

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
9 December 2010 (09.12.2010)

(10) International Publication Number
WO 2010/139661 A1

(51) International Patent Classification:
B44C 1/24 (2006.01) B44F 1/10 (2006.01)

AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(21) International Application Number:
PCT/EP2010/057541

(22) International Filing Date:
31 May 2010 (31.05.2010)

(25) Filing Language:
English

(26) Publication Language:
English

(30) Priority Data:
09161774.6 3 June 2009 (03.06.2009) EP

(71) Applicant (for all designated States except US): VALTION TEKNILLINEN TUTKIMUSKESKUS [FI/FI]; Vuorimiehentie 3, FI-02044 VTT (FI).

(72) Inventors; and

(75) Inventors/Applicants (for US only): HUTTUNEN, Olli-Heikki [FI/FI]; P.O. Box 1100, FI-90571 Oulu (FI). HI-ITOLA-KEINÄNEN, Johanna [FI/FI]; P.O. Box 1100, FI-90571 Oulu (FI).

(74) Agent: BERGGREN OY AB; Kirkkokatu 9, FI-90100 Oulu (FI).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM,

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report (Art. 21(3))
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))

(54) Title: METHOD FOR CREATING A DIFFRACTIVE OPTICAL EFFECT ON A TARGET SURFACE AND A TRANSFER FOIL OF A DIFFRACTIVE OPTICAL ELEMENT

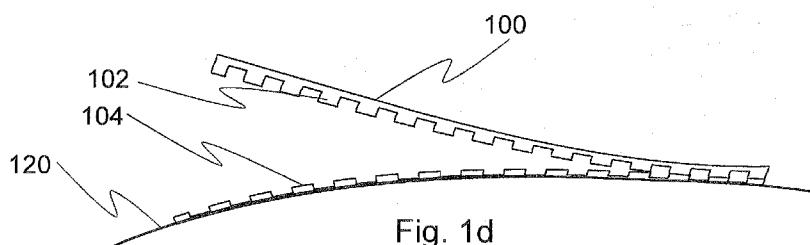


Fig. 1d

(57) Abstract: A fine structure, which produces a diffractive optical effect, is in the method created onto the target surface (120). A transfer foil (100) manufactured from thermoplastic is used in the method, on the surface of which is first created an original fine structure (102), which produces a diffractive optical effect. The original fine structure can be created with electron beam lithography, chemical or plasma etching or various printing techniques, such as screen printing or hot embossing. The transfer foil is placed on the target surface, and it is heated to a temperature, which is close to the glass transition temperature of the material of the transfer foil. Simultaneously during the heating or immediately after the heating the transfer foil can be lightly pressed against the target surface, whereby material from the transfer foil adheres to the target surface. When the transfer foil is removed from the surface of the object, the material of the transfer foil, which has adhered to the target surface, makes up a copied fine structure (104), which is a mirror image of the original fine structure of the transfer foil. Fine structures, which produce a diffractive optical effect, can be manufactured with the method for different purposes, such as a copied fine structure, which produces a decorative optical effect, or a copied fine structure, which functions as a coupling grating for a light beam.

WO 2010/139661 A1

Method for creating a diffractive optical effect on a target surface and a transfer foil of a diffractive optical element

The invention relates to a method for creating a copied fine structure, which produces a diffractive optical effect, on a target surface. The invention also relates

5 to a transfer foil used in the method.

By diffractive optical effect (DOE) is meant a fine structure created on the surface of an object, which fine structure has characteristics, which affect the travelling of light beams. With the aid of diffractive optical elements the appearance of products and packagings can be altered and the product can be made to look

10 different from different viewing angles. With the aid of optical elements, information, which can be read by sight or with the aid of various optical devices, and various optical identifiers, such as holograms, can be added to the products and their packagings.

Three different basic techniques are used in manufacturing diffractive optical

15 elements. Hot embossing uses a metallic mould, typically a mould made of nickel, with which a fine structure is pressed into the surface of the heated polymer foil. Hot embossing can be realized in an economical and quick manner with a printing machine using a roll-to-roll method. Typical commercial products manufactured with this method are diffractive product wrappings and the safety holograms of

20 credit cards and banknotes. The hot embossing technique can in an industrial process be used to manufacture optical elements, the line width of which is less than 100 nanometres. Other methods of manufacturing diffractive optical elements are injection moulding technique, where the optical microstructure is manufactured by injecting molten polymer under pressure into a mould made of steel or nickel,

25 and UV embossing, where liquid monomer or polymer placed in a mould is hardened with the aid of ultraviolet light.

Although the industrial manufacturing of diffractive optical elements is comparatively simple, their manufacturing still requires expensive machines and production devices. A small-scale manufacturing of diffractive optical elements is

30 thus very expensive.

The manufacturing of diffractive optical foils is easy with the aid of printing machines. Other than foil-like optical elements can however not be manufactured with printing machines. If it is desired to create a diffractive optical element on the

surface of a three-dimensional object, the clearly more expensive injection moulding technique must be used.

A disadvantage of using diffractive optical elements is further that they always require an industrial manufacturing apparatus. The enlivenment of the surface of 5 individual products or objects at home with the aid of diffractive optical elements is thus impossible.

The aim of the invention is to provide a method for creating a diffractive optical element on a target surface and a transfer foil of a diffractive optical element, with 10 which the disadvantages and flaws related to prior art can be significantly reduced.

The aims of the invention are obtained with a method and a transfer foil, which are characterized in what is presented in the independent claims. Some advantageous embodiments of the invention are presented in the dependent claims.

15 In the method according to the invention a fine structure, which produces a diffractive optical effect, is created on the target surface. A transfer foil is used in the method, on the surface of which there is an original fine structure, which produces a diffractive optical effect. The transfer foil is of some material in the form of a flexible foil, which is suitable for the purpose, such as thermoplastic 20 plastic. The original fine structure of the transfer foil can have been created with some suitable method, such as electron beam lithography, chemical or plasma etching or various printing techniques, such as gravure printing, flexographic or offset printing technique or screen printing. The original fine structure is preferably created on the surface of the transfer foil with hot embossing, by working with 25 laser or with hololithography. The transfer foil used in the method can be manufactured as a part of the manufacturing process of the fine structure of the target surface or a transfer foil manufactured earlier or acquired from elsewhere, which has the desired original fine structure, can be used in the method. The target surface can in principle be any surface of an object, such as a painted or 30 lacquered wooden surface, a plastic surface or a coated paper surface, which has a sufficiently good adhesion with the material of the transfer foil. The target surface can be evenly shaped or it can be curved.

The selected transfer foil is placed on the target surface so that its original fine structure is in contact with the target surface. Thereafter the transfer foil is heated

to a temperature which is close to the glass transition temperature of the material of the transfer foil, but lower than its melting temperature. During the heating, material from the transfer foil adheres to the target surface. The transfer foil can be pressed against the target surface during the heating or immediately thereafter.

5 Finally the transfer foil is removed from the surface of the object. The material from the transfer foil, which has adhered to the target surface, creates a copied fine structure, which is a mirror image of the original fine structure of the transfer foil.

10 The height of the copied fine structure created on the target surface is in the direction of the normal of the target surface preferably somewhat smaller than the height of the original fine structure, i.e. 100–200 nm, preferably 100–150 nm. The dimensions of the copied fine structure are, however, such that it produces a diffractive optical effect, when it interacts with light.

15 In an advantageous embodiment of the method according to the invention the material of the transfer foil is cellulose acetate. In order to get the material of the transfer foil to a state, where it adheres to the target surface, it is heated to a temperature of 100–130°C.

20 In another advantageous embodiment of the method according to the invention, a substance which improves adhesion, i.e. a primer, is dispensed onto the target surface before the transfer foil is put in place. The substance which improves adhesion can for example be some suitable commercially available primer, which is meant for printing products. With the aid of the substance which improves adhesion the adhesion between the transfer foil and the target surface can be improved, which enables the creation of a copied fine structure also on surfaces, 25 which have a weak adhesion, such as glass surfaces.

Fine structures, which produce a diffractive optical effect, can be manufactured with the method according to the invention for different purposes, such as a copied fine structure, which produces a decorative optical effect, or a copied fine structure, which functions as a coupling grating for a light beam.

30 An advantage of the invention is that it enables the creating of diffractive optical elements onto three-dimensional objects and curved surfaces of objects in a simple and economical manner. The invention also provides a possibility to create diffractive optical elements on such objects and surfaces, where the creating of optical elements has previously been very expensive or even impossible.

It is a further advantage of the invention that it enables the creating of diffractive optical elements onto surfaces of objects with the aid of means available in households without special skill. The invention thus remarkably increases the use possibilities of optical elements for example in decorative applications.

5 It is an advantage of the transfer foil of diffractive optical elements according to the invention that it is easy to manufacture with the aid of devices in use today.

In the following, the invention will be described in detail. In the description, reference is made to the appended drawings, in which

10 figures 1a–1d show in an exemplary manner a method according to the invention with the aid of a series of figures and

figure 2 shows the method according to the invention with the aid of a simple flow chart.

15 The series of figures 1a–1d shows in an exemplary manner the different steps of a method according to the invention with the aid of a series of figures. Figure 2 shows the method according to the invention with the aid of a simple flow chart. The method makes use of a transfer foil 100, onto the surface of which has been created a fine structure, which achieves an optical effect, using some suitable method (figure 1a). By a fine structure which achieves an optical effect is here meant a pattern, a so-called diffractive grating, created in the surface of the 20 transfer foil with the aid of grooves, in which pattern the widths and depths of the grooves are in the order of 100–1000 nanometres, preferably 300–1000 nanometres, and the distances between adjacent patterns, the so-called grating periods, are in the order of 400–3000 nanometres, preferably 800–1500 nanometres. The interaction of such a fine structure of the surface with the light 25 that hits it leads to many optical phenomena, among others light dispersion and diffraction. A visible optical effect is generated from the effect of these phenomena, which optical effect usually varies depending on the viewing direction. The fine structure created on the surface of the transfer foil is in this presentation called the original fine structure 102.

30 Many different methods are known for manufacturing the original fine structure, such as electron beam lithography, chemical or plasma etching or various printing techniques, such as gravure printing, flexographic or offset printing technique. The original fine structure of the transfer foil used in the method is preferably manufactured by working with laser, by hololithography or by hot embossing with

the aid of a nickel mould. The hot embossing can be done with a roll printing machine using the roll-to-roll method or by embossing in a static manner. The creating of a fine structure, which produces a diffractive optical effect, on the surface of the polymer foil is as such prior art, so it is not discussed in further detail in this context.

5 The material of the transfer foil 100 of the diffractive optical element is some thermoplastic plastic foil, which is moulded under the influence of heat and pressure, i.e. thermoplastic foil. Many different thermoplastic foils can be used in the method according to the invention. Characteristics required from the used 10 plastic foil are among others a sufficiently low glass transition temperature and a good adhesion to different materials. The thickness of the transfer foil is selected according to the used material. Preferably the thickness of the transfer foil is 15–200 µm.

15 After the manufacturing of the transfer foil the transfer foil is placed onto the target surface 120 so that the original fine structure 102 settles against the target surface (figure 1b). The shape of the target surface can be an even or curved surface of a three-dimensional object or film. The transfer foil can be attached immovably to the target surface, for example using tape.

20 Next the transfer foil is heated to such a temperature that the material of the transfer foil softens sufficiently and at the same time the transfer foil can be pressed lightly against the surface of the object (figure 1c). Through the interaction of the heat and the contact between the transfer foil and the target surface a part 25 of the material of the original fine structure 102 of the transfer foil adheres to the target surface 120. After a short heating the transfer foil is removed from the surface of the object, whereby the original fine structure of the transfer foil has been copied as a mirror image onto the surface of the target object (figure 1d). By 30 copying of the pattern is meant that a copied fine structure 104, which is substantially identical to the original fine structure, is created on the surface of the target object. Naturally the depth of the grooves in the copied fine structure created on the surface of the target object is not as great as in the original fine structure, i.e. the dimensions of the copied fine structure in the direction of the normal of the surface are smaller than in the original fine structure. The dimensions of the copied fine structure created on the target surface are however such that it functions in interaction with light to produce a diffractive optical effect.

The heating of the transfer foil can be done with simple means used in households, such as an iron, a hairdryer or a hot-air blower. The heating can also be done in an oven by placing the object, to the target surface of which the transfer foil is attached, in the oven at a suitable temperature for the time needed
5 to heat up the transfer foil.

The suitable temperature and heating time of the transfer foil depends on the material of the transfer foil. For the fine structure on the surface of the transfer foil to be able to be copied onto the target surface, the temperature of the transfer foil needs to be raised close to the so-called glass transition temperature. The height
10 of the glass transition temperature depends on the material of the transfer foil. Close to the glass transition temperature the thermal energy makes possible the movement of the molecules in the transfer foil and the adhesion of the molecules to the surface of the target object. The temperature can however not be raised up to the melting temperature of the material, in order for the original fine structure of
15 the transfer foil not to be completely destroyed.

In an advantageous embodiment of the method according to the invention a transfer foil is used, the material of which is cellulose acetate. By using cellulose acetate the original fine structure of the transfer foil can be copied onto target surfaces, which have a sufficient smoothness and a sufficiently good adhesion.
20 Many widely used materials have these properties, for example most thermoplastics, coated paper and paperboard and painted and lacquered wood. When using cellulose acetate the transfer foil is heated to about 125°C for example with an iron and the transfer foil is pressed onto the target surface. Another alternative is to first attach the transfer foil to the target surface for
25 example with tape and heat the transfer foil with a hairdryer or a hot-air blower for example during a time of 10–30 seconds. The object, onto the target surface of which the transfer foil has been attached, can also be placed in an oven for a suitable time, if the object can withstand heating without being damaged. During the heating the fine structured surface of the transfer foil, which is in contact with
30 the target surface, adheres to the surface of the target object. To ensure the contact the transfer foil can be lightly pressed against the surface of the target object. The pressing force needed for the pressing is so small that the pressing can be done by hand. When the transfer foil is pressed against the target surface, the foil may at the same time stretch a little, whereby it is better shaped according
35 to the shapes of the target surface. The method thus makes possible the creating of a fine structure also on target surfaces that are curved in two or more

directions. Thus the creating of a fine structure is possible for example on somewhat convex surfaces.

When the transfer foil is removed, a copied fine structure 104 is left from the transfer foil on the target surface, the pattern of which is substantially the same as 5 the mirror image of the original fine structure of the transfer foil. This copied fine structure of the target surface functions in interaction with the light to achieve a diffractive optical effect.

In the method according to the invention a part of the original fine structure 102 of the transfer foil adheres to the target surface, whereby a mirror image of the 10 original fine structure is copied onto the target surface. The amount of material adhering to the target surface is however very small compared to the dimensions of the original fine structure of the transfer foil. Typically the original fine structure of the transfer foil is made up of grooves, the depth of which is 100–200 nanometres when measured from the level of the surface of the transfer foil. 15 Surprisingly it has been discovered that when using a transfer foil manufactured from cellulose acetate, the depth of the grooves in the copied fine structure formed on the surface of the target object is only slightly smaller than in the original fine structure. This has been shown in tests, wherein a transfer foil, the height of the original fine structure of which is 150 nm, has been manufactured 20 from cellulose acetate. From the original fine structure of the transfer foil has with the method according to the invention been created a first copied fine structure, the height of which is about 120 nm, and a second copied fine structure, the height of which is also about 120 nm, on the target surface. It is believed that the 25 interaction of the cellulose acetate of the transfer foil with the material of the target surface makes it soften, whereby the material of the target surface makes up a part of the copied fine structure.

Even after the first transfer the original fine structure is thus still left on the transfer foil, though its groove depth is smaller than before the transfer. The invention thus makes possible the repetition of the transfer according to the method with the 30 transfer foil, which has already been used once or several times. It has been discovered through testing that a transfer foil manufactured for example from cellulose acetate can be used at least twice, before the quality of the created copied fine structure is significantly reduced.

A limitation with the use of cellulose acetate is that the transfer foil must be heated 35 to a comparatively high temperature. The transfer temperature can be lowered by

manufacturing the transfer foil from a material, which has a sufficiently good adhesion but a lower glass transition temperature. Such thermoplastic materials are among others ethyl vinyl acetate and polyvinyl butyral. When the transfer foil is manufactured from these materials, the transfer temperature, i.e. the temperature,

5 whereto the transfer foil must be heated in order for the original fine structure to adhere to the target surface, can be about 80°C. In the method according to the invention any suitable transfer foil material can be used, preferably a thermoplastic material, the material characteristics of which enable the copying of an original fine structure, which creates a diffractive optical effect, from the surface of the
10 transfer foil to the target surface with the method described above.

The method and transfer foil according to the invention are especially suited for creating copied fine structures, which produce a decorative optical effect, onto target surfaces. The use possibilities of the invention are not, however, limited only to decorative applications, but the invention can be used on several other
15 objects, where diffractive gratings are needed. One such fine structure manufactured with the method is a coupling grating for a light beam, such as a laser.

Some advantageous embodiments of the method and the transfer foil of a diffractive optical element according to the invention are described above. The
20 invention is not limited to the solutions described above, but the inventive idea can be applied in numerous ways within the scope of the claims.

Claims

1. A method for creating a copied fine structure (104), which produces a diffractive optical effect, on a target surface (120), **characterized** in that in the method
 - 5 – a transfer foil (100) is used, on the surface of which there is an original fine structure (102), which produces a diffractive optical effect,
 - the transfer foil is placed on the target surface so that said original fine structure is in contact with the target surface,
 - the transfer foil is heated to a temperature, which is close to the glass transition
 - 10 temperature of the material of the transfer foil, but lower than its melting temperature,
 - the transfer foil is removed from the target surface.
2. The method according to claim 1, **characterized** in that the transfer foil is pressed against the target surface during the heating or thereafter.
- 15 3. The method according to claim 1 or 2, **characterized** in that said original fine structure (102) is created in the surface of the transfer foil (100) by hot embossing.
4. The method according to any of the claims 1–3, **characterized** in that in the method a transfer foil (100) is used, the material of which is thermoplastic plastic.
5. The method according to claim 4, **characterized** in that the material of the
- 20 transfer foil (100) is cellulose acetate.
6. The method according to claim 5, **characterized** in that the material of the transfer foil (100) is cellulose diacetate or cellulose triacetate.
7. The method according to any of the claims 4–6, **characterized** in that the transfer foil (100) is heated to a temperature of 100–130°C.
- 25 8. The method according to any of the claims 2–7, **characterized** in that the transfer foil (100) is pressed against the target surface (120) by hand.
9. The method according to any of the claims 1–8, **characterized** in that a substance that improves adhesion is dispensed before the transfer foil (100) is placed on the target surface (120).

10. The method according to any of the claims 1–9, **characterized** in that a copied fine structure (104) is created in the target surface (120), the height of which copied fine structure in the direction of the normal of the target surface is 100–200 nm, preferably 120–150 nm.

5 11. The method according to any of the claims 1–10, **characterized** in that a copied fine structure (104), which produces a decorative optical effect, is created on the target surface (120).

10 12. The method according to any of the claims 1–11, **characterized** in that a copied fine structure (104), which functions as a coupling grating for a light beam, is created on the target surface (120).

15 13. A transfer foil (100) for creating a copied fine structure (104), which produces a diffractive optical effect, onto a target surface (120), **characterized** in that there is an original fine structure (102) on its surface, which produces a diffractive optical effect, which original fine structure is arranged to adhere to the target surface when the transfer foil is close to the glass transition temperature and pressed against the target surface.

14. The transfer foil (100) according to claim 13, **characterized** in that the material of it is thermoplastic plastic.

15. The transfer foil (100) according to claim 14, **characterized** in that the material of it is cellulose acetate.

20 16. The transfer foil (100) according to claim 15, **characterized** in that the material of it is cellulose diacetate or cellulose triacetate.

1/2

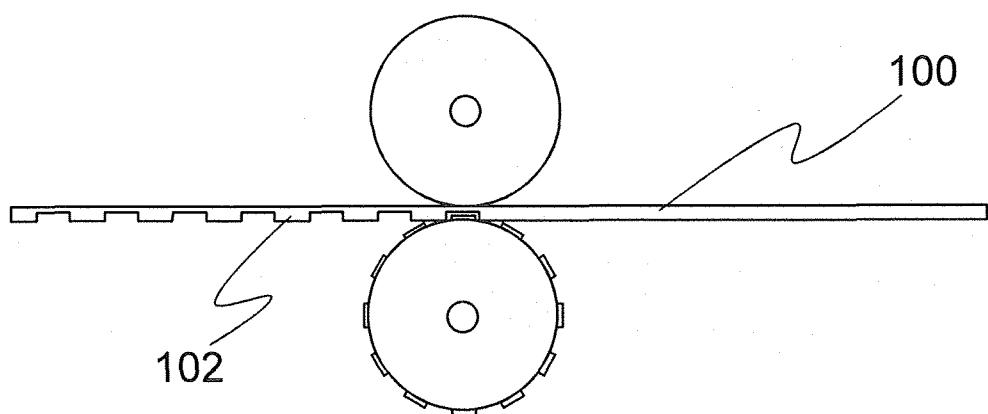


Fig. 1a

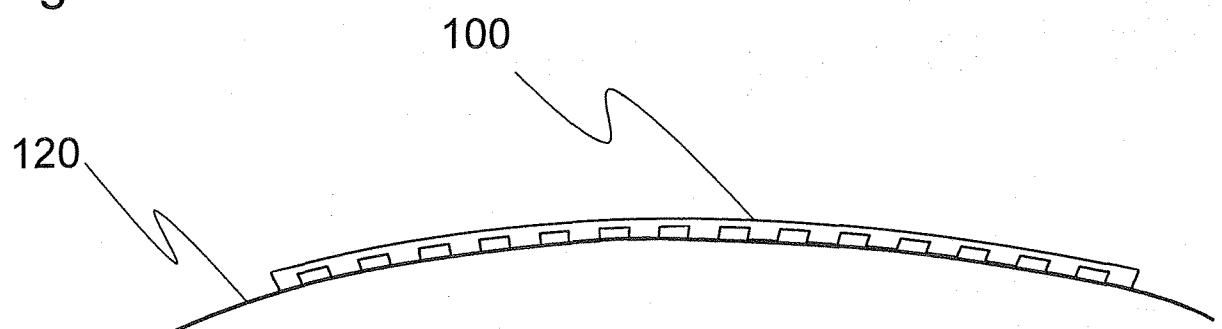


Fig. 1b

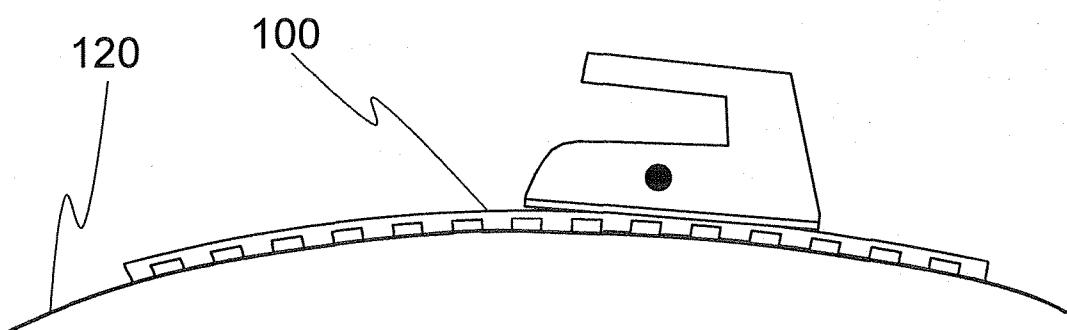


Fig. 1c

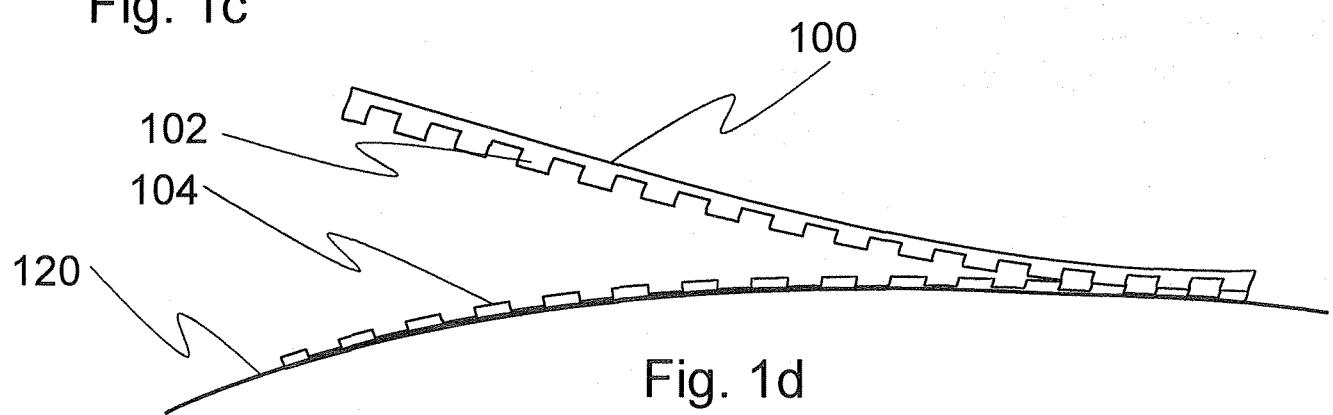


Fig. 1d

2/2

Fig. 2

INTERNATIONAL SEARCH REPORT

International application No
PCT/EP2010/057541

A. CLASSIFICATION OF SUBJECT MATTER
INV. B44C1/24 B44F1/10
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
B44C B44F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EP0-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	GB 468 942 A (THOMAS RALPH MERTON) 12 July 1937 (1937-07-12) page 4, line 49 – page 4, line 85 -----	13-16
X	DE 10 2007 013284 A1 (KURZ LEONHARD FA [DE]; MODEL KRAMP GMBH [DE]) 18 September 2008 (2008-09-18) paragraphs [0002], [0005], [0010], [0035]; figure 1d -----	13,14
A	GB 2 220 386 A (PIZZANELLI DAVID JULIAN) 10 January 1990 (1990-01-10) page 7, line 9 – page 8, line 22; figures 4-5 -----	1-12
A	-----	1-12

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family

Date of the actual completion of the international search

13 September 2010

Date of mailing of the international search report

27/09/2010

Name and mailing address of the ISA/
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040,
Fax: (+31-70) 340-3016

Authorized officer

Ziegler, Hans-Jürgen

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No
PCT/EP2010/057541

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
GB 468942	A 12-07-1937	NONE	
DE 102007013284	A1 18-09-2008	NONE	
GB 2220386	A 10-01-1990	NONE	