



(11)

EP 1 925 688 B1

(12)

## EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention  
of the grant of the patent:  
**01.03.2017 Bulletin 2017/09**

(51) Int Cl.:  
**C23C 4/12 (2016.01)**  
**B05B 7/20 (2006.01)**  
**C23C 4/129 (2016.01)**

**C23C 4/14 (2016.01)**  
**B05B 7/16 (2006.01)**

(21) Application number: **07119585.3**

(22) Date of filing: **30.10.2007**

### (54) Metallization method

Verfahren zum Metallisieren

Méthode de métallisation

(84) Designated Contracting States:  
**AT BE BG CH CY CZ DE DK EE ES FI FR GB GR  
HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE  
SI SK TR**

(30) Priority: **22.11.2006 IT BS20060201**

(43) Date of publication of application:  
**28.05.2008 Bulletin 2008/22**

(73) Proprietor: **Marconi, Gian Paolo  
25080 Puegnago Del Garda (IT)**

(72) Inventor: **Marconi, Gian Paolo  
25080 Puegnago Del Garda (IT)**

(74) Representative: **Pulieri, Gianluca Antonio  
Jacobacci & Partners S.p.A.  
Piazza della Vittoria, 11  
25122 Brescia (IT)**

(56) References cited:  
**EP-A1- 0 360 482 EP-B1- 0 621 348  
WO-A1-99/22041 DE-A1- 10 027 213  
JP-A- 3 236 460 US-A- 3 953 704**

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

**Description**

[0001] The present invention relates to a method for the metallization of light alloys.

5 [0002] Surface hardening processes are known in the art, aimed at improving the resistance of mechanical components stressed to fatigue. In fact, such fatigue resistance is strongly influenced by the features of the surface of the components themselves. For example, the surface roughness is one of the first parameters that must be kept into account in the design and manufacture of components subject to fatigue. Also the residual tensions, at the surface as well, greatly influence the behaviour at fatigue; in fact compression tensions greatly increase the resistance capacity while tractions drastically reduce resistance. Mechanical treatments are used to induce residual compression tensions, such as shot-peening or rolling, whereas to improve the mechanical features, on the surface as well, thermo-chemical treatments such as case hardening or ammonia hardening are used.

10 [0003] Over the last decades, in order to improve abrasion resistance characteristics, various metallization processes have been introduced that allow coating substrates with a poor abrasion resistance with materials having high hardness. For example, in the petrochemical field it has been a decade since the valve balls are coated with tungsten or chromium 15 carbides to prevent abrasion problems due to very hard particles found in the fluids. Such processes use instruments capable of sending a supersonic flow directly against the surface to be coated.

20 [0004] As regards light alloy components, such as aluminium alloys, the process of application on light alloy substrates causes an excessive surface heating, given by the impact of the particles (and by the partial transformation of their kinetic energy into heat) and by the impact of the combustion gas at a high temperature. Since the mechanical properties of light alloys quickly decay in the presence of relatively low temperatures (a little above 120°C), with any method used 25 the metallization imparts no surface improvement to light alloy components.

[0005] To solve this technical problem it is known to cool the surface of the parts to be metallized by gas jets at a low temperature, generally nitrogen. This allows reducing the temperature of the applied layer, but it does not considerably reduce the temperature of the application/substrate interface, due to the high thermal exchange induced by the transformation of the kinetic energy into heat during the impact of the particles.

[0006] In fact, no suitable surface hardness is obtained by applying metal layers on light alloy layers. The smaller the thickness of the component to be metallized, the stronger this limitation. The solutions of prior art are known from EP 0621348 B1, JP 3236460 A, EP 0360482 A1, WO 99/22041 A1 and EP1186348 B1.

30 [0007] In the prior art, therefore, there are no apparatus or methods of metallization of light alloy components suitable for significantly improving the surface features thereof.

[0008] The problem of the present invention is to solve the limits and disadvantages mentioned with reference to the prior art.

[0009] Such disadvantages and limits are solved with a method in accordance with claim 1.

[0010] Further embodiments according to the invention are described in the following claims.

35 [0011] Further features and the advantages of the present invention will appear more clearly from the following description of preferred non-limiting embodiments thereof, wherein:

figure 1 shows a schematic view of an apparatus in an operating step;

40 figure 2 shows a schematic view of the apparatus of figure 1 in a further operating step; figure 3 shows a schematic view of a detail of the apparatus of figure 1;

figure 4 shows a diagram that illustrates the mechanical features of a specimen obtained according to prior art metallization techniques;

figure 5 shows a diagram that illustrates the mechanical features of a specimen obtained according to the apparatus and the method of the present invention.

45 [0012] Elements or parts of elements in common between the embodiments described below are referred to with the same reference numerals.

[0013] With reference to the above figures, reference numeral 4 globally denotes an apparatus for metallization, suitable for providing a metal coating on a component 8, preferably a component of metal material in a light alloy.

50 [0014] Apparatus 4 comprises means 12 for depositing a metal layer on a component, said deposition means 12 being directly facing a wall to be coated 16 of said component 8 so as to address a flow of metal material on a first surface 20 of said wall to be coated 16.

[0015] advantageously, said apparatus 4 comprises a cooling head 24 suitable for sending a cooling fluid flow on a second surface 28 of said wall to be coated 16, the second surface 28 being opposite the first surface 20 so as to not be impinged by the flow of metal material.

[0016] For example, component 8 may be a globally cylindrical component, wherein the first surface 20 consists of the outer side surface or portion thereof and the second surface 28 consists of the inner side surface or portion thereof.

[0017] According to an embodiment, the deposition means 12 comprise a metallization gun 29 suitable for performing

an HVOF (High Velocity Oxyfuel) method for metal coating.

[0018] In this method (figure 3) the combustible, typically paraffin and the comburent, typically oxygen, get mixed and they atomise after passing through respective inlet orifices 30, 31 inside the combustion chamber 32 wherein the combustion takes place by the use of a spark plug 32'.

5 [0019] Pressure in the combustion chamber 32 is monitored constantly to ensure proper combustion and constant pressure.

[0020] The particle speed is directly related to the pressure of chamber 32; the gun comprises a converging-diverging nozzle 33 having such shape and size as to create a supersonic jet. Particles of metal powder, which make up the coating, are introduced downstream of the diverging portion through inlets 34 and are then brought to such temperature 10 as to make them partially plastic. A flow of metal particles 40 at high speed is therefore obtained wherein the metal particles exit at a high speed from an outlet 35 of gun 29 and thus impact against the wall to be coated, thus transforming the high kinetic energy into a plastic deformation and heat during the impact and creating the adhesion to the component substrate. Gun 29 preferably comprises also inlet and outlet ducts 36, 38 for a cooling circuit.

15 [0021] The cooling head 24 comprises a delivery duct 44, in fluid connection to a cooling fluid circuit 48, said delivery duct 44 being provided with at least one delivery hole 52 for the dispersion of coolant on said second surface 28 of the wall to be coated 16.

[0022] Said delivery duct 44 comprises a plurality of delivery holes 52 for fluid dispersion, said holes 52 being for example equally spaced along a prevailing extension axis X of the delivery duct 44.

20 [0023] Preferably, the delivery holes 52 are arranged according to an axial-symmetric arrangement relative to said prevailing extension axis X of the delivery duct 44.

[0024] According to an embodiment, the cooling head 24 comprises at least one collecting duct 56 suitable for collecting the coolant after this has come into contact with the second surface 28 of the wall to be coated 16 and for conveying it in removal from said head 24 in said cooling circuit 48.

25 [0025] For example, the collecting duct 56 is in fluid connection with coolant recirculation means (not shown) suitable for conveying the coolant coming from the collecting duct 56 in a heat exchanger 60, for decreasing the temperature of the coolant.

[0026] The recirculation means are in fluid connection with exchanger 60 so as to deliver the coolant, previously cooled by the exchanger, into the delivery duct 44.

30 [0027] Preferably, the collecting duct 56 is arranged coaxially to the delivery duct 44 relative to the prevailing extension axis X.

[0028] The cooling head 24 comprises, preferably on an outer portion 64 of the collecting duct 56, sealing means 68 suitable for realising a seal between head 24 and the second surface 28 of the wall to be coated 16 of component 8. In other words (figure 2), head 24 is inserted into the component so as to be surrounded by the second surface 28 of component 8, having the delivery holes 52 directly facing the second surface 28; the sealing means abut against said 35 second surface so as to prevent the coolant to escape through the air space between the cooling head and the second surface 28 of component 8. In the practice, the sealing means 68 force the coolant, after this has contacted the second surface 28, to flow back into the collecting ducts 56 and leave head 24 and component 8 through said collecting ducts to be reintroduced into coolant 48.

40 [0029] Preferably, apparatus 4 comprises motor means (not shown) of said component 8, suitable for rotating said component 8 relative to a working axis preferably coinciding with said prevailing extension axis X.

[0030] The metallization method of a metal component according to the present invention shall now be described.

[0031] The metallization method of a metal component according to the present invention comprises the steps of providing means of deposition of a metal layer on a component, addressing by said deposition means, a flow of metal material on a first surface of a wall to be coated of the metal component, the method being characterised in that during 45 the deposition of the metallization flow on a first surface, there is provided the step of addressing a coolant flow, by a cooling head, on a second surface of the wall to be coated, opposite said first surface and not impinged by the metallization flow.

[0032] Preferably, the metallization method comprises the steps of providing a collecting duct for collecting the coolant after it has contacted the wall and conveying said fluid away from said head.

50 [0033] Advantageously, said recirculation means of the coolant convey the coolant coming from the collecting duct in a heat exchanger, for decreasing the temperature of the coolant and send the fluid thus cooled in said delivery duct.

[0034] The sealing means 68 realise a seal between the cooling head 24 and the second surface 28 of the wall to be coated 16 of component 8 so as to convey all the coolant into the collecting duct 56, after the fluid has contacted the second surface of component 28.

55 [0035] In the practice, the sealing means 68 force the coolant, after this has contacted the second surface 28, to flow back into the collecting ducts 56 and leave head 24 and component 8 through said collecting ducts to be reintroduced into coolant 48.

[0036] The component metallization comprises the step of rotating said component 8 relative to a working axis coin-

ciding with the extension axis X of head 24 both during the metal deposition through gun 29 and in the cooling step through the delivery of coolant from the cooling head 24.

[0037] As can be appreciated from the description, the apparatus and the method according to the invention allow overcoming the disadvantages of the prior art.

[0038] Thanks to the high thermal exchange between the component wall and the coolant, which continuously flows into the component, it is possible to control the rise of temperature of the component wall preventing it from undergoing a decrease of the mechanical properties, with particular reference to hardness. The component rotation relative to the cooling head ensures a constant cooling on the entire wall to be coated, at both the first and the second surface.

[0039] Thanks to the geometrical continuity of the application made along the cylindrical surface of the component or specimen, preferably by rotation of the component during the step of deposition of the metal layer, it is possible to apply a metal layer having highly even geometrical and mechanical features.

[0040] To prove the considerable advantages obtained by the present invention, some laboratory tests have been carried out trying to compare the results obtained with the apparatus according to the invention with the results obtained by the known metallization technique.

[0041] For example figure 4 shows the profiles of hardness obtained by applications of tungsten carbide on aluminium substrates having thickness of about one millimetre, by prior art processes. The hardness values shown are of the Vickers type and have been measured with a standard load equal to 0.1 kg.

[0042] As can be seen, the hardness values are affected by the layer concerned by the temperature induced by the metallization technique, so the mechanical features decrease along with the fatigue resistance of the application-substrate assembly. In other words, moving from the surface directly impinged by the metallization flow, and thus subject to higher heating, to the inner wall portion, it may be noted how micro-hardness increases. Of course this result is stronger when the thickness of the wall to be metallized is greater, since an increasingly larger portion of wall is subject to an excessive heating, with subsequent decay of the mechanical features up to the wall core.

[0043] An application of tungsten carbide has therefore been made on the same substrate (about one millimetre), by the apparatus and the method according to the present invention. The results are shown in figure 5. As can be clearly seen, the substrate hardness has not been considerably altered unlike the clear decay of the hardness found with the prior art (see figure 4).

[0044] Moreover, it has been noted that thanks to the metallization obtained according to the present invention, also the fatigue resistance of the components thus coated is greatly increased, with special reference to light alloy components.

[0045] To prove what stated, experimental tests have been carried out using specimens of alloy 6082 at state T6, with rectangular section of about 180x15x8 mm, subject to bending fatigue on four points. The thickness of the application is about 1/10 of millimetre, and the application has been made on one face only of the specimens.

[0046] The fatigue tests gave the results shown in the following table:

|                             | Specimen not coated         | Specimen coated |
|-----------------------------|-----------------------------|-----------------|
| $\sigma_{FAf}=152+/-18$ MPa | $\sigma_{FAf}=319+/-29$ MPa |                 |

[0047] By  $\sigma_{FAf}$  it is meant the limit of alternating bending fatigue, that is, the strain below which the fatigue breakage for an alternating bending stress does not occur. Moreover, the execution of the application on hollow specimens of the same alloy was experimented, having a 32 millimetre diameter with a substrate thickness of 1.1 millimetres.

[0048] Also in this case, the application thickness was of about 0.1 millimetres. The fatigue test results, with the same load applied, are as follows:

|                                  | Specimen not coated | Specimen coated                    |
|----------------------------------|---------------------|------------------------------------|
| n. of break cycles 20,000-25,000 |                     | n. of break cycles 625,000-640,000 |

[0049] Therefore it has been noticed that the coatings made on light alloys according to the present invention considerably increase (up to more than 20 times) the number of loading cycles that lead to fatigue breakage.

[0050] A man skilled in the art may make several changes and adjustments to the methods described above in order to meet specific and incidental needs, all falling within the scope of protection defined in the following claims.

## 55 Claims

1. Metallization method of a metal component in a light alloy, comprising the steps of:

- providing deposition means (12) of a metal layer on a component (8),
- addressing, by said deposition means (12), a flow of metal material (40) on a first surface (20) of a wall to be coated (16) of the metal component (8)

5       wherein  
 during the deposition of the metallization flow (40) on the first surface (20) it comprises the step of addressing a flow of coolant, by a cooling head (24), on a second surface (28) of the wall to be coated (16), opposite said first surface (20) and not impinged by the metallization flow (40),

10      **characterised in that**  
 the cooling fluid is delivered by the cooling head (24) comprising a delivery duct (44), in fluid connection to a cooling fluid circuit (48), said delivery duct (44) being provided with a plurality of delivery holes (52) for the dispersion of coolant on said second surface (28) of the wall to be coated (16), said holes (52) being equally spaced along a prevailing extension axis X of the delivery duct (44), the method further comprising the step of rotating said component (8) relative to a working axis during the metallization and cooling step, wherein said working axis coincides with a prevailing extension axis (X) of the cooling head (24), the component rotating relative to the cooling head, and wherein said deposition means comprise a metallization gun (29) suitable for realising a supersonic jet of metal particles to be addressed towards the wall to be metallized.

20      2. Metallization method of a metal component according to claim 1, comprising the steps of providing a collecting duct (56) for collecting the coolant after it has contacted the wall (16) and conveying said fluid away from said cooling head (24).

25      3. Metallization method of a metal component according to claim 2, comprising the steps of:  
 providing recirculation means of the coolant suitable for conveying the coolant coming from the collecting duct (56) in a heat exchanger (60), for decreasing the temperature of the coolant and sending the fluid thus cooled in said delivery duct (44).

30      4. Metallization method of a metal component according to any one of claims 1 to 3, comprising the steps of providing, on an outer portion (64) of the collecting duct (56), sealing means (68), suitable for realising a seal between the head (24) and said wall (16) of the component (8) so as to convey all the coolant into the collecting duct (56), after the fluid has contacted the second surface (28) of the component (8).

35      **Patentansprüche**

1. Metallisierungsverfahren einer Metallkomponente in einer Leichtlegierung, umfassend die Schritte:

- das Bereitstellen von Abscheidungsmitteln (12) bezüglich einer Metallschicht auf einer Komponente (8),
- das Richten eines Stroms von Metallmaterial (40) durch die Abscheidungsmittel (12) auf eine erste Oberfläche (20) einer zu beschichtenden Wand (16) der Metallkomponente (8),

40      wobei während der Abscheidung des Metallisierungsstroms (40) auf der ersten Oberfläche (20) dieses den Schritt des Richten eines Stroms von Kühlmittel mittels eines Kühlkopfes (24) auf eine zweite Oberfläche (28) der zu beschichtenden Wand (16), entgegengesetzt der ersten Oberfläche (20) und nicht durch den Metallisierungsstrom (40) beaufschlagt, umfaßt,

45      **gekennzeichnet dadurch, daß** das Kühlfluid durch den Kühlkopf (24), umfassend eine Beschickungsleitung (44) in fluider Verbindung zu dem Kühlfluidkreislauf (48), beschickt wird, wobei die Beschickungsleitung (44) mit einer Vielzahl von Beschickungslöchern (52) für die Dispersion des Kühlmittels auf der zweiten Oberfläche (28) der zu beschichtenden Wand (16) bereitgestellt ist, wobei die Löcher (52) gleichmäßig beabstandet entlang einer vorherrschenden Längsachse X der Beschickungsleitung (44) sind, wobei das Verfahren weiter den Schritt des Rotierens der Komponente (8) relativ zu einer Arbeitsachse während des Metallisierungs- und Kühl schritts umfaßt, wobei die Arbeitsachse mit einer vorherrschenden Längsachse X des Kühlkopfes (24) zusammenfällt, wobei die Komponente relativ zu dem Kühlkopf rotiert, und wobei die Abscheidungsmittel eine Metallisierungskanone (29), geeignet zum Realisieren eines Ultraschallstrahls der Metallteilchen gerichtet auf die zu metallisierende Wand, umfassen.

55      2. Metallisierungsverfahren einer Metallkomponente gemäß Anspruch 1, umfassend die Schritte des Bereitstellens

einer Sammelleitung (56) zum Sammeln des Kühlmittels, nachdem es die Wand (16) kontaktiert hat, und des Wegförderns des Fluids von dem Kühlkopf (24).

3. Metallisierungsverfahren einer Metallkomponente gemäß Anspruch 2, umfassend die Schritte:

5 das Bereitstellen von Rückführungsmittel des Kühlmittels, geeignet zum Fördern des Kühlmittels kommend von der Sammelleitung (56) in einen Wärmetauscher (60) zum Vermindern der Temperatur des Kühlmittels und Schicken des derart gekühlten Fluids in die Beschickungsleitung (44).

10 4. Metallisierungsverfahren einer Metallkomponente gemäß einem der Ansprüche 1 bis 3, umfassend die Schritte des Bereitstellens, auf einem äußeren Abschnitt (64) der Sammelleitung (56), von Siegelmitteln (68), geeignet zum Realisieren einer Versiegelung zwischen dem Kopf (24) und der Wand (16) der Komponente (8), um so sämtliches Kühlmittel in die Sammelleitung (56) zu fördern, nachdem das Fluid die zweite Oberfläche (28) der Komponente (8) kontaktiert hat.

15 **Revendications**

20 1. Procédé de métallisation d'un composant métallique dans un alliage léger, comprenant les étapes :

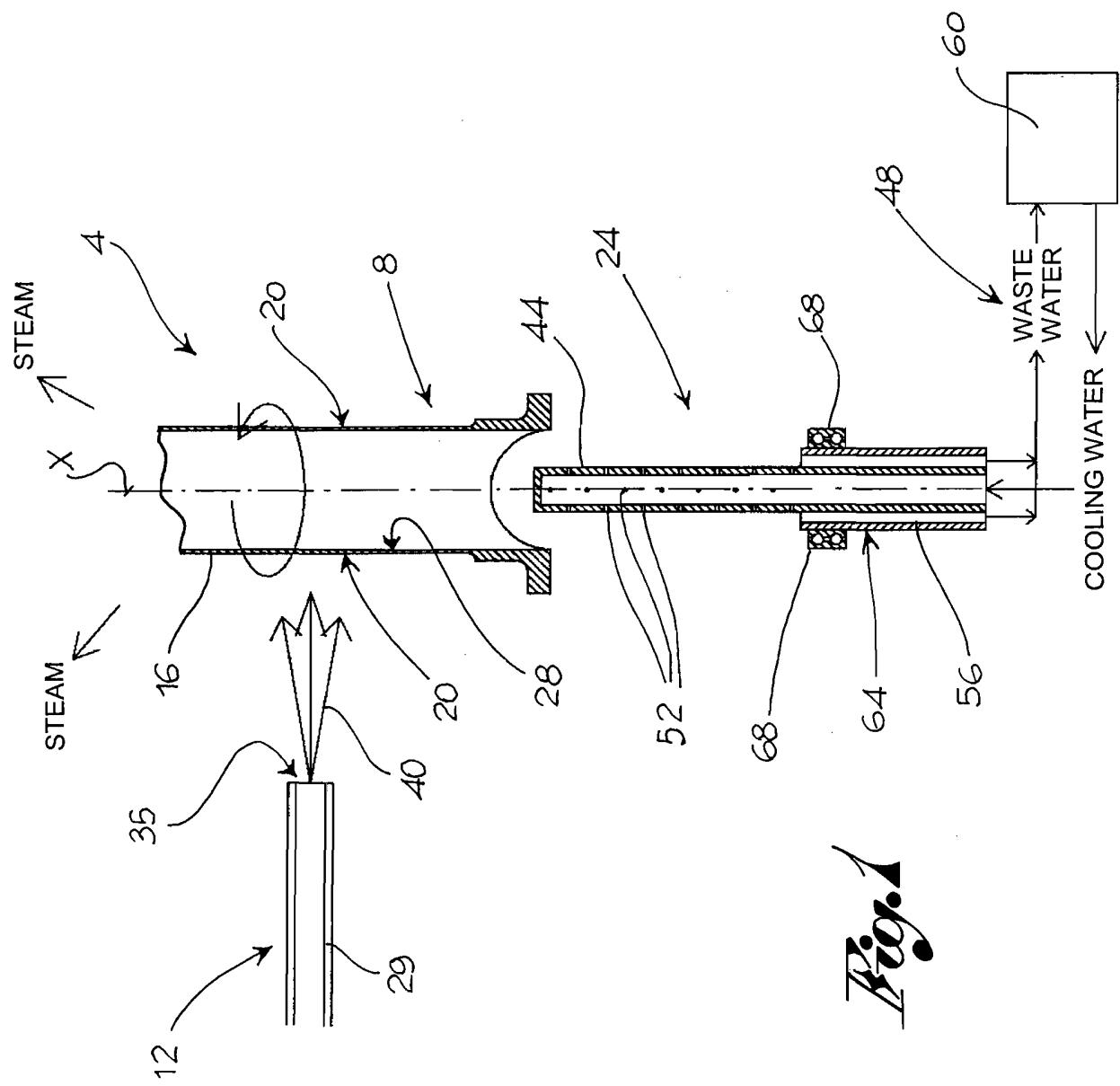
25 - de fourniture de moyens de dépôt (12) d'une couche métallique sur un composant (8),  
 - d'adressage par lesdits moyens de dépôt (12) d'un flux de matériau métallique (40) sur une première surface (20) d'une paroi à revêtir (16) du composant métallique (8)

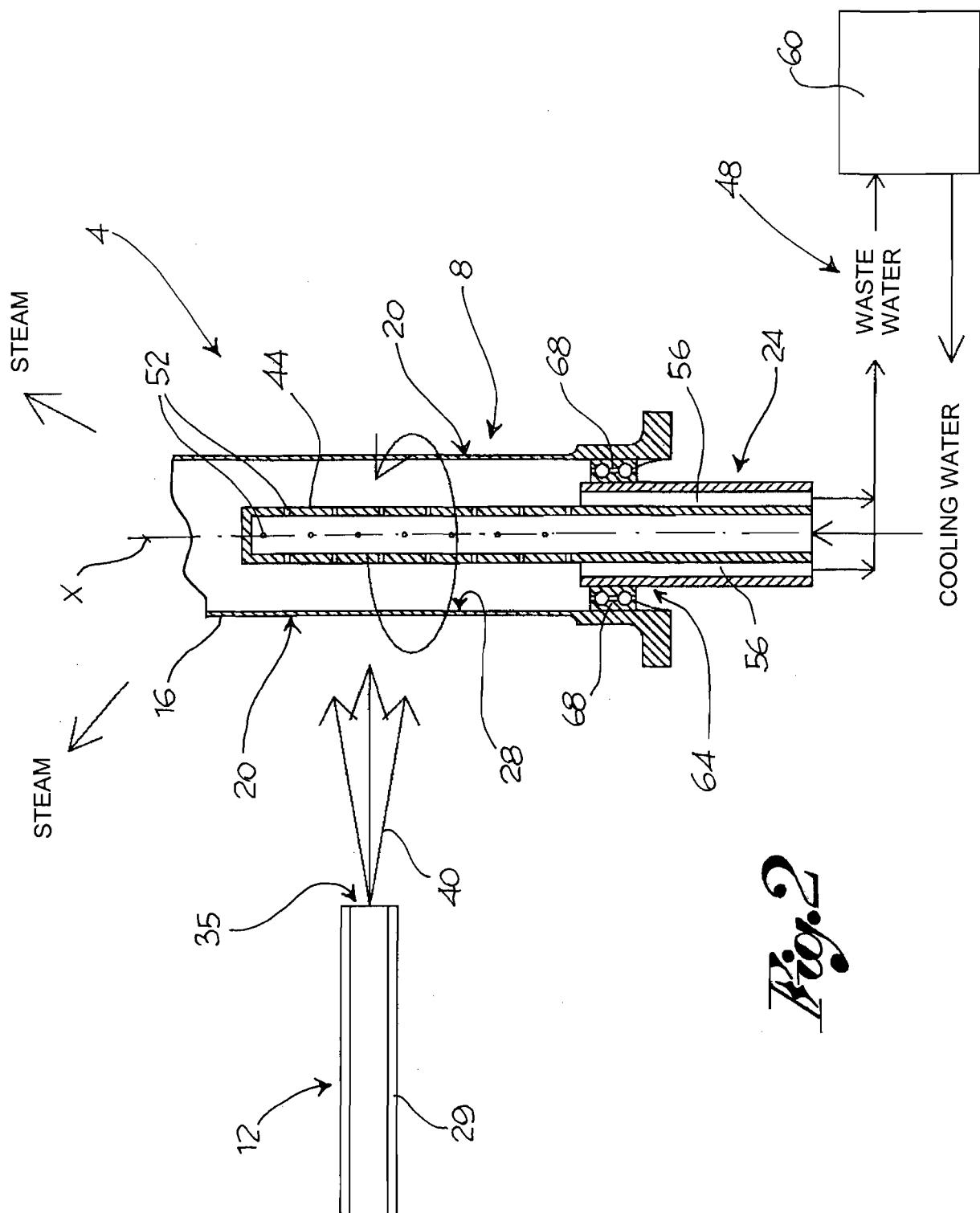
30 dans lequel

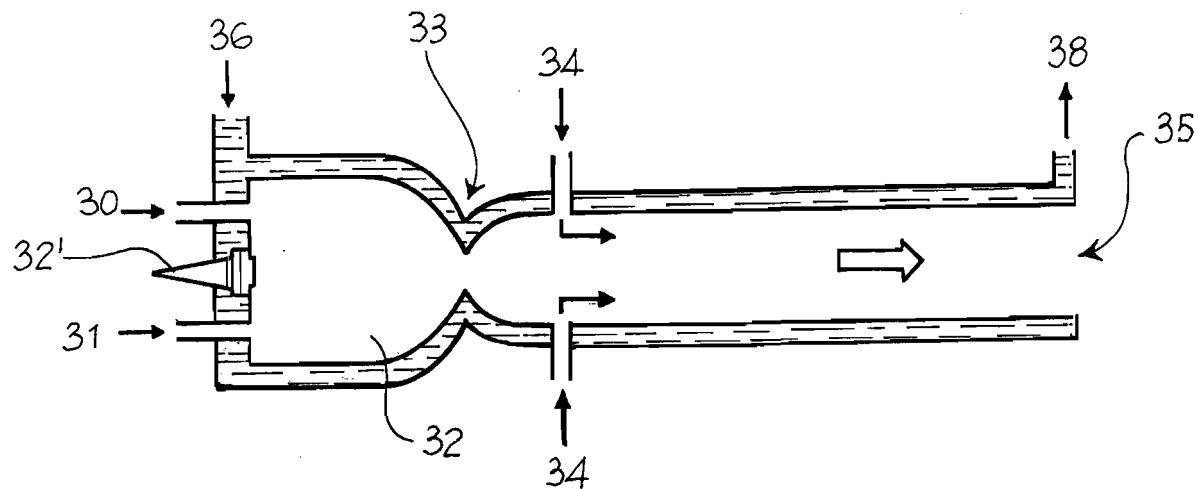
pendant le dépôt du flux de métallisation (40) sur la première surface (20), il comprend l'étape d'adressage d'un flux de réfrigérant, par une tête de refroidissement (24) sur une seconde surface (28) de la paroi à revêtir (16), en regard de ladite première surface (20) et non injectée par le flux de métallisation (40),

**caractérisé en ce que**

35 le fluide de refroidissement est fourni par la tête de refroidissement (24) comprenant un conduit de fourniture (44), en connexion fluidique avec un circuit de fluide de refroidissement (48), ledit conduit de fourniture (44) étant doté d'une pluralité de trous de fourniture (52) pour la dispersion de réfrigérant sur ladite seconde surface (28) de la paroi à revêtir (16), lesdits trous (52) étant espacés également le long d'un axe d'extension dominant X du conduit de fourniture (44), le procédé comprenant en outre l'étape de rotation dudit composant (8) par rapport à un axe de travail pendant l'étape de métallisation et de refroidissement,

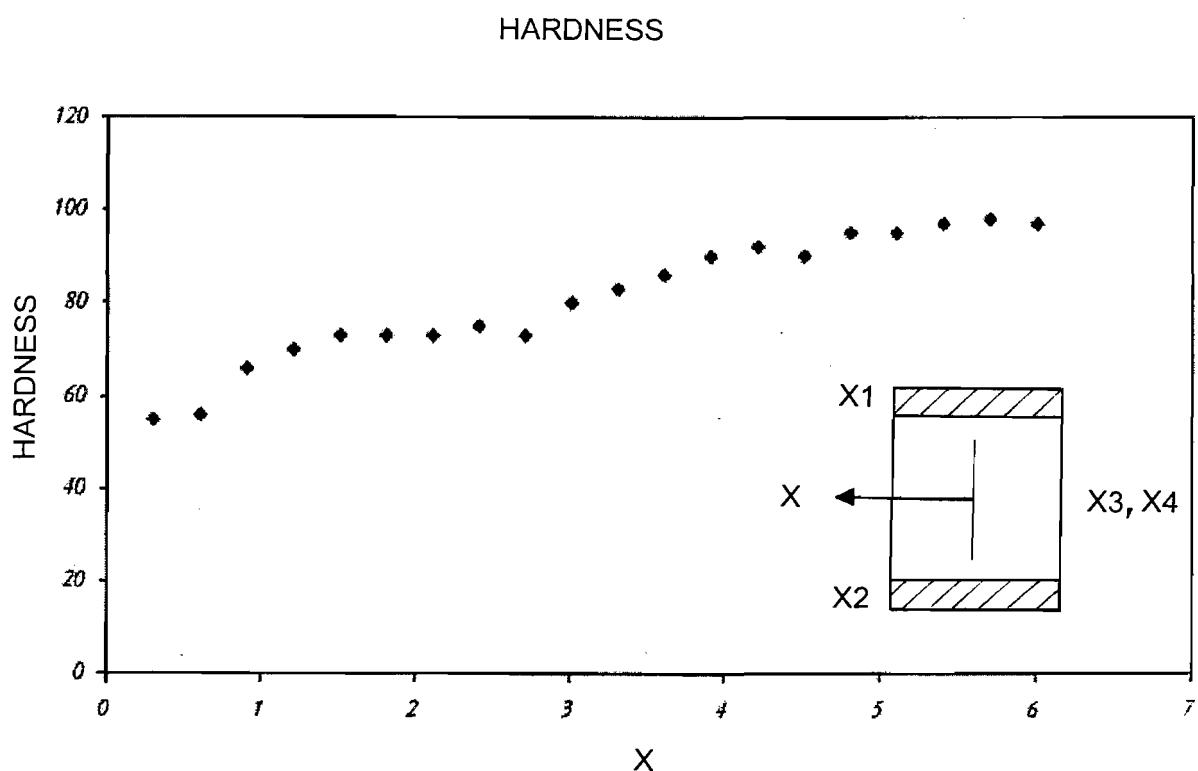

40 dans lequel ledit axe de travail coïncide avec un axe d'extension dominant (X) de la tête de refroidissement (24), le composant tournant par rapport à la tête de refroidissement, et dans lequel lesdits moyens de dépôt comprennent un pistolet de métallisation (29) adapté pour réaliser un jet supersonique de particules métalliques à adresser vers la paroi à métalliser.

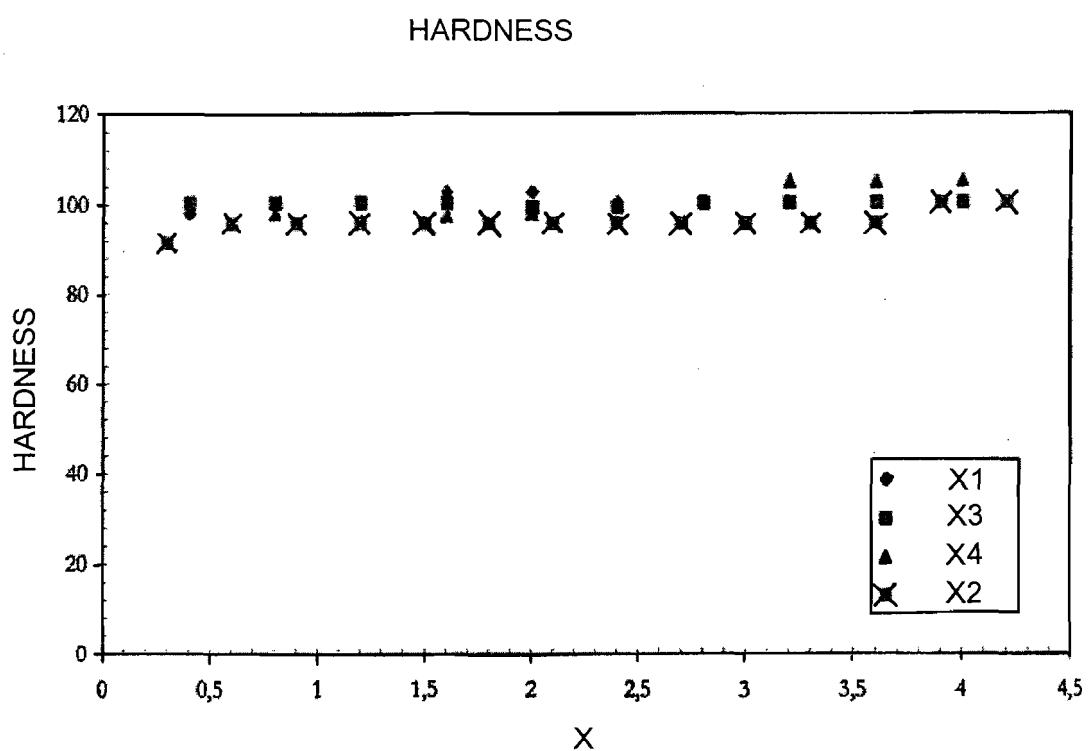

45 2. Procédé de métallisation d'un composant métallique selon la revendication 1, comprenant les étapes de fourniture d'un conduit de collecte (56) pour collecter le réfrigérant après qu'il a touché la paroi (16) et pour transporter ledit fluide loin de ladite tête de refroidissement (24).


50 3. Procédé de métallisation d'un composant métallique selon la revendication 2, comprenant les étapes de :

fourniture de moyens de recirculation du réfrigérant adaptés pour transporter le réfrigérant venant du conduit de collecte (56) dans un échangeur de chaleur (60), pour diminuer la température du réfrigérant et pour envoyer le fluide ainsi refroidi dans ledit conduit de fourniture (44).

55 4. Procédé de métallisation d'un composant métallique selon l'une quelconque des revendications 1 à 3, comprenant les étapes de fourniture sur une partie extérieure (64) du conduit de collecte (56), de moyens d'étanchéité (68), adaptés pour réaliser un joint entre la tête (24) et ladite paroi (16) du composant (8) de sorte à transporter tout le réfrigérant dans le conduit de collecte (56), après que le fluide a touché la seconde surface (28) du composant (8).






*Pig.3*

*Pig.4*





*Fig. 5*

**REFERENCES CITED IN THE DESCRIPTION**

*This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.*

**Patent documents cited in the description**

- EP 0621348 B1 [0006]
- JP 3236460 A [0006]
- EP 0360482 A1 [0006]
- WO 9922041 A1 [0006]
- EP 1186348 B1 [0006]