
may be provided: virtual servers 71; virtual storage 72: 
virtual networks 73, including virtual private networks: 
virtual applications and operating systems 74; and virtual 
clients 75. 
0118. In one example, management layer 80 may provide 
the functions described below. Resource provisioning 81 
provides dynamic procurement of computing resources and 
other resources that are utilized to perform tasks within the 
cloud computing environment. Metering and Pricing 82 
provide cost tracking as resources are utilized within the 
cloud computing environment, and billing or invoicing for 
consumption of these resources. In one example, these 
resources may comprise application Software licenses. Secu 
rity provides identity verification for cloud consumers and 
tasks, as well as protection for data and other resources. User 
portal 83 provides access to the cloud computing environ 
ment for consumers and system administrators. Service level 
management 84 provides cloud computing resource alloca 
tion and management such that required service levels are 
met. Service Level Agreement (SLA) planning and fulfill 
ment 85 provide pre-arrangement for, and procurement of 
cloud computing resources for which a future requirement is 
anticipated in accordance with an SLA. 
0119 Workloads layer 90 provides examples of function 
ality for which the cloud computing environment may be 
utilized. Examples of workloads and functions which may 
be provided from this layer include: mapping and navigation 
91; software development and lifecycle management 92; 
virtual classroom education delivery 93; data analytics pro 
cessing 94; transaction processing 95; and providing fusion 
hints 96. 
0120. The descriptions of the various embodiments of the 
present disclosure have been presented for purposes of 
illustration, but are not intended to be exhaustive or limited 
to the embodiments disclosed. Many modifications and 
variations will be apparent to those of ordinary skill in the 
art without departing from the scope and spirit of the 
described embodiments. The terminology used herein was 
chosen to explain the principles of the embodiments, the 
practical application or technical improvement over tech 
nologies found in the marketplace, or to enable others of 
ordinary skill in the art to understand the embodiments 
disclosed herein. 

1. A method for recommending streams application actors 
for fusion, wherein the streams application actors are dis 
persed on an operator graph within a streaming environ 
ment, the method comprising: 

Mar. 2, 2017 

generating, for each of two or more streams application 
actors in the operator graph, a streams application actor 
profile; 

determining, from streams application actor profiles for 
two or more streams application actors, the two or more 
streams application actors are fusion candidates, 
wherein the determining is based on streams applica 
tion actor profile data, including historical runtime data 
and real-time processing data, and based on the streams 
application actors satisfying at least one fusion candi 
date rule from a set of fusion candidate rules, each 
fusion candidate rule associated with one or more 
fusion recommendations, wherein the fusion recom 
mendation includes reconfiguration data for a particular 
portion of the operator graph; 

identifying, in response to the determining, a fusion 
recommendation, from the one or more fusion recom 
mendations associated with the at least one fusion 
candidate rule; and 

displaying, in response to the identifying, an identity of 
each of the two or more streams application actors and 
the fusion recommendation. 

2. The method of claim 1, wherein the fusion recommen 
dation is to fuse the two or more streams application actors 
into a same processing element. 

3. The method of claim 1, wherein the fusion recommen 
dation is to separate the two or more streams applications 
actors from a same processing element. 

4. The method of claim 1, wherein the data about the 
streams application actor further comprises historical central 
processing unit (CPU) usage, tuple rates, machine configu 
ration, and current CPU usage. 

5. The method of claim 1, wherein the displaying the 
identity of each of the set of two or more streams application 
actors and the fusion recommendation occurs via a user 
interface. 

6. The method of claim 5, wherein the user interface is 
part of a job execution design recommendation of a perfor 
mance management System. 

7. The method of claim 6, wherein the performance 
management system is an integrated development environ 
ment. 

8. The method of claim 1, wherein the set of fusion 
candidate rules comprises a set of performance thresholds, 
wherein a particular fusion candidate rule is met if a par 
ticular performance threshold in the set of performance 
thresholds is met. 

9. The method of claim 8, wherein the set of performance 
thresholds comprises thresholds that are correlated with 
processing speed. 

10. The method of claim 8, wherein the set of perfor 
mance thresholds comprises thresholds that are correlated 
with improved CPU usage. 

11. The method of claim 1, wherein each streams appli 
cation actor is a streams operator. 

k k k k k 


