US 20170060538A1

a9y United States

a2y Patent Application Publication o) Pub. No.: US 2017/0060538 A1

Barsness et al.

43) Pub. Date: Mar. 2, 2017

(54)

(71)

(72)

@
(22)

(63)

FUSION RECOMMENDATION FOR
PERFORMANCE MANAGEMENT IN
STREAMS

Applicant: International Business Machines
Corporation, Armonk, NY (US)

Inventors: Eric L. Barsness, Pine Island, MN
(US); Michael J. Branson, Rochester,
MN (US); John M. Santosuosso,
Rochester, MN (US)

Appl. No.: 14/868,679
Filed: Sep. 29, 2015

Related U.S. Application Data

Continuation of application No. 14/838,585, filed on
Aug. 28, 2015.

Publication Classification

(51) Int. CL
GOGF 9/44 (2006.01)
(52) US.CL
[SR GOGF 8/20 (2013.01)
(57) ABSTRACT

Fusion hints can be generated in order to recommend
streams application actors (like streams operators) for fusion
or separation in a streams computing environment. Profiles
can be made for the streams application actors, and fusion
candidates can be determined from the profiles, based on
fusion candidate rules. Based on the fusion candidate rule
satisfied, a particular associated fusion recommendation can
be identified and made to the user via a user interface. The
recommendation can be displayed, along with the identities
of the streams application actors identified as fusion candi-
dates.

700
718b
™
Performance Metrics
Performance Performance
metric A metric B
1
2
OPs 3
X

704
Fusion
Candidate
718 //
£ \\ /
1 \ V4
/ \ e ||/
4
/
/
/
/
,
[7218 | [z | __H--
N
\
\
\
\
F————-
SOURCE

710

Patent Application Publication

—
—

—

COMPUTE NODE
110A

Mar. 2,2017 Sheet 1 of 13

COMPUTE NODE
110B

NETWORK

fo

Y

OPERATOR GRAPH 132 |

Vo]

STREAM MANAGER 134 |

\ | FUSION MANAGER 140 |

MANAGEMENT SYSTEM 105

N

~

~

~
~

120

US 2017/0060538 Al

COMPUTE NODE \

110C

COMPUTE NODE
110D

FIG. 1

/

/
/

COMPILER 136
DEBUGGER 137

DEVELOPMENT
SYSTEM 102

Patent Application Publication = Mar. 2, 2017 Sheet 2 of 13 US 2017/0060538 A1

(_ 212
TO
I/0 DEVICES COMMUNICATIONS
NETWORK

T o

205 l l
210 215
- s
CPU /O DEVICE NETWORK
INTERFACE INTERFACE
INTERCONNECT (BUS) 220
r 225 r230
MEMORY STORAGE
PROCESSING
ELEMENTS 235 BUFFER 260
STREAM 10
OPERATOR “+ OPERATING
SYSTEM 262
|
|

FIG. 2 110

Patent Application Publication = Mar. 2, 2017 Sheet 3 of 13 US 2017/0060538 A1

312

r TO

1’0 DEVICES COMMUNICATIONS
NETWORK

T T

305 l l
310 315
' '
CPU 1/0 DEVICE NETWORK
INTERFACE INTERFACE
INTERCONNECT (BUS) 320
(325 (330
MEMORY STORAGE
STREAM OPERATOR
MANAGER 1 GRAPH 132
FUSION 140
MANAGER 140 OPERATING
SYSTEM 332
MANAGEMENT SYSTEM 105

FIG. 3

Patent Application Publication = Mar. 2, 2017 Sheet 4 of 13 US 2017/0060538 A1

(412
TO
I/0 DEVICES COMMUNICATIONS
NETWORK

| o
l i l 4

1/0 DEVICE NETWORK
INTERFACE INTERFACE
INTERCONNECT (BUS) 420

425 430
1 [

MEMORY STORAGE
COMPILER 136 OPERATING
SYSTEM 432
DEVELOPMENT SYSTEM 102

FIG. 4

US 2017/0060538 Al

Mar. 2,2017 Sheet 5 of 13

Patent Application Publication

SO

708
d0UNO0S

Patent Application Publication = Mar. 2, 2017 Sheet 6 of 13 US 2017/0060538 A1

600
@ 602 /

604
generate streams
application actor profiles
606
identify set of fusion
candidates from profiles
608

display identity of streams
application actors and
fusion recommendation

FIG. 6

US 2017/0060538 Al

01
A2ANOS

Mar. 2,2017 Sheet 7 of 13

=
™~

g dO
4
l
g oW v oleLl
souBwWIOLad |souBWIOLSd
SOLIBIA SOUBWIOLSY
/aw:

oy
|

Bl
ajepipued
uoisn4

Patent Application Publication

US 2017/0060538 Al

Mar. 2,2017 Sheet 8 of 13

008

8§ O

2908~

W08

q908 1 €908~

— — — — — —

\ 308 /

a)epIpueRd uoIsn4

208~

Patent Application Publication

US 2017/0060538 Al

Mar. 2,2017 Sheet 9 of 13

Patent Application Publication

6 "OId

Jus.und

'dO

@ oLew
aouBwWIONad

D ol|W
aouBwWIONad

g ouew
aouew.louad

v oL18wW
aouew.louad

SOLIJSJ\ 9oUBWL.IOLISd

006 \

UOHEPUSUIIIOID]
01 "Old JJEpIPUED
0101 uorsny Aedsip

US 2017/0060538 Al

\nﬁ Q1BPIPUED TOISN] u

8001
*

sah

{S9IBPIPUED

Mar. 2,2017 Sheet 10 of 13

o uorsny Ajuap!
9001

=
=
ﬁ
x®
=
=
=
[~
m Ve 001
ﬁ
m oryoid 10308 oryoid 10308
= uoneordde sweons uoneordde swrons
= PUO23S JeIOUIT co01 1811)eIURd
« 0001))
~—
=
@
~N
]
[~

US 2017/0060538 Al

Mar. 2,2017 Sheet 11 of 13

Patent Application Publication

1014

{SHDIASG
TYNHILXE

X o
X

vl

HILdVOY MEOMIEN

§

{SIFOVAHALIN
O3

T
Sy
3

| W3isAS
OVHOLE e

7z

ey

14;3;,1{
Taed R N
e B

ve AMONEN

0t

{

g8e

HIAEIS WILSAS YILINGWOO

4’

US 2017/0060538 Al

N

- s

3

B i dd bt
7
st

7

Mar. 2,2017 Sheet 12 of 13

i)

%

o,

gt

I NN

Fed 18 IR\
N ey
Y

. \ RS
R VRN M=o

B Sy

Patent Application Publication

e Wy

2

[ARNIK|

JUREES v

S "

<

G,

POTITRrel e ey

Patent Application Publication = Mar. 2, 2017 Sheet 13 of 13 US 2017/0060538 A1

why ot Fon
J
i, =

4%

Snmnenninanned

oo

P

Lprmmssin &

RS

brrarrorrrseris SRR,

St
S

o,
¥ Gt
begeecerrmmrn

= 2::;3
i

e

US 2017/0060538 Al

FUSION RECOMMENDATION FOR
PERFORMANCE MANAGEMENT IN
STREAMS

BACKGROUND

[0001] The present disclosure relates to stream computing,
and more particularly to the use of an integrated develop-
ment environment in streams computing.

[0002] Database systems are typically configured to sepa-
rate the process of storing data from accessing, manipulat-
ing, or using data stored in a database. More specifically,
database systems use a model in which data is first stored
and indexed in a memory before subsequent querying and
analysis. In general, database systems may not be well suited
for performing real-time processing and analyzing stream-
ing data. In particular, database systems may be unable to
store, index, and analyze large amounts of streaming data
efficiently or in real time.

[0003] An integrated development environment (IDE)
may be a software application that provides facilities to
computer programmers for software development. An IDE
may be designed to facilitate programmer productivity. An
IDE may consist of a source code editor, build automation
tools, and a debugger. An IDE may also have intelligent code
completion capabilities.

[0004] While database systems that are configured to
analyze large amounts of streaming data efficiently in real
time may provide a number of benefits, their introduction to
the development world is relatively new. Thus, programmers
and developers may be unfamiliar with a data streaming
environment, which can make it difficult for developers to
best design, troubleshoot, and optimize a system. Without an
advanced understanding of arrangement and compartmen-
talization of streams operations in a streams operator graph,
many of the benefits of streams applications may be lost.

SUMMARY

[0005] Embodiments of the present disclosure may be
directed toward a method for recommending streams appli-
cation actors for fusion, where the streams application actors
are dispersed on an operator graph within a streaming
environment. A system may generate a streams application
actor profile for each of two or more streams application
actors. The two or more streams application actors may be
determined to be fusion candidates, based on the streams
application actors satisfying a fusion candidate rule. Each of
the fusion candidate rules may be associated with one or
more fusion recommendations. A fusion recommendation
associated with the rule may be identified and an identity of
each of the two or more streams application actors along
with the fusion recommendation may be displayed. Embodi-
ments of the present disclosure may also be directed toward
a system or computer program product for recommending
streams application actors for fusion.

[0006] Advantages of the invention over other art includes
the ability to hint to developers an improvement or improve-
ments for the streams system. Rather than requiring a
developer have full understanding of both the streams cod-
ing environment as well as the current deficiencies or
strengths of a particular streams operator graph, the system
can identify fusion candidates and make recommendations
to combine or separate the streams application actors

Mar. 2, 2017

according to parameters. In this way, a developer can make
modifications and improvements to a system using current
and informed metrics.

[0007] In some embodiments, the fusion recommendation
may be to fuse the fusion candidates together in the same
processing element. In other embodiments, the fusion rec-
ommendation may be to separate the two fusion candidates
from the same processing element. For example only, some
of the data in the streams application actor profile on which
the fusion candidates can be identified can include historical
central processing unit (CPU) usage, processing time, tuple
rates, machine configuration, and current CPU usage. In this
way, in some embodiments of the disclosed, the system can
analyze historical and real time data like CPU usage and
processing time when determining which streams applica-
tion actors can be identified as fusion candidates. This data
or analysis of this data can be provided to a developer so the
developer can make informed decisions.

[0008] The above summary is not intended to describe
each illustrated embodiment or every implementation of the
present disclosure.

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] The drawings included in the present application
are incorporated into, and form part of, the specification.
They illustrate embodiments of the present disclosure and,
along with the description, serve to explain the principles of
the disclosure. The drawings are only illustrative of certain
embodiments and do not limit the disclosure.

[0010] FIG. 1 illustrates a computing infrastructure con-
figured to execute a stream computing application, accord-
ing to various embodiments.

[0011] FIG. 2 illustrates a more detailed view of a compute
node of FIG. 1, according to various embodiments.

[0012] FIG. 3 illustrates a more detailed view of the
management system of FIG. 1, according to various embodi-
ments.

[0013] FIG. 4 illustrates a more detailed view of the
development system of FIG. 1, according to various embodi-
ments.

[0014] FIG. 5 illustrates an operator graph for a stream
computing application, according to various embodiments.
[0015] FIG. 6 illustrates a flow diagram for making fusion
recommendations for streams application actors, according
to various embodiments.

[0016] FIG. 7 illustrates a block diagram of a user inter-
face, according to various embodiments.

[0017] FIG. 8 illustrates a block diagram of a user inter-
face, according to various embodiments.

[0018] FIG. 9 illustrates a tabular display, according to
various embodiments.

[0019] FIG. 10 illustrates a method for recommending
fusion candidates in a streams computing environment,
according to various embodiments.

[0020] FIG. 11 depicts a cloud computing node according
to an embodiment of the present invention.

[0021] FIG. 12 depicts a cloud computing environment
according to an embodiment of the present invention.
[0022] FIG. 13 depicts abstraction model layers according
to an embodiment of the present invention.

[0023] While the invention is amenable to various modi-
fications and alternative forms, specifics thereof have been
shown by way of example in the drawings and will be
described in detail. It should be understood, however, that

US 2017/0060538 Al

the intention is not to limit the invention to the particular
embodiments described. On the contrary, the intention is to
cover all modifications, equivalents, and alternatives falling
within the spirit and scope of the invention.

DETAILED DESCRIPTION

[0024] Aspects of the present disclosure relate to stream
computing, and in particular, to the use of an integrated
development environment in streams computing. While the
present disclosure is not necessarily limited to such appli-
cations, various aspects of the disclosure may be appreciated
through a discussion of various examples using this context.

[0025] Stream-based computing and stream-based data-
base computing are emerging as a developing technology for
database systems. Products are available which allow users
to create applications that process and query streaming data
before it reaches a database file. With this emerging tech-
nology, users can specify processing logic to apply to
inbound data records while they are “in flight,” with the
results available in a very short amount of time, often in
fractions of a second. Constructing an application using this
type of processing has opened up a new programming
paradigm that will allow for development of a broad variety
of innovative applications, systems, and processes, as well
as present new challenges for application programmers and
database developers.

[0026] In a stream computing application, stream opera-
tors are connected to one another such that data flows from
one stream operator to the next (e.g., over a TCP/IP socket).
When a stream operator receives data, it may perform
operations, such as analysis logic, which may change the
tuple by adding or subtracting attributes, or updating the
values of existing attributes within the tuple. When the
analysis logic is complete, a new tuple is then sent to the
next stream operator. Scalability is achieved by distributing
an application across nodes by creating executables (i.e.,
processing elements), as well as replicating processing ele-
ments on multiple nodes and load balancing among them.
Stream operators in a stream computing application can be
fused together to form a processing element that is execut-
able. Doing so allows processing elements to share a com-
mon process space, resulting in much faster communication
between stream operators than is available using inter-
process communication techniques (e.g., using a TCP/IP
socket). Further, processing elements can be inserted or
removed dynamically from an operator graph representing
the flow of data through the stream computing application.
A particular stream operator may not reside within the same
operating system process as other stream operators. In
addition, stream operators in the same operator graph may
be hosted on different nodes, e.g., on different compute
nodes or on different cores of a compute node.

[0027] Data flows from one stream operator to another in
the form of a “tuple.” A tuple is a sequence of one or more
attributes associated with an entity. Attributes may be any of
a variety of different types, e.g., integer, float, Boolean,
string, etc. The attributes may be ordered. In addition to
attributes associated with an entity, a tuple may include
metadata, i.e., data about the tuple. A tuple may be extended
by adding one or more additional attributes or metadata to it.
As used herein, “stream” or “data stream” refers to a
sequence of tuples. Generally, a stream may be considered
a pseudo-infinite sequence of tuples.

Mar. 2, 2017

[0028] Tuples are received and output by stream operators
and processing elements. An input tuple corresponding with
a particular entity that is received by a stream operator or
processing element, however, is generally not considered to
be the same tuple that is output by the stream operator or
processing element, even if the output tuple corresponds
with the same entity or data as the input tuple. An output
tuple need not be changed in some way from the input tuple.
[0029] Nonetheless, an output tuple may be changed in
some way by a stream operator or processing element. An
attribute or metadata may be added, deleted, or modified.
For example, a tuple will often have two or more attributes.
A stream operator or processing element may receive the
tuple having multiple attributes and output a tuple corre-
sponding with the input tuple. The stream operator or
processing element may only change one of the attributes so
that all of the attributes of the output tuple except one are the
same as the attributes of the input tuple.

[0030] Generally, a particular tuple output by a stream
operator or processing element may not be considered to be
the same tuple as a corresponding input tuple even if the
input tuple is not changed by the processing element.
However, to simplify the present description and the claims,
an output tuple that has the same data attributes or is
associated with the same entity as a corresponding input
tuple will be referred to herein as the same tuple unless the
context or an express statement indicates otherwise.

[0031] Stream computing applications handle massive
volumes of data that need to be processed efficiently and in
real time. For example, a stream computing application may
continuously ingest and analyze hundreds of thousands of
messages per second and up to petabytes of data per day.
Accordingly, each stream operator in a stream computing
application may be required to process a received tuple
within fractions of a second. Unless the stream operators are
located in the same processing element, it is necessary to use
an inter-process communication path each time a tuple is
sent from one stream operator to another. Inter-process
communication paths can be a critical resource in a stream
computing application. According to various embodiments,
the available bandwidth on one or more inter-process com-
munication paths may be conserved. Efficient use of inter-
process communication bandwidth can speed up processing.
[0032] An operator graph can be an execution path for a
plurality of stream operators to process a stream of tuples. In
addition to stream operators, the operator graph can refer to
an execution path for processing elements and the dependent
stream operators of the processing elements to process the
stream of tuples. Generally, the operator graph can have a
plurality of stream operators that produce a particular end
result, e.g., calculate an average.

[0033] In stream based computing, as described herein,
computing applications may be distributed over a series of
nodes by distributing processing elements that are connected
together. Thus, a streams computing environment may devi-
ate from a traditional computing environment. As such, a
computer programmer may not understand performance
implications of the streams environment, including under-
utilized CPU usage and distribution of processing tasks over
a variety of streams application actors (e.g., operators,
processing elements, or others). Processing tasks could also
be distributed over a variety of streams operators including
functors, joins, or other operators designed for a particular
task or tasks.

US 2017/0060538 Al

[0034] In particular, fusion, a process where streams appli-
cation actors can be joined together within a single actor,
may be recommended to a programmer in order to better
distribute executables. Alternatively, separation of streams
application actors may be recommended to a programmer.
These recommendations, referred to herein as fusion rec-
ommendations, may be made in a performance management
system or on a user interface as part of an integrated
development environment.

[0035] These fusion recommendations may recommend
two or more streams application actors as fusion candidates.
Fusion candidates may be streams application actors (e.g.,
operators) that are recommended to be fused together or be
separated from each other or from a particular configuration
(e.g., a same processing clement). In this way, a fusion
recommendation may indicate or “hint” at a combination or
separation of fusion candidates, as is appropriate based on
parameters and described herein.

[0036] The streams application actors may be identified as
fusion candidates based on profiles associated with the
streams application actors. The profiles can include histori-
cal runtime data, real-time processing data, tuple flow data,
machine configuration, or other data relevant processing
time, processing demand, or capacity for each streams
application actor. The data included in the profile for each
streams application actor could also include data about the
types of processes conducted by each streams application
actor. The profile data could include other data deemed
relevant by a system administrator or user to fusion recom-
mendations.

[0037] Based on the streams application actor profiles, the
system can detect a set of two or more streams application
actors that is a potential fusion candidate. The two or more
candidates may be identified based on one or more fusion
candidate rules. These rules can be set by an administrator,
determined by an individual programmer, or in another way.
For example, a rule could be that if two operators are
performing a similar function, and the input and output time
of the first operator is a majority of the processing time for
the operation, the first and second operators may be identi-
fied as the fusion candidate set. Once the set is identified as
satisfying a fusion candidate rule, the identity of each of the
streams application actors (e.g., operators one and two),
along with the recommendation to fuse the two, may be
displayed on a user interface. Other data useful to a devel-
oper could also be displayed on the user interface, as
described herein. This user interface may be a part of an
integrated development environment. It could also be a part
of another type of performance management display. Thus,
a developer could receive indications or “hints” as to how
the distribution of process across an operator graph may be
improved. The developer can also be provided with real-
time and historical data, and analysis of this data, to deter-
mine the appropriateness of the fusion recommendation to
the particular operator graph.

[0038] FIG. 1 illustrates one exemplary computing infra-
structure 100 that may be configured to execute a stream
computing application, according to some embodiments.
The computing infrastructure 100 includes a management
system 105 and two or more compute nodes 110A—110D—
i.e., hosts—which are communicatively coupled to each
other using one or more communications networks 120. The
communications network 120 may include one or more
servers, networks, or databases, and may use a particular

Mar. 2, 2017

communication protocol to transfer data between the com-
pute nodes 110A-110D. A development system 102 may be
communicatively coupled with the management system 105
and the compute nodes 110 either directly or via the com-
munications network 120.

[0039] The communications network 120 may include a
variety of types of physical communication channels or
“links.” The links may be wired, wireless, optical, or any
other suitable media. In addition, the communications net-
work 120 may include a variety of network hardware and
software for performing routing, switching, and other func-
tions, such as routers, switches, or bridges. The communi-
cations network 120 may be dedicated for use by a stream
computing application or shared with other applications and
users. The communications network 120 may be any size.
For example, the communications network 120 may include
a single local area network or a wide area network spanning
a large geographical area, such as the Internet. The links may
provide different levels of bandwidth or capacity to transfer
data at a particular rate. The bandwidth that a particular link
provides may vary depending on a variety of factors, includ-
ing the type of communication media and whether particular
network hardware or software is functioning correctly or at
full capacity. In addition, the bandwidth that a particular link
provides to a stream computing application may vary if the
link is shared with other applications and users. The avail-
able bandwidth may vary depending on the load placed on
the link by the other applications and users. The bandwidth
that a particular link provides may also vary depending on
a temporal factor, such as time of day, day of week, day of
month, or season.

[0040] FIG. 2 is a more detailed view of a compute node
110, which may be the same as one of the compute nodes
110A-110D of FIG. 1, according to various embodiments.
The compute node 110 may include, without limitation, one
or more processors (CPUs) 205, a network interface 215, an
interconnect 220, a memory 225, and a storage 230. The
compute node 110 may also include an /O device interface
210 used to connect I/O devices 212, e.g., keyboard, display,
and mouse devices, to the compute node 110.

[0041] Each CPU 205 retrieves and executes program-
ming instructions stored in the memory 225 or storage 230.
Similarly, the CPU 205 stores and retrieves application data
residing in the memory 225. The interconnect 220 is used to
transmit programming instructions and application data
between each CPU 205, /O device interface 210, storage
230, network interface 215, and memory 225. The intercon-
nect 220 may be one or more busses. The CPUs 205 may be
a single CPU, multiple CPUs, or a single CPU having
multiple processing cores in various embodiments. In one
embodiment, a processor 205 may be a digital signal pro-
cessor (DSP). One or more processing elements 235 (de-
scribed below) may be stored in the memory 225. A pro-
cessing element 235 may include one or more stream
operators 240 (described below). In one embodiment, a
processing element 235 is assigned to be executed by only
one CPU 205, although in other embodiments the stream
operators 240 of a processing element 235 may include one
or more threads that are executed on two or more CPUs 205.
The memory 225 is generally included to be representative
of a random access memory, e.g., Static Random Access
Memory (SRAM), Dynamic Random Access Memory
(DRAM), or Flash. The storage 230 is generally included to
be representative of a non-volatile memory, such as a hard

US 2017/0060538 Al

disk drive, solid state device (SSD), or removable memory
cards, optical storage, flash memory devices, network
attached storage (NAS), or connections to storage area
network (SAN) devices, or other devices that may store
non-volatile data. The network interface 215 is configured to
transmit data via the communications network 120.

[0042] A stream computing application may include one
or more stream operators 240 that may be compiled into a
“processing element” container 235. Two or more process-
ing elements 235 may run on the same memory 225, each
processing element having one or more stream operators
240. Each stream operator 240 may include a portion of code
that processes tuples flowing into a processing element and
outputs tuples to other stream operators 240 in the same
processing element, in other processing elements, or in both
the same and other processing elements in a stream com-
puting application. Processing elements 235 may pass tuples
to other processing elements that are on the same compute
node 110 or on other compute nodes that are accessible via
communications network 120. For example, a processing
element 235 on compute node 110A may output tuples to a
processing element 235 on compute node 110B.

[0043] The storage 230 may include a buffer 260.
Although shown as being in storage, the buffer 260 may be
located in the memory 225 of the compute node 110 or in a
combination of both memories. Moreover, storage 230 may
include storage space that is external to the compute node
110, such as in a cloud.

[0044] The compute node 110 may include one or more
operating systems 262. An operating system 262 may be
stored partially in memory 225 and partially in storage 230.
Alternatively, an operating system may be stored entirely in
memory 225 or entirely in storage 230. The operating
system provides an interface between various hardware
resources, including the CPU 205, and processing elements
and other components of the stream computing application.
In addition, an operating system provides common services
for application programs, such as providing a time function.
[0045] FIG. 3 is a more detailed view of the management
system 105 of FIG. 1 according to some embodiments. The
management system 105 may include, without limitation,
one or more processors (CPUs) 305, a network interface
315, an interconnect 320, a memory 325, and a storage 330.
The management system 105 may also include an I/O device
interface 310 connecting I/O devices 312, e.g., keyboard,
display, and mouse devices, to the management system 105.
[0046] Each CPU 305 retrieves and executes program-
ming instructions stored in the memory 325 or storage 330.
Similarly, each CPU 305 stores and retrieves application
data residing in the memory 325 or storage 330. The
interconnect 320 is used to move data, such as programming
instructions and application data, between the CPU 305, I/O
device interface 310, storage unit 330, network interface
315, and memory 325. The interconnect 320 may be one or
more busses. The CPUs 305 may be a single CPU, multiple
CPUs, or a single CPU having multiple processing cores in
various embodiments. In one embodiment, a processor 305
may be a DSP. Memory 325 is generally included to be
representative of a random access memory, e.g., SRAM,
DRAM, or Flash. The storage 330 is generally included to
be representative of a non-volatile memory, such as a hard
disk drive, solid state device (SSD), removable memory
cards, optical storage, Flash memory devices, network
attached storage (NAS), connections to storage area-net-

Mar. 2, 2017

work (SAN) devices, or the cloud. The network interface
315 is configured to transmit data via the communications
network 120.

[0047] The memory 325 may store a stream manager 134.
Additionally, the storage 330 may store an operator graph
132. The operator graph 132 may define how tuples are
routed to processing elements 235 (FIG. 2) for processing.
[0048] The management system 105 may include one or
more operating systems 332. An operating system 332 may
be stored partially in memory 325 and partially in storage
330. Alternatively, an operating system may be stored
entirely in memory 325 or entirely in storage 330. The
operating system provides an interface between various
hardware resources, including the CPU 305, and processing
elements and other components of the stream computing
application. In addition, an operating system provides com-
mon services for application programs, such as providing a
time function.

[0049] FIG. 4 is a more detailed view of the development
system 102 of FIG. 1 according to some embodiments. The
development system 102 may include, without limitation,
one or more processors (CPUs) 405, a network interface
415, an interconnect 420, a memory 425, and storage 430.
The development system 102 may also include an I/O device
interface 410 connecting I/O devices 412, e.g., keyboard,
display, and mouse devices, to the development system 102.
[0050] Each CPU 405 retrieves and executes program-
ming instructions stored in the memory 425 or storage 430.
Similarly, each CPU 405 stores and retrieves application
data residing in the memory 425 or storage 430. The
interconnect 420 is used to move data, such as programming
instructions and application data, between the CPU 405, 1/O
device interface 410, storage unit 430, network interface
415, and memory 425. The interconnect 420 may be one or
more busses. The CPUs 405 may be a single CPU, multiple
CPUs, or a single CPU having multiple processing cores in
various embodiments. In one embodiment, a processor 405
may be a DSP. Memory 425 is generally included to be
representative of a random access memory, e.g., SRAM,
DRAM, or Flash. The storage 430 is generally included to
be representative of a non-volatile memory, such as a hard
disk drive, solid state device (SSD), removable memory
cards, optical storage, flash memory devices, network
attached storage (NAS), connections to storage area-net-
work (SAN) devices, or to the cloud. The network interface
415 is configured to transmit data via the communications
network 120.

[0051] The development system 102 may include one or
more operating systems 432. An operating system 432 may
be stored partially in memory 425 and partially in storage
430. Alternatively, an operating system may be stored
entirely in memory 425 or entirely in storage 430. The
operating system provides an interface between various
hardware resources, including the CPU 405, and processing
elements and other components of the stream computing
application. In addition, an operating system provides com-
mon services for application programs, such as providing a
time function.

[0052] The memory 425 may store a compiler 136. The
compiler 136 compiles modules, which include source code
or statements, into the object code, which includes machine
instructions that execute on a processor. In one embodiment,
the compiler 136 may translate the modules into an inter-
mediate form before translating the intermediate form into

US 2017/0060538 Al

object code. The compiler 136 may output a set of deploy-
able artifacts that may include a set of processing elements
and an application description language file (ADL file),
which is a configuration file that describes the stream
computing application. In some embodiments, the compiler
136 may be a just-in-time compiler that executes as part of
an interpreter. In other embodiments, the compiler 136 may
be an optimizing compiler. In various embodiments, the
compiler 136 may perform peephole optimizations, local
optimizations, loop optimizations, inter-procedural or
whole-program optimizations, machine code optimizations,
or any other optimizations that reduce the amount of time
required to execute the object code, to reduce the amount of
memory required to execute the object code, or both. The
output of the compiler 136 may be represented by an
operator graph, e.g., the operator graph 132 of FIG. 1.

[0053] The compiler 136 may also provide the application
administrator with the ability to optimize performance
through profile-driven fusion optimization. Fusing operators
may improve performance by reducing the number of calls
to a transport. While fusing stream operators may provide
faster communication between operators than is available
using inter-process communication techniques, any decision
to fuse operators requires balancing the benefits of distrib-
uting processing across multiple compute nodes with the
benefit of faster inter-operator communications. The com-
piler 136 may automate the fusion process to determine how
to best fuse the operators to be hosted by one or more
processing elements, while respecting user-specified con-
straints. This may be a two-step process, including compil-
ing the application in a profiling mode and running the
application, then re-compiling and using the optimizer dur-
ing this subsequent compilation. The end result may, how-
ever, be a compiler-supplied deployable application with an
optimized application configuration.

[0054] FIG. 5 illustrates an exemplary operator graph 500
for a stream computing application beginning from one or
more sources 502 through to one or more sinks 504, 506,
according to some embodiments. This flow from source to
sink may also be generally referred to herein as an execution
path. In addition, a flow from one processing element to
another may be referred to as an execution path in various
contexts. Although FIG. 5 is abstracted to show connected
processing elements PE1-PE10, the operator graph 500 may
include data flows between stream operators 240 (FIG. 2)
within the same or different processing elements. Typically,
processing elements, such as processing element 235 (FIG.
2), receive tuples from the stream as well as output tuples
into the stream (except for a sink—where the stream termi-
nates, or a source—where the stream begins). While the
operator graph 500 includes a relatively small number of
components, an operator graph may be much more complex
and may include many individual operator graphs that may
be statically or dynamically linked together.

[0055] The example operator graph shown in FIG. §
includes ten processing elements (labeled as PE1-PE10)
dispersed over and running on the compute nodes 110A-
110D. A processing element may include one or more stream
operators fused together to form an independently running
process with its own process ID (PID) and memory space.
In cases where two (or more) processing elements are
running independently, inter-process communication may
occur using a “transport,” e.g., a network socket, a TCP/IP
socket, or shared memory. Inter-process communication

Mar. 2, 2017

paths used for inter-process communications can be a criti-
cal resource in a stream computing application. However,
when stream operators are fused together, the fused stream
operators can use more rapid communication techniques for
passing tuples among stream operators in each processing
element.

[0056] The operator graph 500 begins at a source 502 and
ends at a sink 504, 506. Compute node 110A includes the
processing elements PE1, PE2, and PE3. Source 502 flows
into the processing element PE1, which in turn outputs
tuples that are received by PE2 and PE3. For example, PE1
may split data attributes received in a tuple and pass some
data attributes in a new tuple to PE2, while passing other
data attributes in another new tuple to PE3. As a second
example, PE1 may pass some received tuples to PE2 while
passing other tuples to PE3. Tuples that flow to PE2 are
processed by the stream operators contained in PE2, and the
resulting tuples are then output to PE4 on compute node
110B. Likewise, the tuples output by PE4 flow to PE6 before
being transmitted to a sink 504. Similarly, tuples flowing
from PE3 to PES also reach PE6 and are sent to a sink 504.
Thus, PE6 could be configured to perform a join operation,
combining tuples received from PE4 and PE5, before send-
ing the data to the sink 504. This example operator graph
also shows tuples flowing from PE3 to PE7 on compute node
110C, which itself shows tuples flowing to PE8 and looping
back to PE7. Tuples output from PE8 flow to PE9 on
compute node 110D, which in turn outputs tuples to be
processed by operators in PE10 before being sent to a sink
506.

[0057] The tuple received by a particular processing ele-
ment 235 (FIG. 2) is generally not considered to be the same
tuple that is output downstream. Typically, the output tuple
is changed in some way. An attribute or metadata may be
added, deleted, or changed. However, it is not required that
the output tuple be changed in some way. Generally, a
particular tuple output by a processing element may not be
considered to be the same tuple as a corresponding input
tuple even if the input tuple is not changed by the processing
element.

[0058] Processing elements 235 (FIG. 2) may be config-
ured to receive or output tuples in various formats, e.g., the
processing elements or stream operators could exchange
data marked up as XML documents. Furthermore, each
stream operator 240 within a processing element 235 may be
configured to carry out any form of data processing func-
tions on received tuples, including, for example, writing to
database tables or performing other database operations such
as data joins, splits, reads, etc., as well as performing other
data analytic functions or operations.

[0059] The stream manager 134 of FIG. 1 may be con-
figured to monitor a stream computing application running
on compute nodes, e.g., compute nodes 110A-110D, as well
as to change the deployment of an operator graph, e.g.,
operator graph 132. The stream manager 134 may move
processing elements from one compute node 110 to another,
for example, to manage the processing loads of the compute
nodes 110A-110D in the computing infrastructure 100.
Further, stream manager 134 may control the stream com-
puting application by inserting, removing, fusing, un-fusing,
or otherwise modifying the processing elements and stream
operators (or what tuples flow to the processing elements)
running on the compute nodes 110A-110D.

US 2017/0060538 Al

[0060] Because a processing element may be a collection
of fused stream operators, it is equally correct to describe the
operator graph as one or more execution paths between
specific stream operators, which may include execution
paths to different stream operators within the same process-
ing element. FIG. 5 illustrates execution paths between
processing elements for the sake of clarity.

[0061] FIG. 6 illustrates a flow diagram for recommending
streams application actors as fusion candidates, according to
various embodiments. The method 600 can start, per 602,
when profiles are generated for each streams application
actor, per 604. A streams application actor could be, for
example, a streams operator, a processing clement, or
another processing entity in a streams operator graph. Each
profile can include data relevant to the particular streams
application actor. For example, a profile could include
historical central processing unit (CPU) usage, current or
real-time CPU usage, processing speeds, tuple rates, and
other data relevant to the data processing occurring over a
particular streams application actor. A profile can be created
for each streams application actor on a particular operating
graph within a streams processing environment.

[0062] From the profiles, a set of fusion candidates may be
identified, per 606. For example, three streams operators
could have profiles with historical usage data that indicates
that, when running on the same hardware configuration as in
the past, the operators would be able to more quickly process
data (e.g., with fewer delays) if they were fused together in
a single processing element. This could be based on a
parameter or set of parameters established by an application
manager or a system administrator, or in another way. A
determination that two or more streams application actors
(e.g., stream operators) are fusion candidates may also
indicate that the streams application actors can be separated
from a same processing element (e.g., “un-fused”). Thus, a
fusion candidate recommendation can recommend that the
streams application actors be merged or separated.

[0063] The identity of the streams application actors and
the fusion candidate recommendation may then be dis-
played, per 608. The fusion candidate rule satisfied by the
streams application actors can also be displayed. For
example, identifying data about each of the three streams
operators can be displayed. The recommendation to fuse the
three operators into a single processing element can also be
displayed. The rule or parameter that was met in order to
qualify them as fusion candidates could also be displayed.
Other data which could be helpful to a developer or other
user in determining whether or not the fusion candidate
recommendation should be accepted can also be displayed.
As indicated herein, the display can be a part of a user
interface that is part of a job execution recommendation of
a performance management system. Or, for example, an
integrated development environment (IDE) could display
the results to a developer, in order to hint to the developer
an appropriate configuration or reconfiguration for a par-
ticular portion of an operator graph. The method can then
end, per 610. The system can also continue to monitor for
fusion candidates, continue to update the streams application
actor profiles, and generate new profiles as streams appli-
cation actors are added to a graph.

[0064] FIG. 7 illustrates a block diagram of a user inter-
face 700, according to various embodiments. The user
interface 700 may be a graphical user interface and may be
displayed on one or more I/O devices (e.g., I/O devices 212

Mar. 2, 2017

in FIG. 2), and the user interface 700 may be generated by
one or more processors (e.g., processors 205 in FIG. 2)
executing instructions contained in a stream manager or
stream computing application (e.g., stream manager 134 in
FIG. 1 or stream computing application 232 in FIG. 2).
[0065] A user presented with the user interface 700 can
monitor a stream computing application. The user interface
700 can also provide a visual representation of the processes
of the various streams computing elements including
streams application actors. The user interface 700 can also
present a user with one or more fusion candidate recom-
mendations and relevant metrics associated with the fusion
candidate recommendation.

[0066] The user interface 700 can include, individually or
in combination, a graphical display (e.g., 702 and 704), a
tabulated display (e.g., 718b), or any other representation
suitable for a user. For example, graphical display 702 can
provide a graphical overview of a current operator graph 706
that is being developed, monitored, or edited. As described
herein, within a streams computing environment operator
graph 706 can comprise a number of compute nodes 708A,
708B, 708C, and 708D. Each compute node can host a
number of processing elements (PE1-10) that process tuples
of data as they flow from a source 710 to a sink 712 or 714.
Not pictured in graphical display 702 of the operator graph
706 are individual stream operators, which may comprise
one or more processing element (PE1-10). In embodiments,
each processing element (e.g., PE1), may be a selectable
option, which allows a user to select the processing element
in order to see the one or more stream operators or other
streams application actors that comprise the processing
element.

[0067] The operator graph 706 depicted herein may cor-
respond to the graph illustrated in FIG. 5. Data points or
performance metrics for a compute node 708 or each par-
ticular processing element may also be included on the
operator graph 706. In this way, a user presented with the
user interface 700 can view particular operations in the
operator graph 706, while still maintaining a perspective of
the overall data processing occurring over the entire operator
graph 706.

[0068] The user interface 700 can also include a graphical
display 704 that includes a fusion candidate recommenda-
tion 718. The graphical display 704, which herein may be
referred to as a “fusion recommendation window” can
include both the fusion candidate recommendation 718 and
a data window 716, which can include additional data
related to the fusion candidate recommendation.

[0069] For example, the fusion recommendation window
716 may include a graphical representation of the two or
more streams operators for which fusion or separation is
being recommended (e.g., OP4 and OP5). It may also
include text or a graphical depiction which indicates that the
operators are to be fused or separated. It may also include
tabular data for each of these operators, here 718a-b. An
example of this tabular data 7185 is depicted for illustrative
purposes. This tabular data 7185 can include data specific to
each particular streams application actor that has been
identified as a fusion candidate (e.g. OP 5). Example non-
limiting performance metrics can include: tuple flow rates,
processing power demand, location of operator processing,
hardware configurations, or other data. Further discussion of
the performance metrics that may be included in a tabular
display 7185 may be found at FIG. 9.

US 2017/0060538 Al

[0070] The graphical and tabular displays depicted in FIG.
7 are intended to provide examples only and are not intended
to restrict the appearance or values present on the user
interface 700. Rather, the various displays, arrangement of
the displays, types of data shown, and other features may be
configured to accommodate user needs or preferences.
[0071] FIG. 8 illustrates a graphical display, according to
embodiments. The graphical display 800 can be a part or the
whole of a user interface. The user interface may be a part
of an IDE for a streams computing application. The graphi-
cal display 800 may be phase-integrated into a more com-
plex user interface (e.g., graphical display 704 in FIG. 7).
Like its counterpart graphical display 704 in FIG. 7, graphi-
cal display 800 may be referred to as a fusion recommen-
dation window 800.

[0072] For example, the fusion recommendation window
800 can include one or more graphical depictions of streams
operators 804a, 8045, 804¢, or other streams application
actors that may be candidates for fusion. Here, operators
8044 and 8045 have been identified as candidates for fusion,
as described herein. In the example illustrated here, streams
operator 804¢ has not been selected as a candidate for
fusion. However, one or more surrounding but not recom-
mended streams operators (e.g., 804¢) may be included in
the fusion recommendation window 800. These may be
displayed based on a setting or based on a threshold value,
or in another way. For example, a user may set a threshold
that if reached, indicates that the recommended operators are
extremely strong candidates for fusion. If that threshold is
reached, then surrounding operators that are not candidates
for fusion (here 804¢) may not be displayed. However, if the
threshold is not reached based on various metrics, then the
failure to meet the threshold could indicate that the recom-
mended operators are only moderately strong candidates for
fusion. In this case, where the threshold is not reached, one
or more surrounding operators (and the performance metrics
806¢ of those one or more surrounding operators) may be
displayed in the fusion recommendation window 800. This
way, a user (e.g., a developer) can, with relative ease, access
and use surrounding performance data in confirming or
denying fusion recommendations.

[0073] Each streams operator 804 (or other streams appli-
cation actor) may be displayed with performance metrics or
other relevant data associated with the stream operator. This
data may be displayed in one or more tables 806a-c.
Performance metrics can be displayed to assist a user in
understanding the reasoning or confidence of a fusion rec-
ommendation. FIG. 9 includes more details on this data.
[0074] A graphical representation may indicate to a user
that the one or more streams operators 804a and 8045 are
candidates for fusion. This recommendation 802 may appear
as a selectable option, a graphic, or in other manner. For
example, the recommendation 802 may include a selectable
option 808. This option could link to performance metrics,
analysis, or other data that can help the user understand why
the recommendation was made. The data in selectable option
808 could also indicate performance benefits from fusing or
separating the operators, or other data. Elements described
herein are provided for illustrative purposes only, and a
graphical display or fusion recommendation window 800
may be configured to any appearance or design deemed
useful. For example, if the IDE in which the fusion recom-
mendation window 800 is contained is for a streams com-
puting environment that is very complex and developed with

Mar. 2, 2017

little human interaction, the fusion recommendation window
800 may be configured to display fewer performance met-
rics, and the fusion may occur automatically (i.e., without
additional user input) upon, for example, exceeding a par-
ticular threshold. However, in an IDE for a streams com-
puting application that is less complex or where more
precision or severability may be desired, the system may
display the aforementioned data and more, in order to
provide the developer with as much useful data as possible,
so that the developer can be well-informed to make a
decision relatively independent of the system’s recommen-
dation.

[0075] FIG. 9 illustrates a tabular display 900 according to
embodiments. The tabular display 900 may be a table like
the example one shown here. The table is not limited to the
categories given here, and may include performance metrics,
analytics, fusion details, or other categories. The table
shown here indicates performance metrics for a particular
streams operator, OP1. As described herein, example per-
formance metrics include: tuple flow rates, processing
power demand, location of operator processing, hardware
configurations of processing, or other data. These metrics
may be displayed in a table for each particular operator of
interest.

[0076] For example and as illustrated here, the perfor-
mance metrics may be listed as an individual column,
including: Performance metric A, Performance metric B,
Performance metric C, and Performance metric D. Addi-
tional or fewer columns may be included, in order to suit the
preferences of a particular user. Another column, here
including “17, 27, “3”, . . . “current” indicates the particular
processing cycle for which the performance metrics were
calculated. Additional rows including projected or specula-
tive metrics for future processing cycles could also be
included. The column may be configured to display between
one or all processing cycles, may be selectable in order to
see additional data (e.g., hardware configurations) associ-
ated with the particular cycle, and may be updated in
real-time to reflect the most current processing metrics. In
this way, historical data can be observed and used by a user
in analysis of a fusion recommendation. The table 900 could
also be used in making other determinations. In other
embodiments, performance metrics may be listed in another
type of visual display, including a graph, chart, or other type
of visual display.

[0077] Additionally, the tabular data updated in real-time
and displayed in table 900 can be used by a developer in
order to monitor the effects of a fusion or separation, after
the fact and in real-time. For example, if a fusion recom-
mendation window (e.g., 800 in FIG. 8) contained predictive
data that indicated CPU usage would be decreased by x %
upon a fusion of three particular operators, the developer
could accept the fusion recommendation and monitor the
processing consumption for the next y number of cycles to
determine whether or not the predication was accurate. In
this way, a developer can monitor in real-time the impact
and efficacy of the fusion or separation of particular types of
operators, and adjust thresholds or other recommendation
configurations accordingly.

[0078] FIG. 10 illustrates a method 1000 for recommend-
ing fusion candidates in a streams computing environment,
according to various embodiments. The method 1000 begins
when a first streams application actor profile is generated,
per 1002, and a second streams application actor profile is

US 2017/0060538 Al

generated, per 1004. These profiles can be generated simul-
taneously or in any order. For ease of discussion, only two
streams application actors, and only two streams application
actor profiles are being described, however, profiles may be
developed and maintained for each streams application actor
(e.g., stream operators, processing elements, or other actors)
in an operator graph. If two or more profiles satisfy a fusion
candidate rule, per 1006, the streams application actors
associated with the profiles may be identified as fusion
candidates, per 1008. The fusion candidates’ identities could
then be displayed as recommended candidates for fusion or
separation, along with the recommendation to fuse or sepa-
rate the actors, per 1010. Other data could be displayed with
this recommendation including data regarding the recom-
mendation like detected or evaluated inefficiencies that
could be alleviated by the fusion or other data.

[0079] The present invention may be a system, a method,
and/or a computer program product. The computer program
product may include a computer readable storage medium
(or media) having computer readable program instructions
thereon for causing a processor to carry out aspects of the
present invention.

[0080] The computer readable storage medium can be a
tangible device that can retain and store instructions for use
by an instruction execution device. The computer readable
storage medium may be, for example, but is not limited to,
an electronic storage device, a magnetic storage device, an
optical storage device, an electromagnetic storage device, a
semiconductor storage device, or any suitable combination
of the foregoing. A non-exhaustive list of more specific
examples of the computer readable storage medium includes
the following: a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), a static random access memory
(SRAM), a portable compact disc read-only memory (CD-
ROM), a digital versatile disk (DVD), a memory stick, a
floppy disk, a mechanically encoded device such as punch-
cards or raised structures in a groove having instructions
recorded thereon, and any suitable combination of the fore-
going. A computer readable storage medium, as used herein,
is not to be construed as being transitory signals per se, such
as radio waves or other freely propagating electromagnetic
waves, electromagnetic waves propagating through a wave-
guide or other transmission media (e.g., light pulses passing
through a fiber-optic cable), or electrical signals transmitted
through a wire.

[0081] Computer readable program instructions described
herein can be downloaded to respective computing/process-
ing devices from a computer readable storage medium or to
an external computer or external storage device via a net-
work, for example, the Internet, a local area network, a wide
area network and/or a wireless network. The network may
comprise copper transmission cables, optical transmission
fibers, wireless transmission, routers, firewalls, switches,
gateway computers and/or edge servers. A network adapter
card or network interface in each computing/processing
device receives computer readable program instructions
from the network and forwards the computer readable
program instructions for storage in a computer readable
storage medium within the respective computing/processing
device.

[0082] Computer readable program instructions for carry-
ing out operations of the present invention may be assembler

Mar. 2, 2017

instructions, instruction-set-architecture (ISA) instructions,
machine instructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, or
either source code or object code written in any combination
of one or more programming languages, including an object
oriented programming language such as Smalltalk, C++ or
the like, and conventional procedural programming lan-
guages, such as the “C” programming language or similar
programming languages. The computer readable program
instructions may execute entirely on the user’s computer,
partly on the user’s computer, as a stand-alone software
package, partly on the user’s computer and partly on a
remote computer or entirely on the remote computer or
server. In the latter scenario, the remote computer may be
connected to the user’s computer through any type of
network, including a local area network (LAN) or a wide
area network (WAN), or the connection may be made to an
external computer (for example, through the Internet using
an Internet Service Provider). In some embodiments, elec-
tronic circuitry including, for example, programmable logic
circuitry, field-programmable gate arrays (FPGA), or pro-
grammable logic arrays (PLA) may execute the computer
readable program instructions by utilizing state information
of'the computer readable program instructions to personalize
the electronic circuitry, in order to perform aspects of the
present invention.

[0083] Aspects of the present invention are described
herein with reference to flowchart illustrations and/or block
diagrams of methods, apparatus (systems), and computer
program products according to embodiments of the inven-
tion. It will be understood that each block of the flowchart
illustrations and/or block diagrams, and combinations of
blocks in the flowchart illustrations and/or block diagrams,
can be implemented by computer readable program instruc-
tions.

[0084] These computer readable program instructions may
be provided to a processor of a general purpose computer,
special purpose computer, or other programmable data pro-
cessing apparatus to produce a machine, such that the
instructions, which execute via the processor of the com-
puter or other programmable data processing apparatus,
create means for implementing the functions/acts specified
in the flowchart and/or block diagram block or blocks. These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer, a programmable data processing apparatus, and/
or other devices to function in a particular manner, such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including
instructions which implement aspects of the function/act
specified in the flowchart and/or block diagram block or
blocks.

[0085] The computer readable program instructions may
also be loaded onto a computer, other programmable data
processing apparatus, or other device to cause a series of
operational steps to be performed on the computer, other
programmable apparatus or other device to produce a com-
puter implemented process, such that the instructions which
execute on the computer, other programmable apparatus, or
other device implement the functions/acts specified in the
flowchart and/or block diagram block or blocks.

[0086] The flowchart and block diagrams in the Figures
illustrate the architecture, functionality, and operation of
possible implementations of systems, methods, and com-

US 2017/0060538 Al

puter program products according to various embodiments
of the present invention. In this regard, each block in the
flowchart or block diagrams may represent a module, seg-
ment, or portion of instructions, which comprises one or
more executable instructions for implementing the specified
logical function(s). In some alternative implementations, the
functions noted in the block may occur out of the order noted
in the figures. For example, two blocks shown in succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block dia-
grams and/or flowchart illustration, can be implemented by
special purpose hardware-based systems that perform the
specified functions or acts or carry out combinations of
special purpose hardware and computer instructions.
[0087] It is understood in advance that although this
disclosure includes a detailed description on cloud comput-
ing, implementation of the teachings recited herein are not
limited to a cloud computing environment. Rather, embodi-
ments of the present invention are capable of being imple-
mented in conjunction with any other type of computing
environment now known or later developed.

[0088] Cloud computing is a model of service delivery for
enabling convenient, on-demand network access to a shared
pool of configurable computing resources (e.g. networks,
network bandwidth, servers, processing, memory, storage,
applications, virtual machines, and services) that can be
rapidly provisioned and released with minimal management
effort or interaction with a provider of the service. This cloud
model may include at least five characteristics, at least three
service models, and at least four deployment models.
[0089] Characteristics are as follows:

[0090] On-demand self-service: a cloud consumer can
unilaterally provision computing capabilities, such as server
time and network storage, as needed automatically without
requiring human interaction with the service’s provider.
[0091] Broad network access: capabilities are available
over a network and accessed through standard mechanisms
that promote use by heterogeneous thin or thick client
platforms (e.g., mobile phones, laptops, and PDAs).
[0092] Resource pooling: the provider’s computing
resources are pooled to serve multiple consumers using a
multi-tenant model, with different physical and virtual
resources dynamically assigned and reassigned according to
demand. There is a sense of location independence in that
the consumer generally has no control or knowledge over
the exact location of the provided resources but may be able
to specify location at a higher level of abstraction (e.g.,
country, state, or datacenter).

[0093] Rapid elasticity: capabilities can be rapidly and
elastically provisioned, in some cases automatically, to
quickly scale out and rapidly released to quickly scale in. To
the consumer, the capabilities available for provisioning
often appear to be unlimited and can be purchased in any
quantity at any time.

[0094] Measured service: cloud systems automatically
control and optimize resource use by leveraging a metering
capability at some level of abstraction appropriate to the
type of service (e.g., storage, processing, bandwidth, and
active user accounts). Resource usage can be monitored,
controlled, and reported providing transparency for both the
provider and consumer of the utilized service.

Mar. 2, 2017

[0095] Service Models are as follows:

[0096] Software as a Service (SaaS): the capability pro-
vided to the consumer is to use the provider’s applications
running on a cloud infrastructure. The applications are
accessible from various client devices through a thin client
interface such as a web browser (e.g., web-based e-mail).
The consumer does not manage or control the underlying
cloud infrastructure including network, servers, operating
systems, storage, or even individual application capabilities,
with the possible exception of limited user-specific applica-
tion configuration settings.

[0097] Platform as a Service (PaaS): the capability pro-
vided to the consumer is to deploy onto the cloud infra-
structure consumer-created or acquired applications created
using programming languages and tools supported by the
provider. The consumer does not manage or control the
underlying cloud infrastructure including networks, servers,
operating systems, or storage, but has control over the
deployed applications and possibly application hosting envi-
ronment configurations.

[0098] Infrastructure as a Service (laaS): the capability
provided to the consumer is to provision processing, storage,
networks, and other fundamental computing resources
where the consumer is able to deploy and run arbitrary
software, which can include operating systems and applica-
tions. The consumer does not manage or control the under-
lying cloud infrastructure but has control over operating
systems, storage, deployed applications, and possibly lim-
ited control of select networking components (e.g., host
firewalls).

[0099] Deployment Models are as follows:

[0100] Private cloud: the cloud infrastructure is operated
solely for an organization. It may be managed by the
organization or a third party and may exist on-premises or
off-premises.

[0101] Community cloud: the cloud infrastructure is
shared by several organizations and supports a specific
community that has shared concerns (e.g., mission, security
requirements, policy, and compliance considerations). It
may be managed by the organizations or a third party and
may exist on-premises or off-premises.

[0102] Public cloud: the cloud infrastructure is made
available to the general public or a large industry group and
is owned by an organization selling cloud services.

[0103] Hybrid cloud: the cloud infrastructure is a compo-
sition of two or more clouds (private, community, or public)
that remain unique entities but are bound together by stan-
dardized or proprietary technology that enables data and
application portability (e.g., cloud bursting for load-balanc-
ing between clouds).

[0104] A cloud computing environment is service oriented
with a focus on statelessness, low coupling, modularity, and
semantic interoperability. At the heart of cloud computing is
an infrastructure comprising a network of interconnected
nodes.

[0105] Referring now to FIG. 11, a schematic of an
example of a cloud computing node is shown. Cloud com-
puting node 10 is only one example of a suitable cloud
computing node and is not intended to suggest any limitation
as to the scope of use or functionality of embodiments of the
invention described herein. Regardless, cloud computing
node 10 is capable of being implemented and/or performing
any of the functionality set forth hereinabove.

US 2017/0060538 Al

[0106] In cloud computing node 10 there is a computer
system/server 12, which is operational with numerous other
general purpose or special purpose computing system envi-
ronments or configurations. Examples of well-known com-
puting systems, environments, and/or configurations that
may be suitable for use with computer system/server 12
include, but are not limited to, personal computer systems,
server computer systems, thin clients, thick clients, hand-
held or laptop devices, multiprocessor systems, micropro-
cessor-based systems, set top boxes, programmable con-
sumer electronics, network PCs, minicomputer systems,
mainframe computer systems, and distributed cloud com-
puting environments that include any of the above systems
or devices, and the like.

[0107] Computer system/server 12 may be described in
the general context of computer system-executable instruc-
tions, such as program modules, being executed by a com-
puter system. Generally, program modules may include
routines, programs, objects, components, logic, data struc-
tures, and so on that perform particular tasks or implement
particular abstract data types. Computer system/server 12
may be practiced in distributed cloud computing environ-
ments where tasks are performed by remote processing
devices that are linked through a communications network.
In a distributed cloud computing environment, program
modules may be located in both local and remote computer
system storage media including memory storage devices.
[0108] As shown in FIG. 11, computer system/server 12 in
cloud computing node 10 is shown in the form of a general-
purpose computing device. The components of computer
system/server 12 may include, but are not limited to, one or
more processors or processing units 16, a system memory
28, and a bus 18 that couples various system components
including system memory 28 to processor 16.

[0109] Bus 18 represents one or more of any of several
types of bus structures, including a memory bus or memory
controller, a peripheral bus, an accelerated graphics port, and
a processor or local bus using any of a variety of bus
architectures. By way of example, and not limitation, such
architectures include Industry Standard Architecture (ISA)
bus, Micro Channel Architecture (MCA) bus, Enhanced ISA
(EISA) bus, Video Electronics Standards Association
(VESA) local bus, and Peripheral Component Interconnects
(PCI) bus.

[0110] Computer system/server 12 typically includes a
variety of computer system readable media. Such media
may be any available media that is accessible by computer
system/server 12, and it includes both volatile and non-
volatile media, removable and non-removable media.

[0111] System memory 28 can include computer system
readable media in the form of volatile memory, such as
random access memory (RAM) 30 and/or cache memory 32.
Computer system/server 12 may further include other
removable/non-removable, volatile/non-volatile computer
system storage media. By way of example only, storage
system 34 can be provided for reading from and writing to
a non-removable, non-volatile magnetic media (not shown
and typically called a “hard drive”). Although not shown, a
magnetic disk drive for reading from and writing to a
removable, non-volatile magnetic disk (e.g., a “floppy
disk™), and an optical disk drive for reading from or writing
to a removable, non-volatile optical disk such as a CD-
ROM, DVD-ROM or other optical media can be provided.
In such instances, each can be connected to bus 18 by one

Mar. 2, 2017

or more data media interfaces. As will be further depicted
and described below, memory 28 may include at least one
program product having a set (e.g., at least one) of program
modules that are configured to carry out the functions of
embodiments of the invention.

[0112] Program/utility 40, having a set (at least one) of
program modules 42, may be stored in memory 28 by way
of example, and not limitation, as well as an operating
system, one or more application programs, other program
modules, and program data. Each of the operating system,
one or more application programs, other program modules,
and program data or some combination thereof, may include
an implementation of a networking environment. Program
modules 42 generally carry out the functions and/or meth-
odologies of embodiments of the invention as described
herein.

[0113] Computer system/server 12 may also communicate
with one or more external devices 14 such as a keyboard, a
pointing device, a display 24, etc.; one or more devices that
enable a user to interact with computer system/server 12;
and/or any devices (e.g., network card, modem, etc.) that
enable computer system/server 12 to communicate with one
or more other computing devices. Such communication can
occur via Input/Output (I/0O) interfaces 22. Still yet, com-
puter system/server 12 can communicate with one or more
networks such as a local area network (LAN), a general wide
area network (WAN), and/or a public network (e.g., the
Internet) via network adapter 20. As depicted, network
adapter 20 communicates with the other components of
computer system/server 12 via bus 18. It should be under-
stood that although not shown, other hardware and/or soft-
ware components could be used in conjunction with com-
puter system/server 12. Examples, include, but are not
limited to: microcode, device drivers, redundant processing
units, external disk drive arrays, RAID systems, tape drives,
and data archival storage systems, etc.

[0114] Referring now to FIG. 12, illustrative cloud com-
puting environment 50 is depicted. As shown, cloud com-
puting environment 50 comprises one or more cloud com-
puting nodes 10 with which local computing devices used by
cloud consumers, such as, for example, personal digital
assistant (PDA) or cellular telephone 54A, desktop com-
puter 54B, laptop computer 54C, and/or automobile com-
puter system 54N may communicate. Nodes 10 may com-
municate with one another. They may be grouped (not
shown) physically or virtually, in one or more networks,
such as Private, Community, Public, or Hybrid clouds as
described hereinabove, or a combination thereof. This
allows cloud computing environment 50 to offer infrastruc-
ture, platforms and/or software as services for which a cloud
consumer does not need to maintain resources on a local
computing device. It is understood that the types of com-
puting devices 54A-N shown in FIG. 12 are intended to be
illustrative only and that computing nodes 10 and cloud
computing environment 50 can communicate with any type
of computerized device over any type of network and/or
network addressable connection (e.g., using a web browser).
[0115] Referring now to FIG. 13, a set of functional
abstraction layers provided by cloud computing environ-
ment 50 (FIG. 12) is shown. It should be understood in
advance that the components, layers, and functions shown in
FIG. 13 are intended to be illustrative only and embodiments
of the invention are not limited thereto. As depicted, the
following layers and corresponding functions are provided:

US 2017/0060538 Al

[0116] Hardware and software layer 60 includes hardware
and software components. Examples of hardware compo-
nents include: mainframes 61; RISC (Reduced Instruction
Set Computer) architecture based servers 62; servers 63;
blade servers 64; storage devices 65; and networks and
networking components 66. In some embodiments, software
components include network application server software 67
and database software 68.

[0117] Virtualization layer 70 provides an abstraction
layer from which the following examples of virtual entities
may be provided: virtual servers 71; virtual storage 72;
virtual networks 73, including virtual private networks;
virtual applications and operating systems 74; and virtual
clients 75.

[0118] In one example, management layer 80 may provide
the functions described below. Resource provisioning 81
provides dynamic procurement of computing resources and
other resources that are utilized to perform tasks within the
cloud computing environment. Metering and Pricing 82
provide cost tracking as resources are utilized within the
cloud computing environment, and billing or invoicing for
consumption of these resources. In one example, these
resources may comprise application software licenses. Secu-
rity provides identity verification for cloud consumers and
tasks, as well as protection for data and other resources. User
portal 83 provides access to the cloud computing environ-
ment for consumers and system administrators. Service level
management 84 provides cloud computing resource alloca-
tion and management such that required service levels are
met. Service Level Agreement (SLA) planning and fulfill-
ment 85 provide pre-arrangement for, and procurement of,
cloud computing resources for which a future requirement is
anticipated in accordance with an SLA.

[0119] Workloads layer 90 provides examples of function-
ality for which the cloud computing environment may be
utilized. Examples of workloads and functions which may
be provided from this layer include: mapping and navigation
91; software development and lifecycle management 92;
virtual classroom education delivery 93; data analytics pro-
cessing 94; transaction processing 95; and providing fusion
hints 96.

[0120] The descriptions of the various embodiments of the
present disclosure have been presented for purposes of
illustration, but are not intended to be exhaustive or limited
to the embodiments disclosed. Many modifications and
variations will be apparent to those of ordinary skill in the
art without departing from the scope and spirit of the
described embodiments. The terminology used herein was
chosen to explain the principles of the embodiments, the
practical application or technical improvement over tech-
nologies found in the marketplace, or to enable others of
ordinary skill in the art to understand the embodiments
disclosed herein.

1. A method for recommending streams application actors
for fusion, wherein the streams application actors are dis-
persed on an operator graph within a streaming environ-
ment, the method comprising:

Mar. 2, 2017

generating, for each of two or more streams application
actors in the operator graph, a streams application actor
profile;

determining, from streams application actor profiles for

two or more streams application actors, the two or more
streams application actors are fusion candidates,
wherein the determining is based on streams applica-
tion actor profile data, including historical runtime data
and real-time processing data, and based on the streams
application actors satisfying at least one fusion candi-
date rule from a set of fusion candidate rules, each
fusion candidate rule associated with one or more
fusion recommendations, wherein the fusion recom-
mendation includes reconfiguration data for a particular
portion of the operator graph;

identifying, in response to the determining, a fusion

recommendation, from the one or more fusion recom-
mendations associated with the at least one fusion
candidate rule; and

displaying, in response to the identifying, an identity of

each of the two or more streams application actors and
the fusion recommendation.

2. The method of claim 1, wherein the fusion recommen-
dation is to fuse the two or more streams application actors
into a same processing element.

3. The method of claim 1, wherein the fusion recommen-
dation is to separate the two or more streams applications
actors from a same processing element.

4. The method of claim 1, wherein the data about the
streams application actor further comprises historical central
processing unit (CPU) usage, tuple rates, machine configu-
ration, and current CPU usage.

5. The method of claim 1, wherein the displaying the
identity of each of the set of two or more streams application
actors and the fusion recommendation occurs via a user
interface.

6. The method of claim 5, wherein the user interface is
part of a job execution design recommendation of a perfor-
mance management system.

7. The method of claim 6, wherein the performance
management system is an integrated development environ-
ment.

8. The method of claim 1, wherein the set of fusion
candidate rules comprises a set of performance thresholds,
wherein a particular fusion candidate rule is met if a par-
ticular performance threshold in the set of performance
thresholds is met.

9. The method of claim 8, wherein the set of performance
thresholds comprises thresholds that are correlated with
processing speed.

10. The method of claim 8, wherein the set of perfor-
mance thresholds comprises thresholds that are correlated
with improved CPU usage.

11. The method of claim 1, wherein each streams appli-
cation actor is a streams operator.

#* #* #* #* #*

