Title: CONE VALVE CAPABLE OF PRECISELY ADJUSTING PRESSURE AND FLOW RATE

Abstract: The present invention relates to a cone valve capable of precisely adjusting pressure and flow rate, in which a flow rate adjuster is rotated with respect to the central axis of the fluid flowing into a tube so as to convert the amount of rotation into a length, thereby controlling the flow rate of the fluid by adjusting the distance using a cone part. Here, a screw-type cone valve may be provided for finely adjusting the flow rate, and also the cone valve may have a reduced size and thus may be installed in a narrow space. To this end, the cone valve capable of precisely adjusting pressure and flow rate includes: a first body having a passage in the lengthwise direction thereof, wherein the first body includes a cone part in the passage; a flow rate adjuster, one end of which is coupled to the first body, wherein the flow rate adjuster is rotated so as to adjust the distance to the cone part, thereby controlling the flow rate; and a second body finishing the other end of the flow rate adjuster, wherein the second body is connected to a pipe.
본 발명은 관료물호르는 유체의 중심축을 중심으로 유량조절체를 회전시킴에 따라 회전방향을 절로 변환시켜 근부와의 간격조절을 통해 통과유량을 조절할 수 있게 함으로써, 나사방식으로 미세유량의 조절이 가능할 뿐만 아니라 설치 장치를 줄여 충분한 공간에서도 장착하여 사용할 수 있도록 한 정밀한 압력 및 유량 조절이 가능한 콘 밸브를 제공하는 데 그 목적이 있다. 이러한 목적을 달성하기 위한 정밀한 압력 및 유량 조절이 가능한 콘 밸브는, 간이방식으로 유료가 형성되고, 이 유료의 내부에는 콘부가 구비된 제 1문체; 일반이 제 1문체와 결합되어 회전시킴에 따라 콘부와의 간격을 통하여 유량을 조절하는 유량조절체; 및 유량조절체의 타단을 마감하여 파이프와 연결되는 제 2문체;를 포함하는 것을 특징으로 한다.
명세서
발명의 명칭: 정밀한 압력 및 유량 조절이 가능한 콘 밸브
기술분야

[1] 본 발명은 정밀한 압력 및 유량 조절이 가능한 콘 밸브에 관한 것으로, 더욱 상세하게는 유량조절체를 나사방식으로 회전시키며 나타 유동저항을 개선시킨 콘부와의 간격이 미세하게 조절될 수 있게 함으로써, 정확한 압력 및 유량 조절과 함께 시간이 경과하더라도 유량변동을 일으키지 않으며, 유동저항에 따르는 공동화현상 발생이 현저히 줄어들으며 밸브 및 부수장치의 내구수명이 개선되고, 급격한 유량변동에 의한 안전사고를 방지하는 밸브에 관한 것이다.

[2] 배경기술

[3] 일반적으로 관로를 흐르는 유체의 흐름을 제어하여 유량을 조절하는 밸브에는 볼 밸브, 비터플라이 밸브, 케이트 밸브 그리고 다이아프램 밸브 등 다양한 종류가 있다. 이 중에서 볼 밸브가 많이 사용되는 유형의 밸브로서 다양한 형태로 제작하여 사용되고 있다.

[4] 특히 문헌1은 이러한 볼 밸브의 일례를 보여준다. 특히 문헌1의 볼 밸브는, 밸브 본체(6) 양쪽의 유로(1) 중앙에 설치되고, 관통공(5)이 구비된 볼(2)과, 볼(2)의 상방에 맞물리고 유로(1)와 수직방향으로 설치된 스텝(3)과, 스텝(3)과 일체로 고정된 헤드(4)와, 볼(2)과 유로(1)의 접촉면에 설치되어 볼(2)과 밸브 본체(6)사이를 기밀하도록 하는 시트링(7)을 구비하셔서 된 공지의 유량 제어 볼에 있어서, 전술한 볼(2)의 회전 각도에 대하여 유로(1)와 중첩되는 볼(2)의 관통공(5) 면적에 비례하도록 함을 특징으로 한다. 이러한 종류의 볼 밸브는 유량차단용 손잡이를 돌림에 따라 볼이 회전하면서 유로를 차단 또는 연결하여 유량을 제어한다.


[7] 2) 정밀하게 압력 또는 유량조절을 하기 위하여 볼을 완전히 열지 않고 볼에 형성된 유로가 유체흐름에 대하여 동일선상에 위치하게 하는 방법이 있다. 하지만, 이처럼 볼의 유로가 이곳나게 되면 일시적으로 유량조절이 가능하나, 유체의 압력에 의하여 볼이 회전하면서 완전히 열리거나 반대로 완전히 단히버리 유량 또는 압력 조절이 전혀 이루어지지 않게 된다.

[8] 더하여 급격히 유량변동 또는 압력변동이 발생하면 배관과 콤프와 부대장치 내부의 급격한 압력상승으로 인하여 폐열적으로 급격한 파괴에 의하여 안전사고가 빈번히 발생하고, 안전관을 설치하더라도 안전관으로 방출되는
다양의 이중유체에 의하여 막대한 손실이 발생한다.

1) 한편 정밀하게 압력 또는 유량조절을 하기 위하여 불을 완전히 없애지 않으면 이중되는 유체의 유선의 흐름이 급격하게 변동되어 유체의 압력과 속도가 급격히 변화되어 이중유체가 증기압이 약하도를 달하게 되고 이로 인하여 공동현상(케미테이션)이 발생하게 되어 밸브를 왜곡한다.

2) 한편 상술한 공동현상 및 이중유체의 유동저항으로 인하여 유동소음이 대기 중으로 확산되어 산업안전 및 산업환경을 저해하는 요소로 대두 된다.

3) 밸브에서 필요로 되는 난류의 발생으로 인하여 유동흐름이 민감한 측정장비는 설치하기가 어려웠다. 이를 해결하기 위해서는 반도시 난류흐름을 측정화시키는 정류장치가 필요하고, 측정장비는 이 정류장치로부터 일정직선 거리를 확보해야만 했다. 따라서, 부수적인 장비의 종설이 필요하게 되고, 이로 인하여 설비공간이 협소한 곳에는 설치가 불가능하였다.

발명의 상세한 설명

기술적 과제

발명은 이러한 점을 감안하여 양측으로, 판로를 흐르는 유체의 중심축을 중심으로 유량조절재를 회전시험에 따라 회전풍을 급으로 변환시켜 유동저항을 개선시킨 콘부와의 간격조절을 통해 동과유량을 조절할 수 있게 함으로써, 나사방식으로 미세유량의 조절이 가능할 뿐만 아니라 설치장치를 줄여 좁은 공간에서도 장착하여 사용 가능하며, 공동현상 및 유동저항을 줄여 밸브 및 부대장치의 내구수명을 연장하고, 방난소음의 낮추어 작업환경을 개선시키며, 급격한 밸브 단절을 방지함으로써 밸브 및 부대장치의 단련을 방지함으로써 산업안전을 개선시킨 콘 밸브를 제공하는데 그 목적이 있다.

과정 해결 수단

이러한 목적을 달성하기 위한 정밀한 압력 및 유량 조절이 가능한 콘 밸브는, 길이방향으로 유로가 형성되고, 이 유로의 내부에는 콘부가 구비된 제1물체; 일단이 제1물체와 결합되어 회전시험에 따라 콘부와의 간격을 통하여 유량을 조절하는 유량조절재; 및 유량조절재의 타단을 마감하며 레일와 연결되는 제2물체;를 포함하는 것을 특징으로 한다.

특히, 제1물체는 내주면에 각각 나사산부와, 나사산부의 안쪽으로 절반이 장착되도록 흐부가 형성되고, 외주면에는 유량조절재를 고정시킬 수 있도록 고정나사가 체결되는 고정구멍이 관통 형성되며, 그 일측에는 파이프와 연결되어 콘부를 통하여 유로가 형성되도록 플렌지가 구비된 것을 특징으로 한다.

특히, 콘부는 유동저항이 극소화된 유선형으로 형성된 것을 특징으로 한다.

또한, 유량조절재는, 제1물체의 내부에 기워져서 나사체결되고, 콘부와의
간격을 통하여 동과유량이 제어되도록 사면이 형성된 채결관로부; 채결관로부와 연결되고, 제2품체(30)에 압입설치되는 압입관로부; 및 채결관로부와 압입관로부 사이에 돌출형성된 장착플랜지부;를 포함하는 것을 특징으로 한다.

그리고, 장착플랜지부는 외주면에 복수개의 회전조작용 홈부가 동간격으로 형성된 것을 특징으로 한다.

마지막으로, 제2품체는, 유량조절체의 타단이 압입될 수 있도록 내주면에 셀린이 장착되도록 홈부가 형성된 관부; 및 파이프와 연결할 수 있도록 관부의 일측에 형성된 플랜지부;를 포함하는 것을 특징으로 한다.

발명의 효과

본 발명의 정밀한 압력 및 유량 조절이 가능한 콘 벨브에 따르면 다음과 같은 효과가 있다.

1) 나사결합방식으로 유량조절체를 회전시켜 유량을 조절하기 때문에 회전량에 대하여 직선방향으로 진행하는 길이 조절이 용이하여 그만큼 미세한 유량조절이 가능하다.

2) 유량조절체가 나사방식으로 제1품체에 채결되어 유량조절을 위한 간극조절이 이루어지기 때문에, 벨브를 동과하는 유체의 압력에 의하여 유량조절체가 풀리거나 잡기는 것을 방지할 수 있다. 이는 한번 유량조절이 이루어진 상태를 지속적으로 유지시켜 주는 역할을 한다.

3) 유체가 콘 형상의 콘부 표면을 따라 유동하기 때문에 유체의 유동호흡이 균일하여 난류발생을 억제함으로써, 기존의 밸브와 같이 강한 난류에 의해 발생되는 문제점을 해결할 수 있으며, 공동현상발생이 억제되어 밸브 및 배관을 포함한 부대설비의 급격한 파손을 미연에 방지하여 내구수명을 연장하는 동시에 파괴에 의하여 피연적으로 발생되는 안전사고와 경제적 손실을 예방할 수 있으며, 유동 소음발생을 현저히 저하시킬 수 있다.

도면의 간단한 설명

도 1은 본 발명에 따른 콘 벨브의 전체 구성을 보여주기 위하여 각 구성요소로 분해된 상태를 보여주는 분해사진도.

도 2는 본 발명에 따른 콘 벨브의 결합상태를 보여주기 위한 단면도.

도 3은 본 발명에 따라 결합된 콘 벨브의 간극조절 상태를 보여주기 위한 단면도.

<도면의 주요부분에 대한 부호의 간단한 설명>

10: 제1품체 11: 유로
12: 콘부 12a: 토출구
13: 나사산부 14: 홈부
발명의 실시를 위한 최선의 형태

이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 보다 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 첨부범위에 사용된 용어나 단어는 동상이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 잘정하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사항에 부합하는 의미와 개념으로 해석되어야 한다.

따라서 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과한 뿐이고 본 발명의 기술적 사항을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.

(구성)

도 1은 본 발명에 따른 콘 벨브의 전체 구성을 보여주기 위하여 각 구성요소로 분해된 상태를 보여주는 분해사진도이고, 도 2는 본 발명에 따른 콘 벨브의 결합상태를 보여주기 위한 단면도이며, 도 3은 본 발명에 따라 결합된 콘 벨브의 간격조절 상태를 보여주기 위한 단면도이다. 여기서, 도면부호 "P1"과 "P2"는 본 발명에 따른 콘 벨브가 설치되는 파이프를 각각 나타낸다.

본 발명에 따른 콘 벨브(100)는, 콘 벨브를 설치하기 위하여 서로 마주보게 설치된 한상의 파이프(P1,P2)에 각각 장착되는 제1품체(10) 및 제2품체(30). 그리고 일반이 상기 제1품체(10)에 나사체결되어 이 제1품체(10)에 구비된 콘부(12)와의 간격(G) 조절을 통하여 미세유량을 조절하고 타단이 상기 제2품체(30)에 압입되게 설치되는 유량조절체(20)를 포함한다.

이하, 이들 각 구성요소별로 보다 구체적으로 설명하면 다음과 같다.

제1품체(10)는 파이프(P2)에 장착되는 플렌지(16)와, 유체의 유동이 가능하도록 이 플렌지(16)로부터 연장되어 형성된 유로(11)를 포함하여
구성된다.

특히, 유로(11)에는 내부에 위치하도록 콘부(12)가 구비된다. 콘부(12)는 제1물체(10)의 제작시 일체로 형성하게 되는데, 이 유로(11)를 통해 유입된 유체가 플렌지(16)를 통해 빠져나갈 수 있도록 복수의 토출구(12a)를 형성한다. 일어, 이러한 토출구(12a)는 콘부(12)가 플렌지(16) 중앙에 삽입되어 모양으로 지지되도록 제1물체(10)를 형성함으로써 각 다리 사이에 형성된다. 또한, 이러한 콘부(12)는 제1물체(10)에 일체로 형성된 것으로 설명하고 있으나, 분리형으로 제작하여 플렌지(16)에 발착할 수 있는 구조로도 제작하는 것이 가능하다.

또한, 유로(11)는 내주면의 입구부에 나사산부(13)가 형성되고, 이 나사산부(13)의 안쪽에는 홈부(14)가 형성된다. 이때, 나사산부(13)는 후술하게 될 유량조절체(20)와 나사체결이 이루어지게 된다. 그리고, 홈부(14)는 적어도 하나 형성이되며 선형(14a)이 구비되어, 유로(11)와 내주부(16)와의 사이로 유체가 유속되는 것을 방지한다.

그리고, 유로(11)에는 외주면에 고정구멍(15)이 판통형성된다. 이때, 이 고정구멍(15)은 유로(11)에 구비된 유량조절체(20)와 중첩되는 위치에 형성한다. 이는 이 고정구멍(15)을 통하여 고정나사(15a)를 체결함에 따라 제1물체(10)에 유량조절체(20)를 일체로 고정시키기 위함이다.

한편, 플렌지(16)는 파이프(P2)의 플렌지와 동일한 적정으로 형성하며, 그 입먼에는 체결구멍(16a)이 형성된다. 이 체결구멍(16a)은 파이프(P2)의 플렌지에 형성된 체결구멍과 동일위치에 형성하여 이들 플렌지끼리 결합하는데 사용된다. 물론, 플렌지(16)는 바로 파이프에 용접 등의 방법으로 연결하여 사용하는 것도 가능하다. 또한, 도면에서는 도시하지 않았지만, 플렌지(16)에는 파이프(P2)와 마주하는 면에 셀링을 위한 홈부를 더 형성할 수도 있다.

유량조절체(20)는 유체의 유동이 가능하며 일면에는 사면(24)이 형성된 체결관로부(21)와, 이 체결관로부(21)에 일체로 연장되게 형성된 압입관로부(22)와, 이 체결관로부(21)와 압입관로부(22)의 연결부위에 돌출형성된 장착플렌지부(23)를 포함한다.

체결관로부(21)는 그 외경이 상기 유로(11)의 내경과 동일한 길이로 제작되며, 외주면에는 상기 나사산부(13)와 체결될 수 있도록 습나사부(21a)가 형성된다. 그리고, 체결관로부(21)에는 유로(11)의 안쪽으로 끼워지는 단부에 상기 콘부(12)를 감싸주는 형태로 사면(24)이 형성된다. 이때, 사면(24)은 콘부(12)와 일정한 간격(G)을 갖게 된다.

압입관로부(22)는 체결관로부(21)와 연장되게 형성되며, 이때 그 외경은 후술하게 될 제2물체(30)의 내경과 같은 길이로 형성된다. 이러한 압입관로부(22)는 제2물체(30)에 설립에 의해 얇기지름방식으로 압입설치된다.

장착플렌지부(23)는 체결관로부(21)와 압입관로부(22) 사이에 형성된다. 특히, 이 장착플렌지부(23)의 외주면에는 동간격으로 홈부(23a)가 형성된다. 이
홈부(23a)는 케이블렌치의 홈이 가위지게 하여 장착플랜지부(23)를 회전시킬 때 사용된다. 물론, 이 홈부(23a)에는 돌기를 끼워서 체인 등이 걸리게 하여 장착플랜지부(23)를 회전시키기만 할 수도 있으며, 또한 상기 홈부를 대처하여 기어 치환에 의해 장착플랜지부를 회전시킬 수도 있다.

제2품체(30)는 상기 압입판로부(22)를 감싸주는 판부(31)와, 이 판부(31)의 일측에 형성되어 파일(P1)에 연결되는 플랜지부(32)를 포함하여 구성된다.

특히, 판부(31)에는 내부에 홈부(33)가 형성되며, 이 홈부에는 셀링(33a)이 구비된다. 이러한 홈부(33)는 본 발명에 따른 볼ベル브(100)의 크기를 고려하여 유동되는 유체의 압력에 따라 복수개가 형성된다. 도면에서는 2개가 형성된 예를 보여준다.

플랜지부(32)는 파일(P1)에 연결되게 되며, 나사방식으로 채결하기 위한 경우 채결구멍(32a)이 더 형성되기도 한다. 이러한 채결방식으로 통상의 기술로 이루어지는 것으로 여기서는 그 상세한 설명을 생략한다.

(작동)

이와 같이 이루어진 본 발명에 따른 볼ベル브(100)는, 유량조절이 필요한 경우 고정나사(15a)를 이완시켜 제1품체(10)에 고정된 유량조절체(20)가 회전가능한 상태로 둔다.

이어, 유량조절체(20)를 회전시킨다. 이때 회전은 홈부(23a)에 케이블렌치 등을 가위에 유량조절체(20)를 회전시킬 때 따라 이루어진다. 한편 장착플랜지부(23)의 외주면에 기어를 형성시켜 상기한 유량조절체(20)를 회전시킬 수도 있다.

이에 채결란로부(21)는 제1품체(10)에 나사체결되어 회전하게 되고, 압입판로부(22)는 셀링(33a)에 의해 누설이 방지된 상태에서 제2품체(10)에서 압입된 상태에서 회전하게 된다.

한편, 유량조절체(20)는 이러한 회전에 의하여 제1품체(10)의 길이방향으로 움직이게 되고, 이에 따라 콘부(12)와 사면(24) 사이의 간격(G)이 달라지게 된다.

이때의 간격(G)은 조절하고자 하는 유량에 따라 달라진다. 그리고, 이러한 간격(G)은 유량조절체(20)의 회전량을 길이로 변환시키기 때문에 그만큼 미세조절도 가능하게 된다.

마지막으로, 유량조절이 끝나게 되면 고정나사(15a)를 다시 채결하여 제1품체(10)에 유량조절체(20)를 고정시키게 된다.

이상에서 본 바와 같이 본 발명은 나사방식으로 길이조절되는 유량조절체가 콘부와의 간극조절에 의해 유량조절이 이루어지게 됨으로써, 구조가
간단하면서도 정확하고 정밀하게 미세 유량조절이 가능하게 되는 것이다.

[78]
청구범위

[청구항 1] 길이방향으로 유로(11)가 형성되고, 이 유로(11)의 내부에는
콘부(12)가 구비된 제1몰체(10);
일단이 상기 제1몰체(10)와 결합되어 회전시킴에 따라 상기
콘부(12)의 간격(G)을 통하여 유량을 조절하는 유량조절체(20);
및
상기 유량조절체(20)의 타단을 마감하며 파이프와 연결되는
제2몰체(30);을 포함하는 것을 특징으로 하는 정밀한 압력 및 유량
조절이 가능한 콘 밸브.

[청구항 2] 제 1 항에 있어서,
상기 제1몰체(10)는 내주면에 각각 나사산부(13)와, 상기
나사산부(13)의 안쪽으로 설링(14a)이 장착되도록 홈부(14)가
형성되고,
외주면에는 상기 유량조절체(20)를 고정시킬 수 있도록
고정나사(15a)가 체결되는 고정구멍(15)이 판통 형성되며,
그 일측에는 파이프와 연결되어 상기 콘부(12)를 통하여 유로가
형성되도록 플랜지(16)가 구비된 것을 특징으로 하는 정밀한 압력
및 유량 조절이 가능한 콘 밸브.

[청구항 3] 제 1 항에 있어서,
상기 유량조절체(20)는,
상기 제1몰체(10)의 내부에 깎여져서 나사제결되고, 콘부(12)와의
간격(G)을 통하여 통과유량이 체어되도록 사면(24)이 형성된
체결관로부(21);
상기 체결관로부(21)와 연결되고, 상기 제2몰체(30)에
압입설치되는 압입관로부(22); 및
상기 체결관로부(21)와 상기 압입관로부(22) 사이에 동출형성된
장착플랜지부(23);을 포함하는 것을 특징으로 하는 정밀한 압력 및
유량 조절이 가능한 콘 밸브.

[청구항 4] 제 3 항에 있어서,
상기 장착플랜지부(23)는 외주면에 복수개의 회전조작용
홈부(23a)가 동간격으로 형성된 것을 특징으로 하는 정밀한 압력
및 유량 조절이 가능한 콘 밸브.

[청구항 5] 제 1 항에 있어서,
상기 제2몰체(30)는,
상기 유량조절체(20)의 타단이 압입될 수 있도록 내주면에
설링(33a)이 장착되도록 홈부(33)가 형성된 관부(31); 및
파이프와 연결할 수 있도록 상기 관부(31)의 일측에 형성된
플랜지부(32)를 포함하는 것을 특징으로 하는 정밀한 압력 및 유량 조절이 가능한 콘 벨브.
A. CLASSIFICATION OF SUBJECT MATTER

F16K 5/02(2006.01)i, F16K 5/16(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
F16K 5/02; F24D 19/08; E02B 7/00; F16K 1/38; F16K 3/24; F16K 31/04; E02B 7/20; F16K 1/12

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean Utility models and applications for Utility models: IPC as above
Japanese Utility models and applications for Utility models: IPC as above

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
eKOMPASS (KIPO internal) & Keywords: flow rate, adjustment, control, control, valve, cone, cone, cone, rotation, screw, gap

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>KR 10-2010-0097945 A (KIM, SUNG HWAN) 06 September 2010</td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>See paragraphs 18-45 and figures 4-6.</td>
<td>2-5</td>
</tr>
<tr>
<td>Y</td>
<td>JP 2008-196593 A (TOYOTA INDUSTRIES CORP) 28 August 2008</td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>See paragraphs 11-60 and figure 1.</td>
<td>2-5</td>
</tr>
<tr>
<td>A</td>
<td>JP 08-020937 A (KUBOTA CORP) 23 January 1996</td>
<td>1-5</td>
</tr>
<tr>
<td>A</td>
<td>See paragraphs 10-17 and figure 1.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>See paragraphs 21-60 and figure 2.</td>
<td></td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C.

See patent family annex.

Date of the actual completion of the international search
15 DECEMBER 2011 (15.12.2011)

Date of mailing of the international search report
15 DECEMBER 2011 (15.12.2011)

Name and mailing address of the ISA/KR
Korean Intellectual Property Office
Government Complex-Daejeon, 139 Seomsa-ro, Daejeon 302-701,
Republic of Korea
Facsimile No. 82-42-472-7140

Authorized officer
Telephone No.
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>KR 10-2010-0097945 A</td>
<td>06.09.2010</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>JP 2008-196593 A</td>
<td>28.08.2008</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>JP 08-020937 A</td>
<td>23.01.1996</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>JP 2004-116673 A</td>
<td>15.04.2004</td>
<td>NONE</td>
<td></td>
</tr>
</tbody>
</table>
A. 발명이 속하는 기술분야(국제특허분류(IPC))

F16K 5/02(2006.01)i, F16K 5/16(2006.01)i

B. 조사된 문헌

조사된 최소문헌(국제특허분류를 기재)
F16K 5/02; F24D 19/08; E02B 7/00; F16K 1/38; F16K 3/24; F16K 31/04; E02B 7/20; F16K 1/12

조사된 기술문헌에 속하는 최소문헌 이외의 문헌
한국특허등록상권등록 및 한국공개실용신안등록: 조사된 최소문헌원에 기재된 IPC 일본특허등록상권등록 및 일본공개실용신안등록: 조사된 최소문헌원에 기재된 IPC

국제조사에 이용된 전산 데이터베이스(데이터베이스의 명칭 및 검색어(해당하는 경우))
cOMPASS(특허정보 검색시스템) & 카워드: 유탕, 조절, 재어, 조정, 밸브, 원추, 원뿔, 론, 회전, 나사, 간격

C. 관련 문헌

<table>
<thead>
<tr>
<th>카테고리*</th>
<th>인용문헌명 및 관련 구절(해당하는 경우)의 기재</th>
<th>관련 정구형</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>KR 10-2010-0097945 A (김성환) 2010.09.06</td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>단락 18-45 및 도면 4-6 참조.</td>
<td>2-5</td>
</tr>
<tr>
<td>Y</td>
<td>JP 2008-196593 A (TOYOTA INDUSTRIES CORP) 2008.08.28</td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>단락 11-60 및 도면 1 참조.</td>
<td>2-5</td>
</tr>
<tr>
<td>A</td>
<td>JP 08-206377 A (KUBOTA CORP) 1996.01.23</td>
<td>1-5</td>
</tr>
<tr>
<td></td>
<td>단락 10-17 및 도면 1 참조.</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>JP 2004-116673 A (AISIN SEIKI CO LTD 외 1명) 2004.04.15</td>
<td>1-5</td>
</tr>
<tr>
<td></td>
<td>단락 21-60 및 도면 2 참조.</td>
<td></td>
</tr>
</tbody>
</table>

* 인용된 문헌의 특별 카테고리:
“A” 특별히 관리가 없는 것으로 보이는 일반적인 기술수준을 정의한 문헌
“E” 국제출원일보다 빠른 출원일 또는 우선일을 가지거나 국제출원일 이후에 공개된 출원 또는 특히 문헌
“L” 우선권주체에 의문을 제기하는 문헌 또는 다른 인용문헌의 공개일 또는 다른 특별한 이유(이유를 명시)를 발전하여 인용된 문헌
“O” 구두 계시, 사용, 점검, 기타 수단을 연급하고 있는 문헌
“P” 우선일 이후에 공개되었으나 국제출원일 이전에 공개된 문헌

채택의견: 추가 문헌이 C(계속)에 기재되어 있습니다. 
대응특허에 관련 별지를 참조하십시오.

국제조사의 실제 원료일
2011년 12월 15일 (15.12.2011)

국제조사보고서 발송일
2011년 12월 15일 (15.12.2011)

ISA/KR의 명칭 및 우편주소
대한민국 특허청
(302-701) 대전광역시 서구 성사로 189, 정부대전청사
전화번호: 82-43-742-7140

서식 PCT/ISA/210 (두 번째 용지) (2009년 7월)
<table>
<thead>
<tr>
<th>국제조사보고서에서 인용된 특허문헌</th>
<th>공개일</th>
<th>대응특허문헌</th>
<th>공개일</th>
</tr>
</thead>
<tbody>
<tr>
<td>KR 10-2010-0097945 A</td>
<td>2010.09.06</td>
<td>없음</td>
<td></td>
</tr>
<tr>
<td>JP 2006-196593 A</td>
<td>2008.08.28</td>
<td>없음</td>
<td></td>
</tr>
<tr>
<td>JP 08-020937 A</td>
<td>1996.01.23</td>
<td>없음</td>
<td></td>
</tr>
</tbody>
</table>