
(19) *DE102015007709B420250522*

(10) DE 10 2015 007 709 B4 2025.05.22

(12) Patentschrift

(21) Aktenzeichen: 10 2015 007 709.0
(22) Anmeldetag: 17.06.2015
(43) Offenlegungstag: 31.12.2015
(45) Veröffentlichungstag 

der Patenterteilung: 22.05.2025

(51) Int Cl.: G06F 12/12 (2006.01) 
G06F 11/07 (2006.01)

Innerhalb von neun Monaten nach Veröffentlichung der Patenterteilung kann nach § 59 Patentgesetz gegen das Patent 
Einspruch erhoben werden. Der Einspruch ist schriftlich zu erklären und zu begründen. Innerhalb der Einspruchsfrist ist 
eine Einspruchsgebühr in Höhe von 200 Euro zu entrichten (§ 6 Patentkostengesetz in Verbindung mit der Anlage zu § 2 
Abs. 1 Patentkostengesetz).

(30) Unionspriorität: 
14/316,256 26.06.2014 US

(73) Patentinhaber: 
Western Digital Technologies, Inc., San Jose, CA, 
US

(74) Vertreter: 
Murgitroyd Germany Patentanwaltsgesellschaft 
mbH, 80636 München, DE

(72) Erfinder: 
Misra, Pulkit, San Jose, Calif., US

(56) Ermittelter Stand der Technik: 

US 2014 / 0 047 193 A1

(54) Bezeichnung: Invalidationsdatenbereich für einen Cache

(57) Hauptanspruch: Cache (104), der umfasst:
ein Journal (206), das zum Nachverfolgen von in dem Cache 
(104) gespeicherten Datenblöcken (216) ausgelegt ist; und
einen Invalidationsdatenbereich (208), der zum Nachverfol
gen von invalidierten Datenblöcken ausgelegt ist, die den 
Datenblöcken (216) zugeordnet sind, welche in dem Journal 
(206) nachverfolgt werden, wobei sich der Invalidationsda
tenbereich (208) in einer von dem Journal (206) getrennten 
Region des Caches (104) befindet.



Beschreibung

HINTERGRUND

Gebiet der Offenlegung

[0001] Die vorliegende Offenlegung betrifft Systeme und Verfahren zum Cachen und insbesondere das 
Bereitstellen einer Region zum Verarbeiten von invalidierten Daten für einen Cache.

Verwandte Offenlegung

[0002] Ein Cache kann generell verwendet werden, um einen Zugriff beim Lesen oder Schreiben von Daten 
in eine zugrundeliegende Speicherungseinrichtung, wie z. B. einen Flashspeicher oder eine Festplatte, zu 
beschleunigen. Bei Empfang einer Schreiboperation aus einem Host kann der Cache einen gespeicherten 
Datenblock aktualisieren, um nachzuverfolgen, ob sich der Datenblock verändert hat (z. B. ob der Datenblock 
valid oder nichtvalid ist). Manchmal kann der Cache die neuen Daten aus der Schreiboperation in einen 
anderen Cache-Eintrag schreiben und das Räumen oder Löschen des alten Cache-Eintrags aufschieben. 
Der Grund dafür ist, dass das Räumen oder Löschen des alten Cache-Eintrags eine Abnahme der Leistung 
bewirken kann, während der Cache darauf wartet, dass die zugrundeliegende Speicherungseinrichtung 
aktualisiert wird. Unter Ausnutzung dieser Aufschiebung kann der Cache das Verarbeiten der Schreibopera
tion beenden und eine schnellere Steuerungsrückführung zu dem Host durchführen.

[0003] Weiterhin kann die Offenbarung der US 2014 / 0 047 193 A1 gegebenenfalls für das Verständnis der 
vorliegenden Erfindung hilfreich sein. In dieser Druckschrift wird ein Computersystem mit einem Cache mit 
einem oder mehreren Speichern, einem Cache-Journal zum Speichern von Daten, die einem oder mehreren 
Teilen des Caches zugeordnet sind, und einem Konfigurationsmanager für den Zugriff auf den Cache und 
das Cache-Journal beschrieben. Der Konfigurationsmanager kann feststellen, ob das Cache-Journal Daten 
enthält, die einem ersten Teil des Caches zugeordnet sind, und im Cache-Journal Daten erzeugen, die dem 
ersten Teil des Caches zugeordnet sind, wenn das Cache-Journal noch keine Daten enthält, die dem ersten 
Teil des Caches zugeordnet sind. Der Konfigurationsmanager ist auch in der Lage zu bestimmen, ob der 
erste Teil des Caches für die Verwendung gültig ist, und mit einem Speichermanager, der mit dem ersten Teil 
des Caches verbunden ist, darüber zu kommunizieren, ob der erste Teil des Caches für die Verwendung gül
tig ist.

KURZFASSUNG

[0004] Ausführungsformen der vorliegenden Offenlegung betreffen Caches, Verfahren und Systeme zum 
Verwenden eines Invalidationsdatenbereichs.

[0005] Insbesondere betrifft die vorliegende Erfindung einen Cache gemäß Anspruch 1. Vorteilhafte Ausfüh
rungsformen können Merkmale abhängiger Ansprüche aufweisen.

[0006] Bei einer Ausführungsform betrifft die vorliegende Erfindung demzufolge einen Cache. der ein Journal 
und einen Invalidationsdatenbereich aufweist. Das Journal ist zum Nachverfolgen von Datenblöcken, die in 
dem Cache gespeichert sind, ausgelegt. Der Invalidationsdatenbereich ist zum Nachverfolgen von invalidier
ten Datenblöcken, die den in dem Journal nachverfolgten Datenblöcken zugeordnet sind, ausgelegt, wobei 
sich der Invalidationsdatenbereich in einer von dem Journal getrennten Region des Caches befindet.

[0007] Die hier beschriebenen Ausführungsformen können weitere Aspekte umfassen. Zum Beispiel kann 
das Journal zum Nachverfolgen von Metadaten für die Datenblöcke ausgelegt sein, wobei die Metadaten 
eine Speicheradresse aufweisen können, die dem Datenblock entspricht, und kann der Invalidationsdatenbe
reich so ausgelegt sein, dass er Metadaten nachverfolgt, die den invalidierten Datenblöcken entsprechen, 
wobei die zugeordneten Metadaten eine Speicheradresse aufweisen können, die dem invalidierten Daten
block entspricht. Das Journal kann zum Nachverfolgen der Datenblöcke unter Verwendung von Journalblö
cken ausgelegt sein, wobei die Journalblöcke zum Speichern der Metadaten für die Datenblöcke ausgelegt 
sein können, und der Invalidationsdatenbereich zum Nachverfolgen der Metadaten, die den nichtvaliden 
Datenblöcken zugeordnet sind, unter Verwendung von Invalidationsaufzeichnungen und abgebildeten Jour
nalblöcken ausgelegt sein kann, wobei die abgebildeten Journalblöcke zum Speichern der zugeordneten 
Metadaten für die nichtvaliden Datenblöcke ausgelegt sein können und wobei die Invalidationsaufzeichnun
gen zum Speichern der abgebildeten Journalblöcke ausgelegt sein können. Die in dem Journal nachverfolg

2/20

DE 10 2015 007 709 B4 2025.05.22



ten Metadaten können ferner einen Index in eine Ansammlung von Metadaten, die in jedem Journalblock 
gespeichert sind, aufweisen, und die in dem Invalidationsdatenbereich nachverfolgten Metadaten können fer
ner einen Index in eine Ansammlung von Metadaten, die in jedem abgebildeten Journalblock gespeichert 
sind, aufweisen. Der Cache kann so ausgelegt sein, dass er eine Invalidationsaufzeichnungsnummer, die 
einer Invalidationsaufzeichnung in dem Invalidationsdatenbereich zugeordnet ist, auf der Basis einer ent
sprechenden Journalblocknummer, die einem Journalblock zugeordnet ist, ermittelt. Der Cache kann so aus
gelegt sein, dass er eine Abgebildet-Journalblock-Nummer, die einem abgebildeten Journalblock in dem 
Invalidationsdatenbereich zugeordnet ist, auf der Basis einer entsprechenden Journalblocknummer, die 
einem Journalblock zugeordnet ist, ermittelt. Der in dem Journal nachverfolgte Index kann so ausgewählt 
sein, dass er den gleichen Wert aufweist wie der Index, der in dem Invalidationsdatenbereich nachverfolgt 
wird. Die in dem Invalidationsdatenbereich nachverfolgte Speicheradresse kann im Vergleich zu der in dem 
Journal nachverfolgten Speicheradresse verkürzt sein, und die Verkürzung kann ermittelt werden auf der 
Basis einer Speicherungsgröße einer zugrundeliegenden Speicherungsvorrichtung, die gecacht wird, oder 
eines Offsets, der auf der Basis einer Speicheradresse eines Blocks in der zugrundeliegenden Speicherungs
vorrichtung ermittelt wird. Das Ermitteln des abgebildeten Journalblocks kann umfassen: Ermitteln einer 
Abgebildet-Journalblock-Nummer für den abgebildeten Journalblock durch Ermitteln einer Invalidationsauf
zeichnungsnummer durch Dividieren einer Journalblocknummer, die dem ermittelten Journalblock zugeord
net ist, durch eine Kapazität der Invalidationsaufzeichnung in dem Invalidationsdatenbereich und Berechnen 
einer Rundungsfunktion des Ergebnisses der Division, wobei die Invalidationsaufzeichnungsnummer die 
Invalidationsaufzeichnung identifiziert, und Ermitteln der Abgebildet-Journalblock-Nummer durch Berechnen 
einer Modulo-Operation der Journalblocknummer mit der Kapazität der Invalidationsaufzeichnung. Das Ermit
teln, ob Schreiboperationen ausstehen, kann das Aufrufen eines Felds aus einer in-RAM-Datenstruktur, die 
der Invalidationsaufzeichnung entspricht, umfassen. Das Vereinigen der ausstehenden Schreiboperationen 
kann umfassen: Einreihen nachfolgender Schreiboperationen in eine Warteschlange, Identifizieren von 
Schreiboperationen, die auf demselben Datenblock arbeiten, und Ermitteln der einzelnen Schreiboperation 
auf der Basis der Schreiboperationen, die auf demselben Datenblock arbeiten. Der Invalidationsdatenbereich 
kann sich in einer von dem Journal getrennten Region des Caches befinden. Der Cache kann ein Inhaltliche- 
Lokalität-Cache sein, und das Journal kann mindestens einen der zugeordneten Datenblöcke und unabhän
gigen Datenblöcke in dem Inhaltliche-Lokalität-Cache nachverfolgen. Das Ermitteln der Anfangs-Rekonstruk
tion kann das Wiederherstellen von Datenblöcken und Metadaten, die die Datenblöcke beschreiben, umfas
sen, wobei die wiederhergestellten Datenblöcke und Metadaten aus dem Journal wiederhegestellt werden. 
Das Ermitteln, ob der entsprechende Datenblock, der in dem Journal nachverfolgt wird, valid ist, kann das 
Vergleichen von Metadaten, die den entsprechenden in dem Journal nachverfolgten Datenblock beschreiben, 
mit Metadaten, die den entsprechenden in dem abgebildeten Journalblock nachverfolgten Datenblock 
beschreiben, umfassen. Das Vergleichen der Metadaten kann das Vergleichen einer ersten Speicheradresse 
und eines ersten Indexes für den entsprechenden Datenblock, der in dem Journal nachverfolgt wird, mit 
einem zweiten Speicher und einem zweiten Index, die in dem abgebildeten Journalblock nachverfolgt wer
den, umfassen.

KURZBESCHREIBUNG DER FIGUREN

[0008] Verschiedene Aufgaben, Merkmale und Vorteile der vorliegenden Offenlegung werden mit Bezug auf 
die folgende detaillierte Beschreibung in Zusammenhang mit den folgenden Zeichnungen besser verständ
lich, in denen gleiche Bezugszeichen gleiche Elemente identifizieren. Die folgenden Zeichnungen dienen nur 
zum Zweck der Veranschaulichung und dürfen nicht als die Erfindung einschränkend verstanden werden, 
deren Umfang in den nachfolgenden Patentansprüchen dargelegt ist.

Fig. 1 zeigt ein beispielhaftes System mit einem Cache gemäß einigen Ausführungsformen der vorlie
genden Offenlegung.

Fig. 2A-2B zeigen beispielhafte Blockschaltbilder eines Caches gemäß einigen Ausführungsformen der 
vorliegenden Offenlegung.

Fig. 3A-3B zeigen beispielhafte Abbildungen zwischen einem Journal und einem Invalidationsdatenbe
reich gemäß einigen Ausführungsformen der vorliegenden Offenlegung.

Fig. 4 zeigt ein beispielhaftes Verfahren zum Invalidieren unter Verwendung eines Invalidationsdatenbe
reichs gemäß einigen Ausführungsformen der vorliegenden Offenlegung.

Fig. 5 zeigt ein beispielhaftes Verfahren für eine Cache-Wiederherstellung gemäß einigen Ausführungs
formen der vorliegenden Offenlegung.

3/20

DE 10 2015 007 709 B4 2025.05.22



DETAILLIERTE BESCHREIBUNG

[0009] Die vorliegende Offenlegung betrifft Systeme und Verfahren zum Verwenden eines Invalidationsda
tenbereichs für einen Cache. Bei einigen Ausführungsformen kann der Cache einen Journalbereich und 
einen Invalidationsdatenbereich aufweisen. Der Journalbereich kann ein protokollbasiertes Journal zum 
beständigen Nachverfolgen von Cache-Aktualisierungen und Cache-Operationen im Fall eines Erfordernis
ses einer Cache-Wiederherstellung sein. In dem Invalidationsdatenbereich können Invalidationsaufzeichnun
gen für Cache-Blöcke gespeichert sein, die aus dem Cache entfernt oder geräumt werden. Der Invalidations
datenbereich kann generell Informationen über gecachte Datenblöcke nachverfolgen, die invalidiert worden 
sind, zum Beispiel während das Cachen pausiert oder anderweitig unterbrochen ist. Der Invalidationsdaten
bereich kann dem Journalbereich angefügt sein und eine separate Region des Caches einnehmen. Ferner 
kann bei einigen Ausführungsformen des Invalidationsdatenbereichs einen Teilsatz von Metadaten, die 
einem generell in dem Journal gespeicherten vollen Satz von Metadaten entsprechen, gespeichert werden.

[0010] Fig. 1 zeigt ein beispielhaftes System 100, das einen Cache 104 aufweist, gemäß einigen Ausfüh
rungsformen der vorliegenden Offenlegung. Das System 100 weist einen Host 102, den Cache 104 und eine 
Speicherungseinrichtung 106a-106c auf. Der Host 102 überträgt Lese- und Schreibanforderungen an den 
Cache 104. Der Cache 104 verarbeitet die Anforderungen zum Lesen und Schreiben von Daten in die und 
aus der zugrundeliegenden Speicherungseinrichtung 106a-106c. Zum Beispiel kann zum Verarbeiten einer 
Leseanforderung der Cache 104 ermitteln, ob Daten, die einer angeforderten Speicheradresse entsprechen, 
in dem Cache gespeichert sind. Falls die angeforderte Speicheradresse gecacht ist, kann diese Situation 
manchmal als „Lese-Treffer“ bezeichnet werden. Falls die angeforderte Speicheradresse nicht gecacht ist, 
kann diese Situation als „Lese-Nichttreffer“ bezeichnet werden. Bei einem Lese-Treffer kann der Cache 104 
die angeforderten Daten schneller direkt aus dem Cache 104 zurückführen. Im Gegensatz dazu kann bei 
einem „Lese-Nichttreffer“ der Cache 104 die angeforderten Daten aus der langsameren Speicherungseinrich
tung 106a-106c lesen.

[0011] Auf im Wesentlichen gleiche Weise kann zum Verarbeiten einer Schreibanforderung der Cache 104 
ermitteln, ob eine angeforderte Speicheradresse bereits in dem Cache gespeichert ist. Falls die angeforderte 
Speicheradresse gecacht ist, kann diese Situation manchmal als „Schreib-Treffer“ bezeichnet werden. Falls 
die angeforderte Speicheradresse nicht gecacht ist, kann diese Situation als „Schreib-Nichttreffer“ bezeichnet 
werden.

[0012] Fig. 2A zeigt ein beispielhaftes Blockschaltbild des Caches 104 gemäß einigen Ausführungsformen 
der vorliegenden Offenlegung. Bei einigen Ausführungsformen kann der Cache 104 einen Superblock 202, 
einen Referenz-Datenbereich 204, ein Journal 206, einen Invalidationsdatenbereich 208 und einen Warm
startbereich 210 aufweisen. Das Journal 206 kann Journalblöcke 212 aufweisen. Die Journalblöcke 212 kön
nen Metadaten 214 und Daten 216 aufweisen.

[0013] Der Cache 104 kann eine journalbasierte Vorgehensweise anwenden, um eine Beständigkeit zu bie
ten, so dass der Cache 104 erforderlichenfalls wiederhergestellt werden kann. Einige Ausführungsformen 
des Journals 206 können in Journalblöcke 212 unterteilt sein. Zum Beispiel können die Journalblöcke 212 
eine Größe von ungefähr 256 kB aufweisen. Andere Größen relativ zu der Gesamtgröße des Caches 104 
können ebenfalls verwendet werden. Falls ein Journalblock 212 eine Größe von ungefähr 256 kB aufweist, 
können die Metadaten 214 eine Größe von ungefähr 4 kB einnehmen und können die Daten 216 ungefähr 
252 kB nutzen. Wie zuvor gesagt, können je nach Bedarf des Journals 206 und des Caches 104 auch andere 
Größen verwendet werden.

[0014] Die Daten 216 können den Inhalt aufweisen, der einem Cache-Block zugeordnet ist, welcher in dem 
Journal 206 nachverfolgt wird. Beispiele für die Metadaten 214 können eine Speicheradresse (z. B. eine 
Logikblockadresse (LBA)), einen Cache-Block-Typ, einen Offset und einen Hash-Wert für eine Fehlerkorrek
tur umfassen. Ein Beispiel für einen Cache-Block-Typ kann das Nachverfolgen umfassen, dass ein Cache- 
Block ein unabhängiger Block oder ein zugeordneter Block ist. Ein unabhängiger Block und/oder ein zugeord
neter Block können bei einem Inhaltliche-Lokalität-Cache verwendet werden. Bei einigen Ausführungsformen 
kann der Cache 104 auf der Basis einer Ähnlichkeit eines Cache-Blocks (inhaltliche Lokalität) ein Cachen 
durchführen. Ein zugeordneter Block kann Veränderungen oder Deltas zwischen Baseline-Referenzblöcken 
nachverfolgen. Dieses Inhaltliche-Lokalität-Cachen kann zusätzlich zum Ermitteln, wann ein Cache-Block 
zuletzt verwendet worden ist (zeitliche Lokalität), oder zum Identifizieren von Cache-Blöcken mit im Wesentli
chen gleichen Speicheradressen (räumliche Lokalität) erfolgen. Ein unabhängiger Block kann ein Block sein, 
der auf der Basis einer zeitlichen Lokalität und/oder einer räumlichen Lokalität, jedoch keiner inhaltlichen 

4/20

DE 10 2015 007 709 B4 2025.05.22



Lokalität gecacht wird. Der Offset kann einen spezifischen interessierenden Speicherblock oder eine spezifi
sche interessierende Speicherstelle in einem Speicherblock identifizieren. Zum Beispiel kann der Offset 
einem Zeiger in die Daten 216, die sich auf spezifische interessierende Daten beziehen, im Wesentlichen 
gleich sein.

[0015] Da die Metadaten 214 und die Daten 216 zu einem einzelnen Journalblock 212 kombiniert werden 
können, können Journalschreibvorgänge in Segmenten oder Stapeln erfolgen und können die Daten und 
Metadaten zu einer einzelnen Schreiboperation kombiniert werden. Die Speicherung sowohl der Metadaten 
214 als auch der Daten 216 in einem einzelnen Journalblock 212 kann daher eine ungefähr 50 %-ige Verrin
gerung von separaten Schreiboperationen gegenüber dem Schreiben der Metadaten 214 und Daten 216 in 
unterschiedliche Stellen bieten.

[0016] Bei einigen Ausführungsformen kann das Journal 206 ein Rundjournal sein. Das heißt, dass der 
Cache 104 generell sequenziell in das Journal 206 schreiben kann und bei Erreichen des Endes des Jour
nals 206 die nächste Schreiboperation ein Wrap-around zu einem Ausgangspunkt durchführen kann, um mit 
der nächsten Runde zu beginnen. Die Metadaten und Daten, die Schreib-Treffern an den gecachten Daten 
entsprechen, können in einen neuen Journalblock 212 in dem Journal 206 geschrieben werden. Durch das 
sequenzielle Schreiben kann ein Erfordernis vermieden werden, andernfalls in jedem Journalblock 212 
gespeicherte Metadaten 214 lesen zu müssen. Eine Unterstützung für sequenzielle Schreibvorgänge kann 
jedoch auch bedeuten, dass das Journal 206 mehrere Journalblöcke 212 aufweist, die demselben Cache- 
Block entsprechen. Zum Beispiel kann ein erstes Schreiben an einer Speicheradresse 8 in einem Journal
block 1 nachverfolgt werden. Ein anschließendes Schreiben an derselben Speicheradresse, der Speicherad
resse 8, kann in einem Journalblock 3 nachverfolgt werden (falls zum Beispiel der Cache 104 dazwischenge
schaltete Cache-Block-Aktualisierungen verarbeitet hat, bei denen ein Journalblock 2 verwendet worden ist). 
Selbst wenn die Journalblöcke 1 und 2 auch Metadaten und Daten nachverfolgen, die der Speicheradresse 8 
entsprechen, kann der Cache 104 Verarbeitungszeit für die bestehenden Journalblöcke einsparen. Stattdes
sen ermöglicht es die Auslegung des Journals 206 dem Cache 104, den Eintrag für den Journalblock 3 direkt 
in das Journal 206 zu schreiben, ohne dass weiter Metadaten gelesen werden müssen. Daher kann durch die 
sequenzielle Auslegung die Leistung verbessert werden.

[0017] Das Journal 206 kann ferner generell mehrere Speicherungsvorrichtungen unterstützen. Das heißt, 
dass das Journal 206 nicht zwischen Cache-Blöcken aus unterschiedlichen interessierenden gecachten Ziel- 
Speicherungsvorrichtungen unterscheidet. Diese Mehr-Laufwerk-Unterstützung kann generell zu einer bes
seren Raumausnutzung in dem Journal 206 führen, da durch die Mehr-Laufwerk-Unterstützung generell das 
Erfordernis der Vorreservierung von Raum für unterschiedliche Speicherungsvorrichtungen eliminiert wird. 
Andernfalls kann das Journal 206 ungenutzten Raum enthalten, der für eine Speicherungseinrichtung vorre
serviert ist, die den Raum nicht benötigt, was zu einer ineffizienten Nutzung von Ressourcen führen kann.

[0018] Das Journal 206 ohne den Invalidationsdatenbereich 208 kann jedoch auch eine verringerte Leistung 
zeigen. Ein beispielhafter Verwendungsfall umfasst das Cachen von mehreren Speicherungsvorrichtungen 
und das Arbeiten in einem Zurückschreibmodus durch den Cache 104 (z. B. Aufschieben des Schreibens 
von aktualisierten Cache-Daten in die zugrundeliegende Speicherungseinrichtung). Falls eine Räumung aus 
dem Cache 104 in eine Speicherungseinrichtung fehlschlägt, kann das System keine neuen Daten cachen, 
nicht einmal neue Daten für andere Speicherungsvorrichtungen. Stattdessen kann das System die alten 
Daten bewahren, so dass sie in die Speicherungsvorrichtung zurückgeschrieben werden können. Bei der vor
stehend beschriebenen protokollbasierten nichtflüchtigen Implementierung kann generell erwartet werden, 
dass die Räumung sequenziell erfolgt. Bei einigen Ausführungsformen kann der Cache 104 keine Daten 
wegen einer nicht zur Verfügung stehenden Speicherungsvorrichtung verwerfen, sofern der Benutzer nicht 
ausdrücklich einen anderen Befehl erteilt.

[0019] Selbst im Fall einer nicht zur Verfügung stehenden Speicherungsvorrichtung kann der Cache 104 
jedoch fortfahren, I/O-Operationen zu pflegen, um einen transparenten Dienst für andere Speicherungsvor
richtungen, die immer noch zur Verfügung stehen, zu bieten. Dieses transparente Cachen kann wie folgt 
erreicht werden:

1) Bei einem Cache-Nichttreffer kann der Cache 104 die I/O-Operation durchleiten.

2) Bei einem Lese-Treffer kann der Cache 104 die angeforderte Leseoperation aus dem Cache 104 pfle
gen.

3) Bei einem Schreib-Treffer kann der Cache 104 die angeforderten Daten aus dem Cache entweder (a) 
aktualisieren oder (b) invalidieren.

5/20

DE 10 2015 007 709 B4 2025.05.22



[0020] Beide Operationen können zu einem Lese-Modifizier-Schreib-Zyklus für die Metadaten 214 und einer 
Schreiboperation für die Daten 216 führen (zum Beispiel im Fall einer Aktualisierungsanforderung). Somit 
kann jeder Schreib-Treffer 1 Lesen und 1 Schreiben (für eine Invalidierung) oder 2 Schreibvorgänge (für eine 
Aktualisierung) benötigen. Beide Szenarien können ein Gesamt-Leistungs-Penalty darstellen. Jede dieser 
Vorgehensweisen kann von der protokollbasierten Vorgehensweise wegführen, bei der ein Journal 206 ohne 
Invalidationsdatenbereich 208 zum Schreiben von Daten verwendet wird. Ferner können diese Szenarien 
das Risiko eines Datenverlustes beinhalten, da die Operationen nicht winzig klein sind und daraus Nutzen 
ziehen können, dass sie seriell durchgeführt werden.

[0021] Fig. 2B zeigt ein beispielhaftes Blockschaltbild eines Caches 104 gemäß einigen Ausführungsformen 
der vorliegenden Offenlegung. Der Cache 104 kann den Invalidationsdatenbereich 208 aufweisen. In dem 
Invalidationsdatenbereich 208 können generell Invalidationsaufzeichnungen 218 für Cache-Blöcke gespei
chert werden, die aus dem Cache 104 gelöscht oder geräumt werden.

[0022] Der Invalidationsdatenbereich 208 kann eine separate Region des Caches 104 (z. B. getrennt von 
dem Journal 206) aufweisen. Das System kann unter Verwendung der Invalidationsaufzeichnungen 218 
zugrundeliegende Journalblöcke in diese separate Region abbilden. Bei einigen Ausführungsformen kann 
der Cache die separate Region unter Verwendung eines zweckbestimmten vorbestimmten Namensraums 
implementieren.

[0023] Entsprechend kann der Invalidationsdatenbereich 208 folgende Vorteile bieten:

1) Er hält eine protokollbasierte Vorgehensweise zum Schreiben von Journaldaten bei. Das heißt, dass 
die Auslegung des Invalidationsdatenbereichs 208 Schreiboperationen, die andernfalls potenziell willkür
liche Aktualisierungs- oder Invalidierungs-Schreibvorgänge sein können, in sequenzielle Schreibvor
gänge an der Cache-Vorrichtung umwandeln kann.

2) Er bildet mehrere Journalblöcke in einen einzelnen Invalidationsaufzeichnungsblock ab (in Fig. 3A 
gezeigt). Zum Beispiel können bei einigen Ausführungsformen des Invalidationsdatenbereichs 208 drei 
Journalblöcke in eine Invalidationsaufzeichnung abgebildet werden. Folglich kann der Raum, der für 
den Invalidationsdatenbereich 208 verwendet wird, ungefähr 0,5 % einer Gesamtgröße des Caches 104 
betragen.

3) Da die Größe des Invalidationsdatenbereichs 208 ein kleiner Bruchteil der Gesamtgröße des Caches 
104 sein kann, kann der Invalidationsdatenbereich 208 generell insgesamt in einem RAM gespeichert 
werden. Ferner kann durch das generelle Speichern des Invalidationsdatenbereichs 208 im RAM kein 
Erfordernis bestehen, eine Leseoperation während des Invalidierens durchzuführen. Selbst wenn der 
Invalidationsdatenbereich nicht generell im RAM gespeichert ist, kann das System immer noch eine 66 
%-ige Verringerung der Anzahl von erforderlichen Lesevorgängen aufweisen. Der Grund dafür ist, dass 
Aufzeichnungen für drei Journalblöcke in einen Invalidationsblock abgebildet werden können.

4) Durch das Packen von Invalidationsaufzeichnungsblock-Einträgen kann der Schreibaufwand so ver
ringert werden, dass mehrere Einträge in einer Schreiboperation geschrieben werden. Ferner kann es 
eine 66 %g-ige Verringerung einer Anzahl von Schreibvorgängen geben.

[0024] Generell kann der Invalidationsdatenbereich 208 eine transparente Lösung für die Fehlerhandhabung 
und Aufrechterhaltung der Datenkonsistenz bieten. Ferner kann der Invalidationsdatenbereich 208 diese Vor
teile bieten, ohne dass im Gegenzug ein großes Leistungs-Penalty eingetragen wird.

[0025] Fig. 3A zeigt ein beispielhaftes Abbilden zwischen dem Journal 206 und dem Invalidationsdatenbe
reich 208 gemäß einigen Ausführungsformen der vorliegenden Offenlegung. Fig. 3A zeigt das Journal 206 
und den Invalidationsdatenbereich 208. Das Journal 206 weist Journalblöcke 1-3 auf. Der Invalidationsdaten
bereich 208 weist eine Invalidationsaufzeichnung 1 auf. Die Invalidationsaufzeichnung 1 weist abgebildete 
Journalblöcke 1-3 auf.

[0026] Bei einigen Ausführungsformen können die Invalidationsaufzeichnungen generell in dem Cache 104 
in dem separaten Invalidationsdatenbereich gespeichert sein. Die Invalidationsaufzeichnungen können gene
rell abgebildete Journalblöcke verwenden, die einer Invalidationsaufzeichnung zugeordnet sind, um mehrere 
Journalblöcke darzustellen, die dem Journal 206 zugeordnet sind. Zum Beispiel kann der Journalblock 1 
dem abgebildeten Journalblock 1 entsprechen, kann der Journalblock 2 dem abgebildeten Journalblock 2 
entsprechen und kann der Journalblock 3 dem abgebildeten Journalblock 3 entsprechen. Ferner können die 
abgebildeten Journalblöcke 1-3 weniger zu speichernde Metadaten benötigen als die entsprechenden 

6/20

DE 10 2015 007 709 B4 2025.05.22



zugrundeliegenden Journalblöcke 1-3. Entsprechend kann bei einigen Ausführungsformen das System einen 
Teilsatz der Metadaten der zugrundeliegenden Journalblöcke 1-3 auswählen, so dass alle drei Journalblöcke 
in der Invalidationsaufzeichnung 1 gespeichert werden können.

[0027] Fig. 3B zeigt ein weiteres beispielhaftes Abbilden zwischen dem Journal 206 und dem Invalidations
datenbereich 208 gemäß einigen Ausführungsformen der vorliegenden Offenlegung. Fig. 3B umfasst das 
Journal 206 und den Invalidationsdatenbereich 208. Das Journal 206 weist den Journalblock 1 mit den Meta
daten 214 und den Daten 216 auf. Der Invalidationsdatenbereich 208 weist die Invalidationsaufzeichnung 1 
auf. Die Invalidationsaufzeichnung 1 weist den abgebildeten Journalblock 1 auf. Der abgebildete Journal
block 1 weist Metadaten 302 auf.

[0028] Die Invalidationsaufzeichnung 1 kann sowohl eine in einem Cache gespeicherte Version und eine 
relativ schnellere Version, die in einen Schreib/Lesespeicher (random access memory - RAM) geladen ist, 
aufweisen. Die in-RAM-Datenstruktur kann generell die Leistung verbessern und das Erfordernis verringern, 
Daten aus dem relativ langsameren Journal oder aus dem Cache 104 zu lesen. Bei einigen Ausführungsfor
men kann eine beispielhafte Definition der Invalidationsaufzeichnung 1 das Folgende umfassen: 

[0029] Eine beispielhafte Invalidationsaufzeichnung kann mehrere abgebildete Journalblöcke 
(„journal_block“) und einen Fehlerkorrekturcode („checksum“) aufweisen.

[0030] Bei einigen Ausführungsformen der Invalidationsaufzeichnungs-Datenstruktur kann eine beispielhafte 
Definition des abgebildeten Journalblocks, auf den in der Invalidationsaufzeichnungs-Datenstruktur Bezug 
genommen wird, umfassen: 

[0031] Der abgebildete Journalblock kann eine Ansammlung (z.B. ein Array) von Speicheradressen und Off
sets („target_Iba“) aufweisen. Die Speicheradressen können einen interessierenden Speicherblock identifi
zieren, und der Offset kann spezifische interessierende Speicherblöcke oder spezifische interessierende 
Speicherstellen innerhalb der Speicherblöcke identifizieren. Die Ansammlung von Speicheradressen und Off
sets in dem abgebildeten Journalblock kann auf eine entsprechende Ansammlung von Speicheradressen 
und Offsets, die in den zugrundeliegenden Journalblöcken gespeichert sind, abgebildet werden. Der abgebil
dete Journalblock kann ferner einen Zeitstempel („epoch“) aufweisen, der mit einem entsprechenden Zeit
stempel übereinstimmen kann, welcher in dem zugrundeliegenden Journalblock gespeichert ist.

[0032] Bei einigen Ausführungsformen kann die in-RAM-Datenstruktur, die eine Invalidationsaufzeichnung 
darstellt, das Folgende umfassen. 

7/20

DE 10 2015 007 709 B4 2025.05.22



[0033] Die in-RAM-Datenstruktur kann generell die Leistung verbessern und ein Erfordernis zum Lesen von 
Daten aus dem relativ langsameren Journal oder aus dem Cache 104 verringern.

[0034] Der abgebildete Journalblock kann einen Journalblock darstellen. Bei einigen Ausführungsformen 
kann eine Invalidationsaufzeichnung mehrere abgebildete Journalblöcke aufweisen. Zum Beispiel zeigt 
Fig. 3A eine Invalidationsaufzeichnung mit einer Kapazität von drei abgebildeten Journalblöcken (so dass es 
eine 3-zu-1-Abbildung aus Journalblöcken in eine Invalidationsaufzeichnung geben kann). Der abgebildete 
Journalblock kann Einträge von Speicheradressen, die invalidiert worden sind, in dem Cache 104 speichern. 
Bei einigen Ausführungsformen können die Speicheradressen Logikblockadressen (LBAs) sein. Obwohl die 
vorliegende Offenlegung das Nachverfolgen von drei Journalblöcken unter Verwendung einer einzelnen Inva
lidationsaufzeichnung beschreibt, kann die Invalidationsaufzeichnung jede Anzahl von abgebildeten Jour
nalblöcken aufweisen, zum Beispiel ermittelt auf der Basis des Teilsatzes von Metadaten, die zum Speichern 
in dem abgebildeten Journalblock gewählt worden sind. Ein beispielhafter Journalblock kann ungefähr 256 
kB groß sein, und eine beispielhafte Invalidationsaufzeichnung kann ungefähr 4 kB groß sein. Da es eine 3- 
zu-1-Abbildung zwischen den Journalblöcken und den Invalidationsaufzeichnungen geben kann, kann der 
Invalidationsdatenbereich 208 raumeffizient sein. Zum Beispiel kann der Invalidationsdatenbereich 208 nur 
ungefähr 4 kB nutzen, um 768 kB (3 Journalblöcke x 256 kB pro Journalblock) Daten in dem Journal 206 zu 
ergeben. Entsprechend kann der Raumbedarf für den Invalidationsdatenbereich 208 ungefähr 0,52 % (4 
kB/768 kB) betragen. Ferner kann durch die 3-zu-1-Abbildung zwischen den abgebildeten Journalblöcken 
und den Invalidationsaufzeichnungen die Anzahl von Lese- und Schreiboperationen, die während des Invali
dierungsprozesses durchgeführt werden, um ungefähr 66 % verringert werden. Bei einigen Ausführungsfor
men kann aufgrund der kleinen Größe des Invalidationsdatenbereichs 208 und der effizienten Raumzuteilung 
der gesamte Invalidationsdatenbereich 208 in dem Schreib-/Lesespeicher (RAM) gespeichert werden, um die 
Anzahl von Leseoperationen in dem Cache 104 zu verringern oder sogar vollständig zu eliminieren.

[0035] Bei einigen Ausführungsformen kann der Invalidationsdatenbereich 208 einen Teilsatz der Metadaten 
214, die in dem Journal 206 nachverfolgt werden, speichern. Diese Effizienz kann ebenfalls zu der kleinen 
Größe des Invalidationsdatenbereichs 208 beitragen. Zum Beispiel können die in dem Journal 206 nachver
folgten Metadaten 214 eine Speicheradresse (z. B. eine Logikblockadresse (LBA)), einen Cache-Block-Typ, 
einen Offset und einen Hash-Wert für eine Fehlerkorrektur aufweisen. Im Gegensatz dazu können bei einigen 
Ausführungsformen die Metadaten 302, die in dem Invalidationsdatenbereich 208 nachverfolgt werden, einen 
Teilsatz der Metadaten 214 aufweisen, die in dem Journal 206 nachverfolgt werden. Zum Beispiel kann das 
System wählen, nur eine entsprechende Speicheradresse in den Metadaten 302 nachzuverfolgen. Durch 
das Nachverfolgen nur eines Teilsatzes der Metadaten kann die Raumeffizienz oder Kapazität des Invalida
tionsdatenbereichs 208 verbessert werden.

[0036] Weitere Modifikationen, die abhängig sind von der Verwendung für das/den und von in dem Journal 
206 und dem Invalidationsdatenbereich 208 gespeicherten Metadaten können ferner diese Größe beeinflus
sen. Beispiele für Modifikationen können das Erhöhen der Größe der Journalblöcke, Verringern der Größe 
der Speicheradressen, die in einem abgebildeten Journalblock gespeichert sind, etc. umfassen. Bei einigen 
Ausführungsformen des Systems kann die Größe der Speicheradressen, die in einem abgebildeten Journal
block gespeichert sind, verkürzt sein. Bei einer Implementierung kann die Verkürzung auf einer Speicher

8/20

DE 10 2015 007 709 B4 2025.05.22



größe der zugrundeliegenden Speicherungsvorrichtung basieren. Zum Beispiel kann, falls die Speicherungs
vorrichtung ausreichend klein ist, das System die Speicheradressen von ungefähr vier Bytes in dem abgebil
deten Journalblock speichern im Vergleich zu einer vollständigen Speicheradresse von ungefähr acht Bytes, 
die in einem entsprechenden Journalblock gespeichert ist.

[0037] Bei einer weiteren Implementierung kann die Verkürzung das Ermitteln eines Offsets auf der Basis 
einer Speicheradresse, die in der zugrundeliegenden Speicherungseinrichtung gespeichert ist, und das Spei
chern des Offsets anstelle der Speicheradresse umfassen. Bei Ausführungsformen des Caches können 
Datenblöcke mit Größen von ungefähr 4 kB gespeichert werden. (Falls eine I/O-Anforderung eine kleinere 
Größe betrifft, kann der Cache die verbleibenden Daten, die dem Datenblock aus der Speicherungseinrich
tung zugeordnet sind, aufrufen und den gesamten Inhalt des 4-kB-Datenblocks cachen.) Folglich kann bei 
einigen Ausführungsformen die Verkürzung das Umwandeln einer Speicheradresse (wie z. B. einer LBA) der 
zugrundeliegenden Speicherungseinrichtung in Offsets umfassen. Bei einigen Ausführungsformen können 
die Offsets ungefähr 4 kB umfassen. Zum Beispiel kann ein Offset 0 die ersten 4 kB an der Speicherungsvor
richtung darstellen, kann ein Offset 1 die nächsten 4 kB an der Speicherungseinrichtung darstellen etc. Ent
sprechend kann der Cache eine Speicheradresse von zum Beispiel einer 512-Byte-LBA in eine als nächstes 
verfügbare ausgerichtete 4-kB-LBA umwandeln. Statt eine vollständige LBA zu speichern, kann das System 
eine vollständige LBA in einen Offset umwandeln, der eine kleinere Anzahl von Bytes verwendet, und den 
Offset in der Invalidationsaufzeichnung und dem abgebildeten Journalblock speichern. Zum Beispiel kann 
eine LBA 0-7 in der zugrundeliegenden Speicherungseinrichtung einer LBA 0 in dem Cache zusammen mit 
einem optionalen Offset entsprechen. Bei einigen Ausführungsformen des Invalidationsdatenbereichs kann 
ein Offset-Feld mit einer Größe von 4 B dadurch bis zu 16 Terabytes der zugrundeliegenden Speicherung
seinrichtung (232 × 4.096) adressieren. Bei größeren Speicherungsvorrichtungen kann bei einigen Ausfüh
rungsformen des Systems die Cache-Block-Größe auf ungefähr 8 kB oder mehr erhöht werden, die Offset- 
Größe auf ungefähr 5 Bytes erhöht werden etc.

[0038] Bei einigen Ausführungsformen des Caches 104 können Cache-Blöcke durch Ermitteln einer Abbil
dung zwischen dem Journal 206 und dem Invalidationsdatenbereich 208 invalidiert werden. Das heißt, dass 
der Cache 104 eine geeignete Invalidationsaufzeichnung, einen abgebildeten Journalblock und einen ent
sprechenden Index in dem Invalidationsdatenbereich 208 für einen Datenblock auf der Basis des Journalb
locks und des Indexes in dem Journal 206 ermitteln kann.

[0039] Zum Beispiel sei angenommen, dass der Cache 104 eine Invalidierung eines Datenblocks, der sich in 
dem Journalblock 1 bei Index 3 (304a) befindet, durchführt. Auf der Basis des Journalblocks und des Indexes 
in dem Journal 206 kann der Cache 104 generell die entsprechende Invalidationsaufzeichnung, den abgebil
deten Journalblock und den Index in dem abgebildeten Journalblock ermitteln. Zuerst kann der Cache 104 
eine Invalidationsaufzeichnung auf der Basis des entsprechenden Journalblocks ermitteln. Da die Journalblö
cke eine Abbildung von 3-zu-1 auf die Kapazität der Invalidationsaufzeichnungen durchführen können, kön
nen bei einigen Ausführungsformen des Caches 104 eine Divisionsoperation und eine Rundungsoperation 
(z. B. Aufrundung) durchgeführt werden, um die entsprechende Invalidationsaufzeichnung zu ermitteln. Zum 
Beispiel kann für den Journalblock 1 das System 1 / 3 = 0,33... und berechnen, wodurch der 
Journalblock 1 auf die Invalidationsaufzeichnung 1 abgebildet wird. Bei einem weiteren Beispiel ist, falls das 
System den Journalblock 5 auf die Invalidationsaufzeichnung abbildet, 5 / 3 = 1,66... und 
wodurch der Journalblock 5 auf die Invalidationsaufzeichnung 2 abgebildet wird.

[0040] Als Nächstes kann der Cache 104 einen abgebildeten Journalblock auf der Basis eines Journalblocks 
ermitteln. Bei einigen Ausführungsformen kann der Cache 104 eine Modulo-Operation anwenden, um einen 
abgebildeten Journalblock auf der Basis der Journalblocknummer zu ermitteln. Zum Beispiel kann für den 
Journalblock 1 das System 1 mod 3 = 1 berechnen, wodurch der Journalblock 1 auf den abgebildeten Jour
nalblock 1 abgebildet wird. Auf im Wesentlichen gleiche Weise ist, falls das System den Journalblock 5 auf 
einen abgebildeten Journalblock 5 abbildet, 5 mod 3 = 2, wodurch der Journalblock 5 auf einen abgebildeten 
Journalblock 2 innerhalb der Invalidationsaufzeichnung 2 (die zuvor ermittelt worden ist) abgebildet wird.

[0041] Zuletzt kann der Cache 104 einen Index in dem abgebildeten Journalblock ermitteln, der einem Index 
in dem zugrundeliegenden Journalblock entspricht. Bei einigen Ausführungsformen des Caches 104 kann in 
dem abgebildeten Journalblock der gleiche Index verwendet werden wie der Index, der in dem zugrundelie
genden Journalblock verwendet wird. Das heißt, dass beim Schreiben der entsprechenden Journalblockein
träge in den Invalidationsdatenbereich 208 die Journalblockeinträge an dem gleichen Index in dem 
target_Iba-Array des abgebildeten Journalblocks hinzugefügt werden können wie bei einem entsprechenden 

9/20

DE 10 2015 007 709 B4 2025.05.22



target_Iba-Array des Journalblocks. Entsprechend kann der Index in dem abgebildeten Journalblock leicht 
und schnell auf der Basis des Indexes in dem zugrundeliegenden Journalblock ermittelt werden.

[0042] Um ein umgekehrtes Abbilden (d. h. Ermitteln eines Journalblocks und eines entsprechenden Inde
xes auf der Basis einer Invalidationsaufzeichnung, eines abgebildeten Journalblocks und Indexes) durchzu
führen, kann der Cache 104 umgekehrte Operationen zu den oben beschriebenen durchführen. Zum Beispiel 
kann der Cache 104 Informationen über eine Speicheradresse für einen invalidierten Cache-Block auf der 
Basis der Metadaten 302, die in dem abgebildeten Journalblock gespeichert sind, identifizieren. Der Cache 
104 kann die Journalblocknummer auf der Basis der Invalidationsaufzeichnungsnummer ermitteln, und der 
Index für den Journalblock kann aus dem für den abgebildeten Journalblock verwendeten Index konkludiert 
werden.

[0043] Fig. 4 zeigt ein beispielhaftes Verfahren 400 zum Invalidieren unter Verwendung des Invalidationsda
tenbereichs gemäß einigen Ausführungsformen der vorliegenden Offenlegung. Bei einigen Ausführungsfor
men kann das Verfahren 400 umfassen: Ermitteln eines Journalblocks für eine Speicheradresse in einer 
empfangenen Schreiboperation (Schritt 402); Ermitteln eines abgebildeten Journalblocks und eines Offsets 
auf der Basis des ermittelten Journalblocks und einer entsprechenden Invalidationsaufzeichnung aus dem 
Invalidationsdatenbereich (Schritt 404); Ermitteln, ob es ausstehende Schreiboperationen gibt (Schritt 406); 
falls ja, Vereinigen der Schreiboperationen und Durchführen der Schreiboperationen als einzelnes Schreiben 
in den Cache (Schritt 408); falls nein, Durchführen der empfangenen Schreiboperation (Schritt 410).

[0044] Zuerst wird bei dem Verfahren 400 ein Journalblock für eine Speicheradresse in einer empfangenen 
Schreiboperation ermittelt (Schritt 402). Bei einigen Ausführungsformen des Verfahrens 400 kann der Jour
nalblock auf der Basis der Logikblockadresse (LBA) in der empfangenen Schreiboperation identifiziert wer
den. Oder bei einem Schreib-Treffer (was bedeutet, dass die LBA zuvor gecacht worden ist) kann bei dem 
Verfahren 400 der Journalblock auf der Basis der LBA identifiziert werden, an der der Cache-Block in dem 
Cache gespeichert ist.

[0045] Dann geht das Verfahren 400 zum Ermitteln eines abgebildeten Journalblocks auf der Basis des 
ermittelten Journalblocks und einer entsprechenden Invalidationsaufzeichnung aus dem Invalidationsdaten
bereich weiter (Schritt 404). Bei einigen Ausführungsformen kann die Invalidationsaufzeichnung durch Durch
führen von Divisionsoperationen und Rundungsoperationen an der Journalblocknummer ermittelt werden. 
Bei einigen Ausführungsformen kann ferner der Index für den abgebildeten Journalblock unter Verwendung 
des in dem zugrundeliegenden Journalblock verwendeten Indexes ermittelt werden. Zum Beispiel kann 
dann, wenn das System die gleichen Indizes für den abgebildeten Journalblock und den zugrundeliegenden 
Journalblock verwendet, der Index leicht und schnell ermittelt werden.

[0046] Dann kann bei dem Verfahren 400 ermittelt werden, ob es ausstehende Schreiboperationen gibt 
(Schritt 406). Bei einigen Ausführungsformen kann dieses Ermitteln unter Verwendung einer in-RAM-Daten
struktur erfolgen, die der Invalidationsaufzeichnung entspricht. Zum Beispiel kann die in-RAM-Datenstruktur 
ein Feld („ausstehend“) enthalten, das identifiziert, ob Schreiboperationen ausstehen. Ein Vorteil der Verwen
dung der in-RAM-Datenstruktur besteht in dem Vermeiden einer relativ langsameren Leseoperation in dem 
zugrundeliegenden Cache zum Aufrufen der gespeicherten Invalidationsaufzeichnung.

[0047] Falls bei dem Verfahren 400 ermittelt wird, dass Schreiboperationen ausstehen (Schritt 406: Ja), kön
nen die Schreiboperationen und das Durchführen der Schreiboperationen zu einem einzelnen Schreiben in 
den Cache vereinigt werden (Schritt 408). Bei einigen Ausführungsformen des Verfahrens 400 werden 
anschließende Schreibvorgänge bei einer Ermittlung, dass Schreiboperationen ausstehen, in eine Warte
schlange eingereiht. Wenn die vorhergehende Schreiboperation abgeschlossen ist, werden bei dem Verfah
ren 400 die in der Warteschlange befindlichen Schreibvorgänge als einzelnes Schreiben, das die vereinigten 
Informationen sämtlicher Aktualisierungen enthält, in den Cache geschrieben. Bei einigen Ausführungsfor
men kann das Vereinigen das Identifizieren von Schreiboperationen, die an demselben Datenblock erfolgen, 
das Ordnen der Schreiboperationen auf der Basis eines Zeitstempels und das Ermitteln des Endergebnisses 
der geordneten Schreiboperationen umfassen. Auf diese Weise ermöglicht dieses Stapeln oder Vereinigen 
von Schreiboperationen, dass bei dem Verfahren 400 die Anzahl von Lese- und Schreiboperationen, die für 
die Invalidierung verwendet werden, weiter verringert werden kann. Falls ermittelt wird, dass keine Schreib
operationen ausstehen (Schritt 406: Nein), kann das Verfahren 400 zum Durchführen der empfangenen 
Schreiboperation weitergehen (Schritt 410).

10/20

DE 10 2015 007 709 B4 2025.05.22



[0048] Fig. 5 zeigt ein beispielhaftes Verfahren 500 für eine Cache-Wiederherstellung gemäß einigen Aus
führungsformen der vorliegenden Offenlegung. Die Cache-Wiederherstellung bezieht sich auf eine Situation, 
in der dem Cache die Rekonstruktion auf der Basis des Journals und des Invalidationsdatenbereichs zugute
kommen kann, zum Beispiel nach einem Energieausfall, einer fehlerhaften Systemabschaltung oder einem 
anderen unerwarteten Ereignis. Das Verfahren 500 kann das Rekonstruieren des Caches auf der Basis des 
Journals (Schritt 502) umfassen; dann für jeden abgebildeten Journalblock in jeder Invalidationsaufzeichnung 
(Schritt 504): Ermitteln auf der Basis des Abgebildet-Journal-Eintrags, ob ein entsprechender Cache-Block 
valid ist (Schritt 506); falls ja, Rückkehr zu Schritt 504, falls nein, Räumen des veralteten Blocks aus dem 
Cache (Schritt 508).

[0049] Zuerst wird bei dem Verfahren 500 der Cache auf der Basis des Journals rekonstruiert (Schritt 502). 
Bei einigen Ausführungsformen des Systems kann angenommen werden, dass der Inhalt des Journals gene
rell valide Daten darstellt, die in dem Cache rekonstruiert werden sollen. Bei einigen Ausführungsformen 
kann das System den Cache durch Aufrufen jedes Journalblocks aus dem Journal und iteratives Verarbeiten 
der Metadaten in jedem Journalblock zum Rekonstruieren jedes Cache-Blocks rekonstruieren. Die Journal
block-Metadaten können jedoch Cache-Blöcke enthalten, die invalidiert worden sein können. Das System 
kann später diese anfängliche Annahme von generell validen Daten auf der Basis des Invalidationsdatenbe
reichs korrigieren. Zum Beispiel kann das System nichtvalide Cache-Blöcke auf der Basis des Invalidations
datenbereichs identifizieren und diese veralteten Cache-Blöcke aus dem Cache räumen.

[0050] Als Nächstes iteriert das Verfahren 500 durch jeden abgebildeten Journalblock in jeder Invalidations
aufzeichnung (Schritt 504). Für jeden abgebildeten Journalblock werden die Metadaten in dem abgebildeten 
Journalblock verarbeitet, um zu ermitteln, ob die entsprechenden Cache-Blöcke valid oder nichtvalid sind 
(Schritt 506). Bei einigen Ausführungsformen kann die Ermittlung, ob ein Cache-Block valid ist, durch Ermit
teln erfolgen, ob die Metadaten in dem abgebildeten Journalblock mit den zugrundeliegenden Metadaten in 
dem zugrundeliegenden Journalblock konsistent sind. Zum Beispiel kann die Konsistenz der zugrundliegen
den Metadaten in dem zugrundeliegenden Journalblock durch Lokalisieren der entsprechenden Journalb
locknummer und des Indexes auf der Basis von Divisionsoperationen, Rundungsoperationen und Modulo- 
Operationen ermittelt werden. Dann können die Metadaten, die an der ermittelten Journalblocknummer und 
dem ermittelten Index gespeichert sind, mit den Metadaten aufbereitet werden, die in dem abgebildeten Jour
nalblock gespeichert sind. Zum Beispiel sei angenommen, dass bei dem Verfahren 500 auf der Basis des 
abgebildeten Journalblocks identifiziert wird, dass erwartet wird, dass die Speicheradresse 8 an dem zugrun
deliegenden Journalblock 1, Index 3 zu finden ist. Bei dem Verfahren 500 kann dann der entsprechende 
Inhalt des Journalblocks 1 bei Index 3 der Metadaten aufgerufen werden. Falls dieser Journalblock einen 
Cache-Block, der der Speicheradresse 8 entspricht, nachverfolgt, kann ermittelt werden, dass der Cache- 
Block, der der Speicheradresse 8 entspricht, nichtvalid ist, da der erwartete Cache-Block, der auf dem Invali
dationsdatenbereich und dem abgebildeten Journalblock basiert, mit dem eigentlichen Cache-Block überein
stimmt, der in dem entsprechenden zugrundeliegenden Journalblock nachverfolgt wird. Andererseits sei 
angenommen, dass bei dem Verfahren 500 auf der Basis des abgebildeten Journalblocks identifiziert wird, 
dass erwartet wird, dass ein Cache-Block, der einer Speicheradresse 16 entspricht, an dem zugrundeliegen
den Journalblock 1, Index 4 zu finden ist. Falls der eigentliche Cache-Block, der an dem zugrundeliegenden 
Journalblock 1, Index 4 gespeichert ist, nicht mit der Speicheradresse 16 übereinstimmt, kann das Verfahren 
500 zum Verarbeiten der nächsten Metadaten weitergehen, da der Cache-Block in dem Cache verbleiben 
kann, wenn der erwartete Cache-Block, der auf dem Invalidationsdatenbereich und dem abgebildeten Jour
nalblock basiert, nicht mit dem eigentlichen Cacheblock übereinstimmt, der in dem entsprechenden zugrun
deliegenden Journalblock nachverfolgt wird.

[0051] Falls die Metadaten übereinstimmen, kann bei dem Verfahren 500 ermittelt werden, dass der Cache- 
Block nichtvalid ist (Schritt 506: Nein). Entsprechend kann bei dem Verfahren 500 der nichtvalide (d. h. veral
tete) Block aus dem Cache geräumt oder verworfen werden (Schritt 508). Falls die Metadaten nicht überein
stimmen, kann das Verfahren 500 zum Verarbeiten der nächsten Megadaten, die dem abgebildeten Journal
block entsprechen, weitergehen oder zum Verarbeiten des nächsten abgebildeten Journalblocks 
weitergehen, falls bei dem Verfahren 500 sämtliche Metadaten in dem abgebildeten Journalblock verarbeitet 
worden sind (Schritt 506: Ja).

[0052] Der Invalidationsdatenbereich kann ferner einige weitere Vorteile bieten bezüglich (1) transparenten 
Cachens und (2) Dynamisch-Cache-Modus-Umschaltens zwischen einem Zurückschreib- und einem Durch
gängigschreib-Modus. Das transparente Cachen bezieht sich auf eine Fähigkeit eines Administrators oder 
Nutzers, den Cache nach Belieben aus dem System zu entfernen. Das Dynamik-Cache-Modus-Umschalten 
bezieht sich auf eine Fähigkeit eines Administrators oder Nutzers, den Cache-Modus zwischen einem 

11/20

DE 10 2015 007 709 B4 2025.05.22



Zurückschreib- und einem Durchgängigschreib-Modus umzuschalten, ohne dass das System abgeschaltet 
werden muss. Der Invalidationsdatenbereich kann ein transparentes Cachen und Dynamik-Cache-Modus- 
Umschalten ermöglichen, ohne dass eine signifikante Latenz in laufende I/O-Operationen eingetragen wird. 
Bei einigen Ausführungsformen kann bei dem Cache eine Latenz durch Verwerfen sämtlicher Daten vermie
den werden. Falls sich der Cache im Zurückschreib-Modus befindet, entleert der Cache generell seine verän
derten Daten in die zugrundeliegende Speicherungsvorrichtung (d. h. „schreibt“ die Daten „zurück“), bevor 
der Cache die Daten verwerfen oder räumen kann. Zuvor hat der Cache seine Daten durch Pausierenlassen 
sämtlicher ausstehender I/O-Operationen vor dem Entleeren entfernt. Durch das Anhalten oder Pausieren
lassen sämtlicher ausstehender I/O-Operationen kann jedoch eine unerwünschte Latenz eingetragen wer
den, da es keine Obergrenze für den Zeitraum gibt, in dem ein Entleeren stattfindet. Beispielhafte Faktoren, 
die die Entleerungszeit beeinflussen können, können die Menge an veränderten Daten, Zufälligkeit, Platten
geschwindigkeit etc. umfassen. Bei einigen Ausführungsformen verbessert der Invalidationsdatenbereich lau
fende I/O-Operationen durch Setzen des Caches in den Pausiermodus und Pflegen von I/O-Operationen wie 
folgt:

1) Der Cache leitet Cache-Nichttreffer durch

2) Der Cache pflegt Lese-Treffer

3) Der Cache verwendet den Invalidationsdatenbereich zum Invalidieren von Schreib-Treffern und leitet 
die Schreibvorgänge zu der zugrundeliegenden Speicherungseinrichtung durch.

[0053] Wenn die Entleerung des Caches beendet ist, kann der Cache sämtliche Daten sicher verwerfen.

[0054] Fachleute auf dem Sachgebiet erkennen, dass verschiedene Darstellungen, die hier beschrieben 
worden sind, als elektronische Hardware, Computersoftware oder Kombinationen aus beiden implementiert 
werden können. Zur Veranschaulichung dieser Austauschbarkeit von Hardware und Software sind oben ver
schiedene veranschaulichende Blöcke, Module, Elemente, Komponenten, Verfahren und Algorithmen gene
rell hinsichtlich ihrer Funktionalität beschrieben worden. Ob eine solche Funktionalität als Hardware, Software 
oder eine Kombination implementiert wird, hängt von den besonderen Anwendungs- und Auslegungsein
schränkungen ab, die dem Gesamtsystem auferlegt sind. Fachleute können die beschriebene Funktionalität 
auf verschiedene Arten für jede besondere Anwendung implementieren. Verschiedene Komponenten und 
Blöcke können unterschiedlich angeordnet (zum Beispiel in einer anderen Reihenfolge angeordnet oder auf 
eine andere Art unterteilt) sein, ohne dass dadurch vom Schutzbereich der vorliegenden Technologie abgewi
chen wird.

[0055] Ferner kann eine Implementierung des Invalidationsdatenbereichs zentralisiert in einem Computer
system oder verteilt realisiert werden, wobei verschiedene Elemente über mehrere miteinander verbundene 
Computersysteme verteilt sind. Jede Art von Computersystem oder anderer Einrichtung, die zum Ausführen 
der hier beschriebenen Verfahren vorgesehen ist, ist zum Durchführen der hier beschriebenen Funktionen 
geeignet.

[0056] Eine typische Kombination aus Hardware und Software kann ein Universal-Computersystem mit 
einem Computerprogramm sein, das bei Ladung und Ausführung das Computersystem so steuert, dass die
ses die hier beschriebenen Verfahren durchführt. Die Verfahren können ferner in ein Computerprogrammpro
dukt eingebettet sein, das sämtliche der Merkmale aufweist, die das Implementieren der hier beschriebenen 
Verfahren ermöglicht, und das bei Laden in ein Computersystem in der Lage ist, diese Verfahren durchzufüh
ren.

[0057] Computerprogramm oder Anwendung im vorliegenden Kontext bedeutet jeden Ausdruck in jeder 
Sprache, Code oder Schreibweise eines Satzes von Befehlen zum Bewirken, dass ein System mit einer Infor
mationsverarbeitungsfähigkeit eine besondere Funktion entweder direkt oder nach einem oder beidem des 
Folgenden durchführt: a) Umwandeln in eine andere Sprache, Code oder Schreibweise; b) Reproduzieren in 
einer anderen materiellen Form. Bezeichnenderweise können die hier beschriebenen Systeme und Verfah
ren ferner in anderen spezifischen Formen ausgeführt sein, ohne dass dadurch vom Wesen oder von 
wesentlichen Attributen derselben abgewichen wird, und entsprechend sollte hinsichtlich des Anzeigens des 
Schutzbereiches der Systeme und Verfahren auf die nachfolgenden Patentansprüche statt auf die vorste
hende Beschreibung Bezug genommen werden.

12/20

DE 10 2015 007 709 B4 2025.05.22



Patentansprüche

1. Cache (104), der umfasst: 
ein Journal (206), das zum Nachverfolgen von in dem Cache (104) gespeicherten Datenblöcken (216) aus
gelegt ist; und 
einen Invalidationsdatenbereich (208), der zum Nachverfolgen von invalidierten Datenblöcken ausgelegt ist, 
die den Datenblöcken (216) zugeordnet sind, welche in dem Journal (206) nachverfolgt werden, wobei sich 
der Invalidationsdatenbereich (208) in einer von dem Journal (206) getrennten Region des Caches (104) 
befindet.

2. Cache (104) nach Anspruch 1, 
wobei das Journal (206) zum Nachverfolgen von Metadaten (214) für die Datenblöcke (216) ausgelegt ist 
und wobei die Metadaten (214) eine Speicheradresse umfassen, die dem Datenblock (216) entspricht, und 
wobei der Invalidationsdatenbereich (208) zum Nachverfolgen von Metadaten (302) ausgelegt ist, die den 
invalidierten Datenblöcken zugeordnet sind, und wobei die zugeordneten Metadaten (302) eine Speicherad
resse umfassen, die dem invalidierten Datenblock entspricht.

3. Cache (104) nach Anspruch 2, 
wobei das Journal (206) zum Nachverfolgen der Datenblöcke (216) unter Verwendung von Journalblöcken 
(212) ausgelegt ist, wobei die Journalblöcke (212) zum Speichern der Metadaten (214) für die Datenblöcke 
(216) ausgelegt sind; und 
wobei der Invalidationsdatenbereich (208) zum Nachverfolgen der Metadaten (302), die den invalidierten 
Datenblöcken zugeordnet sind, unter Verwendung von Invalidationsaufzeichnungen und abgebildeten Jour
nalblöcken ausgelegt ist, wobei die abgebildeten Journalblöcke zum Speichern der zugeordneten Metada
ten (302) für die invalidierten Datenblöcke ausgelegt sind und wobei die Invalidationsaufzeichnungen zum 
Speichern der abgebildeten Journalblöcke ausgelegt sind.

4. Cache (104) nach Anspruch 3, 
wobei die Metadaten (214), die in dem Journal (206) nachverfolgt werden, ferner einen Index (304a) in eine 
Ansammlung von Metadaten (214) umfassen, die in jedem Journalblock (212) gespeichert sind, und 
wobei die Metadaten (302), die in dem Invalidationsdatenbereich (208) nachverfolgt werden, ferner einen 
Index (304b) in eine Ansammlung von Metadaten (302) umfassen, die in jedem abgebildeten Journalblock 
gespeichert sind.

5. Cache (104) nach Anspruch 3, wobei der Cache (104) so ausgelegt ist, dass er eine Invalidationsauf
zeichnungsnummer, die einer Invalidationsaufzeichnung in dem Invalidationsdatenbereich (208) zugeordnet 
ist, auf der Basis einer entsprechenden einem Journalblock zugeordneten Journalblocknummer ermittelt.

6. Cache (104) nach Anspruch 3, wobei der Cache (104) so ausgelegt ist, dass er eine Abgebildet-Jour
nalblock-Nummer, die einem abgebildeten Journalblock in dem Invalidationsbereich (208) zugeordnet ist, 
auf der Basis einer entsprechenden einem Journalblock zugeordneten Journalblocknummer ermittelt.

7. Cache (104) nach Anspruch 4, wobei der Index (304a), der in dem Journal (206) nachverfolgt wird, so 
ausgewählt ist, dass er den gleichen Wert aufweist wie der Index (304b), der in dem Invalidationsdatenbe
reich (208) nachverfolgt wird.

8. Cache (104) nach Anspruch 1, 
wobei die Speicheradresse, die in dem Invalidationsdatenbereich (208) nachverfolgt wird, verkürzt ist im 
Vergleich zu der Speicheradresse, die in dem Journal (206) nachverfolgt wird, und 
wobei die Verkürzung auf der Basis von mindestens einem einer Speicherungsgröße einer zugrundeliegen
den gecachten Speicherungsvorrichtung und eines Offsets ermittelt wird, der auf der Basis einer Speicher
adresse eines Blocks in der zugrundeliegenden Speicherungsvorrichtung ermittelt wird.

Es folgen 7 Seiten Zeichnungen

13/20

DE 10 2015 007 709 B4 2025.05.22



Anhängende Zeichnungen

14/20

DE 10 2015 007 709 B4 2025.05.22



15/20

DE 10 2015 007 709 B4 2025.05.22



16/20

DE 10 2015 007 709 B4 2025.05.22



17/20

DE 10 2015 007 709 B4 2025.05.22



18/20

DE 10 2015 007 709 B4 2025.05.22



19/20

DE 10 2015 007 709 B4 2025.05.22



20/20 Das Dokument wurde durch die Firma Luminess hergestellt.

DE 10 2015 007 709 B4 2025.05.22


	Titelseite
	Beschreibung
	Ansprüche
	Anhängende Zeichnungen

