

(51) **International Patent Classification:** *G01N 33/574* (2006.01)

(21) **International Application Number:** PCT/GB2014/052475

(22) **International Filing Date:** 13 August 2014 (13.08.2014)

(25) **Filing Language:** English

(26) **Publication Language:** English

(30) **Priority Data:**
1314485.2 13 August 2013 (13.08.2013) GB

(71) **Applicants:** **ELECTROPHORETICS LIMITED** [GB/GB]; Coveham House, Downside Bridge Road, Cobham, Surrey KT11 3EP (GB). **KING'S COLLEGE HOSPITAL NHS FOUNDATION TRUST** [GB/GB]; Denmark Hill, London SE5 9RS (GB).

(72) **Inventors:** **YOH, Zen**; c/o King's College Hospital NHS Foundation Trust, Denmark Hill, London SE5 9RS (GB). **HEATON, Nigel**; c/o King's College Hospital NHS Foundation Trust, Denmark Hill, London SE5 9RS (GB). **QUAGLIA, Alberto**; c/o King's College Hospital NHS Foundation Trust, Denmark Hill, London SE5 9RS (GB). **BRITTON, David**; c/o Electrophoretics Limited, Coveham House, Downside Bridge Road, Cobham, Surrey KT11 3EP (GB). **WARD, Malcolm**; c/o Electrophoretics Limited, Coveham House, Downside Bridge Road, Cobham, Surrey KT11 3EP (GB). **PIKE, Ian**; c/o Electrophoretics Limited, Coveham House, Downside Bridge Road, Cobham, Surrey KT11 3EP (GB). **MITRA, Vikram**; c/o Electrophoretics Limited, Coveham House, Downside Bridge Road, Cobham, Surrey KT11 3EP (GB).

(74) **Agents:** **CRIPPS, Joanna** et al.; Mewburn Ellis LLP, 33 Gutter Lane, London, Greater London EC2V 8AS (GB).

(81) **Designated States** (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) **Designated States** (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

- *of inventorship (Rule 4.17(iv))*

Published:

- *without international search report and to be republished upon receipt of that report (Rule 48.2(g))*
- *with sequence listing part of description (Rule 5.2(a))*

(54) Title: MATERIALS AND METHODS RELATING TO PANCREATIC CANCER

(57) Abstract: The present invention concerns materials and methods relating to pancreatic cancer and personalised medicine as applied to pancreatic cancer. Particularly, the invention relates to materials and methods for the determination of significantly modulated protein phosphorylation and/or expression as well as the activity of signalling pathways collectively providing a tumour profile that can guide selection of the most appropriate treatment regime based on the likelihood of tumour recurrence; or the identity of activated drug targets in pancreatic cancer tissue.

Materials and Methods relating to Pancreatic CancerField of the Invention

The present invention concerns materials and methods relating to 5 pancreatic cancer and personalised medicine as applied to pancreatic cancer. Particularly, the invention relates to materials and methods for the determination of significantly modulated protein phosphorylation and/or expression as well as the activity of 10 signalling pathways collectively providing a tumour profile that can guide selection of the most appropriate treatment regime based on 15 the likelihood of tumour recurrence or the identity of activated drug targets in pancreatic cancer tissue.

Background of the Invention

Protein phosphorylation is a common process modulating the activity 15 of oncogenic and tumor suppressor proteins [1-3]. In many cases, phosphorylation results in switch-like changes in protein function due to modulation of protein folding, substrate affinity, stability, and activity of its substrates, in turn affecting signalling pathways controlling cell proliferation, migration, differentiation, and 20 apoptosis. Dysregulation of phosphorylation can thus contribute to the cancer phenotype [4] and provides a potential source of new drug targets, diagnostic and prognostic biomarkers that significantly cannot be measured using genomic methods. Pancreatic cancer is one 25 of the most aggressive malignant neoplasms with a median survival of 6 months post-diagnosis. In part this is a result of the fact that a significant proportion of patients are diagnosed at an advanced stage where treatment options are very limited [5]. As is the case for other cancers, molecular targeting therapy is promising for treatment of advanced or recurrent pancreatic cancer [6]. Although a 30 variety of molecular targeting drugs have been available in the last decade and many others are also expected in the next few years, a breakthrough is still required for prediction of drug effects and drug selection. For example, sorafenib, a multi-kinase inhibitor acting on hyperactive vascular endothelial growth factor receptor,

platelet-derived growth factor receptor and Raf, has proven efficacy in some patients with advanced hepatocellular carcinoma [7], but response rates remain frustratingly low as there are currently no pathway activity tests that can predict its effect in an individual

5 patient before starting treatment.

It has long been recognised that chemotherapy, even with highly selective molecular targeting medicines will ultimately fail due to acquired resistance. Typically this is driven by the switching from one oncogenic pathway to another under the selective pressure of the

10 drug treatment. As an example, the V600E mutation of B-Raf is a common feature in aggressive melanoma leading to hyperactivation of the Raf signalling pathway. Highly selective inhibitors of V600E B-Raf were rapidly developed and approved based on dramatic initial treatment response. However, the vast majority of patients

15 ultimately relapse, despite B-Raf signalling being silenced, through a range of different mechanisms involving aberrant dimerization, Raf isoform switching and alternative activation of MEK and ERK. A proposed solution for such patterns of acquired resistance is the administration of multiple molecular targeting drug combinations

20 which each may not be sufficient to kill the tumour, but which collectively act to block evolving resistance. This strategy has been termed 'synthetic lethality'.

Summary of the Invention

The inventors have recognised a need for a reliable and time and

25 cost-effective means for defining the optimal drug combination for treating pancreatic cancer and for the prediction of and monitoring for drug resistance in such tumours.

Accordingly, the inventors set out to establish an analytical approach to help drug selection, where expression and activity of

30 multiple drug targets are comprehensively assessed on a case-by-case basis. Phosphorylation is a key event modulating protein activity, therefore measuring protein phosphorylation is a useful indicator of activation status.

There are hundreds of anti-cancer drug targets and thousands of oncogenic signaling proteins and measuring expression and activation status of all of these using immunohistochemistry (IHC), the current gold standard analysis, to guide optimal treatment selection is not feasible. Reverse phase protein microarrays (RPMA) have the potential to offer broader coverage than IHC but have limitations due to a currently small repertoire of phosphorylation site-specific antibodies and poor specificity/cross reactivity. Since the prime regulatory processes controlling oncoprotein activity are post-translational modifications, genomics-based technologies cannot provide an alternative solution. Previously liquid chromatography-mass spectrometry (LC-MS/MS) based proteomic approaches have been developed to identify and quantify thousands of proteins and their phosphorylation sites [8, 9] and the inventors have now successfully adapted and applied these methods to the analysis of oncogenic signalling pathways to identify the optimal drug targets expressed within an individual tumour.

The inventors have developed a new LC-MS/MS based proteomic workflow to overcome many of the technical and bio-informatic difficulties involved in effectively identifying and quantifying activated proteins, activated signaling pathways, and activated drug targets, at a global or system wide level on a case by case basis. In specific terms, the inventors provide a high-density phospho-proteomic workflow applicable to experimental cancer cell lines, xenograft tumour tissue and clinical tissue using isotopic and/or isobaric mass tag labelling enabling the analysis of multiple samples simultaneously [10, 11]. Preferably two or more samples are analysed simultaneously. Most preferably at least 10 samples can be analysed together. Samples may be paired tissues from the tumour and adjacent healthy tissue from individual patients or from more than one patient, e.g. at least two, at least three, or at least 4. Most preferably paired tumour and healthy tissues from 5 patients are analysed together in a single 10-plex experiment.

It is a particular feature of the present invention that, given the large amount of data generated for each individual patient, a system for data storage, retrieval and analysis is provided. In particular

the inventors provide a database and suite of data analysis tools to extract relevant biological information from their complex dataset.

Specifically, the inventors have applied their global phospho-proteomic workflow (SysQuant) to compare cancerous and non-cancerous

5 pancreatic tissue. This phosphoproteomic workflow allows simultaneous measurements of multiple phosphoproteins and provides rapid measure of signaling pathway activity in a sample. This workflow has enabled the inventors to identify signaling pathways and drug targets that show significant modulation in expression and

10 activity between cancerous and non-cancerous tissue types at an average level across all pancreatic cancer cases to determine common drivers of the pancreatic cancer phenotype. The inventors were also able to interrogate the entire database to identify different combinations of molecular events contributing to the cancer

15 phenotype which were unique to an individual case or subgroups.

Accordingly, this workflow provides for the first time a way of not only diagnosing pancreatic cancer, but more importantly stratifying patients into different treatment regimens based on the activation status of these newly determined targets on a case by case basis.

20 In addition, measuring the phosphopeptide molecular profile allows for the first time a prognostic tool for pancreatic cancer.

Hierachal clustering of phosphopeptide abundance separated patients into groups based on recurrence and non-recurrence. This led to the identification of many prognostic phosphopeptide and thus their

25 respective phosphoprotein markers which form independent aspects of the present invention.

The approach taken by the inventors allowed simultaneous measurement of more than 5000 phosphorylation sites of more than 2000 proteins in tumor versus background pancreatic tissue from patients with

30 pancreatic head adenocarcinoma. Many of these were determined to be modulatory phosphorylation sites known to affect activity of drug targets such as FYN, GSK3 α / β , HDAC1/2, the RAF kinases, MAPKs (p38 and ERK2), AKT, PKCs, Casein Kinases and others.

The inventors determined the relative abundance of proteins in tumor

35 (T) compared to non-tumor (NT) tissue, using median \log_2 T/NT ratios

of the non-phosphorylated peptides unique to each protein as surrogates to calculate the relative abundance of the respective proteins.

From this information, they found it was possible to develop a 5 predictive algorithm to assign tissue samples to tumour or non-tumour phenotype, i.e. as a diagnostic aid. Further, they found that the differentially activated pathway proteins can be used as therapeutic targets. That is, drugs may be developed which are capable, either directly or indirectly, of regulating the 10 expression, activation or inhibition of the proteins of interest as appropriate towards those levels found in normal healthy tissue.

Having created a comprehensive database of individual phosphorylation site status across thousands of proteins, the invention provides for the first time the means for a number of 15 additional analyses to be performed. For example, the ability to predict the likelihood and potential timing of tumour recurrence provides a major benefit in designing the optimal treatment strategy. Using hierarchical clustering analysis of the data, the inventors were surprisingly able to categorise tumours into 20 recurrent and non-recurrent phenotypes independently of any other clinical data. Even more surprisingly, a subset of protein phosphorylation sites were highly correlated with recurrence and each of these represents a novel therapeutic target or marker in pancreatic cancer. Thus, the inventors also provide new therapeutic 25 targets to enable the development of molecular targeting drugs for the treatment of pancreatic cancer.

In a yet further aspect of the present invention, one or more of the regulated protein phosphorylation sites associated with the recurrent pancreatic cancer phenotype represent novel biomarkers for 30 the diagnosis and prognosis of recurrent pancreatic cancer. In accordance with this aspect of the invention means of detecting and/or quantifying phosphorylation at the one or more sites are provided. Such methods include but are not limited to immunohistochemistry, Western blotting, ELISA and mass spectrometry.

To ascertain relative activation status of kinases, other enzymes and other classes of proteins in tumor compared to non-tumor tissue in each case, the inventors used relative abundance of phosphopeptides containing phosphorylation sites known to either

5 induce enzyme activation or inhibition. Table 15 provides all phosphopeptides displaying \log_2 T/NT ratios ≥ 1 or ≤ -1 that contain phosphorylation sites that are known to either induce activation or inhibition of the phosphorylated enzyme, in each case.

In addition to determining which proteins and phosphopeptides

10 demonstrated significant differences in abundance between tumor and non-tumor tissue when averaged across all cases, the inventors have also determined which phosphopeptides were highly modulated within each individual patient and provide herein markers and targets for the diagnosis and prognosis, including prediction of recurrence and
15 drug resistance, of pancreatic cancer.

For example, the inventors have determined the relative activation status of; Glycogen synthase kinase-3 alpha and beta, Histone deacetylase 1 and 2, RAF proto-oncogene serine/threonine-protein kinase, Serine/threonine-protein kinase A-Raf, Dual specificity

20 mitogen-activated protein kinase kinase 6, Mitogen-activated protein kinase 14 (p38 MAPK), and over 20 others (see e.g. Table 4 and Table 15).

The inventors further provide examples which demonstrate how their LC-MS workflow, can simultaneously measure the abundance and

25 activity of 1000's of signaling and structural proteins in tumor tissue relative to non-tumor tissue, and show how such measurements can be used to better understand the molecular events leading to cancer and therefore guide selection of the most suitable inhibitory agents to treat a patient on an individual basis using one, or a
30 combination of approved or experimental molecular targeting medicines. Critically, the inventors have demonstrated using hierachal clustering of phosphopeptide \log_2 T/NT ratios that they can identify those patients more likely to show recurrence of pancreatic cancer compared to those patients less likely to show
35 recurrence at the same time point.

Accordingly, at its most general, the invention provides materials and methods for the diagnosis, prognosis and treatment (including the selection of targeted therapies) of pancreatic cancer arising from the identification of signaling pathways and drug targets that

5 show significant modulation in expression and activity between cancerous and non-cancerous tissue types. The data provided herein shows the molecular events driving the cancer phenotype on a case by case basis and for the first time provides the means for clinicians to predict not only the most effective targeted therapy, but also

10 predict likelihood of recurrence of pancreatic cancer.

In a first aspect, there is provided a pancreatic tumor classification system comprising a pancreatic tumour classification apparatus and an information communication terminal apparatus, said pancreatic tumor classification apparatus including a control

15 component and a memory component, said apparatuses being communicatively connected to each other via a network;

(1) wherein the information communication terminal apparatus includes

20 (1a) a protein data sending unit that transmits the protein data derived from a pancreatic tumor sample of a subject to the pancreatic tumor classification apparatus;

(1b) a result-receiving unit that receives the result of the pancreatic tumor classification of the subject transmitted from the pancreatic tumour classification apparatus;

25 (2) wherein the pancreatic tumor classification apparatus includes

(2a) a protein data-receiving unit that receives protein data derived from the pancreatic tumor sample of the subject transmitted from the information communication terminal apparatus;

30 (2b) a data comparison unit which compares the data from the data-receiving unit with the data stored in the memory unit;

(2c) a classifier unit that determines the class (e.g. molecular phenotype) of the pancreatic tumour of the subject, based on the results of the data comparison unit; and

5 (2d) a classification result-sending unit that transmits the classification result of the subject obtained by the classifier unit to the information communication terminal apparatus; and

wherein the memory unit contains protein expression level and/or phosphorylation data of at least one (preferably a plurality) proteins selected from Tables 2, 3, 4, 11, 12, 13 and/or 15.

10 The memory unit may contain protein expression level and/or phosphorylation data of at least one or a plurality of proteins selected from each of Tables 2, 3, 4, 11, 12, 13 and/or 15. That is, the memory unit may contain data from two more proteins from Table 2 in combination with data from two more, three or more, four or more, 15 five or more proteins from Table 3, 4, 11, 12, 13 and/or 15; or any combination thereof. This combination of proteins from Tables 2, 3, 4, 11, 12, 13 and/or 15 is applicable to each and every aspect of the invention described herein.

20 The data derived from the pancreatic tumor sample of the subject is preferably expression level data and/or phosphorylation status data, such as that obtained from methods described herein e.g. LC-MS/MS and other proteomic approaches. The data may be derived just from the tumor (or suspected tumor) sample, but in preferred embodiments, a second data set derived from non-tumor (background) pancreatic 25 tissue of the same subject may also be provided.

The protein data received by the data-receiving unit may be the actual protein or phosphoprotein levels, or it may be peptide or phosphopeptide levels from which the protein or phosphoprotein levels can be calculated. The peptide or phosphopeptide is unique to 30 the at least one (preferably plurality) protein or phosphoprotein. In some embodiments it is preferable to use multiple, i.e. 2, 3, 4, or 5 peptides which are all unique to said protein. Where multiple peptides are used, data may be collated and optionally a median value used in the data comparison step.

The memory unit preferably includes data sets relating to protein expression levels and/or phosphoprotein levels representative of pancreatic tumor. In a preferred embodiment, the protein expression levels and/or phosphoprotein levels are derived from actual peptide or phosphopeptide levels in the sample. This is particularly so if the data has been obtained using proteomic methods such as the LC-MS/MS method described herein. The data sets may provide a representative (e.g. average) level of protein expression levels or phosphoprotein levels found in pancreatic tumors from a collection 5 of data sets, e.g. as provided herein by Table 12. Alternatively, it may be preferable for the data sets to include a value representing 10 a ratio of the protein expression level or phosphoprotein level as compared to the protein expression level or phosphoprotein level of background (i.e. non-tumor) tissue obtained from the same source. By 15 way of example, this value is presented herein as Log2 T/NT.

In addition to confirming that the sample is a pancreatic tumor, the data sets held in the protein data-storing unit allow the system to classify the tumor into recurrence or non-recurrence classes. By inputting the data representative of phosphoprotein levels of the 20 pancreatic tissue sample taken from a subject, and optionally, data representative of phosphoprotein levels of background pancreatic tissue taken from the same subject, the data comparison unit may compare this data with a data set including at least data relating 25 to a plurality of proteins selected from Table 11 held in the memory unit.

In one embodiment, there is provided a method of predicting the likelihood of recurrence of a pancreatic tumor in a subject after treatment, said method comprising detecting the level of phosphorylation of at least one protein selected from the group 30 consisting of Homeodomain-interacting protein kinase I (HIPK1); Serine/threonine-protein kinase MRCK alpha (MRCK alpha); and myosin light chain kinase, smooth muscle (MLCK) in a tumour sample obtained from said subject, wherein elevated levels of phosphorylation compared to background (non-tumor) levels is indicative of the 35 likelihood of tumor recurrence.

In this way, the system can compare the phosphoprotein levels obtained from pancreatic tumor sample with phosphoprotein levels representative of a tumor recurrence phenotype for the same protein and thereby classify the tumor as either a tumor with likelihood of 5 recurrence or likelihood of non-recurrence.

In a preferred embodiment the comparison of phosphoprotein levels may also provide a prediction of timing of tumor recurrence, e.g. between 8 and 33 months, between 10 and 20 months or between 15 and 17 months after removal of the tumors.

10 The pancreatic tumor classification system described above may also be used to classify a pancreatic tumor based on drug susceptibility. In this embodiment, the memory unit may contain, at least phosphoprotein data of a plurality of proteins selected from Table 15 or Table 4.

15 For example, the inventors have determined those phosphoproteins which are up-regulated or down-regulated in pancreatic tumor (and/or have differences in phosphorylation status) compared to normal pancreatic tissue, and from these have identified those that contain phosphorylation sites that are known to either induce activation or 20 inhibition of the phosphorylated protein (e.g. enzyme). (See Table 15 and Table 4).

Accordingly, by comparing the phosphoprotein levels of a pancreatic tumor sample with the phosphoprotein levels of a plurality of proteins selected from Table 15 and/or Table 4, it is possible for 25 the system to classify the tumor on the basis of drug susceptibility. The drugs may be selected from GSK2141795, GSK2141796, GSK214179, Dasatinib, AEZS-131, Vorinostat, and Sorafenib.

In some cases, the phosphoprotein levels of the sample are compared 30 with those for one or more, two or more, three or more, or all of the following proteins: Glycogen Synthase kinase-3 alpha and beta, Histone deacetylase I and 2, RAF proto-oncogene serine/threonine-protein kinase, serine/threonine-protein kinase A-Raf, Dual

specificity mitogen-activated protein kinase kinase 6, mitogen-activated protein kinase 14 (p38 MAPK).

The pancreatic tumor classification system may be used to determine tumor or non-tumor phenotype of the sample obtained from the subject

5 where the memory unit contains data relating to protein expression levels of a plurality of proteins selected from Table 12 or Table 2.

As a result, the system can compare the expression levels of proteins determined from the sample with expression levels held in the memory unit that are representative of pancreatic tumor. In

10 this way, the sample can be identified as tumor or non-tumor.

Although the inventors acknowledge that the system may be used to perform independent classification of phenotypes, i.e. tumor v non-tumor, recurrence phenotype v non-recurrence phenotype, drug susceptibility profile, and primary tumour v secondary (metastatic

15 tumor), it is preferred that the data contained within the memory unit of the system will allow a sample to be classified as multiple phenotypes, e.g. tumor, predicted recurrence and drug susceptibility profile.

In a preferred embodiment, the system further comprises the means to

20 add the inputted data via the data sending unit to the stored data already held in the memory unit so that this new data can be included in the analysis performed by the determining unit. In this way the data representative of pancreatic tumor molecular phenotypes is constantly updated.

25 In a preferred embodiment, the pancreatic tumor classification system is connected to an apparatus for determining protein expression levels or protein phosphorylation levels in a pancreatic tumor sample and feeding this data to the protein data sending unit.

Ideally the apparatus can process multiple samples using LC-MS/MS as

30 described herein.

In accordance with this first aspect of the invention, there is also provided a pancreatic tumor cellular classification program that makes an information processing apparatus including a control

component and a memory component execute a method of determining and/or classifying the pancreatic tumor of a subject, the method comprising:

5 (i) a comparing step of comparing data based on the protein expression levels and/or protein phosphorylation levels of at least one (preferably a plurality) protein selected from Tables 2, 3, 4, 11, 12, 13 and/or 15 obtained of a subject with the protein expression level data and/or the protein phosphorylation data stored in the memory component; and

10 (ii) a classifying step for classifying the pancreatic tumor cells of said subject, based on the comparison calculated at the comparing step; and wherein said tumor is classified into phenotypes including tumor, non-tumor; tumor recurrence, tumor non-recurrence; primary tumour, secondary (metastatic tumor) and/or drug

15 susceptibility.

In accordance with this aspect of the invention, there is also provided a computer-readable recording medium, comprising the pancreatic tumour classification program described above recorded thereon.

20 The data representing protein expression levels and/or protein phosphorylation levels (i.e. amount of phosphorylated protein) may be derived from peptide levels and/or phosphopeptide levels in the sample where said peptides and/or phosphopeptides are each unique to a particular protein selected from the specified Tables. Example

25 peptides and phosphopeptides are provided in the Tables for each protein. However, it will be appreciated that other peptides and phosphopeptides may be designed which will also be unique for the protein from which they are derived, e.g. by proteolytic enzyme digestion such as trypsin, aspN, gluC and other such enzymes well

30 known in the art.

In respect of all aspects of the invention described herein, the sample from which the protein data is derived may be obtained from a subject already diagnosed with pancreatic cancer or it may be obtained from a subject suspected of having pancreatic cancer.

Accordingly, with regard to the latter, the classification of the cancer may also include the diagnosis.

In a second aspect of the invention, there is provided a method of diagnosing pancreatic cancer in a subject comprising determining the

5 modulation of one or more, or a plurality of proteins and/or phosphorylation sites selected from Table 12 and/or Table 2, Table 15 and/or Table 3 in a biological sample obtained from said subject, wherein

- (a) the presence of said one or more, or plurality of 10 proteins in said sample is indicative of the subject having pancreatic cancer;
- (b) the amount (concentration) of said one or more, or plurality of proteins as compared to a reference amount for said one or more, or plurality of proteins is 15 indicative of the subject having pancreatic cancer;
- (c) a change in amount (concentration) of said one or more, or plurality of proteins as compared to a reference amount for said one or more, or plurality of proteins is 20 indicative of the subject having pancreatic cancer; or
- (d) a change in phosphorylation status of said one or more, or plurality of proteins as compared to a reference status for said one or more, or plurality of proteins is indicative of the subject having pancreatic cancer.

25 In a third aspect, the invention provides a method of classifying a pancreatic tumour into molecular phenotypes selected from the group consisting of tumor, non-tumor, recurrence, non-recurrence, drug susceptibility, primary tumor and secondary (metastatic) tumor, said method comprising

30 (1) determining expression levels and/or protein phosphorylation level of a plurality of proteins in a biological sample obtained from said subject;

(2) producing an expression level and/or phosphoprotein profile for said sample;

35 (3) comparing said subject profile with a reference profile representative of the pancreatic tumour molecular phenotype(s); and

(4) determining the molecular phenotype of pancreatic tumour based on the comparison between the subject profile and the reference profile;

wherein the plurality of proteins are selected from a 5 biomarker panel as represented by Table 2, 3, 4, 11, 12, 13 and/or 15.

For this and all other aspects of the invention, the reference protein expression levels and/or protein phosphorylation level 10 profile may be determined from non-tumor pancreatic tissue from the same subject. In this way, the difference in protein expression levels and/or protein phosphorylation levels may be used to determine the molecular phenotype of the pancreatic tumor.

Alternatively, the reference levels may be a database comprising 15 data representing expression levels and/or phosphorylation levels for the proteins of interest as selected from any one or more of Tables 2, 3, 4, 11, 12, 13 and 15. Ideally, the reference levels are provided by a pancreatic tumor classification system according to the first aspect. The data representing expression levels and/or 20 protein levels may be a collection of data obtained from multiple tumor samples and presented as an average or range. The data may relate to the levels of specific peptides and/or phosphopeptides each being unique to a protein of interest.

25 In a fourth aspect of the invention, there is provided a method of selecting a treatment regime for a subject suffering from pancreatic cancer, said method comprising

(1) determining expression levels and/or phosphorylation of one or more, or a plurality of proteins in a biological sample 30 obtained from said subject;

(2) comparing said expression levels and/or phosphorylation status with reference expression levels and/or phosphorylation levels for said one or more, or plurality of proteins, said reference levels representative of pancreatic tumour molecular 35 phenotypes selected from tumor, non-tumor; tumor recurrence, tumor non-recurrence; primary tumor, secondary (metastatic) tumor and/or drug susceptibility;

(3) determining the molecular of pancreatic tumour based on the comparison between the expression levels and/or phosphorylation levels of the proteins in the biological sample and the reference expression levels; and

5 (4) selecting a treatment regime on the basis of the molecular phenotype of pancreatic tumour,

wherein the plurality of proteins are selected from a biomarker panel as represented by Table 2, 3, 4, 11, 12, 13 and/or 15.

10

The biological sample is preferably a sample of the pancreatic tumor (e.g. a biopsy), but it is envisaged that for this and other aspects of the invention, the biological sample could be any fluid or solid sample of the subject that was capable of providing a representation 15 of the proteins regulated in pancreatic tumor. For example, biological markers as identified herein may be determined and their amount or concentration, or phosphorylation status, quantified from a blood or urine sample from the subject, thereby avoiding the need for a biopsy.

20

The method may, for example, allow the user to determine whether the pancreatic sample obtained from the subject is tumor, has a likelihood of recurrence, (i.e. between 8 and 33 months, between 10 and 20 months or between 15 and 17 months after removal of the 25 tumor) and/or what drug targets are present in the tumor.

For example, by comparison with the reference expression levels, the method may identify a plurality of up-regulated proteins selected from Table 12, or more preferably selected from Table 2. In still 30 preferred embodiments, these up-regulated proteins include at least Homeodomain-interacting protein kinase-1 and/or Mucin 1; optionally in combination with any one, two, three, four or more further proteins selected from Table 12 and/or 2. The presence of these up-regulated proteins as compared to the reference level will indicate 35 that the sample is pancreatic tumor.

Likewise, the method may determine those proteins with phosphorylation sites which are significantly regulated compared to references levels, i.e. by comparing the levels of a plurality of phosphorylated proteins with reference levels selected from Table 3,

5 11, 4, 13 and/or 15. This comparison allows the sample to be classified into the phenotype tumor with a likelihood of recurrence or the phenotype tumor with a non-likelihood of recurrence. For example, the plurality of proteins with regulated phosphorylation sites may be selected from Table 11 or, more preferably, from Table 10 11A (up-regulated phosphorylation in recurrent tumors) and Table 11B (down-regulated phosphorylation in recurrent tumors).

In fact, the results obtained by the present inventors suggest that the up-regulation in phosphorylation of Dual specificity mitogen-activated protein kinase kinase 2 alone may be sufficient to predict the likelihood of recurrence in a tumor between 8 and 33 months, between 10 and 20 months or between 15 and 17 months after removal of the tumor. Accordingly, the determination of increased phosphorylation of Dual specificity mitogen-activated protein kinase 20 kinase 2 in a biological sample obtained from a subject in order to predict likelihood of recurrence of pancreatic tumor forms a further aspect of the invention. In some cases, the increased phosphorylation may be determined at Threonine 394 of Dual specificity mitogen-activated protein kinase kinase 2. The method 25 may involve determination of increased phosphorylation at this site only, e.g. by immunohistochemistry, or it may include determination at this site in combination with other phosphorylation sites. The method may further include determination of increase or decrease in phosphorylation of sites on one or more further proteins selected 30 from Table 11.

In a further embodiment of this fourth aspect of the invention, the method allows the determination of drug susceptibility for said tumor under test. The inventors have determined from their analysis 35 of the phosphopeptide data that tumors can be classified with respect to the signaling pathways that are affected compared to non-tumor and consequently personalised treatment regimes can be

designed based on the drug targets most susceptible in the tumor. In particular, Table 15 provides those proteins (enzymes) which contain phosphorylation sites known to either induce activation or inhibition of the protein (enzyme). Thus, the method may identify a 5 plurality of proteins selected from Table 15 which have been regulated (up- or down-regulated) and thus provide information as to the signalling pathways affected in the tumor. This information allows the clinician to determine a personalised drug treatment regime for said subject by selecting those drugs known to target the 10 particular proteins in said signalling pathways. The drugs may be selected from the group consisting of Dasatinib, Sorafenib, Vorinostat, Temsirolimus, AEZS-131 and GSK2141795.

In a preferred embodiment, the plurality of proteins selected from 15 Table 15 include Tyrosine-protein kinase (Fyn), Tyrosine-protein kinase CSK (Src), RAF proto-oncogene serine/threonine-protein kinase, Histone deacetylase 1, Histone deacetylase 2, Rapamycin-insensitive companion of mTOR (RICTOR); ERK1 mitogen-activated protein kinase, ERK2 mitogen-activated protein kinase, and/or RAC-20 alpha serine/threonine-protein kinase.

Table 15 and Table 4 provide details of those peptides which contain phosphorylation sites which are known to inhibit or activate the protein when phosphorylated. The proteins containing these sites 25 have been identified by the inventors as being either up or down regulated in tumor as compared to background (normal) tissue. As a result, these sites can be used as markers for pancreatic tumor and depending of which proteins are regulated in the particular sample, can be used to select the drug combination used to treat the subject 30 to inhibit the growth or recurrence of the tumor.

In a still further preferred embodiment, the plurality of proteins is selected from the group consisting of Integrin Beta-4; Catenin alpha- 1, Junctional adhesion molecule A (JAM-A); Tyrosine protein 35 kinase Fyn; Mitogen-activated protein kinase 1 (MAPK1); RAC-alpha serine/threonine-protein kinase (AKT1); Glycogen synthase kinase-3 alpha.

The biological sample obtained from said subject is preferably a biopsy sample taken from an individual suspected of having pancreatic cancer. The method may be performed on a number of biopsy samples from said subject over a period of time so as to monitor the effectiveness of the drug treatment.

In a preferred embodiment, the steps of comparing expression levels and/or phosphorylation levels and determining the molecular phenotype of tumour may be carried out using the pancreatic tumour classification system according to the first aspect.

The inventors have used an adapted liquid chromatography-mass spectrometry (LC-MS/MS) method to perform the proteomic analysis of the pancreatic tumor samples. While this may be a preferred method, now that specific biomarkers have been determined by the inventors, i.e. those proteins that are significantly up-or down-regulated in tumor as opposed to non-tumor, other standard methods may be adopted for determining these markers in a sample. Indeed, the inventors have determined a number of markers which are so significantly modulated in tumor tissue that they can act as individual markers thereby avoiding the analysis of multiple markers.

Accordingly, the method of this and other aspects of the invention, for determining the amount of the one or more, or plurality of proteins in the biological sample may be achieved using any suitable method. The determination may involve direct quantification of the protein mass or concentration. The determination may involve indirect quantification, e.g. using an assay that provides a measure that is correlated with the amount (e.g. concentration) of the protein. In certain cases of the method of this and other aspects of the invention, determining the amount of the one or more, or plurality of proteins comprises:

contacting said sample with a specific binding member(s) that selectively and independently binds to the one or more, or plurality of proteins; and

detecting and/or quantifying a complex formed by said specific binding member(s) and the one or more, or plurality of proteins.

The specific binding member may be an antibody or antibody fragment

5 that selectively binds to the protein biomarker. It is preferable that the antibody is labelled for detection. For example, a convenient assay format for determination of a protein concentration is an ELISA. The determination may comprise preparing a standard curve using standards of known concentration for the peptide

10 concentration and comparing the reading obtained with the sample from the subject with the standard curve thereby to derive a measure of the protein biomarker concentration in the sample from the subject. A variety of methods may suitably be employed for determination of protein amount (e.g. concentration), non-limiting

15 examples of which are: Western blot, ELISA (Enzyme-Linked Immunosorbent assay), RIA (Radioimmunoassay), Competitive EIA (Competitive Enzyme Immunoassay), DAS-ELISA (Double Antibody Sandwich-ELISA), liquid immunoarray technology (e.g. Luminex xMAP technology or Becton-Dickinson FACS technology), immunocytochemical

20 or immunohistochemical techniques, techniques based on the use of protein microarrays including reverse protein microarrays and reverse phospho-protein arrays that include specific antibodies, "dipstick" assays, affinity chromatography techniques and ligand binding assays. The specific binding member may be an antibody or

25 antibody fragment that selectively binds a protein biomarker. Any suitable antibody format may be employed. A further class of specific binding members contemplated herein in accordance with any aspect of the present invention comprises aptamers (including nucleic acid aptamers and peptide aptamers). Advantageously, an

30 aptamer directed to the protein biomarker may be provided using a technique such as that known as SELEX (Systematic Evolution of Ligands by Exponential Enrichment), described in U.S. Pat. Nos. 5,475,096 and 5,270,163.

35 In some cases of the method in accordance with this and other aspects of the invention, the determination of the amount of the protein biomarkers selected from the referenced Tables may comprise

measuring the level of a peptide unique to said protein by mass spectrometry. Techniques suitable for measuring the level of a peptides by mass spectrometry are readily available to the skilled person and include techniques related to Selected Reaction

5 Monitoring (SRM) and Multiple Reaction Monitoring (MRM) isotope dilution mass spectrometry including SILAC, AQUA (as disclosed in WO 03/016861; the entire contents of which is specifically incorporated herein by reference) and TMTcalibrator (as disclosed in WO 2008/110581; the entire contents of which is specifically
10 incorporated herein by reference). WO 2008/110581 discloses a method using isobaric mass tags to label separate aliquots of all proteins in a reference sample which can, after labelling, be mixed in quantitative ratios to deliver a standard calibration curve. A patient sample is then labelled with a further independent member of
15 the same set of isobaric mass tags and mixed with the calibration curve. This mixture is then subjected to tandem mass spectrometry and peptides derived from specific proteins can be identified and quantified based on the appearance of unique mass reporter ions released from the isobaric mass tags in the MS/MS spectrum.

20

By way of a reference level, the marker protein(s) as selected from Table 2, 3, 4, 11, 12, 13 and/or Table 15 may be used. In some cases, when employing mass spectrometry based determination of protein markers, the methods of the invention comprises providing a
25 calibration sample comprising at least two different aliquots comprising the marker peptide(s), each aliquot being of known quantity and wherein said biological sample and each of said aliquots are differentially labelled with one or more isobaric mass labels. Preferably, the isobaric mass labels each comprise a
30 different mass spectrometrically distinct mass marker group.

Accordingly, in a preferred embodiment of the invention, the method comprises determining a change in expression level or phosphorylation level of one or more, or a plurality of the marker
35 proteins selected from Table 2, 3, 4, 11, 12, 13 and/or Table 15 by Selected Reaction Monitoring using one or more determined transitions for the known protein marker derived peptides; comparing

the peptide levels in the sample under test with peptide levels previously determined to represent pancreatic cancer based on changes in expression of said one or more, or plurality of marker proteins. The comparison step may include determining the amount of 5 the marker peptides from the sample under test with known amounts of corresponding synthetic peptides. The synthetic peptides are identical in sequence to the peptides obtained from the sample, but may be distinguished by a label such as a tag of a different mass or a heavy isotope.

10

One or more of these synthetic marker peptides (with or without label) form a further aspect of the present invention. These synthetic peptides may be provided in the form of a kit for the purpose of diagnosing pancreatic cancer in a subject; or for the 15 purpose of classifying a pancreatic sample from a subject into a molecular phenotype selected from tumor, non-tumor, likelihood or recurrence, likelihood of non-recurrence, drug susceptibility, primary tumor, or secondary (metastatic tumor); or for selecting a treatment regimen for said subject.

20

In preferred embodiments with respect to this and other aspects of the invention, the one or more proteins, or plurality of proteins includes Mucin-1 and/or Homeodomain-interacting protein kinase-1; optionally in combination with one, two, three or four further 25 proteins selected from Table 2, 3, 4, 11, 12, 13 and/or 15, preferably Table 12 and/or Table 2.

Other suitable methods for determining levels of protein expression include surface-enhanced laser desorption ionization-time of flight 30 (SELDI-TOF) mass spectrometry; matrix assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry, including LS/MS/MS; electrospray ionization (ESI) mass spectrometry; as well as the preferred SRM and TMT-SRM.

In a further aspect of the invention, there is provided a kit for 35 use in carrying out the methods described above, in particular classifying pancreatic cancer into molecular phenotypes selected

from the group consisting of tumor, non-tumor, recurrence, non-recurrence, drug susceptibility, primary tumour and/or secondary (metastatic) tumor for a sample obtained from a subject.

- 5 In all embodiments, the kit allows the user to determine the presence, level (up- or down-regulation) of protein expression and/or phosphorylation status of a plurality of analytes selected from a plurality of marker proteins or fragments thereof provided in Table 2, 3, 4, 11, 12, 13 and/or 15 and antibodies against said
- 10 marker proteins in a sample under test; the kit comprising
 - (a) a solid support having a plurality of binding members, each being independently specific for one of said plurality of analytes immobilised thereon;
 - (b) a developing agent comprising a label; and, optionally
 - 15 (c) one or more components selected from the group consisting of washing solutions, diluents and buffers.

The binding members may be as described above.

- 20 In one embodiment, the kit may provide the analyte in an assay-compatible format. As mentioned above, various assays are known in the art for determining the presence or amount of a protein, antibody or nucleic acid molecule in a sample. Various suitable assays are described below in more detail and each form embodiments
- 25 of the invention.

The kit may additionally provide a standard or reference which provides a quantitative measure by which determination of an expression level of one or more marker proteins can be compared. The

30 standard may indicate the levels of the two or more biomarkers which indicate pancreatic cancer.

The kit may also comprise printed instructions for performing the method.

- 35 In a preferred embodiment, the kit may be for performance of a mass spectrometry assay and may comprise a set of reference peptides

derived from proteins set out in Table 2, 3, 4, 11, 12, 13 and/or 15 (e.g. SRM peptides) in an assay compatible format wherein each peptide in the set is uniquely representative of each of the plurality of marker proteins. Preferably two, three, four or five 5 or more such unique peptides are used for each protein for which the kit is designed, and wherein each set of unique peptides are provided in known amounts which reflect the levels of such proteins in a standard preparation of said sample. Optionally the SRM peptides are phosphopeptides representing differentially 10 phosphorylated sites within the target proteins set out in Table 13, 3, 11 and/or Table 14. Optionally the kit may also provide protocols and reagents for the isolation and extraction of proteins from said sample, a purified preparation of a proteolytic enzyme such as trypsin and a detailed protocol of the method including details of 15 the precursor mass and specific transitions to be monitored. The peptides may be synthetic peptides and may comprise one or more heavy isotopes of carbon, nitrogen, oxygen and/or hydrogen.

The classification methods as provided herein also include 20 determination of protein modulation as a result of phosphorylation. The inventors have shown that a number of proteins are induced or inhibited in pancreatic cancer tissue as opposed to background tissue. Accordingly, the invention provides a method comprising determining the phosphorylation status of one or more, or a 25 plurality of proteins selected from Table 13, 3, 11 and/or Table 14 in a sample obtained from a subject suspected of having pancreatic cancer.

Preferably said one or more or plurality of proteins are selected 30 from the group consisting of integrin beta-4, Catenin alpha-1, Junctional adhesion molecule A (JAM-A), Tyrosine protein kinase Fyn; Mitogen-activated protein kinase 1 (MAPK1); RAC-alpha serine/threonine-protein kinase (AKT1); Glycogen synthase kinase-3 alpha.

35 In a preferred embodiment, the protein is Dual specificity mitogen-activated protein kinase kinase 2. In particular, the inventors have

determined that phosphorylation of Dual specificity mitogen-activated protein kinase kinase 2 at phospho-T394 was increased in tumor cases compared to background (non-tumor) and have shown that phosphorylation at this site correlates positively with recurrence 5 of tumor at median 16.5 months (Figure 4).

Table 11, 15 and/or Table 4 provide a list of other phosphorylation sites on proteins which are regulated in pancreatic tumor samples as compared to non-tumor. Each of these sites provides a marker for 10 classifying pancreatic tumor with respect to likelihood of recurrence and drug susceptibility. Accordingly, each phosphorylation site forms an aspect of the present invention either alone or in combination for use in classifying pancreatic tumor with respect to likelihood and timing of recurrence and/or drug 15 susceptibility.

By way of example, there is provided a method of predicting susceptibility of a pancreatic tumor to treatment with Dasatinib (BMS-354825 – Sprycel™) comprising determining the level of phospho- 20 S21 on Tyrosine-protein kinase Fyn, wherein an up-regulation of this protein is indicative that the pancreatic tumor will be susceptible to treatment with Dasatinib (Table 4).

Further there is provided a method of predicting susceptibility of a 25 pancreatic tumor to treatment with AEZS-131 (Aeterna Zentaris Inc) and/or SCH772984 (Merck) comprising determining the level of phospho-T185 and/or phospho-Y187 on Mitogen-activated protein kinase 1 (MAPK1); and additionally or alternatively phospho-T202 and/or phospho-Y204 of Mitogen-activated protein kinase 3 (MAPK3/ERK1), 30 wherein an up-regulation of this protein phosphorylation is indicative that the pancreatic tumor will be susceptible to treatment with AEZS-131 and/or SCH772984. For further examples, see Table 4.

35 Determining phosphorylation of proteins is standard in the art. For example, antibodies that have specificity for a particular phosphorylation motif can be raised in a host animal and used for

subsequent detection of the relevant motif in tissues *in situ* using immunohistochemistry or following extraction of the target protein from the tissue or body fluid using Western blotting or enzyme-linked immunosorbent assay (ELISA). Other antibody-based detection methods are well known to the skilled practitioner and include bead-suspension arrays, planar arrays, radio-immunoassays and immunoprecipitation linked to mass spectrometry. However, it is normally necessary to use phosphoprotein specific antibodies in a two-step process where the target protein is first enriched prior to detection. This is due to the commonality of epitopes recognised by such antibodies within multiple substrates of a particular kinase. In other words, the way a kinase recognises phosphorylation sites within its substrates is similar to the epitope recognised by an antibody being a conserved sequence of 4-8 amino acids.

15

In some cases phosphorylation of proteins can be monitored by providing a radioactive isotope of phosphorous, typically P32 in a growth medium or dietary supplement for experimental animals. After a defined period of metabolic labelling the incorporation of P32 in specific proteins can be followed by detection the radioactive signal using standard protein separation methods such as gel electrophoresis and liquid chromatography.

25

In a preferred embodiment, the plurality of proteins selected from Table 13, Table 3, and/or Table 11 include Integrin Beta-4; Catenin alpha-1, Junctional adhesion molecule A (JAM-A); Tyrosine protein kinase Fyn; Mitogen-activated protein kinase 1 (MAPK1); RAC-alpha serine/threonine-protein kinase (AKT1); Glycogen synthase kinase-3 alpha.

30

In a further aspect of the invention, a method is provided for classifying a pancreatic tumor sample into one or more molecular phenotypes comprising

(1) determining the protein expression levels of one or more, 35 or a plurality of proteins selected from Table 12 and/or Table 2, for both a pancreatic tumor sample and a pancreatic non-tumor sample taken from a subject

and/or

(2) determining the up or down regulation of one or more, or a plurality of phosphoproteins selected from Table 3, Table 13 and/or Table 11 in a pancreatic tumor sample and a pancreatic non-tumor

5 sample taken from a subject,

(3) comparing said protein expression levels of the tumor sample with the non-tumor sample; and/or comparing the up or down regulation of phosphoproteins in the tumor sample with the non-tumor sample

10 (4) applying predictive algorithm

$$\log_2(T/NT)$$

(where i is subject sample, T = tumour and NT = non-tumour)

15 to produce a prediction value that for said protein expression level and/or phosphoprotein level for said subject;

(5) classifying said pancreatic tumor sample into a molecular phenotype by reference to a database comprising values predictive of said phenotypes, wherein said database comprises predictive values 20 for one or more or a plurality of proteins selected from Table 2, 3, 4, 11, 12, 13 and/or 15; and wherein the molecular phenotype is selected from tumor, non-tumor; tumor recurrence, tumor non-recurrence; drug susceptibility; primary and/or secondary tumor.

25 In a preferred embodiment the protein marker is considered modulated (either by up-regulated or down-regulated expression or phosphorylation) if the \log_2 T/NT ratio is ≥ 1 or ≤ -1 .

30 In a preferred embodiment, the classification is carried out by a pancreatic tumor classification system according to the first aspect.

35 Preferably the above method may be used to determine the prognosis of a subject with pancreatic cancer. In this respect, prognosis includes the determination of early, late or no recurrence following surgical removal, radiological or chemotherapy treatment. For

example the method may compare the expression and phosphorylation values with values for one or more or a plurality of proteins selected from Tables 11, 3, and/or 13.

In preferred embodiment, the one or more or plurality of proteins

5 includes Dual specificity mitogen-activated protein kinase kinase 2.

In respect of this and other aspects of the invention, the total protein content of a surgically-resected tumor or a tumor biopsy is extracted and subjected to phosphoproteomic analysis by methods known in the art and/or described herein. The relative abundance of

10 each phosphopeptide detected by such analysis is recorded in a database (e.g. using a system according to the first aspect) and the total profile is compared with known cases of recurrent and non-recurrent pancreatic cancer using methods such as Agglomerative Clustering. By this "bottom up" approach: each observation starts in

15 its own cluster, and pairs of clusters are merged as one moves up the hierarchy. At the end of the Agglomerative Clustering process the tumor being analysed will have been clustered into a group representing its likelihood of recurrence. In a preferred

embodiment, the database also carries sufficient numbers of samples

20 with specific times of recurrence post-surgery or initial treatment to also assign a likely time of recurrence to the individual patient with a recurrent tumor profile. The likely time of recurrence is between 8 and 33 months, between 10 and 20 months or between 15 and 17 months after removal of the tumor.

25 In a further aspect of the invention, there is provided a method selecting a treatment regimen for a subject with pancreatic cancer, said method comprising

(1) determining phosphoprotein levels of one or more, or a plurality of protein markers selected from Table 15 and/or Table 4,

30 (2) comparing said determination with a previously determined reference representative of drug susceptibility, and

(3) selecting a drug treatment regime for said subject based on the drug susceptibility of said tumor.

In a preferred embodiment, the drug target is a particular protein carrying a differential phosphorylation site, or it is an upstream kinase or phosphatase responsible for such differential phosphorylation.

- 5 In a preferred embodiment, the plurality of proteins selected from Table 15 and/or Table 4 include Tyrosine-protein kinase Fyn, Tyrosine-protein kinase CSK (Src), RAF proto-oncogene serine/threonine-protein kinase, Histone deacetylase 1, Histone deacetylase 2, Rapamycin-insensitive companion of mTOR (RICTOR);
- 10 ERK1 mitogen-activated protein kinase, ERK2 mitogen-activated protein kinase, and/or RAC-alpha serine/threonine-protein kinase.

Preferably the drugs are selected from the group consisting of Dasatinib, Sorafenib, Vorinostat, Temsirolimus, AEZS-131 and

15 GSK2141795.

For all aspects of the invention, the determination step is preferably carried out by liquid chromatography-mass spectrometry (LC-MS/MS).

20

In a still further aspect of the invention a method for improving the design of molecular targeting drugs is provided wherein the methods and systems of the invention are used to analyse the performance of novel compounds in modulating the oncogenic pathway

25 on the proteins selected from Tables 2, 3, 12, 11, 13, 14 and/or 15.

Accordingly, the invention further provides a method of testing the effectiveness of a molecular targeting drug comprising

30 obtaining a sample of pancreatic tumor from a subject; said tumor having been in contact with the molecular targeting drug under test, e.g. by administration to said subject prior to the sample being obtained;

35 extracting proteomic data from said sample, e.g. relative abundance of proteins or phosphorylated proteins;

comparing said proteomic data with reference data, e.g. data obtained from a sample of the same tumor prior to contact with the molecular targeting drug under test;

wherein a change in the proteomic data between the sample taken after contact with the molecular targeting drug and the sample taken prior to contact with the molecular targeting drug is indicative of the effectiveness of the molecular targeting drug in

5 treating pancreatic tumor; and

wherein the proteomic data comprises relative abundance levels of a plurality of phosphoproteins selected from Table 15 and/or Table 4.

10 The proteomic data may be obtained by measuring the relative abundance (e.g. up-regulated or down-regulated) of phosphopeptides unique to each of the plurality of proteins. Preferably the phosphopeptides are selected from Table 15 and/or Table 4.

15 By way of example, human pancreatic cancer-derived cell lines are exposed to a candidate therapeutic compound at different concentrations, including a vehicle control, or for different periods of time. Following exposure to the candidate therapeutic compound, cells are lysed and total proteins extracted. Preferably

20 the proteins are digested using a proteolytic enzyme such as trypsin and labelled, e.g. using an isobaric mass tag. Preferably the isobaric mass tags are Tandem Mass Tags (Thermo Scientific). Labelled peptides from several cell lines may be mixed together prior to analysis by LC-MS/MS. Preferably one or more reference

25 labelled peptides (e.g. selected from Table 15 and/or Table 4) representing known targets of the candidate drugs may be included to provide a quantitative internal standard. Following LC-MS/MS analysis the relative abundance of one or more, and preferably all phosphopeptides in each treated sample are submitted to analysis in

30 a system according to the first aspect e.g. the SysQuant database, and subjected to Agglomerative Hierarchical Clustering to obtain a treatment phenotype. Compounds achieving a positive treatment phenotype may be prioritised for further development.

35 It is to be understood that the methods of this aspect of the invention may be applied to any aspect of the drug development

process including xenograft tumors and tumors taken from human subjects participating in clinical trials.

It is further to be understood that the methods of this aspect of
5 the invention may also be applied to the determination of the most effective molecular targeting medicines in a patient with a pancreatic tumor based on preparation of primary tumour cell cultures from the resected tumor, exposure of primary cell cultures to different molecular targeting drugs and analysis of the relative
10 levels of phosphoproteins using the methods described herein, e.g. inventors' SysQuant methods.

Preferably the proteins (or their unique peptides) include one or more of, or a plurality of, Tyrosine-protein kinase Fyn, Tyrosine-
15 protein kinase CSK (Src), RAF proto-oncogene serine/threonine-protein kinase, Histone deacetylase 1, Histone deacetylase 2, Rapamycin-insensitive companion of mTOR (RICTOR); ERK1 mitogen-activated protein kinase, ERK2 mitogen-activated protein kinase, Integrin beta 4, Catenin alpha-1, Junctional adhesion molecule A
20 (JAM-A); Mitogen-activated protein kinase 1 (MAPK1); Glycogen synthase kinase-3 alpha; Homeodomain-interacting protein kinase 1 (HIPK1); Serine/threonine-protein kinase MRCK alpha (MRCK alpha); Myosin light chain kinase, smooth muscle (MLCK) and/or RAC-alpha serine/threonine-protein kinase (AKT1).

25
In a further aspect of the invention the methods and systems of the invention e.g. the SysQuant database, may be applied to the analysis of recurrent pancreatic cancer. When a new tumour is identified in a patient that has previously received treatment for pancreatic
30 cancer, a so-called recurrent tumor, or a new tumor is found in the pancreas of patients that have previously been treated for a tumor elsewhere in the body, a so-called metastatic tumor, it is important to identify the mechanism of resistance and potential new targets for treatment in the recurrent or metastatic tumor. Accordingly, the
35 methods of the present invention may be utilised in the analysis of

protein and phosphorylation site changes in the recurrent or metastatic tumor.

The invention also provides the use of a plurality of biomarkers selected from Table 2, 3, 4, 11, 12, 13 and/or 15 for determining the molecular phenotype of a pancreatic tumor in a subject, wherein said molecular phenotype is selected from the group consisting of tumor, non-tumor, recurrence, non-recurrence, drug susceptibility, primary tumour and/or secondary (metastatic) tumor.

10

Preferably the biomarkers are selected from Table 2 and/or Table 12 and the molecular phenotype is selected from tumor or non-tumor.

15

In particular, the biomarkers may comprise Mucin-1, Intergrin beta 4, and/or Homeodomain-interacting protein kinase 1.

20

In a further embodiment, the biomarkers are selected from Table 3, 11 and/or Table 13 and the molecular phenotype is selected from tumor recurrence or tumor non-recurrence, e.g. Dual specificity mitogen-activated protein kinase 2.

25

In a still further embodiment, the biomarkers are selected from Table 4 and/or 15 and the molecular phenotype is selected from drug susceptibility. For example, the biomarkers may include one or more of, or a plurality of, Tyrosine-protein kinase Fyn, Tyrosine-protein kinase CSK (Src), RAF proto-oncogene serine/threonine-protein kinase, Histone deacetylase 1, Histone deacetylase 2, Rapamycin-insensitive companion of mTOR (RICTOR); ERK1 mitogen-activated protein kinase, ERK2 mitogen-activated protein kinase, Intergrin beta 4, Catenin alpha-1, Junctional adhesion molecule A (JAM-A); Mitogen-activated protein kinase 1 (MAPK1); Glycogen synthase kinase-3 alpha; and/or RAC-alpha serine/threonine-protein kinase (AKT1).

30

35 The inventors have determined a number of protein kinases which are consistently differentially expressed in tumor versus non-tumor

patients. Accordingly, the invention provides a number of novel therapeutic targets for pancreatic cancer. In addition, the invention provides methods of treating subjects with pancreatic cancer using kinases inhibitors. In one embodiment, the invention

5 provides a method of treating pancreatic cancer in a subject, said method comprising administering a compound effective in inhibiting the kinase activity of one or more proteins selected from HIPK1; MRCK alpha; and MLCK.

10 Certain aspects and embodiments of the invention will now be illustrated by way of example and with reference to the figures and tables described above. The present invention includes the combination of the aspects and preferred features described except where such a combination is clearly impermissible or is stated to be

15 expressly avoided. All documents mentioned in this specification are incorporated herein by reference in their entirety for all purposes.

Brief Description of the Figures and Tables

Figure 1 Venn diagrams demonstrate the number of; **A.** unique phosphopeptides, **B.** unique non-phosphopeptides, and **C.** unique total peptides identified in the TiO₂, IMAC, and/or non-enrich arm of the SysQuant workflow, across all three TMT8plex samples in total (TMT8plex-ALL) and individually per TMT8plex (TMT8plex 1, TMT8plex 2, TMT8plex 3). **1.D** demonstrates the level of overlap the inventors

20 observed for peptide identifications from analytical run 1, analytical run 2, and analytical run 3 (including time dependent rejection list compiled from identifications from run 1 and 2).

25

Figure 2A: PC1 and PC2 Score plot of the first two principal components describing 13.6% (PC1) and 10.6% (PC2) of the total variance in the data. The circle depicts the T2 hotelling space based on 95% confidence. **2B:** PC2 and PC3 Score plot of the next principal components describing 10.6% (PC2) and 14.4% (PC3) of the total variance in the data.

Figure 3: Hierarchical cluster analysis was performed on log₂ T/NT values of all 5409 phosphopeptides quantified in this study.

Phosphopeptides are clustered in rows and cases are clustered in columns. **3A:** focusses on regions of the cluster map which contain phosphopeptides demonstrating lower levels (GREEN) in tumor tissue from patients with recurrence, but higher levels (RED) in tumor from patients with no recurrence. The red arrows indicate phosphopeptides that correlate best with recurrence. **3B:** focusses on regions of the cluster map which contain phosphopeptides demonstrating the inverse of **3A**. **3C:** phosphopeptides demonstrating lower levels in tumor from all cases (upper panel), and higher levels in tumor from all cases (lower panel). **3D:** Pearson's correlation coefficients were calculated across all cases and hierachal clustering was performed on these values. The table indicates presence or absence of lymph node metastases and recurrence in each case.

Figure 4. All log₂ T/NT ratios of phospho-peptides containing phospho-T394 of Dual specificity mitogen-activated protein kinase kinase 2 were summed and displayed on the table and plotted on the bar chart. Patients with recurrence (median 16.5 month follow up) were grouped with patients with no recurrence at time of last examination. Time of examination, time of recurrence, time of tissue storage in -80°C freezer and presence of lymph node mets are displayed in the table.

Figure 5. Volcano plots showing -log₁₀ P-values in relation to log₂ T/NT ratios for; (A) proteins and (B) phosphopeptides measured in the IMAC, (C) phosphopeptides measured in the TiO₂ and (D) phosphopeptides measured in the Non-enriched arm of the SysQuant workflow. Red circles point out biologically significantly phosphopeptides as they demonstrate log₂ T/NT ratios ≥ 0.75 or ≤ -0.75 and have p-values ≤ 0.05 . **E:** is a Venn diagram illustrating the distribution of the 635 phosphopeptides across the three arms of the workflow that were significantly modulated.

Figure 6.A: shows a STRING protein interaction network built using accession numbers from all proteins with significantly regulated phosphopeptides. In total there were 635 significantly modulated phosphopeptides from 408 proteins in the illustrated network. **B:** shows the same STRING network but highlights in RED those proteins

involved in the KEGG Tight Junction signaling pathway. The phosphopeptides from the Tight Junction proteins are also listed. **C**: highlights in RED those proteins associated to the GO biological process 'Regulation of RAS protein signal transduction' and there 5 phosphopeptides are listed in the table.

Figure 7. Signaling pathways modulated in pancreatic cancer tissue.

(**A**) This schema summarizes all proteins identified as phosphorylated from the following KEGG signaling pathways; Tight Junction, Adherens

10 Junction and Focal Adhesion. Red stars indicate those proteins identified as phosphorylated in any of 12 cases. Proteins highlighted by coloured circles are known drug targets. (**B**)

Phosphopeptides from case 1 (Fig. 4B) demonstrating \log_2 T/NT ratios ≥ 1 or ≤ -1 , were from proteins matched with greatest significance

15 (based on Benjamini) by the DAVID Bio-informatic resource to the Tight Junction and Adherens Junction signaling pathways from KEGG.

Red stars indicate proteins yielding phosphopeptides with \log_2 T/NT ratios ≥ 1 or ≤ -1 from case 1, and coloured circles indicate most suitable drug target, which in case 1 is FYN. (**C**) Phosphopeptides

20 from case 10 demonstrating \log_2 T/NT ratios ≥ 1 or ≤ -1 , were from proteins matched with greatest significance (based on Benjamini) by the DAVID Bio-informatic resource to the Tight Junction and Focal Adhesion signaling pathways from KEGG. Red stars indicate proteins yielding phosphopeptides with \log_2 T/NT ratios ≥ 1 or ≤ -1 from case

25 10, and coloured circles indicate most suitable drug target, which in case 10 appears to be AKT1 and MAPK1.

Figure 8A: This MA-plot shows the logarithmized ratios vs. the logarithmized intensities over the complete non-normalized data set.

30 **Figure 8B:** This MA-plot shows the same as **Figure 8A**, but the data are normalized by sum-scaling and therefore better zero-centred.

Table 1: Number of peptide spectrum matches, number of unique peptides and number of phosphorylation sites identified in each TMT8plex and in total.

5 **Table 2:** Top 12 proteins significantly up-regulated in tumor compared to background tissue, on average over all 12 cases. Log₂ T/NT ratios of the non-phosphorylated peptides from each protein were used as surrogates to calculate the relative abundance of the respective proteins. Log₂ T/NT ratios of the non-phosphorylated peptides were averaged over three arms of the workflow (IMAC, TiO₂, Non-enrich).

10 **Table 3:** Significantly regulated phosphopeptides in tumor compared to background tissue, on average over all 12 cases. All phosphopeptides are from proteins involved in KEGG signaling pathways; Tight Junction, Focal Adhesion, Vascular Smooth Muscle Contraction, Rearrangement of Actin Cytoskeleton. Here we display the p values and Log₂ T/NT ratios for protein and phosphopeptide.

15 **Table 4:** Displays examples of peptides that contain activator and inhibitor phosphorylation sites on proteins known to be anti-cancer drug targets. The phosphorylated residue in each peptide sequence is underlined. The log₂ T/NT ratios were median values calculated from all three arms of the workflow, and all ratios ≥ 1 or ≤ -1 were highlighted in bold text. Peptides in red contain activator phosphorylation sites, while peptides in blue contain inhibitor phosphorylation sites. Peptides in black contain phosphorylation sites with no known function.

25 **Table 5:** Characteristics of fourteen cases of pancreatic head ductal adenocarcinoma were selected from Institute of Liver Studies BioBank for use in this study.

30 **Table 6:** Tumor stage and recurrence of each case under study. Yellow cases showed recurrence between 8 & 33 months (median follow-up period 16.5 months) after tumor removal. The difference between stage **IIA** and **IIB** is the presence (IIB) or absence (IIA) of lymph node metastasis.

35 **Table 7:** Clinical information (e.g. time of recurrence) for each case under test.

Table 8: Protein amounts from each sample used for the SysQuant workflow in this study.

5 **Table 9:** Peptides are labelled with different tandem mass tags (TMT). Table 9 shows which TMT8plex tag is used to label which sample within each of the three TMT8plex samples analysed in this study.

10 **Table 10:** All three of the TMT8plex samples were separated into 3 aliquots. All nine aliquots of TMT labelled peptides were then separated by SCX-HPLC into 12 fractions each. For each of the three TMT8plex samples, 12 fractions were enriched for phosphopeptides using IMAC, 12 fractions enriched for phosphopeptides using TiO_2 , 15 and 12 fractions were not enriched for phosphopeptides but instead analysed directly by LC-MS/MS to determine relative protein abundance for normalisation purposes.

Table 11: Phosphopeptides displaying high ($\text{Log}_2 \text{T/NT} \geq 0.7$) and low ($\text{log}_2 \text{T/NT} \leq -0.7$) levels in tumour versus non-tumor from the cases 20 with recurrence that clustered together in Figure 3D.

Table 12: Significantly regulated proteins in tumor versus non-tumour (150 proteins). T.test p-values and average $\text{log}_2 \text{T/NT}$ ratios across 12 cases as well as $\text{Log}_2 \text{T/NT}$ ratios for each case are provided.

25 **Table 13:** Accession numbers of proteins involved in signaling pathways (Kegg pathways shown in column entitled 'term') which also yielded phosphopeptides demonstrating $\text{log}_2 \text{T/NT}$ ratios of ≥ 1 , or ≤ -1 (more than 2 fold up/down-regulated) from each case. Information 30 such as p values and Benjamini probabilities are also shown.

Table 14: Case 1 - Phosphopeptides from case 1 displaying $\text{log}_2 \text{T/NT}$ ratios ≥ 1 or ≤ -1 , from proteins involved in the following KEGG 35 signalling pathways Tight Junction, Adherens Junction and Focal Adhesion

Table 15: Case by case - Phosphopeptides displaying \log_2 T/NT ratios ≥ 1 or ≤ -1 at sites known to either induce activation or inhibition of the phosphorylated enzyme.

5 **Abbreviations and Definitions**

HPLC = high pressure liquid chromatography

SCX = strong cation exchange

TiO₂ = titanium dioxide

IMAC = immobilised metal affinity chromatography

10 T = tumor

NT = non-tumor

LC-MS = liquid chromatography - mass spectrometry

STRING = Search Tool for the Retrieval of Interacting Genes/Proteins

GO = Gene Ontology

15 KEGG = Kyoto Encyclopedia of Genes and Genomes

TMT = Tandem mass tags

The phenotype "tumor" in the context of the present invention shall mean neoplastic cells resulting in abnormal proliferation (malignant growth) as a result of carcinoma of the pancreas, in particular

20 pancreatic head adenocarcinoma.

The phenotype "non-tumor" in the context of the present invention shall mean normal, non-neoplastic or benign neoplastic pancreatic cells. It will be understood that such cells may be obtained from abnormal growth, but such growth is not malignant, e.g. cyst.

25 The phenotype "likelihood of recurrence" shall mean the likelihood of the tumor reappearing between 8 and 30 months following removal by e.g. surgery.

The phenotype "likelihood of non-recurrence" shall mean the likelihood of the tumor not reappearing following removal by e.g.

30 surgery.

The phenotype "drug susceptibility" in the context of the present invention shall mean a pancreatic tumor presenting a molecular profile indicative of modulation of a cell signalling pathway comprising one or more molecular drug targets. The drug targets may 5 be selected from FYN, GSK3 α / β , HDAC1/2, the RAF kinases, MAPKs (p38 and ERK2), AKT, PKCs, Casein Kinases.

The phenotype "primary tumor" shall mean tumor originating from the pancreas.

The phenotype "secondary tumor" or "metastatic tumor", shall mean a 10 pancreatic tumor that is formed by cancer cells originating from a tumor located elsewhere in the subject.

The term "plurality" may mean more than one, more than two, more than three, more than four, more than five, more than 10, more than 15, more than 20, more than 25, more than 30 proteins, peptides, 15 phosphoproteins or phosphopeptides selected from one or more referenced Table.

The term "plurality" may also mean more than one protein, peptide, phosphoprotein, phosphopeptide as expressed as a percentage of the reference Table. For example, a plurality may include 10%, 20%, 30%, 20 40% 50%, 60%, 70%, 80%, 85%, 90%, 95% of the proteins, peptides, phosphoproteins or phosphopeptides provided in the referenced Table.

In both cases, where the plurality is selected from a referenced Table, it is envisaged that any combination of the proteins, peptides, phosphoproteins, or phosphopeptides will form embodiments 25 of the present invention. For example, with respect to Table 2 where 12 proteins are listed, it is contemplated that the plurality of proteins may comprise Homeodomain-interacting protein kinase 1 with one or more, two or more, three or more etc of the remaining proteins listed in Table 2. This would be true for each of the 30 proteins independently, i.e. Mucin-1 may be combined with one or more, two or more, three or more etc of the remaining proteins listed in Table 2.

By way of example, such combinations can be expressed mathematically notation "combination":

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

5 This can be expressed in the form nC_k (i.e. "n choose k")
 In the case of Table 12, n=12 (the total of the table) and k is the number in a chosen subset.

All combinations of two or more markers from Tables 2, 3, 4, 11, 12,

10 13, 14 and/or 15 are specifically contemplated herein, i.e. for Table 2 all 66 possible pairs (${}^{12}C_2$), all 220 possible combinations of 3 markers (${}^{12}C_3$), all 495 possible combinations of 4 markers (${}^{12}C_4$), all 792 possible combinations of 5 markers (${}^{12}C_5$), all 924 possible combinations of 6 markers (${}^{12}C_6$), etc.

15 The term "protein" shall be construed to include the full length protein or any form of the protein, e.g. translational splice variants, isoforms, glycosylated forms, phosphorylated forms or comprising other post-translational modifications. For the proteins 20 referenced in the Tables, Uniprot-IDs are provided allowing full details of the protein including its sequence to be obtained. It is understood in the art that each Uniprot-ID has a history log that allows the specific sequence associated with said Uniprot-ID on any given date such as the date of the present invention can be readily 25 determined irrespective of subsequent modification or revision. This information and data is incorporated herein by reference.

Accordingly, a change in expression level of a protein may mean the up- or down-regulation of the expression of the protein in all its forms, or it may mean the up- or down-regulation of a particular 30 form of the protein, e.g. isoform, splice variant etc.

The term "relative abundance" shall mean the level, amount or concentration of a protein as compared to a reference level, i.e. from a database or from levels obtained from a different/background sample. The relative abundance of a protein may be obtained from 35 measuring the level, amount or concentration of one or more, preferably two, three, four or five peptides unique to said protein

and comparing the level, amount or concentration with the same peptides in the reference sample. This provides relative abundance levels for each peptide. A median average may then be taken to illustrate the level, amount or concentration of the protein itself.

5 The term "peptide" shall mean an amino acid sequence derived from a full length protein. The peptide will comprise enough amino acids such that its sequence is unique to the protein from which it is derived. This may be as few as at least 4, 5, 6, 7, 8, 9 or 10 amino acids in length, more preferable between 4 and 50, 40, 35, 30, 25 or 10 20 amino acids, or between 5 and 50, 45, 40, 35, 30, 25 or 20 amino acids or between 5 and 50, 45, 40, 35, 30, 25, or 20 amino acids. The peptide may be made synthetically, or it may be the result of proteolytic enzyme digestion, e.g. trypsin of the full length protein.

15 The term "phosphoprotein" shall mean any protein which has been phosphorylated at a phosphorylation site e.g. serine, tyrosine or threonine. Herein, such sites are denoted as 'phospho-X_{yyy}' where X represents the one or three letter amino acid code and y represents integers defining the residue location within the Uniprot-ID of the 20 relevant phosphoprotein.

The term "phosphopeptide" shall mean a peptide sequence which comprises one or more, preferably one, phosphorylated site, e.g. serine, tyrosine or threonine.

25 A change in the level or phosphorylation status of a phosphoprotein or phosphopeptide derived from a phosphoprotein does not necessarily mean a change in the amount (concentration) of the protein itself, but rather a change in the phosphorylated form of said protein, perhaps at a specific site.

Materials and Methods

30 Twelve cases of pancreatic head ductal adenocarcinoma were selected (Table 5). Case selection is described in Supplemental methods below. Briefly, 12 tumor (T) versus 12 non-tumor (NT) pancreatic tissue specimens were analysed using the SysQuant workflow. Tissue samples were taken from the pancreatic tumor masses, while NT

samples were taken from the same pancreas at a distal site from the tumor mass. All tissue samples were frozen within 30 minutes of surgical resection and stored at -80°C until analysis by SysQuant (median time of storage 18.5 months (range 4-28 months)). Details of 5 experiments are described in Supplemental Methods below. In summary, this entailed protein extraction from tissue specimens, trypsin digestion of proteins into peptides, TMT 8-plex labelling of peptides (tumor and non-tumor tissue from 4 cases per TMT 8-plex) followed by mixing to form a single 8-plex sample mixture (See Table 10). Each TMT 8-plex sample was then split into three independent aliquots, each of which was further split into 12 fractions by strong cation exchange (SCX) chromatography (Table 10). The first set of 12 SCX fractions were then analysed directly by nano-flow HPLC-MS/MS using duplicate data dependent acquisition runs followed 15 by a third run using time dependent rejection of all features identified in runs 1 & 2. The remaining two sets of 12 fractions were first enriched for phosphopeptides using either IMAC or TiO₂ (Table 10). The resulting 24 phosphopeptide enriched fractions were submitted to the same nano-flow HPLC-MS/MS analysis. In total 108 20 separate nano-flow HPLC-MS/MS runs were performed for each TMT 8-plex sample. Raw MS data were searched against the human UniProtKB/Swiss-Prot database using Mascot and Sequest (via Proteome Discoverer). Peptide spectrum matches (PSMs) were rejected if they were identified with only low confidence ($\geq 5\%$ FDR), showed $\leq 75\%$ 25 phospho-RS probability score, and had missing quantification channels (e.g. not all peaks for isobaric tags were visible in spectra). Raw intensity values of isobaric tags from PSMs passing filters were used for quantification, and these values were normalised using sum-scaling to reduce potential 30 experimental/systematic bias. As a first step, \log_2 ratios were calculated from isobaric tag intensities, showing the regulation between T over NT for all and for each case. A phosphopeptide T/NT \log_2 ratio is the median T/NT \log_2 ratio from all PSMs unique to that specific peptide sequence. A protein T/NT \log_2 ratio is the median 35 T/NT \log_2 ratio from all unique non-phosphorylated peptides unique to that specific protein. For the data analysis a one sided t-test

(one-sample location test) was used to calculate p-values. P-values were plotted against \log_2 T/NT ratios on Volcano plots to detect any significant regulation over all cases. At the protein level, annotation using GO-terms (<http://www.geneontology.org/>), KEGG-pathways

5 (<http://www.genome.jp/kegg/>) and Drugbank (<http://www.drugbank.ca/>) information were added, and also mapped to pathways using resources such as DAVID (<http://david.abcc.ncifcrf.gov/>) and STRING (<http://string-db.org/>). At the phosphorylation site level annotation using PhosphoSitePlus (www.phosphosite.org) were added, including known functional and 10 biological/pathological role of the phosphorylation site. Principal component analysis (PCA) and Projection to Latent Structure (PLS) were used to model / investigate the multivariate dataset and identify outliers and groups/clusters, from all peptide ratios (phospho and non-phospho peptides) from all arms of the workflow 15 (IMAC, TiO_2 and non-enriched). Finally hierachal clustering were performed to build a hierarchy of clusters at the case/specimen level in relation to phosphopeptide relative abundance between T and NT tissue types, and also in relation to the protein relative abundance. The SysQuant workflow, combining phosphoproteomic sample 20 preparation, LC-MS/MS analysis, and bioinformatics analysis, was used to identify important molecular events the inventors believe contribute to pancreatic cancer in the cases analysed here.

Supplemental Methods

Frozen Clinical Tissue. Ethical aspects and research protocol were 25 approved by the BioBank Committee of the Institute of Liver Studies, King's College Hospital. Twelve cases of pancreatic head ductal adenocarcinoma were selected in the database of BioBank at the Institute of Liver Studies (Table 5). Initially cases 2 and 3 were selected but later found to have too little protein extracted for 30 this workflow. Therefore two additional cases were selected (Cases 13 and 14) to increase the number back to twelve. Small pieces of tissue were snap frozen from Whipple's specimens and stored in a BioBank freezer (for at least 2 years). This process of tissue sampling was completed within 30 min. Paired samples of cancer 35 (tumor) and background (non-tumor) were used for each case. Table 6

describes tumor grade and whether recurrence was present at median follow up of 16.5 months (Range between 8 & 33 months).

Tissue cell lysis. Frozen clinical tissue samples were pulverized 5 then ground into a fine powder using a Pestle and Mortar in the presence of liquid nitrogen. The powder was then transferred to eppendorf tubes containing 1.3 mL of ice cold lysis buffer (8M urea, 75 mM NaCl, 50 mM Tris-pH 8.2, one tablet of protease inhibitors cocktail (complete mini, Roche) per 10 mL of lysis buffer, and one 10 tablet of phosphatase inhibitor cocktail (Roche) per 10 mL of lysis buffer). Samples were then sonicated at 20% Amplitude for 20 x 1 second, pulsing on and off, on ice (4°C). Following centrifugation at 12,500g for 10 min at 4°C, the protein concentration of each sample were then determined using the Bradford protein assay and 15 microplate luminometer. Protein amounts used for this workflow for each TMT 8-plex are shown in Table 7.

In-Solution Trypsin Digestion.

Reduction, alkylation of cysteines, and digestion was performed on 20 lysates by following the Villén and Gygi, Nature Protocol, approach [Villén, J., Gygi S. The SCX/IMAC enrichment approach for global phosphorylation analysis by mass spectrometry. *Nature Protocols.* **3**, 1630 (2008)]. The digested samples were spun for 10 minutes at 2,500g and de-salting on 100mg SepPak tC18 cartridges (Waters, 25 Milford, MA, USA). Peptides were eluted with 50% ACN/0.1% TFA and lyophilised.

TMT Labelling. Digested peptides from all samples were separately re-suspended in 200mM TEAB/10%ACN, mixed with their respective 30 TMT8plex reagent (15mM final concentration), as shown in labelling design below, and left to incubate for 1 hour at room temperature. The TMT reactions were then terminated with 0.25% hydroxylamine for 15 minutes. Samples were pooled into three TMT8plex (labelling design shown below) and left to incubate for another 15 minutes. 35 Each TMT8plex sample were acidified and the acetonitrile concentration diluted to below 5%, then divided into three aliquots

each of which were desalted on a 200mg SepPak tC18 cartridge, eluted, then lyophilized. Labeling design shown in Table 8.

SCX-HPLC.

5 All 9 aliquots of lyophilized peptides (Table 9) were re-suspend in SCX buffer C, then separated into 12 fractions by SCX-HPLC. The fractionation was carried out using a polySULFOETHYL-A column (PolyLC) and our SCX HPLC system (Waters Alliance 2695) according to the Villén and Gygi, *Nature Protocol*26, approach.

10 Buffer A: 0,1% TFA in water.

Buffer C: 7 mM KH₂PO₄, pH 2.65, 30% ACN (vol/vol).

Buffer D: 7 mM KH₂PO₄, 350 mM KCl, pH 2.65, 30% ACN (vol/vol).

Immobilized Metal-Affinity Chromatography (IMAC) and TiO₂.

15 Phosphopeptides were enriched by IMAC (Thermo Scientific Pierce product code 88300) or TiO₂ (Thermo Scientific Pierce product code 88301), in accordance with manufacturer's instructions.

20 **Graphite Spin Columns.** Following phosphopeptide enrichment, peptides were purified using graphite spin columns (Thermo Scientific Pierce product code 88302), according to manufacturer's instructions.

25 **Liquid Chromatography Mass spectrometry (LC-MS).** Peptides from all 108 fractions were re-suspended in 35 µl of 2% ACN, 0.1% FA, then 8µL of each sample were injected onto a 0.1 × 20 mm pre-column self-packed with ReproSil C18, 5 µm (Dr. Maisch), using the Thermo Scientific Proxeon EASY-nLC II system. Peptides were then resolved using an increasing gradient of 0.1% formic acid in acetonitrile (10 to 25% over 90 minutes) through a 0.075 × 150 mm self-packed column with ReproSil C18, 3 µm (Dr. Maisch) at a flow rate of 300nL/min. Mass spectra were acquired on a Thermo Scientific LTQ

30 Orbitrap Velos throughout the chromatographic run (115 minutes), using 10 higher collision induced dissociation (HCD) FTMS scans at 15000 resolving power @ 400 *m/z*, following each FTMS scan (2 × µScans at 30000 resolving power @ 400 *m/z*). HCD was carried out on 10 of the most intense ions from each FTMS scan then put on a

35 dynamic exclusion list for 30secs (10 ppm *m/z* window). AGC ion injection target for each FTMS1 scan were 1000000 (500ms max

injection time). AGC ion injection target for each HCD FTMS2 scan were 50000 (500ms max ion injection time). Each sample were analysed by three LC-MSMS analytical repeats, where the third analytical repeat used a time dependent rejection list, rejecting all peptide 5 ions that were identified as peptides, with 1%FDR, in one of the first two analytical repeats.

Peptide identification and quantification.

Proteome Discoverer

In total there were 324 Raw data files (3 x TMT8plex sample X3 10 aliquots X12 fractions X3 analytical repeats), where there were 108 raw data files belonging to each TMT8plex. All 108 raw data files from the first TMT8plex sample were combined for a Mudpit search using Proteome Discoverer, as described below. This was also carried out for the second and third TMT8plex samples.

15 Raw data were submitted to the Thermo Scientific Proteome Discoverer 1.3 software, using the Spectrum Files node. Spectrum selector was set to its default values, while the Mascot node was set up to search data against the uniprot_sprot database, taxonomy *homo sapiens*. This node was programmed to search for tryptic peptides 20 (two missed cleavages) with static modifications of carbamidomethyl (C), TMT6plex (K), and TMT6plex (N-Term). Dynamic modifications were set to deamidation (N/Q), oxidation (M), and phosphorylation of STY. Precursor mass tolerance was set to 20ppm and fragment (b and y ions) mass tolerance to 20mmu. Spectra were also searched against 25 SEQUEST, using the same database, modifications, and tolerances as the Mascot node. Spectra were also search using the PhosphoRS2.0 (fragment mass tolerance of 20mmu, considering neutral loss peaks for CID and HCD) and Percolator nodes.

The reporter ions quantifier node was set up to measure the raw 30 intensity values of TMT8plex mono-isotopic ions, from all identified PSMs, at; 126.12773 *m/z* (126), 127.12476 *m/z* (127e), 127.13108 *m/z* (127), 128.13444 *m/z* (128), 129.13147 *m/z* (129e), 129.13779 *m/z* (129), 130.14115 *m/z* (130), 131.13818 *m/z* (131), using a tolerance of 20ppm after centroiding. No filters were applied at this stage

using Proteome Discoverer, therefore all raw intensity values were exported to excel for later processing and filtering using in house software.

Bioinformatics

5 Statistical analysis was performed to investigate relevant regulations with respect to the disease group of T (*pancreatic tumor tissue*) and NT (*non-tumor tissue*) from 12 patients.

Accuracy and precision of mass spectrometry quantification approaches can suffer from issues such as Experimental bias,

10 Systematic errors, Random Errors (Heterogeneity of Variance), and missing quantification values. To improve accuracy and precision the inventors assessed the quality of their data, then filtered and normalised as described below.

15 MS quality - Data Filtering and normalisation:

All spectra which did not include all TMT-8 plex reporter intensities were deleted. For normalisation a sum-scaling was performed. Due to differences between samples it is advisable to normalize data before further processing. The effects of the 20 normalization can be observed by the follow maplots

(http://en.wikipedia.org/wiki/MA_plot).

Statistics

As first step log2 ratios are calculated, which show the regulations 25 T (*pancreatic tumor tissue*) over NT (*non-tumor tissue*) for all and for each patient. For protein ratios all peptides which are not phosphorylated were used and combined with the median.

The ratios were calculated:

$$\log_2(T/NT)$$

30 Where $i = \text{patient } 1, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14$

For the data analysis a one sided t-test (or one-sample location test) will be used [http://en.wikipedia.org/wiki/T_test]. A one side

t-test is able to detect significant regulations in the subject of the question.

P-values and log2 ratios can be observed in the attached list of interest (Table 5). Significant p-values were highlighted in red.

5 Annotation with GO-terms, KEGG-pathways and Drugbank info were added at the protein level, and annotation from phosphosite plus were added at the phosphorylation site level.

For the phosphopeptide ratios all peptides which have a probability in the phospho-RS utility in the Proteome Discoverer from over 75%

10 in any phosphorylation position was used.

Results and Discussion

In total the inventors have identified 6,543 unique phosphopeptides (6,284 unique phosphorylation sites), from 2,101 protein groups

15 (Table 1). Figure 1 shows identified peptide (phosphorylated and non-phosphorylated) distribution over all the three arms (Non-enriched, TiO₂, IMAC) of the SysQuant workflow for each TMT 8-plex.

Figure 1 also illustrates the number of peptides detected for each of the three analytical repeats per sample. When results from each

20 of the parallel components (TiO₂, IMAC, non-enriched) are compared the benefits of a combined approach are apparent. The largest total number of phospho-peptides was seen using IMAC enrichment which accounted for 79% of all unique phosphopeptides identified. However, the TiO₂ fractions uniquely identified nearly 19% of the total which

25 would be missed using a single phospho-peptide enrichment strategy (Figure 1:TMT8plex-ALL:a). The same is true for the three analytical runs performed on each sample. If a single data dependent run was performed only 20,318 unique peptides are seen (Figure 1:TMT8plex-ALL:d). A second data-dependent run adds 5,868 peptides whilst the

30 use of the time dependent rejection list in run 3 allowed a further 3257 peptides to be identified overall. Collectively (run 2&3) this represents an additional 45% over run 1 alone and 31% of the total number of unique peptides. Importantly the peptides identified in the third run are generally of lower abundance.

35 PLS/PCA

PLS demonstrated that there are no outliers in this dataset. PLS PC1 and PC2 show that there are three clusters IMAC, TiO₂ and

TotalProtein (i.e. non-enriched arm of workflow), as shown in Figure 2A. PC1 and PC2 Score plot of the first two principal components

5 describing 13.6% (PC1) and 10.6% (PC2) of the total variance in the data. The circle depicts the T2 hotelling space based on 95% confidence. All samples were in the border of the model. PC1 refers to the enrichment, PC2 refers to the patient. TotalProtein (non-enriched peptides) has a cluster which is different to the
10 enrichment arms of the workflow, IMAC and TiO₂ (Figure 2A). PC2 and PC3 Score plot of the next principal components describing 10.6% (PC2) and 14.4% (PC3) of the total variance in the data (Figure 2B). In PC3 PLS can split T and NT in two clusters. TotalProtein (non-enriched peptides) has its own cluster, but it can also be separated
15 into the classes T and NT. Only in patient 12 were no differences in T compared to NT observed. PLS/PCA confirm that the experiment is successful, and that there are significant differences between T and NT. Differences between TiO₂, IMAC and Totalprotein (non-enriched) exists, but TiO₂ and IMAC have a nearly equal correlation.

20 *Hierarchal Cluster Analysis*

Hierarchal cluster analysis was used to cluster cases which demonstrate similar profile in the relative abundance of these 5409 phosphopeptides in T relative to NT (Figure 3A-3C show particular regions of interest). Using all 5409 unique phospho-peptides the 12

25 patients could be clustered into three independent groups. One cluster contained cases 5, 9, 1, and 14, a second cluster contained cases 7, 6, 12, 4 and 13, while cases 8, 10, and 11 separated to a third cluster and were less closely related to each other than members of the other two clusters. Interestingly, when the clinical
30 history of the 12 patients was un-blinded, the inventors found that cases 5, 9, 1, and 14 were patients that suffered tumor recurrence between 8 & 33 months (median follow-up period 16.5 months) after removal of the tumors analysed in this study, whereas cases 7, 6, 12, 4 and 13, were patients with no recurrence in this same time
35 period. For more details on patient history refer to Tables 6 and 7.

Of the three outliers two were from patients with subsequent recurrence (Cases 10 and 11) and one was from a non-recurrent patient (Case 8). It is interesting that 2 out of the 3 outliers had less advanced stage IIA (pT3N0M0) compared to the recurrent (4/4 stage IIB, pT3N1M0) and non-recurrent (4/5 stage IIB, pT3N1M0) clusters. Further refining of the cluster analysis was performed by clustering on Pearson's correlation coefficients. The Pearson's correlation coefficients were obtained by comparing all phosphopeptide log₂ T/NT values across all cases (Figure 3D). This refinement of cluster analysis better separates the recurrent and non-recurrent cases.

Hierachal cluster analysis clearly separated patients into groups dependent on recurrence and no recurrence therefore the inventors were particularly interested in identifying those phosphopeptides whose abundance correlated positively and inversely with recurrence as these may prove useful prognostic markers and help forecast the likelihood of recurrence in new patients after analysis of their resected T & NT tissue. These phosphopeptides can be viewed in Table 11. Table 11 displays all phosphopeptides displaying high (log₂ T/NT ≥ 0.7) and low (log₂ T/NT ≤ -0.7) levels in tumor versus non-tumor from cases with recurrence that clustered together in Figure 3D. The combined list of phosphopeptides in Table 11 provides useful prognostic markers helping clinicians predict patients who will go on to present recurrence before 31 months after surgery.

25

In addition to the differences in global profiles between T and NT there are many individual phosphorylation site changes of particular interest. As an example, the relative abundance profile of the phosphopeptides containing phospho-T394 of Dual specificity mitogen-activated protein kinase kinase 2, as seen on Figure 2B (highlighted with a red arrow), and on Figure 4 correlate positively with patients who suffered tumor recurrence at median 16.5 months. They were substantially increased in T relative to NT in all cases showing recurrence, and down or only slightly increased in T relative to NT in all cases that did not show recurrence (Figure 4). This kinase is part of the RAS/RAF/MEK/ERK signaling pathway known

to be down stream of RAS and RAF, but upstream of ERK1/2. K-RAS gene is mutated to an oncogenic form in most pancreatic tumors, most commonly in the form of K-RAS^{G12D} [12]. Unfortunately no K-RAS peptides were detected in this study. However, measurement of

5 phospho-T394 on Dual specificity mitogen-activated protein kinase kinase 2, which is downstream of K-RAS, may prove to be an important prognostic marker assisting prediction of time of recurrence. The UniProtKB/Swiss-Prot database the inventors used to search peptides does not contain K-RAS point mutations, explaining the lack of

10 detected K-RAS peptides in this study. This emphasises the need for a database containing known oncogenic point mutations. Other RAS signalling proteins were identified to show significantly modulated phosphopeptides as seen in the STRING map (see below).

The inventors also performed hierachal cluster analysis to cluster 15 cases which demonstrate similar profile in the relative abundance of protein in T relative to NT, however the correlation between clusters and recurrence/non-recurrence was less obvious, suggesting that total levels of protein expression change less dramatically than phosphorylation and signifying the importance of our 20 phosphopeptide analysis as a prognostic tool.

Significantly regulated protein expression

The inventors determined the relative abundance of proteins in tumor compared to non-tumor tissue, using median \log_2 T/NT ratios of the 25 non-phosphorylated peptides unique to each protein as surrogates to calculate the relative abundance of the respective proteins. A one sided t-test was used to calculate p-values and these were plotted against \log_2 T/NT ratios on a volcano plot to detect significant (\log_2 T/NT ≥ 0.3 or ≤ -0.3 and $p \leq 0.05$) regulations over all cases (Figure 5A). In total there were 150 proteins significantly 30 regulated based on \log_2 T/NT ≥ 0.3 or ≤ -0.3 and $p \leq 0.05$ (Table 12).

Table 2 displays the 12 most significantly upregulated proteins in tumor compared to non-tumor tissue, and also provides a description of any known function of each protein or association with cancer [13-31]. Overexpression of Mucin-1 is often associated with cancer 35 and the inventor also found Mucin-1 to be significantly up-regulated

in pancreatic tumor tissue. Interestingly the inventors found more significant up-regulated proteins than Mucin-1, some of which may prove to be more specific markers of pancreatic cancer, perhaps even new therapeutic targets e.g. Homeodomain-interacting protein kinase

5 1.

The inventors selected all accession numbers of significantly modulated proteins and uploaded these to the DAVID Bio-informatic resource to identify those KEGG signalling pathways most significantly modulated. The Focal Adhesion KEGG signaling pathway

10 was most significantly modulated giving a Benjamini score of 1.0E-3. Significantly modulated Focal Adhesion proteins included; Talin-1, Filamin-A, Filamin-C, Vinculin, Filamin B, Fibronectin, Focal adhesion kinase 1, Zyxin, Talin-2, Protein phosphatase 1 regulatory subunit 12A, and Myosin light chain kinase, smooth muscle (Table

15 12). In fixed or immobile cells, focal adhesions are quite stable under normal conditions, while less so in motile cells, where focal adhesions are constantly assembled and disassembled as the cell establishes new contacts at its leading edge, breaking old contacts at its trailing edge.

20 Hepatoma derived growth factor was also upregulated in most tumor specimens and this was significant based on p-value (p≤0.05).

Of particular interest to the inventors was the determination that Myosin light chain kinase (MLCK) is significantly overexpressed in tumor compared to non-tumor tissue (median log2 T/NT = 0.5 & p-value

25 = 2.95E - 02). MLCK is a Ca2+/calmodulin-dependent protein kinase that regulates a variety of cellular functions, such as, muscle contraction and cell migration, via phosphorylation of myosin light chain proteins. Since tumor cell migration is a key step in tumor spread, myosin light chain kinase (MLCK) may be regarded as a 30 therapeutic target for preventing tumor spread. In fact, MLCK activation and expression have been found to be positively related with metastatic propensity.

Significantly regulated phosphopeptides

Log₂ T/NT ratios of the phosphorylated peptides were used to calculate the relative level of phosphorylation at specific unique phosphorylation sites. The inventors used t-tests to calculate p-values and these were plotted against log₂ T/NT ratios on volcano plots for IMAC, TiO₂, and Non-enriched arms of the workflow, to detect significant (Log₂ T/NT ≥ 0.75 or ≤ -0.75 and p≤0.05) regulations over all cases, as shown in Figure 5B-5D. Of the 6,543 phosphopeptides identified in this study, 5409 were quantifiable (Data not shown). Of the quantifiable peptides, 635 showed significant regulation (Figure 5B-5D).

The inventors selected all 408 unique accession numbers of those proteins yielding phosphopeptides (635) with significant differential abundance between tumor compared to non-tumor tissue and uploaded the accession numbers to STRING (Search Tool for the Retrieval of Interacting Genes/Proteins). STRING matched these proteins to the Tight Junction KEGG Signaling pathway with greatest significance giving a p-value of 2.50E-5 after matching 14 of the 408 proteins to the pathway. The inventors also used STRING to identify which GO terms (Biological process, molecular function, and cellular component) these 408 proteins were most strongly associated to. Actin filament based process (n=29; p-value=4.47E-8), Actin binding (n=40; p-value=2.59E-18), and Cytoskeleton (n=77; p-value=2.66E-13) were the GO terms matched with greatest significance. The inventors also used STRING to identify which out of the 408 proteins were associated with the GO biological process 'Regulation of RAS protein signal transduction', as RAS is known to be an important onco-protein in pancreatic cancer. 16 of the 408 proteins were matched to this GO biological process with a p-value of 1.06E-2, while 10 of these 16 could be mapped to the STRING network (Figure 6C).

Phosphorylation of protein kinases

Of particular interest to the inventors was the observation that the phosphopeptides from Serine/Threonine-protein kinase MRCK alpha (see Table 11a) were significantly elevated in tumor compared to non-tumor. This was particularly so for those containing phosphorylation

site S1629. MRCK alpha is an important downstream effector of the Rho GTPase, CDC42, and plays a critical role in the regulation of cytoskeleton reorganization, formation of cell protrusion, and promotes cell migration. Further information can be found in Britton
5 et al PLOS ONE March 2014; Vol. 9, Issue 3 e90948, the contents of which are hereby incorporated by reference in their entirety.

Accordingly, MRCK alpha is provided as an important therapeutic target for pancreatic cancer and kinase inhibitors of MRCK alpha as
10 potential therapeutics.

Case by Case

In addition to determining which proteins and phosphopeptides demonstrated significant differences in abundance between tumor and
15 non-tumor tissue when averaged across all cases, the inventors also wanted to determine which phosphopeptides were highly modulated on a case by case basis. Accession numbers of proteins which yielded phosphopeptides demonstrating \log_2 T/NT ratios of ≥ 1 , or ≤ -1 (More than 2 fold up/down- regulated), were selected from case 1. These
20 accession numbers were then uploaded to the DAVID Bioinformatic resource which identified KEGG signaling pathways most modulated for case 1. The inventors repeated this approach for each case, then selected KEGG signaling pathways that demonstrated significance, based on p values, and on Benjamini scores on a case by case basis
25 (Table 13). All those KEGG pathways in Table 12 with Benjamini scores ≤ 0.05 were highlighted in Yellow. Based on p values from the DAVID Bioinformatic output, tight junction signaling pathway was determined to be modulated between tumor compared to non-tumor in all cases (12/12 cases), followed by adherens junction signaling
30 (10/12 cases) and focal adhesion signaling (10/12). Figure 7, shows the three signaling pathways and the rectangles marked with red stars indicate those proteins the inventors identified as phosphorylated across all 12 cases. Table 3 displays all phosphopeptides displaying significant regulation that belong to
35 proteins involved in Tight Junction and Focal Adhesion signaling pathways, as well as other signaling pathways (Regulation of Actin

Cytoskeleton and Vascular smooth muscle contraction) found to be significantly modulated.

Table 14 shows all phosphopeptides demonstrating \log_2 T/NT ratios of ≥ 1 , or ≤ -1 , from case 1, that belong to proteins involved in tight

5 junction, adherens junction, and focal adhesion KEGG signaling pathways. These are also mapped to Figure 7B

Integrin beta-4 - The doubly phosphorylated peptide containing the Integrin beta-4 phosphorylation sites S1483 and S1486, was elevated more than two fold in the tumor tissue compared to non-tumor tissue

10 of case 1. In fact this phosphopeptide was found to be significantly elevated in tumor tissue compared to non-tumor in general across all measured cases (data not shown). Integrin beta-4 phosphorylation has been associated with the disassembly of cell anchoring junctions, such as hemidesmosomes at the trailing edge of migrating cells [32,

15 33]. Such phosphorylation events have been shown to be induced by Fyn (primarily at Tyrosine residues), PKC (primarily at Serine residues), and other kinases [32].

Catenin alpha-1 - The peptide containing Catenin alpha-1 phosphorylation site S655 was elevated more than two fold in tumor

20 tissue compared to non-tumor, in case 1. In fact, the singly phosphorylated peptide containing phospho-S655 was significantly elevated in tumor tissue on average across all cases (Data not shown). Phosphorylation at S641, S655, and S658, was elevated in tumor tissue of all but three cases, two of those three being stage

25 IIA. Interestingly phosphorylation of catenin alpha-1 at S641 has been shown to lead to dissociation between catenin alpha-1 and catenin beta-1 (beta catenin), leading to increased transcriptional activation of beta-catenin and tumor cell invasion [34].

Junctional adhesion molecule A (JAM-A) - The peptide containing JAM-

30 A phosphorylation site S284 was decreased more than two fold in tumor tissue compared to non-tumor, in case 1 and was found to be significantly decreased in tumor tissue compared to non-tumor across all cases (Data not shown). Phosphorylation of JAM-A at S284 is found to be a critical step in the formation and maturation of tight junctions [35]. Here the inventors observe that this phosphorylation

event is significantly decreased in tumor tissue an event that could favour epithelial to mesenchymal transition (EMT) of the cells and consequently metastatic spread.

Phosphorylation events to indicate activity status of drug targets

5 and other enzymes

To ascertain relative activation status of enzymes in tumor compared to non-tumor tissue in each case, the inventors used relative abundance of phosphopeptides containing phosphorylation sites known to either induce enzyme activation or inhibition. Table 4 and Table 10 15 short lists all phosphopeptides displaying $\log_2 T/NT$ ratios ≥ 1 or ≤ -1 that contain phosphorylation sites that are known to either induce activation or inhibition of the phosphorylated enzyme, in each case.

Tyrosine-protein kinase Fyn – The relative abundance of the peptide 15 containing phospho-S21 of the Tyrosine-protein kinase Fyn is elevated more than two fold in tumor tissue compared to non-tumor tissue of case 1 (Table 4). Phosphorylation of Fyn at serine 21 is reported to activate Fyn kinase [36]. This suggests therefore, that Fyn is more active in the tumor tissue compared to non-tumor tissue 20 of case 1. Interestingly, phospho-serine 21 of Fyn is detected in all 12 cases, but it is only in case 1 that the inventors observed such relatively high levels in tumor compared to non-tumor. Inversely, the tumor tissue of case 7 shows greater than two fold lower abundance of this phosphopeptide compared to non-tumor tissue. 25 As Fyn is a target of the approved kinase inhibitor Dasatinib this new data suggests that measurement of the peptide containing phospho-S21 using the workflow methods described herein may be an attractive predictive marker for Dasatinib.

Mitogen-activated protein kinase 1 (MAPK1) – The relative abundance 30 of the peptide containing phospho-T185 and phospho-Y187 of the MAPK1 is elevated more than two fold in tumor tissue compared to non-tumor tissue of cases 5, 8, and 10 (Table 4). Phosphorylation of MAPK1 at T185 and/or Y187 is reported to activate MAPK1 [3 7]. This suggests therefore, that MAPK1 is more active in the tumor tissue compared to 35 non-tumor tissue of cases 5, 8, and 10. Inversely, the tumor tissue

of cases 4 and 11 shows more than two fold less of this phospho-T185 and phospho-Y187 containing phosphopeptide, compared to non-tumor tissue. MAPK1 is an anti-cancer drug target (AEZS-131 and SCH772984) and is also down-stream of many other anti-cancer drug targets

5 (Anti-HER TKIs, Anti-MEK KIs), therefore this new data suggests that measurement of the peptide containing phospho-T185 and phospho-Y187 using our workflow may be a predictive marker for these targeted anti-cancer therapies. The inventors have also measured the singly phosphorylated peptides containing phospho-T185 or phospho-Y187, as
10 well as the MAPK2 doubly and singly phosphorylated peptides containing phospho-T202 and phospho-Y204. The workflow methods described herein can easily determine whether MAPK2 is phosphorylated on T202 and/or Y204 and/or MAPK1 is phosphorylated on T185, and/or Y187, yielding critical signaling pathway activation
15 status information.

RAC-alpha serine/threonine-protein kinase (AKT1) – The relative abundance of the singly phosphorylated peptides containing phospho-S124 and the doubly phosphorylated peptide containing phospho-S124 and phospho-S129 of AKT1 are elevated more than two fold in tumor
20 tissue compared to non-tumor tissue of cases 4, 7, 10, and 13 (Table 4). Phosphorylation of AKT1 at S124 and/or S129 is reported to activate AKT1 [38, 39]. This suggests that AKT1 is more active in the tumor tissue compared to non-tumor tissue of cases 4, 7, 10, and 13. Therefore, anti-AKT kinase inhibitors may be effective in these
25 patients. Interestingly, Case 10 also demonstrated elevated MAPK1 activity suggesting this patient may be a candidate for dual AKT1 & MAPK1 inhibitor treatment, as such combination strategies have proven efficacy in pancreatic cancer cell lines and xenograft models [12]. Inversely, the relative lower abundance of phosphopeptides
30 containing these activator phosphorylation sites suggests AKT1 is less active in the tumor tissue compared to non-tumor tissue of cases 1, 6, 8, 9, 11, and 14. AKT1 is an anti-cancer drug target therefore, the inventor's data suggests that measurement of the peptides containing phospho-S124 and phospho-S129 using the workflow
35 methods described herein may be an attractive predictive marker for these targeted anti-cancer therapies.

Glycogen synthase kinase-3 alpha - The peptide containing the Glycogen synthase kinase-3 alpha phosphorylation site Y279 increased more than two fold in the tumor tissue compared to non-tumor tissue of cases 1, 6, 13, and 14 (Table 15). Phosphorylation of Y279 causes 5 activation of GSK3a which then induces cell survival, and reduces glycogen production [40]. GSK3a expression was measured in 8 out of 12 cases and shown to be significantly over expressed on average in tumor.

Using the approach where one measures the relative abundance of 10 phosphopeptides containing activator or inhibitor phosphorylation sites, the inventors were able to determine the relative activation status of; Glycogen synthase kinase-3 alpha and beta, Histone deacetylase 1 and 2, RAF proto-oncogene serine/threonine-protein kinase, Serine/threonine-protein kinase A-Raf, Dual specificity 15 mitogen-activated protein kinase kinase 6, Mitogen-activated protein kinase 14, and over 20 others (Table 4 and Table 15).

Notably, the most significantly enriched signalling pathways principally belong to cytoskeletal dynamics and cell adhesion, pathways that are usually deregulated during cell motility and 20 metastatic spreading, highlighting the importance of these proteins in a highly metastatic disease such as pancreatic cancer and demonstrating the validity of the inventors' approach. Many other interesting molecular events, independent of the mentioned KEGG signaling pathways, were also observed in this experiment including 25 the consistent and significant reduction in phosphorylation sites of the Microtubule-associated protein Tau, in all tumor tissue (data not shown), the inverse is known to cause pathology associated with Alzheimer's disease. Also, the activator phosphorylation site, S389 on Casein kinase I isoform epsilon, was significantly elevated on 30 average in tumor tissue.

In conclusion, the inventors provide examples which demonstrate how their LC-MS workflow, can simultaneously measure the abundance and activity of 1000's of signaling and structural proteins in tumor tissue relative to non-tumor tissue, and show how such measurements 35 can be used to better understand the molecular events leading to cancer, and therefore the most suitable inhibitory agents, to treat

a patient on a case by case basis. Critically, the inventors have demonstrated using hierachal clustering of phosphopeptide \log_2 T/NT ratios that they can identify those patients more likely to show recurrence at a median follow up of 16.5 months compared to those 5 patients less likely to show recurrence at this time point.

References

[1] Smart JE, Oppermann H, Czernilofsky AP, et al. Characterization of sites for tyrosine phosphorylation in the transforming protein of Rous sarcoma virus (pp60v-src) and its normal cellular homologue (pp60c-src). *Proc. Natl. Acad. Sci.* 1981;78:6013-7.

[2] Langer T, Vogtherr M, Elshorst B, et al. NMR backbone assignment of a protein kinase catalytic domain by a combination of several approaches: application to the catalytic subunit of cAMP-dependent protein kinase. *Chembiochem.* 2004;5:1508-16.

[3] Chen PL, Scully P, Shew JY, et al. Phosphorylation of the retinoblastoma gene product is modulated during the cell cycle and cellular differentiation. *Cell.* 1989;58:1193-8.

[4] Bononi A, Agnoletto C, De Marchi E, et al. Protein kinases and phosphatases in the control of cell fate. *Enzyme Res.* 2011;2011:3290.

[5] Bond-Smith G, Banga N, Hammond TM, et al. Pancreatic adenocarcinoma. *BMJ.* 2012;344:e2476.

[6] Michl P, Gress TM. Current concepts and novel targets in advanced pancreatic cancer. *Gut.* 2013;62:317-26.

[7] Llovet JM, Ricci S, Mazzaferro V, et al; SHARP Investigators Study Group. Sorafenib in advanced hepatocellular carcinoma. *N Engl J Med.* 2008;359:378-90 .

[8] Engholm-Keller K, Larsen MR. Technologies and challenges in large-scale phosphoproteomics. *Proteomics.* 2013;13:910-31.

[9] Mann M, Kulak NA, Nagaraj N, et al. The coming age of complete, accurate, and ubiquitous proteomes. *Mol Cell.* 2013;49:583-90.

[10] McAlister GC, Huttlin EL, Haas W, et al. Increasing the multiplexing capacity of TMTs using reporter ion isotopologues with isobaric masses. *Anal Chem.* 2012;84:7469-78.

[11] Werner T, Becher I, Sweetman G, et al. High-resolution enabled TMT 8-plexing. *Anal Chem.* 2012;84:7188-94 .

[12] Craig D. Logsdon & Marina Pasca di Magliano, Roles for KRAS in Pancreatic Tumor Development and Progression, *GASTROENTEROLOGY.* 2013;144:1220-1229.

[13] Yang W, Xia Y, Hawke D, et al. PKM2 phosphorylates histone H3 and promotes gene transcription and tumorigenesis. *Cell*. 2012;150:685-96.

[14] Christofk HR, Vander Heiden MG, Harris MH, et al. The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. *Nature*. 2008;452:230-3.

[15] Kondo S, Lu Y, Debbas M, Lin AW, et al. Characterization of cells and gene-targeted mice deficient for the p53-binding kinase homeodomain-interacting protein kinase 1 (HIPK1). *Proc Natl Acad Sci U S A*. 2003;100:5431-6.

[16] Lee D, Park SJ, Sung KS, et al. Mdm2 associates with Ras effector NORE1 to induce the degradation of oncoprotein HIPK1. *EMBO Rep*. 2012;13:163-9.

[17] Zhao L, Wang H, Liu C, et al. Promotion of colorectal cancer growth and metastasis by the LIM and SH3 domain protein 1. *Gut*. 2010;59:1226-35.

[18] Grunewald TG, Kammerer U, Winkler C, et al. Overexpression of LASP-1 mediates migration and proliferation of human ovarian cancer cells and influences zyxin localisation. *Br J Cancer*. 2007;96:296-305.

[19] Zhang Y, Ye Y, Shen D, et al. Identification of transgelin-2 as a biomarker of colorectal cancer by laser capture microdissection and quantitative proteome analysis. *Cancer Sci*. 2010;101:523-9.

[20] Morohashi Y, Balklava Z, Ball M, et al. Phosphorylation and membrane dissociation of the ARF exchange factor GBF1 in mitosis. *Biochem J*. 2010;427:401-12.

[21] Miyasaka KY, Kida YS, Sato T, et al. Csrpl regulates dynamic cell movements of the mesendoderm and cardiac mesoderm through interactions with Dishevelled and Diversin. *Proc Natl Acad Sci U S A*. 2007;104:11274-9.

[22] Hirasawa Y, Arai M, Imazeki F, et al. Methylation status of genes upregulated by demethylating agent 5-aza-2'-deoxycytidine in hepatocellular carcinoma. *Oncology*. 2006;71:77-85.

[23] Goicoechea SM, Bednarski B, Garcia-Mata R, et al. Palladin contributes to invasive motility in human breast cancer cells. *Oncogene*. 2009;28:587-98.

[24] Weitzdoerfer R, Fountoulakis M, Lubec G. Aberrant expression of dihydropyrimidinase related proteins-2,-3 and -4 in fetal Down syndrome brain. *J Neural Transm Suppl.* 2001;61:95-107.

[25] Jung CR, Lim JH, Choi Y, et al. Enigma negatively regulates 5 p53 through MDM2 and promotes tumor cell survival in mice. *J Clin Invest.* 2010;120:4493-506.

[26] Haynes J, Srivastava J, Madson N, et al. Dynamic actin remodeling during epithelial-mesenchymal transition depends on increased moesin expression. *Mol Biol Cell.* 2011;22:4750-64.

10 [27] Yonezawa S, Higashi M, Yamada N, et al. Mucins in human neoplasms: clinical pathology, gene expression and diagnostic application. *Pathol Int.* 2011;61:697-716.

[28] Wei X, Xu H, Kufe D. Human mucin 1 oncoprotein represses transcription of the p53 tumor suppressor gene. *Cancer Res.* 15 2007;67:1853-8.

[29] Ren J, Li Y, Kufe D. Protein kinase C delta regulates function of the DF3/MUC1 carcinoma antigen in beta-catenin signaling. *J Biol Chem.* 2002;277:17616-22.

20 [30] Schwappacher R, Rangaswami H, Su-Yeo J, et al. cGMP-dependent protein kinase I β regulates breast cancer cell migration and invasion via a novel interaction with the actin/myosin-associated protein caldesmon. *J Cell Sci.* 2013. [Epub ahead of print].

[31] Mayanagi T, Morita T, Hayashi K, et al. Glucocorticoid receptor-mediated expression of caldesmon regulates cell migration 25 via the reorganization of the actin cytoskeleton. *J Biol Chem.* 2008;283:31183-96.

[32] Germain EC, Santos TM, Rabinovitz I. Phosphorylation of a novel site on the β 4 integrin at the trailing edge of migrating cells promotes hemidesmosome disassembly. *Mol Biol Cell.* 2009;20:56-30 67.

[33] Dans M, Gagnoux-Palacios L, Blaikie P, et al. Tyrosine phosphorylation of the beta 4 integrin cytoplasmic domain mediates Shc signaling to extracellular signal-regulated kinase and antagonizes formation of hemidesmosomes. *J Biol Chem.* 2001;276:1494-35 502.

[34] Ji H, Wang J, Nika H, et al. EGF-induced ERK activation promotes CK2-mediated disassociation of alpha-Catenin from beta-

Catenin and transactivation of beta-Catenin. *Mol Cell.* 2009;36:547-59.

5 [35] Iden S, Misselwitz S, Peddibhotla SS, et al. aPKC phosphorylates JAM-A at Ser285 to promote cell contact maturation and tight junction formation. *J Cell Biol.* 2012;196:623-39.

[36] Yeo MG, Oh HJ, Cho HS, et al. Phosphorylation of Ser 21 in Fyn regulates its kinase activity, focal adhesion targeting, and is required for cell migration. *J Cell Physiol.* 2011;226:236-47 .

[37] Schramek H, Schumacher M, Wilflingseder D, et al.

10 Differential expression and activation of MAP kinases in dedifferentiated MDCK-focus cells. *Am J Physiol.* 1997;272:C383-91.

[38] Bellacosa A, Chan TO, Ahmed NN, et al. Akt activation by growth factors is a multiple-step process: the role of the PH domain. *Oncogene.* 1998;17:313-25.

15 [39] Di Maira G, Salvi M, Arrigoni G, et al. Protein kinase CK2 phosphorylates and upregulates Akt/PKB. *Cell Death Differ.* 2005;12:668-77.

[40] Kotliarova S, Pastorino S, Kovell LC, et al. Glycogen synthase kinase-3 inhibition induces glioma cell death through c-MYC, nuclear factor-kappaB, and glucose regulation. *Cancer Res.* 2008;68:6643-51.

20 [41] Wang H, Chang-Wong T, Tang HY, et al. Comparison of Extensive Protein Fractionation and Repetitive LC-MS/MS Analyses on Depth of Analysis for Complex Proteomes. *J Proteome Res.* 2010; 9: 1032-40.

Claims

What is claimed is

1. Use of a plurality of biomarkers selected from Table 2, 3, 4, 11A, 11B, 12, 13 and/or 15 for determining the molecular phenotype of a pancreatic tumor in a subject, wherein said molecular phenotype is selected from the group consisting of tumor, non-tumor, recurrence, non-recurrence, drug susceptibility, primary tumour and/or secondary (metastatic) tumor; and wherein said plurality of biomarkers at least comprises a biomarker selected from the group consisting of Homeodomain-interacting protein kinase 1 (HIPK1); Serine/threonine-protein kinase MRCK alpha (MRCK alpha); and Myosin light chain kinase, smooth muscle (MLCK).
2. Use according to claim 1 wherein said plurality of biomarkers at least comprises two biomarkers selected from the group consisting of Homeodomain-interacting protein kinase 1 (HIPK1); Serine/threonine-protein kinase MRCK alpha (MRCK alpha); and Myosin light chain kinase, smooth muscle (MLCK).
3. Use according to claim 1 wherein said plurality of biomarkers at least comprises Homeodomain-interacting protein kinase 1 (HIPK1); Serine/threonine-protein kinase MRCK alpha (MRCK alpha); and Myosin light chain kinase, smooth muscle (MLCK).
4. A pancreatic tumour classification system comprising a pancreatic tumour classification apparatus and an information communication terminal apparatus, said pancreatic tumour classification apparatus including a control component and a memory component, said apparatuses being communicatively connected to each other via a network;
 - (1) wherein the information communication terminal apparatus includes
 - (1a) a protein data sending unit that transmits protein data derived from a pancreatic tumor sample of a subject to the pancreatic tumor classification apparatus;

(1b) a result-receiving unit that receives the result of the pancreatic tumour classification of the subject transmitted from the pancreatic tumor classification apparatus;

(2) wherein the pancreatic tumour classification apparatus includes

(2a) a protein data-receiving unit that receives protein data derived from the pancreatic tumor sample of the subject transmitted from the information communication terminal apparatus;

(2b) a data comparison unit which compares the data from the data-receiving unit with the data stored in the memory unit;

(2c) a determining unit that determines the molecular phenotype of the pancreatic tumor of the subject, based on the results of the data comparison unit; and

(2d) a classification result-sending unit that transmits the classification result of the subject obtained by the determining unit to the information communication terminal apparatus; and

wherein the memory unit contains protein expression level data and/or protein phosphorylation level data of a plurality of proteins selected from Tables 2, 3, 4, 11A, 11B, 12, 13 and/or 15.

5. A pancreatic tumor classification system according to claim 4, wherein the determining unit classifies the pancreatic tumor of the subject into molecular phenotypes including tumor, non-tumor; tumor recurrence, tumor non-recurrence; primary tumor, secondary (metastatic) tumor and/or drug susceptibility.

6. A pancreatic tumor classification system according to claim 3 or claim 5 wherein the protein expression level and/or protein phosphorylation level data of the memory unit is representative of multiple data sets derived from pancreatic tumour samples.

7. A pancreatic tumor classification system according to claim 6 wherein the multiple data sets include a value representing the protein expression level or protein phosphorylation level relative to the protein expression level or protein phosphorylation level of corresponding pancreatic non-tumor sample from the same subject.

8. A pancreatic tumor classification system according to any one of the preceding claims wherein the memory unit contains protein phosphorylation data of a plurality of proteins selected from Table 11A and 11B, and wherein the classification results in predicting tumor recurrence or tumor non-recurrence of the sample.

9. A pancreatic tumor classification system according to any one or claims 4 to 7 wherein the memory unit contains protein phosphorylation data of a plurality of proteins selected from Table 15 and/or Table 4, and wherein the classification results in predicting drug susceptibility of the pancreatic tumor.

10. A pancreatic tumor classification system according to any one of claims 4 to 7 wherein the memory unit contains protein expression levels of a plurality of proteins selected from Table 12 and/or Table 2, and wherein the classification results in predicting tumor or non-tumor phenotype of the sample.

11. A pancreatic tumor classification system according to any one of the preceding claims connected to an apparatus for determining the protein expression level or protein phosphorylation levels in a pancreatic tumor sample.

12. A pancreatic tumor classification system according to claim 11 wherein said apparatus can process multiple samples using liquid chromatography-mass spectrometry (LC-MS/MS).

13. A pancreatic tumor classification program that makes an information processing apparatus including a control component and a memory component execute a method of determining and/or classifying a pancreatic tumor of a subject, the method comprising

a comparing step of comparing data based on the protein expression levels and/or protein phosphorylation levels of a plurality of proteins selected from Table 2, 3, 4, 11A, 11B, 12, 13 and/or 15 obtained from a tissue sample of a subject suffering from or suspected to be suffering from pancreatic cancer, with the protein data stored in the memory component; and

a classifying step for classifying the pancreatic tumor of said subject, based on the comparison calculated at the comparing step;

wherein said tumor is classified into phenotypes including tumor, non-tumor; tumor recurrence, tumor non-recurrence; primary tumor, secondary (metastatic) tumor, and/or drug susceptibility.

14. A computer-readable recording medium, comprising the pancreatic tumor cellular classification program according to claim 13 recorded thereon.

15. A method of diagnosing pancreatic cancer in a subject comprising determining the modulation of a plurality of proteins selected from Table 12, Table 2, and/or Table 3 in a biological sample obtained from said subject, wherein

- (a) the presence of said plurality of proteins in said sample is indicative of the subject having pancreatic cancer;
- (b) the amount (concentration) of said plurality of proteins as compared to a reference amount for said plurality of proteins is indicative of the subject having pancreatic cancer;

- (c) a change in amount (concentration) of said plurality of proteins as compared to a reference amount for said plurality of proteins is indicative of the subject having pancreatic cancer; or
- (d) a change in phosphorylation status of said plurality of proteins as compared to a reference status for said plurality of proteins is indicative of the subject having pancreatic cancer.

16. A method according to claim 15 wherein the plurality of proteins comprises the proteins provided in Table 2 and/or Table 3.

17. A method according to claim 15 or claim 16 wherein the comparison with a reference amount or reference status is obtained using a pancreatic tumor classification system according to any one of claims 3 to 7.

18. A method for classifying a pancreatic tumor into a molecular phenotype, said method comprising

(1) determining expression levels and/or protein phosphorylation levels for a plurality of proteins in a biological sample obtained from said subject in order to produce a protein expression and/or protein phosphorylation profile of said sample;

(2) comparing said profile with reference protein expression and/or protein phosphorylation profile for said plurality of proteins, said reference profile being representative of pancreatic tumour phenotypes selected from tumor, non-tumor; tumor recurrence, tumor non-recurrence; drug susceptibility; primary and/or secondary tumor

(3) classifying the pancreatic tumour into a phenotype based on the comparison between the sample profile and the reference profile;

wherein the plurality of proteins are selected from a biomarker panel as represented by Table 2, 3, 4, 11A, 11B, 12, 13 and/or 15.

19. A method according to claim 18 wherein the reference profile is obtained from the protein expression levels and/or protein phosphorylation levels of a non-tumor pancreatic sample obtained from the same subject.

20. A method according to claim 18 wherein the reference profile is derived from the protein expression levels and/or protein phosphorylation levels of previously obtained pancreatic tumor samples.

21. A method according to claim 20 wherein the step of comparing said profile with the reference profile is carried out using a pancreatic tumor classification system according to any one of claims 3 to 7.

22. A method according to any one of claims 18 to 21 wherein the pancreatic tumor classification is predicting tumor recurrence or tumor non-recurrence and the plurality of proteins is selected from Table 11; wherein tumor recurrence is predicted where a plurality of proteins selected from Table 11A show increase phosphorylation relative to normal and a plurality of proteins selected from Table 11B show decrease phosphorylation relative to normal.

23. A method according to claim 22 wherein said plurality of proteins includes Dual specificity mitogen-activated protein kinase 2.

24. A method according to any one of claims 18 to 21 wherein the pancreatic tumor classification is between tumor and non-tumor and the plurality of proteins is selected from Table 12 and/or Table 2.

25. A method according to claim 18 or claim 19 wherein the pancreatic tumor classification is drug susceptibility and the plurality of proteins is selected from Table 15 and/or Table 4.

26. A method according to claim 25 wherein the drug is selected from the group consisting of Dasatinib, Sorafenib, Vorinostat, Temsirolimus, AEZS-131 and GSK2141795.

27. A method of selecting a treatment regime for a subject suffering from pancreatic cancer, said method comprising

- (1) obtaining protein expression levels and/or protein phosphorylation levels of a plurality of proteins in a pancreatic tumor of said subject so as to produce an expression level and/or protein phosphorylation profile of said tumor;
- (2) comparing said profile with a reference profile, said reference profile being representative of pancreatic tumor phenotypes selected from tumor, non-tumor, recurrence, non-recurrence, drug susceptibility, primary tumour and/or secondary (metastatic) tumor;
- (3) classifying the pancreatic tumor of the subject into a phenotype based on the comparison between the tumor profile and the reference profile; and
- (4) selecting a treatment regime according to phenotype of the pancreatic tumor of the subject;

wherein the plurality of proteins are selected from a biomarker panel as represented by Table 2, 3, 4, 11A, 11B, 12, 13 and/or 15.

28. A method according to claim 27 wherein the plurality of proteins are selected from Table 15 and/or Table 4 and the treatment regime is selected on the determination of drug susceptibility phenotype characterised by the increase or decrease in phosphorylation levels of tyrosine-protein kinase Fyn, Mitogen-activated protein kinase 1 (MAPK1), Mitogen-activated protein kinase 3 (MAPK3); RAC-alpha serine/threonine-protein kinase (AKT1) and/or Glycogen synthase kinase-3 alpha.

29. A method for classifying a pancreatic tumor sample into one or more molecular phenotypes comprising

(1) determining the protein expression levels of one or more proteins selected from Table 12 and/or Table 2, for both a pancreatic tumor sample and a pancreatic non-tumor sample taken from a subject

and/or

(2) determining an increase or decrease in phosphorylation of one or more proteins selected from Table 3, Table 13 and/or Table 11A and/or Table 11B in a pancreatic tumor sample and a pancreatic non-tumor sample taken from a subject,

(3) comparing said protein expression levels of the tumor sample with the non-tumor sample; and/or comparing the increase or decrease in phosphorylation in the tumor sample with the non-tumor sample

(4) applying predictive algorithm

$$\log_2(T/NT)$$

(where i is subject sample, T = tumour and NT = non-tumour)

to produce a prediction value that for said protein expression level and/or phosphorylation level for said subject;

(5) classifying said pancreatic tumor sample into a molecular phenotype by reference to a database comprising values predictive of said phenotypes;

wherein said database comprises predictive values for one or more of proteins selected from Table 2, 3, 4, 11A, 11B, 12, 13 and/or 15; and

wherein the molecular phenotype is selected from tumor, non-tumor; tumor recurrence, tumor non-recurrence; drug susceptibility; primary and/or secondary tumor.

30. A method according to claim 29 wherein the protein is considered to increase or decrease if the $\log_2 T/NT$ ratio is ≥ 1 or ≤ -1 .

31. A method according to claim 29 or claim 30 wherein the classification is carried out by a pancreatic tumor classification system according to any one of claims 3 to 7.

32. A method according to any one of the preceding claims wherein the step of determining protein expression levels or protein phosphorylation levels of the one or more, or plurality of proteins in said sample is performed by mass spectrometry.

33. A method according to any one of claims 1 to 31 wherein said step of determining protein expression levels or protein phosphorylation levels of the one or more or plurality of proteins is performed by Selected Reaction Monitoring using one or more transitions for protein derived peptides or phosphopeptides; and comparing the peptide or phosphopeptide levels in the sample under test with peptide or phosphopeptide levels previously determined to represent a molecular phenotype.

34. A method according to claim 33 wherein comparing the peptide levels includes determining the amount of protein derived peptides from the pancreatic sample with known amounts of corresponding synthetic peptides, wherein the synthetic peptides are identical in sequence to the peptides obtained from the sample except for a label.

35. A method according to claim 34 wherein the label is a tag of a different mass or a heavy isotope.

36. Use of a plurality of biomarkers selected from Table 2, 3, 4, 11A, 11B, 12, 13 and/or 15 for determining the molecular phenotype of a pancreatic tumor in a subject, wherein said molecular phenotype is selected from the group consisting of tumor, non-tumor, recurrence, non-recurrence, drug susceptibility, primary tumour and/or secondary (metastatic) tumor.

37. Use according to claim 36 wherein the biomarkers are selected from Table 2 and/or Table 12 and the phenotype is selected from tumor or non-tumor.

38. Use according to claim 37 wherein the biomarkers comprise Mucin-1, Intergrin beta 4, and/or Homeodomain-interacting protein kinase 1.

39. Use according to claim 36 wherein the biomarkers are selected from Table 3, 11A, 11B and/or Table 13 and the phenotype is selected from tumor recurrence or tumor non-recurrence.

40. Use according to claim 39 wherein the biomarker comprises dual specificity mitogen-activated protein kinase 2.

41. Use according to claim 36 wherein the biomarkers are selected from Table 4 and/or 15 and the phenotype is selected from drug susceptibility.

42. Use according to claim 41 wherein the biomarkers comprise and one or more of Tyrosine-protein kinase Fyn, Tyrosine-protein kinase CSK (Src), RAF proto-oncogene serine/threonine-protein kinase, Histone deacetylase 1, Histone deacetylase 2, Rapamycin-insensitive companion of mTOR (RICTOR); ERK1 mitogen-activated protein kinase, ERK2 mitogen-activated protein kinase, Intergrin beta 4, Catenin alpha-1, Junctional adhesion molecule A (JAM-A); Mitogen-activated protein kinase 1 (MAPK1); Glycogen synthase kinase-3 alpha; and/or RAC-alpha serine/threonine-protein kinase (AKT1).

43. A method of classifying a pancreatic tissue sample into phenotype selected from tumor, non-tumor, recurrence, non-recurrence, drug susceptibility, primary tumour and/or secondary (metastatic) tumor by determining the amount of one or more, or plurality of marker proteins comprising:

contacting said sample with a specific binding member(s) that selectively and independently binds to the one or more proteins; and

detecting and/or quantifying a complex formed by said specific binding member(s) and the one or more proteins;

classifying the pancreatic tissue sample based on the detection or quantity of said complex;

wherein said one or more proteins are selected from Table 2, 3, 4, 11A, 11B, 12, 13 and/or 15.

44. A method according to claim 43 wherein the specific binding member(s) is an antibody or antibody fragment specific for the protein marker.

45. A method according to claim 43 wherein the specific binding member is an aptamer.

46. A method according to any one of claims 43 to 45 wherein the binding member is immobilised on a solid support.

47. A solid support comprising a plurality of binding members each capable of specifically and selectively binding to one of said plurality of proteins or nucleic acid sequences encoding said proteins; wherein said proteins are selected from Table 2, 3, 4, 11A, 11B, 12, 13 and/or 15.

48. A synthetic peptide or a plurality of synthetic peptides each having a sequence identical to a fragment of one of a plurality of marker proteins selected from Tables 2, 3, 4, 11A, 11B, 12, 13 and/or 15, said fragment resulting from digestion of the protein by trypsin, ArgC, AspN or Lys-C digestion.

49. A synthetic peptide or a plurality of synthetic peptides according to claim 48 wherein said plurality of marker proteins includes at least one marker protein selected from the group consisting of Homeodomain-interacting protein kinase 1 (HIPK1); Serine/threonine-protein kinase MRCK alpha (MRCK alpha); and Myosin light chain kinase, smooth muscle (MLCK).

50. A synthetic peptide according to claim 48 or claim 49 further comprising a label.

51. A synthetic peptide according to claim 50 wherein the label is a heavy isotope.

52. A synthetic peptide according to claim 50 or claim 51 for use in Selective Reaction Monitoring.

53. A kit for use in classifying a pancreatic tissue sample into a molecular phenotype selected from tumor, non-tumor, tumor recurrence, tumor non-recurrence, drug susceptibility, primary tumour and/or secondary (metastatic) tumor, said kit allowing the user to determine the up- or down-regulation of one or more analytes selected from proteins of Tables 2, 3, 4, 11A, 11B, 12, 13 and/or 15, one or more antibodies against said proteins and one or more nucleic acid molecules encoding said proteins or fragments thereof, in a sample under test; the kit comprising

- (a) a solid support having a plurality of binding members, each capable of binding to one of the analytes immobilised thereon;
- (b) a developing agent comprising a label; and, optionally
- (c) one or more components selected from the group consisting of washing solutions, diluents and buffers.

54 A kit according to claim 53 wherein said proteins of Tables 2, 3, 4, 11A, 11B, 12, 13 and/or 15 comprise at least one protein selected from the group consisting of Homeodomain-interacting protein kinase 1 (HIPK1); Serine/threonine-protein kinase MRCK alpha (MRCK alpha); and Myosin light chain kinase, smooth muscle (MLCK).

55. A kit for classifying a pancreatic tissue sample into a molecular phenotype selected from tumor, non-tumor, tumor recurrence, tumor non-recurrence, drug susceptibility, primary tumour and/or secondary (metastatic) tumor, said kit allowing the user to determine an increase or decrease in expression levels and/or phosphorylation levels of a plurality of marker proteins

selected from Tables 2, 3, 4, 11A, 11B, 12, 13 and/or 15, in a sample under test; the kit comprising

(a) a set of reference peptides and/or reference phosphopeptides in an assay compatible format wherein each peptide and/or phosphopeptide in the set is uniquely representative of one of the plurality of marker proteins provided in any one of Tables 2, 3, 4, 11A, 11B, 12, 13 and/or 15; and, optionally

(b) one or more components selected from the group consisting of washing solutions, diluents and buffers.

56. A kit according to claim 55 where the level of protein phosphorylation is determined using reference phosphopeptides representing differentially phosphorylated sites within the marker proteins set out in Table 3, 4, 11A, 11B, 13 and/or 15.

57. A kit according to claim 56 wherein the reference phosphopeptides are unique to one or more of the group consisting of Tyrosine-protein kinase Fyn, Tyrosine-protein kinase CSK (Src), RAF proto-oncogene serine/threonine-protein kinase, Histone deacetylase 1, Histone deacetylase 2, Rapamycin-insensitive companion of mTOR (RICTOR); ERK1 mitogen-activated protein kinase, ERK2 mitogen-activated protein kinase, Integrin beta 4, Catenin alpha-1, Junctional adhesion molecule A (JAM-A); Mitogen-activated protein kinase 1 (MAPK1); Glycogen synthase kinase-3 alpha; Dual specificity mitogen-activated protein kinase kinase 2; and/or RAC-alpha serine/threonine-protein kinase (AKT1).

58. A method for predicting the likelihood of recurrence of a pancreatic tumor in a subject after treatment comprising detecting the level of phosphorylation at phospho T-394 of Dual specificity mitogen-activated protein kinase kinase 2 in a tumor sample of said subject, where elevated levels of phosphorylation at T-394 compared to background (non-tumor) levels is indicative of the likelihood of tumor recurrence.

59. A method according to claim 58 where recurrence is between 2 and 33 months post-surgery.

60. A method according to claim 58 or claim 59 wherein the level of phosphorylation at phospho-T394 of Dual specificity mitogen-activated protein kinase kinase 2 is determined using immunohistochemistry.

61. A method of predicting the likelihood of recurrence of a pancreatic tumor in a subject after treatment, said method comprising detecting the level of phosphorylation of at least one protein selected from the group consisting of Homeodomain-interacting protein kinase I (HIPK1); Serine/threonine-protein kinase MRCK alpha (MRCK alpha); and myosine light chain kinase, smooth muscle (MLCK) in a tumour sample obtained from said subject, wherein elevated levels of phosphorylation compared to background (non-tumor) levels is indicative of the likelihood of tumor recurrence.

62. A method of predicting susceptibility of a pancreatic tumor to treatment with Dasatinib (BMS-354825 - Sprycel™) comprising determining the level of phospho-S21 on Tyrosine-protein kinase Fyn, wherein an up-regulation of this protein is indicative that the pancreatic tumor will be susceptible to treatment with Dasatinib.

63. A method of predicting susceptibility of a pancreatic tumor to treatment with AEZS-131 (Aeterna Zentaris Inc) and/or SCH772984 (Merck) comprising determining the level of phospho-T185 and/or Y187 on Mitogen-activated protein kinase 1 (MAPK1), wherein an up-regulation of this protein is indicative that the pancreatic tumor will be susceptible to treatment with AEZS-131 and/or SCH772984.

64. A method according to claim 62 or claim 63 wherein the step of determining the level of phosphorylation is by immunohistochemistry.

65. A method of diagnosing pancreatic tumor in a subject comprising

(a) determining the level of expression of MLCK;
(b) determining the level of phosphorylation of MRCK alpha; or
(c) determining the level of phosphorylation of HIPK1; wherein
an increase in the level of expression of MLCK compared to normal
tissue is indicative of the subject having pancreatic tumor, and
wherein an increase in phosphorylation of MRCK alpha and HIPK1
compared the level of phosphorylation in normal tissue is indicative
of the subject having pancreatic tumor.

66. A method of diagnosing pancreatic tumor in a subject
comprising determining the level of phosphorylation at phospho-S655
of Catenin alpha-1 in a biological sample obtained from said
subject, where an increase in phosphorylation level is indicative of
the subject having pancreatic tumor.

67. A method according to claim 66 further determining the level
of phospho-S641, S655 and/or S658 of Catenin alpha-1.

68. A method of diagnosing pancreatic tumor in a subject
comprising determining the level of phosphorylation at phospho-S1483
of Integrin beta-4 in a biological sample obtained from said
subject, where an increase in phosphorylation level is indicative of
the subject having pancreatic tumor.

69. A method according to claim 68 further determining the level
of phospho-S1486 of Integrin beta-4.

70. A method of diagnosing pancreatic tumor in a subject
comprising determining the level of phosphorylation at phospho-S284
of Junctional adhesion molecule A (JAM-A) in a biological sample
obtained from said subject, where a decrease in phosphorylation
level is indicative of the subject having pancreatic tumor.

71. A method according to any one of claims 65 to 70 wherein the
level of phosphorylation is determined using immunohistochemistry.

72. A kit for performing a method according to any one of claims 65 to 71 comprising an antibody or antibody fragment capable of specifically binding to the phosphorylated site on said protein.

73. A kit according to claim 72 wherein the antibody or antibody fragment is labelled to aid in detection and quantification.

74. A method of treating a subject having pancreatic cancer; said method comprising administration of a kinase inhibitor capable of inhibiting the activity of protein kinase selected from the group consisting of Homeodomain-interacting protein kinase 1 (HIPK1); Serine/threonine-protein kinase MRCK alpha (MRCK alpha); and Myosin light chain kinase, smooth muscle (MLCK).

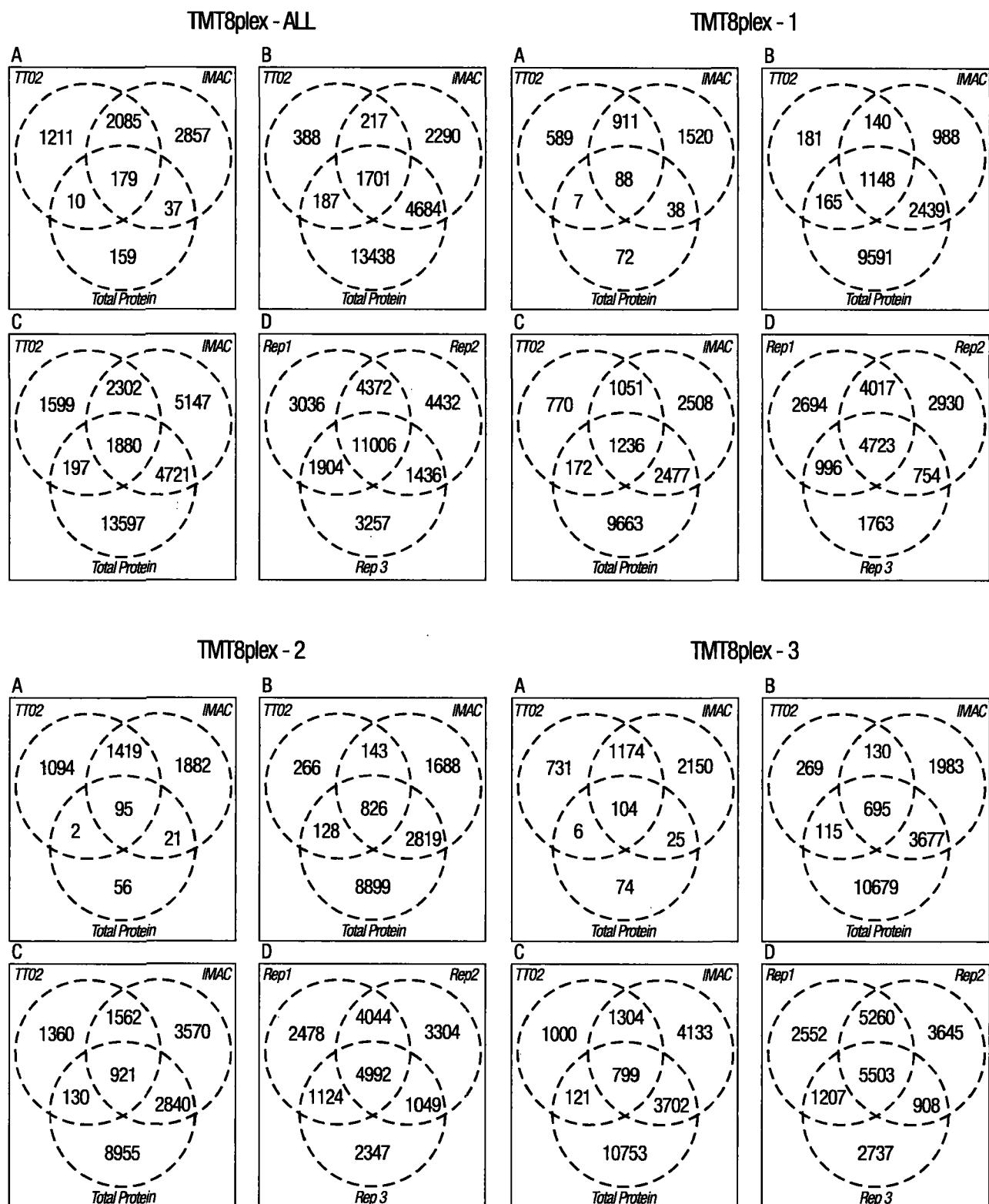
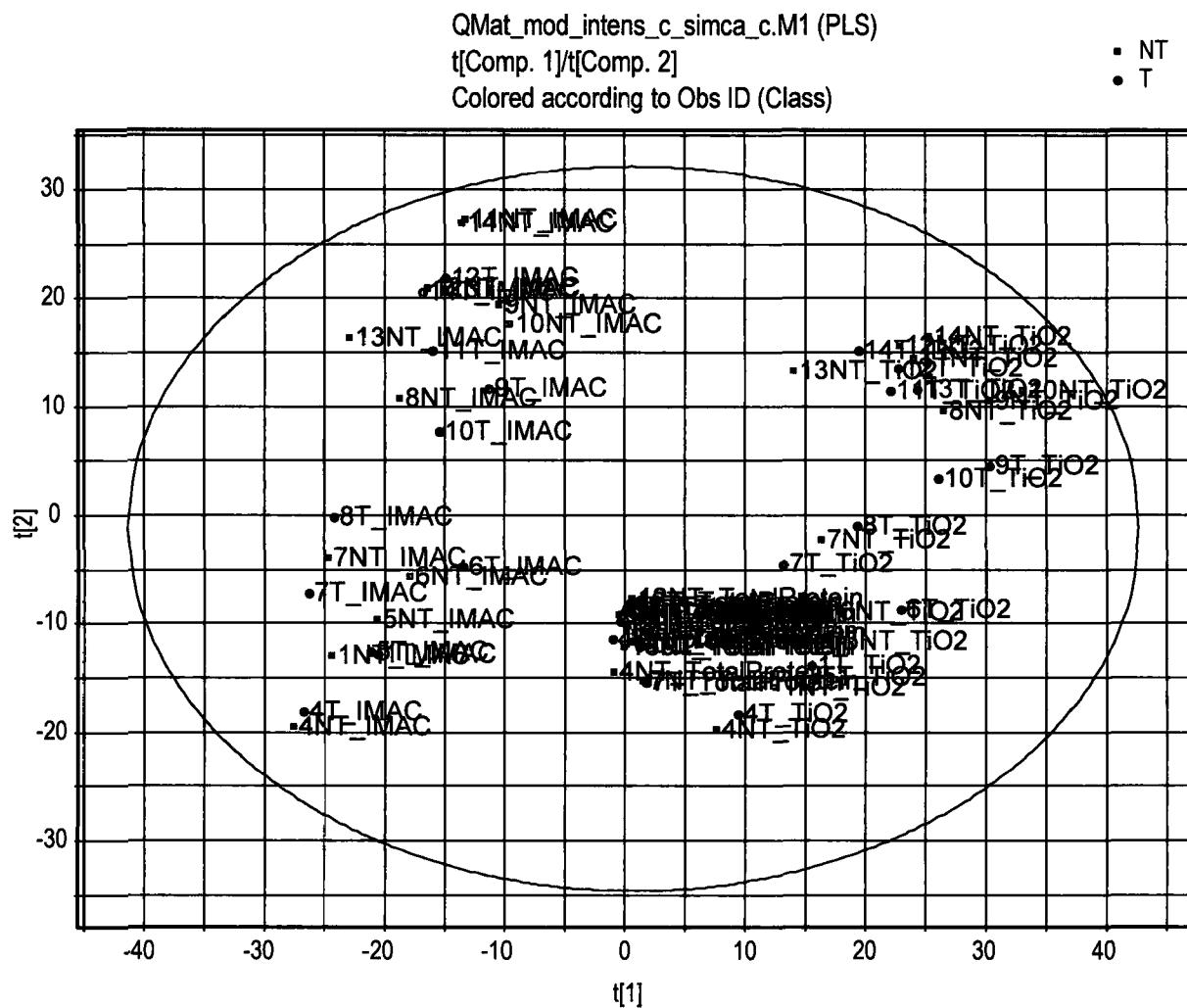
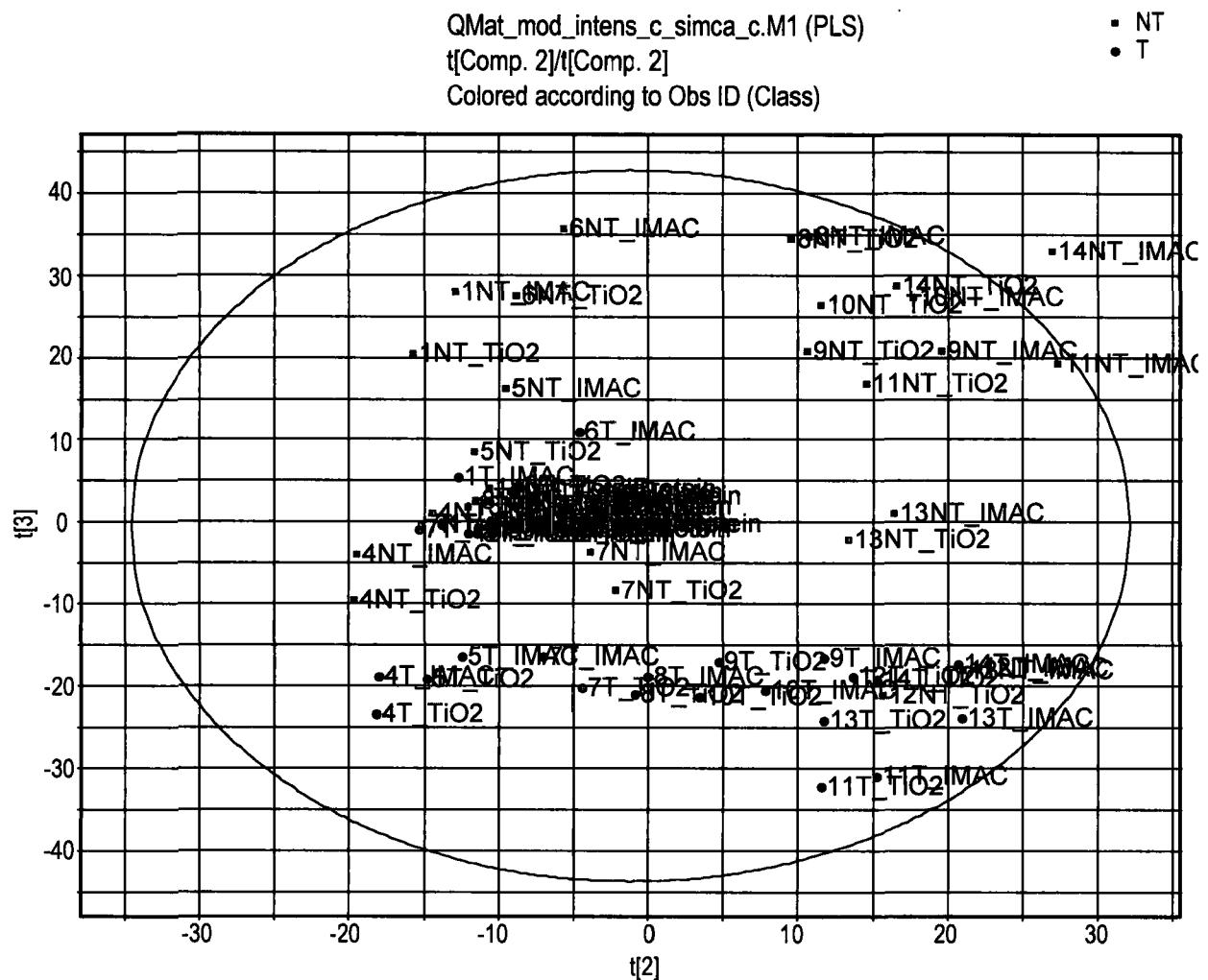




FIG. 1

FIG. 2a

FIG. 2b

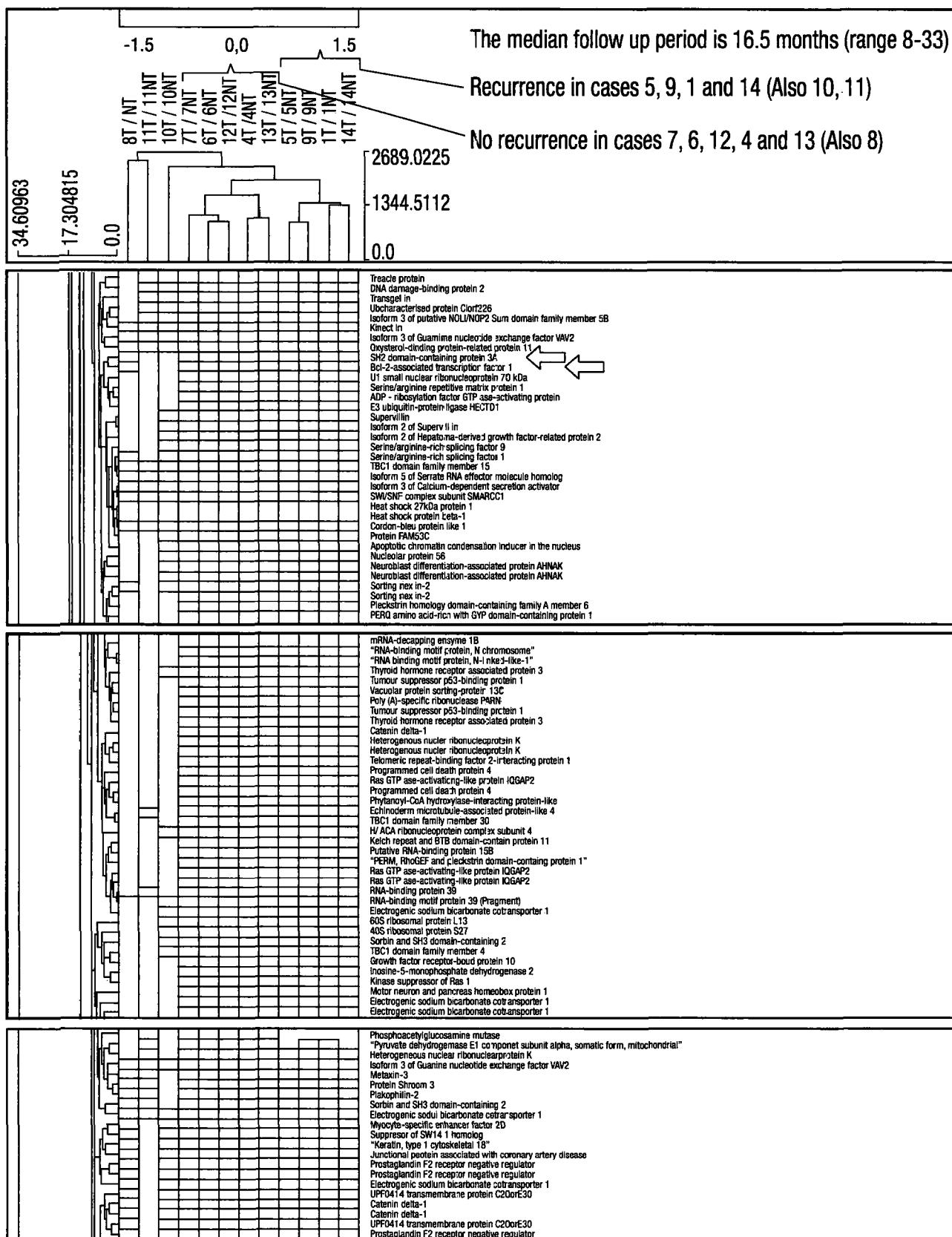


FIG. 3a

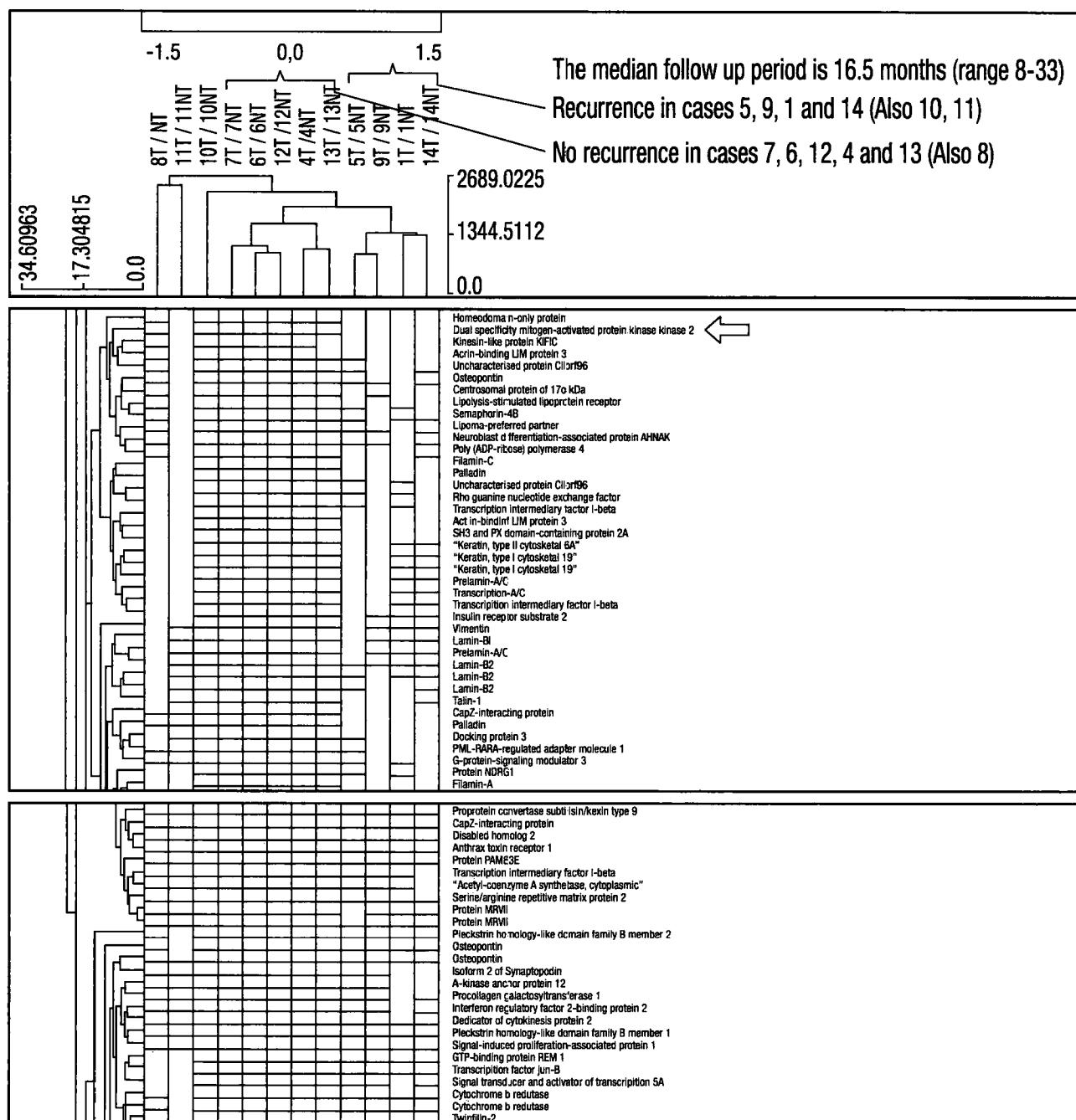
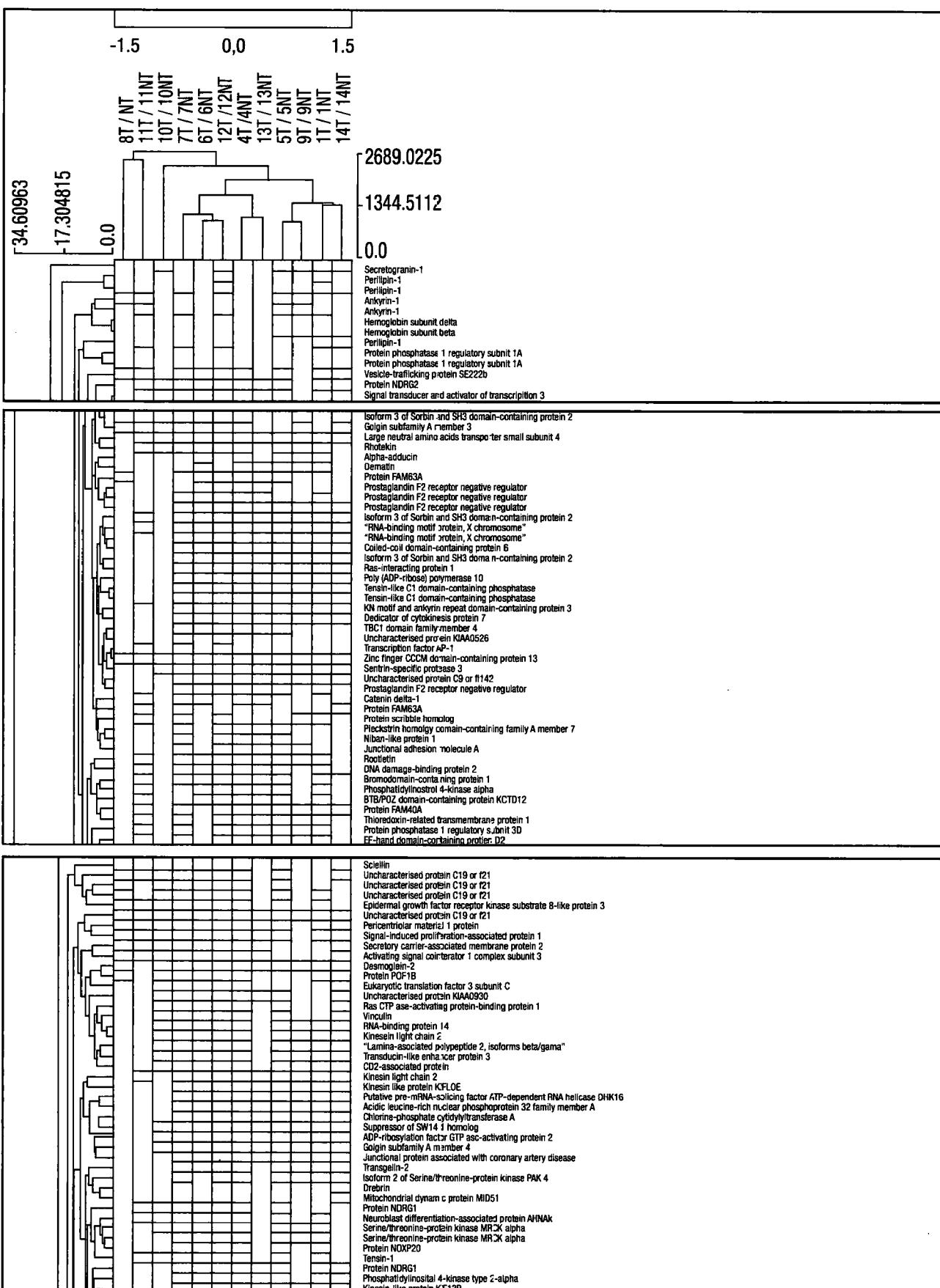
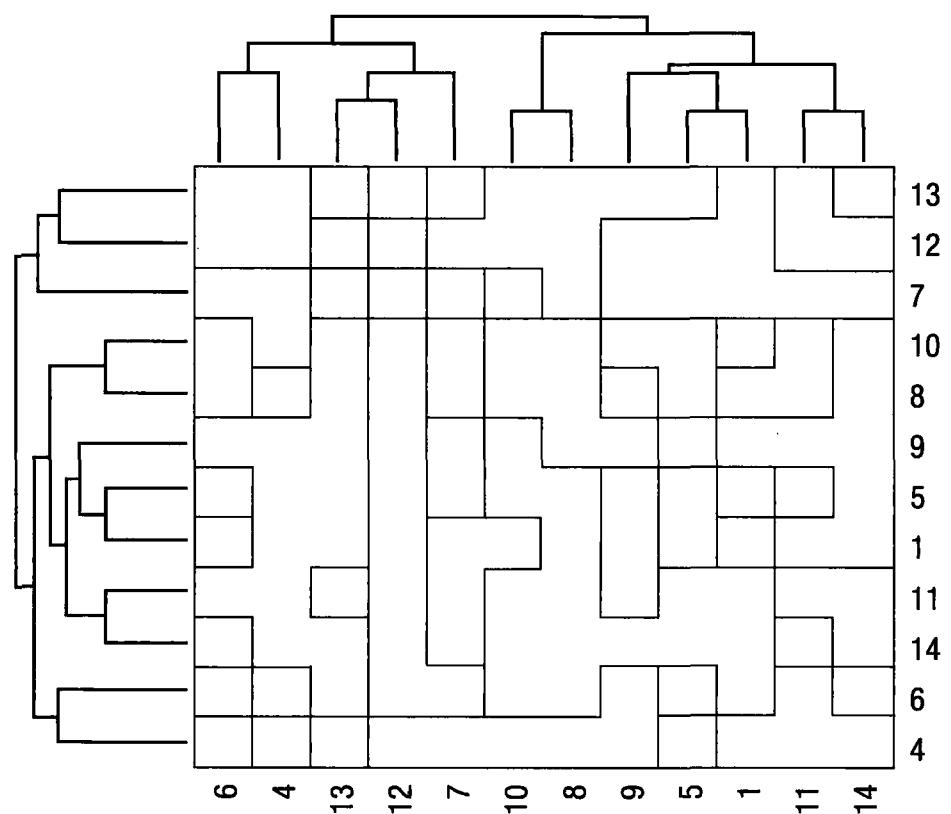
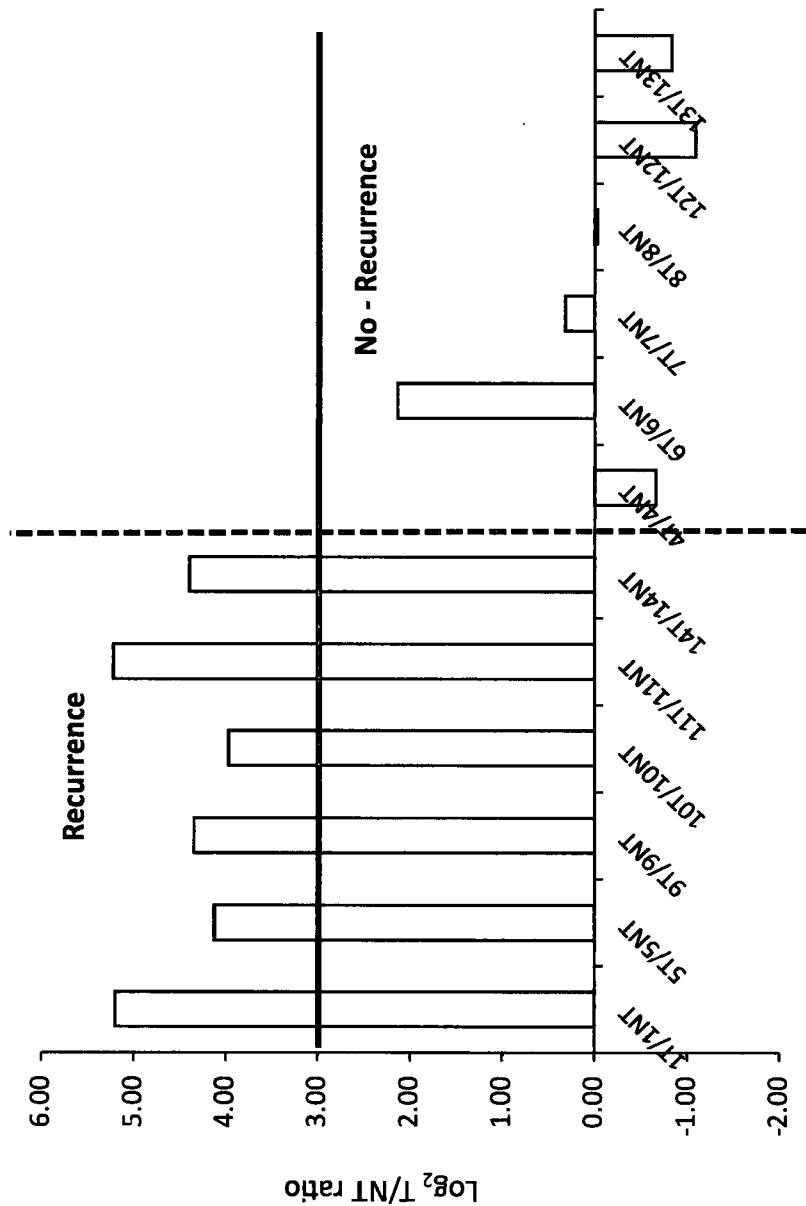
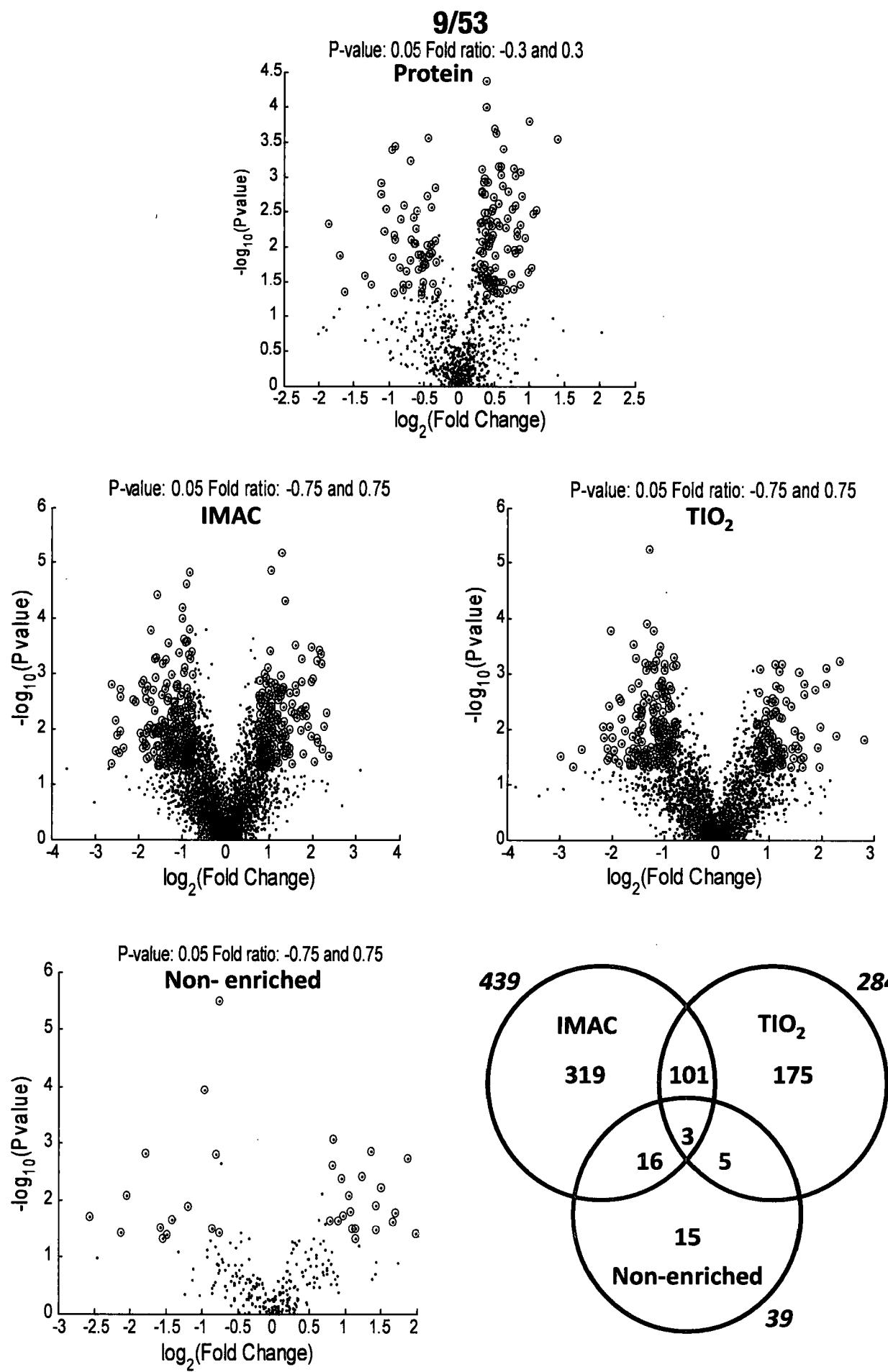


FIG. 3b


FIG. 3c



	Case											
	6	4	13	12	7	10	8	9	5	1	11	14
Recurrence	-	-	-	-	-	+	-	+	+	+	+	+
LN metastasis	+	+	+	+	+	-	-	+	-	+	+	+

FIG. 3d

Time of assessment of recurrence/non-recurrence (Months)		7	18	23	28	24	8	13	19	20	21	3	12	
Recurrence		11	19	5	31	17	2	10	19	13	23	8	16	
Lymph node mets		+	+	+	+	+	+	-	-	-	-	-	-	
Protein	Global phos	Peptide	1T/1NT	5T/5NT	9T/9NT	10T/10	11T/11	14T/14	4T/4NT	6T/6NT	7T/7NT	8T/8NT	12T/12NT	13T/13NT
MEK2	T394	P1 - LNQPGtPTR	1.79	1.98	1.84	2.09	0.96	2.00	-0.53	1.92	-0.60	-0.05	-0.39	0.16
MEK2	T394	P2 - LNQPGtPTTAV	3.41	2.14	2.12	1.21	4.26	2.39	-0.13	0.22	0.31	-1.14	-0.70	-0.99
MEK2	T394	P3 - TRLNQPGtPTR	NA	NA	0.38	0.67	NA	NA	NA	NA	0.61	1.16	NA	NA
		Sum	5.20	4.12	4.34	3.97	5.22	4.39	-0.66	2.14	0.32	-0.03	-1.09	-0.83

FIG. 5

SUBSTITUTE SHEET (RULE 26)

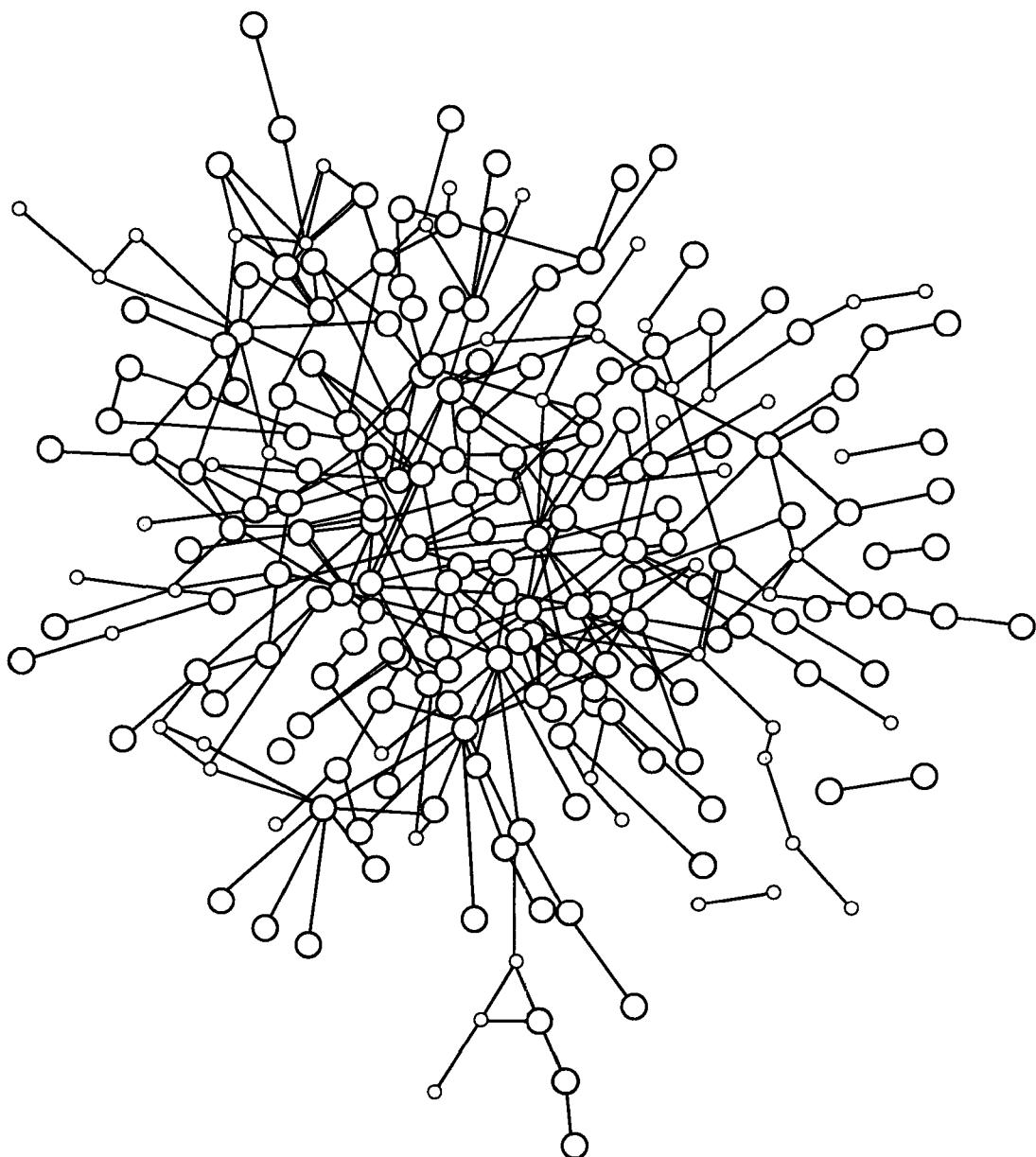
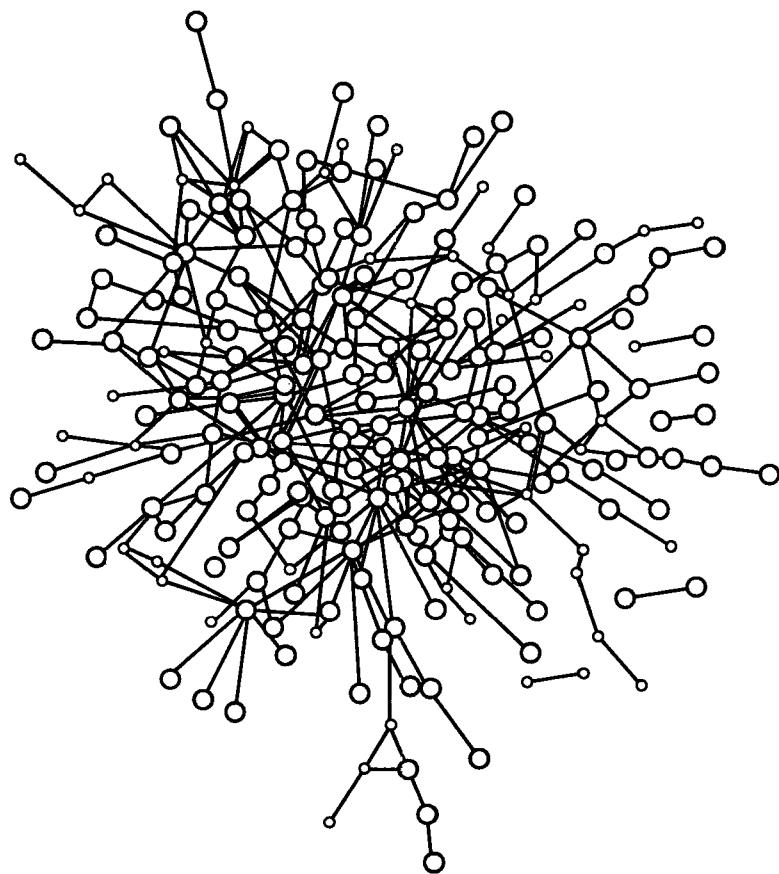
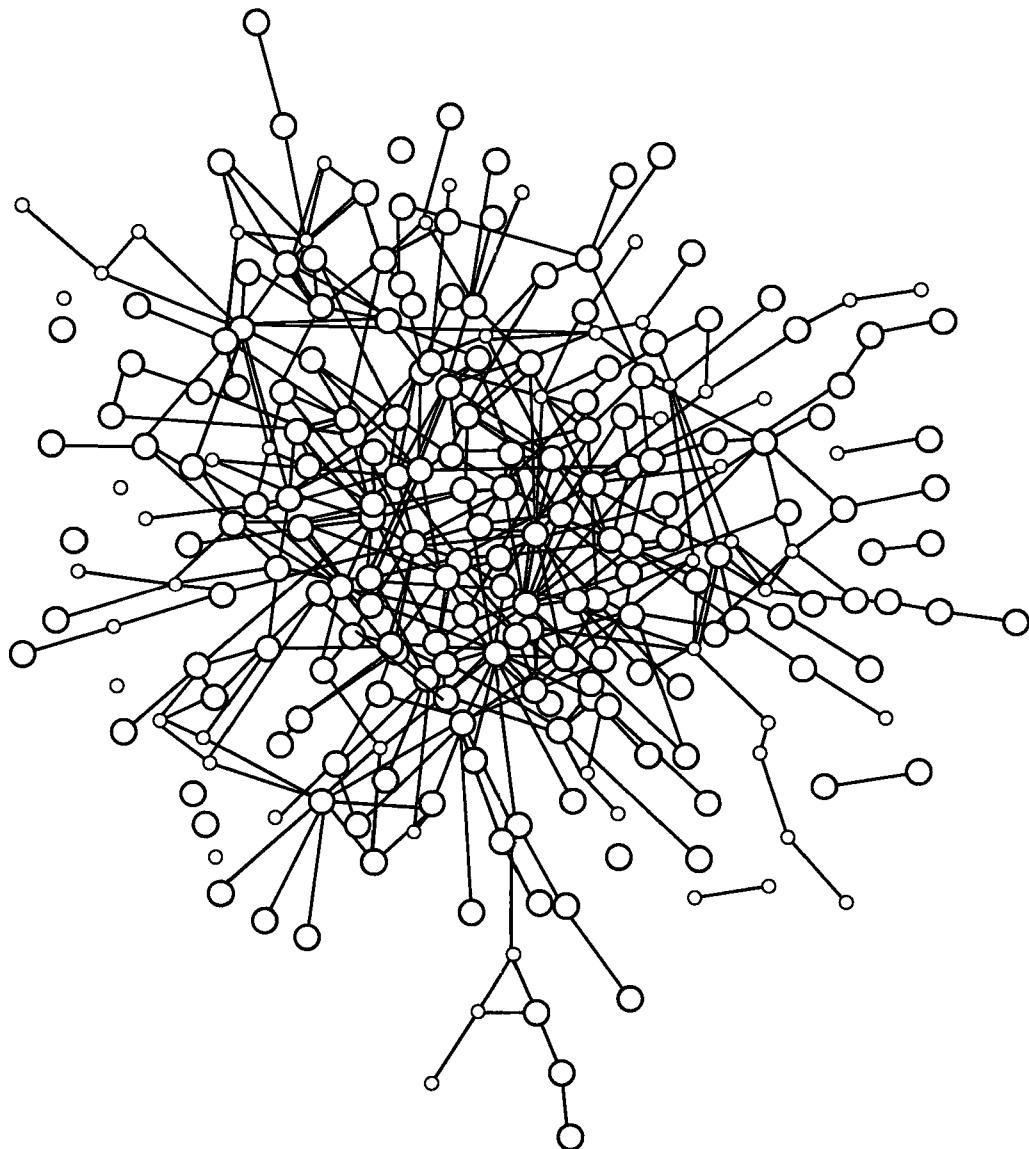



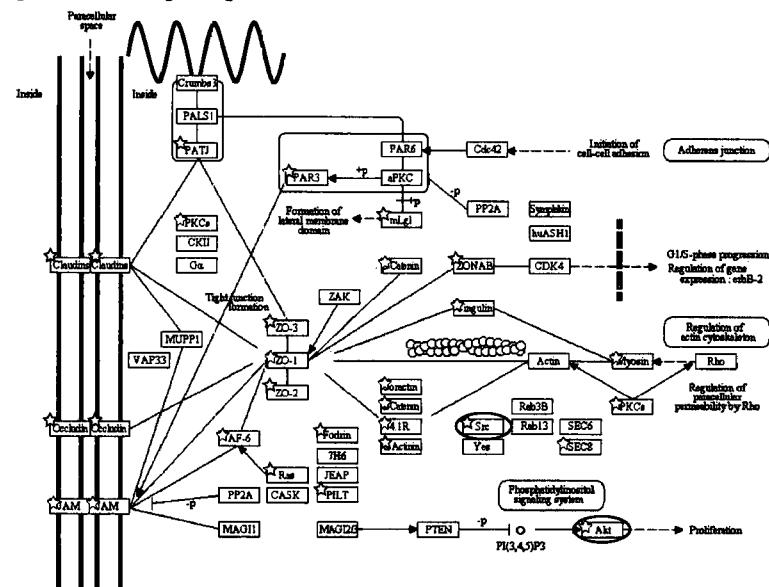
FIG. 6a


11/53

TIGHT JUNCTION PROTEINS			IMAC			TiO2			Non-enrich			IMAC			TiO2			Non-enrich		
UniprotID	Protein	Global	Phos pep			Phos pep						Phos pep			Phos pep					
			t-test p-values	t-test p-values	t-test p-values	log2 T/NT	log2 T/NT	log2 T/NT	log2 T/NT	log2 T/NT	log2 T/NT	log2 T/NT	log2 T/NT	log2 T/NT	log2 T/NT	log2 T/NT	log2 T/NT			
P55196	Afadin	S1721	0.002	0.006	NA	-1.107	-1.538	NA												
P55196	Afadin	S1182	0.009	0.033	NA	-0.881	-0.890	NA												
P35221	Catenin alpha-1	S431;S435	0.745	0.049	NA	0.205	1.428	NA												
Q9P2M7	Cingulin	S149	0.021	0.211	NA	-1.104	-1.281	NA												
E9PC03	Erythrocyte membrane protein band 4.1-like 1	S84	0.030	NA	NA	-1.189	NA	NA												
Q8N135	InaD-like protein	S645	0.028	NA	NA	-0.932	NA	NA												
Q9Y624	JundNbn adhesion molecule A	S284	0.000	NA	NA	-1.007	NA	NA												
P35580	Myosin-10	S1954	0.001	NA	NA	2.098	NA	NA												
P35749	Myosin-11	S1954	0.001	NA	NA	2.098	NA	NA												
P35749	Myosin-11	S1954	0.020	0.088	NA	0.962	1.687	NA												
P35749	Myosin-11	S1954	0.016	0.045	NA	1.247	1.216	NA												
P35749	Myosin-11	S1487	0.005	NA	NA	0.870	NA	NA												
P35749	Myosin-11	S1487	0.001	NA	NA	2.098	NA	NA												
P35749	Myosin-11	S1487	0.020	0.088	NA	0.962	1.687	NA												
P35749	Myosin-11	S1487	0.016	0.045	NA	1.247	1.216	NA												
P35749	Myosin-11	S1487	0.005	NA	NA	0.870	NA	NA												
Q7Z406	Myosin-14	S1504	0.000	NA	0.083	2.179	NA	1.431												
P35579	Myosin-9	S1480	0.001	NA	NA	2.098	NA	NA												
Q05655	Protein kinase C delta type	S645	0.010	NA	NA	-0.769	NA	NA												
Q01082	Spectrin beta chain, brain 1	S2161	0.364	0.029	NA	-0.821	-1.395	NA												
Q01082	Spectrin beta chain, brain 1	S2161;S2165;S2169	0.028	NA	NA	-0.938	NA	NA												
Q01082	Spectrin beta chain, brain 1	S2165;S2169	NA	0.014	NA	NA	-1.985	NA												
Q14247	Src substrate cortactin	T401;S405	NA	0.019	NA	NA	-0.864	NA												
O95049	Tight junction protein ZO-3	S605	0.011	NA	NA	0.825	NA	NA												

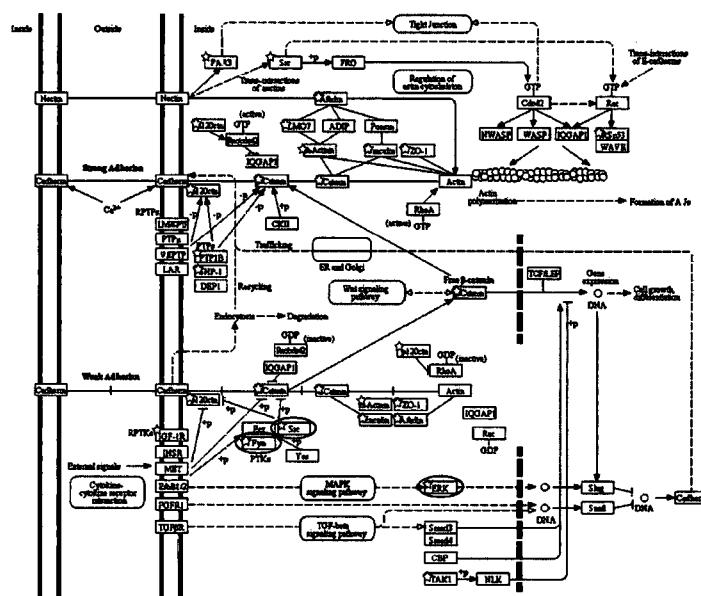
FIG. 6b

12/53



RAS SIGNAL TRANSDUCTION PROTEINS			IMAC		TiO2		Non-enrich		IMAC		TiO2		Non-enrich	
Uniprot-ID	Protein	Global	t.test p-values		t.test p-values		t.test p-values		Phos pep		Phos pep		Phos pep	
			t.test p-values	log2 T/NT	log2 T/NT									
Q9P107	GEM-interac3ng protein	S437	0.002		0.061		NA		1.460		0.863		NA	
Q9P107	GEM-interac3ng protein	S437	0.010		0.009		NA		1.471		1.970		NA	
Q99569	Plakophilin-4	S461	0.034		NA		NA		0.904		NA		NA	
Q14160	Protein scribble homolog	S1475	0.009		NA		NA		-1.541		NA		NA	
Q14160	Protein scribble homolog	S1475	NA		0.046		NA		NA		-1.399		NA	
Q14160	Protein scribble homolog	S504	0.000		0.002		NA		-0.940		-1.028		NA	
Q14160	Protein scribble homolog	S835	0.037		NA		NA		-0.796		NA		NA	
Q5U651	Ras-interac3ng protein 1	S328	0.002		0.045		NA		-0.902		-0.656		NA	
O15085	Rho guanine nucleo3de exchange factor 11	S251	0.018		NA		NA		0.808		NA		NA	
Q9NZN5	Rho guanine nucleo3de exchange factor 12	S1327	0.024		NA		NA		-0.893		NA		NA	
Q96PE2	Rho guanine nucleo3de exchange factor 17	S420	0.006		0.005		NA		1.012		0.665		NA	
Q96PE2	Rho guanine nucleo3de exchange factor 17	S735	0.002		0.591		NA		1.294		0.052		NA	
Q96FS4	Signal-induced proliferation-associated protein 1	S908;S912	0.000		0.883		NA		1.033		-0.323		NA	
P05412	Transcrip3on factor AP-1	S73	0.001		0.000		0.066		-1.455		-1.584		-0.816	

FIG. 6c


13/53

Tight Junction Signaling

AKT Inhibitors
API-2
Perifosine
ErPC
ErPC3
MK-2206
KP372-1
GSK2141795
GSK690693
Enzastaurin
PBI-05204
XI-418

Adherens Junction Signaling

SRC family
Inhibitors
Dasatinib
Saracatinib
Bosutinib

ERK Inhibitors

AEZS-131
SCH772984

Raf Inhibitors
Sorafenib
Regorafenib
PLX5568
AZ628
RAF265

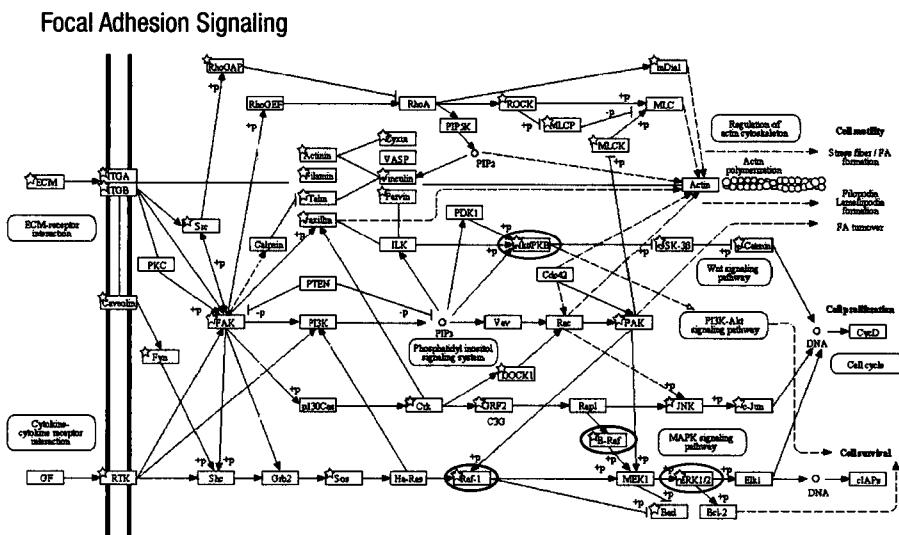
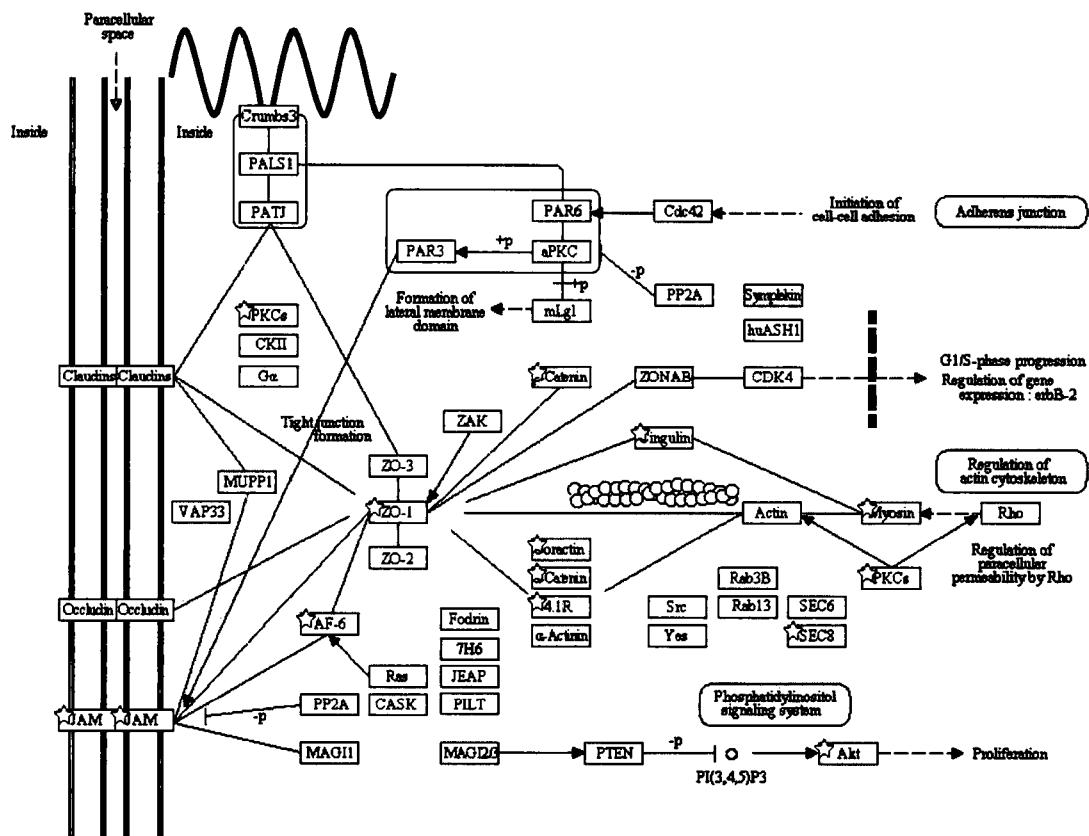



FIG. 7a

14/53

Tight Junction Signaling Pathway

Adherens Junction Signaling Pathway

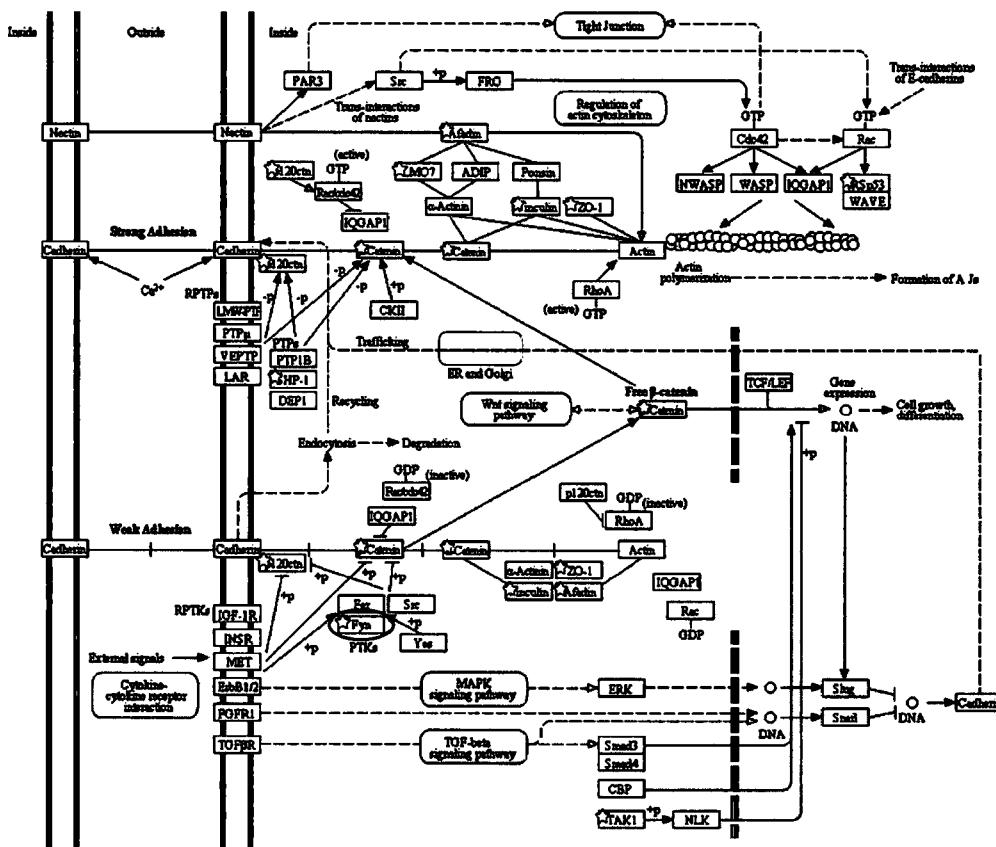
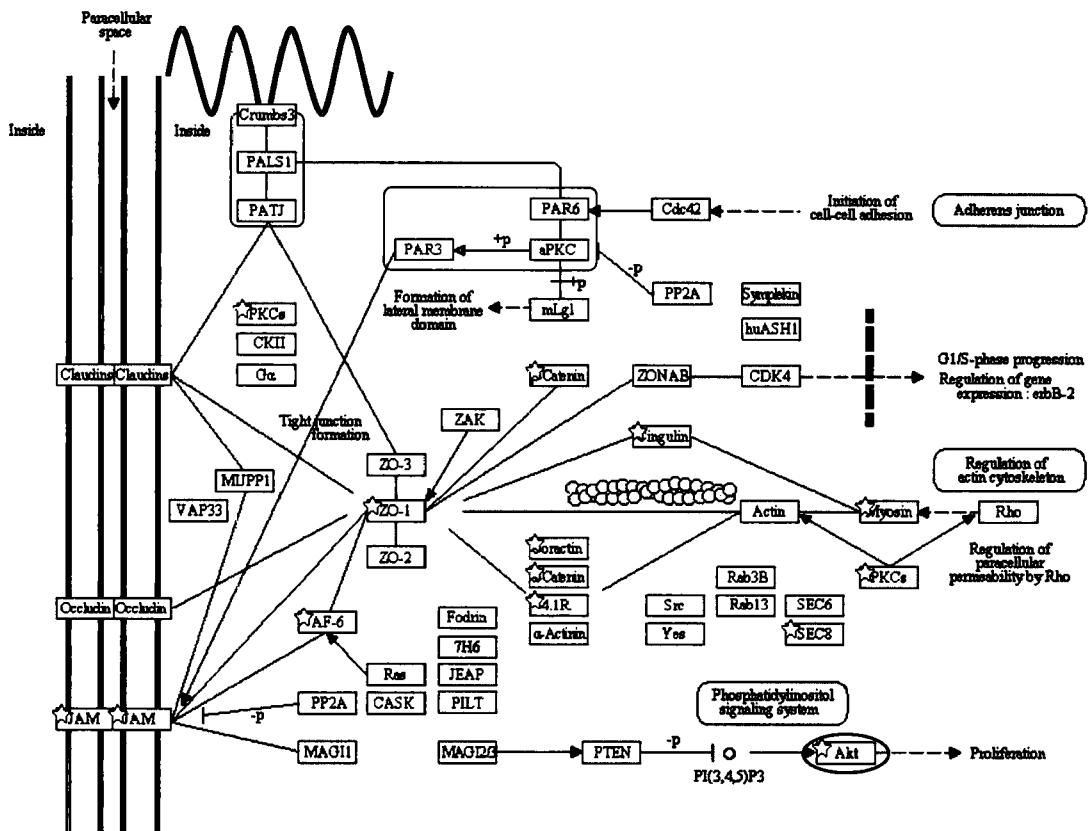



FIG. 7b

Tight Junction Signaling Pathway

Focal Adhesion

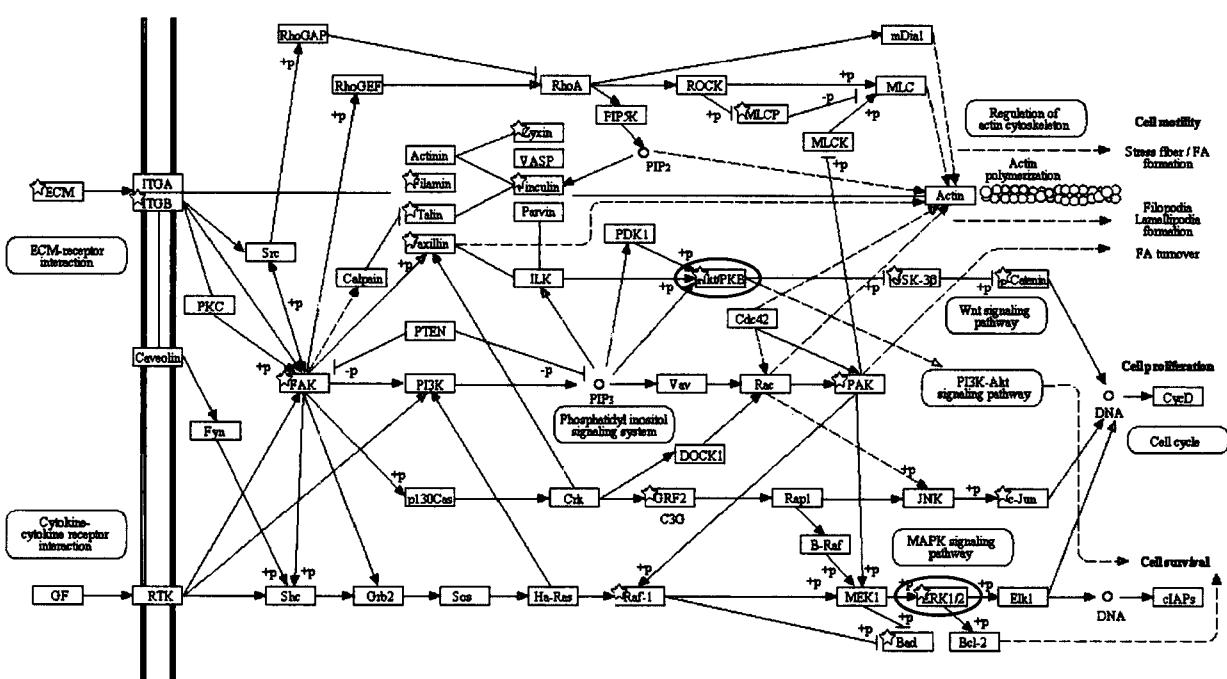


FIG. 7c

16/53

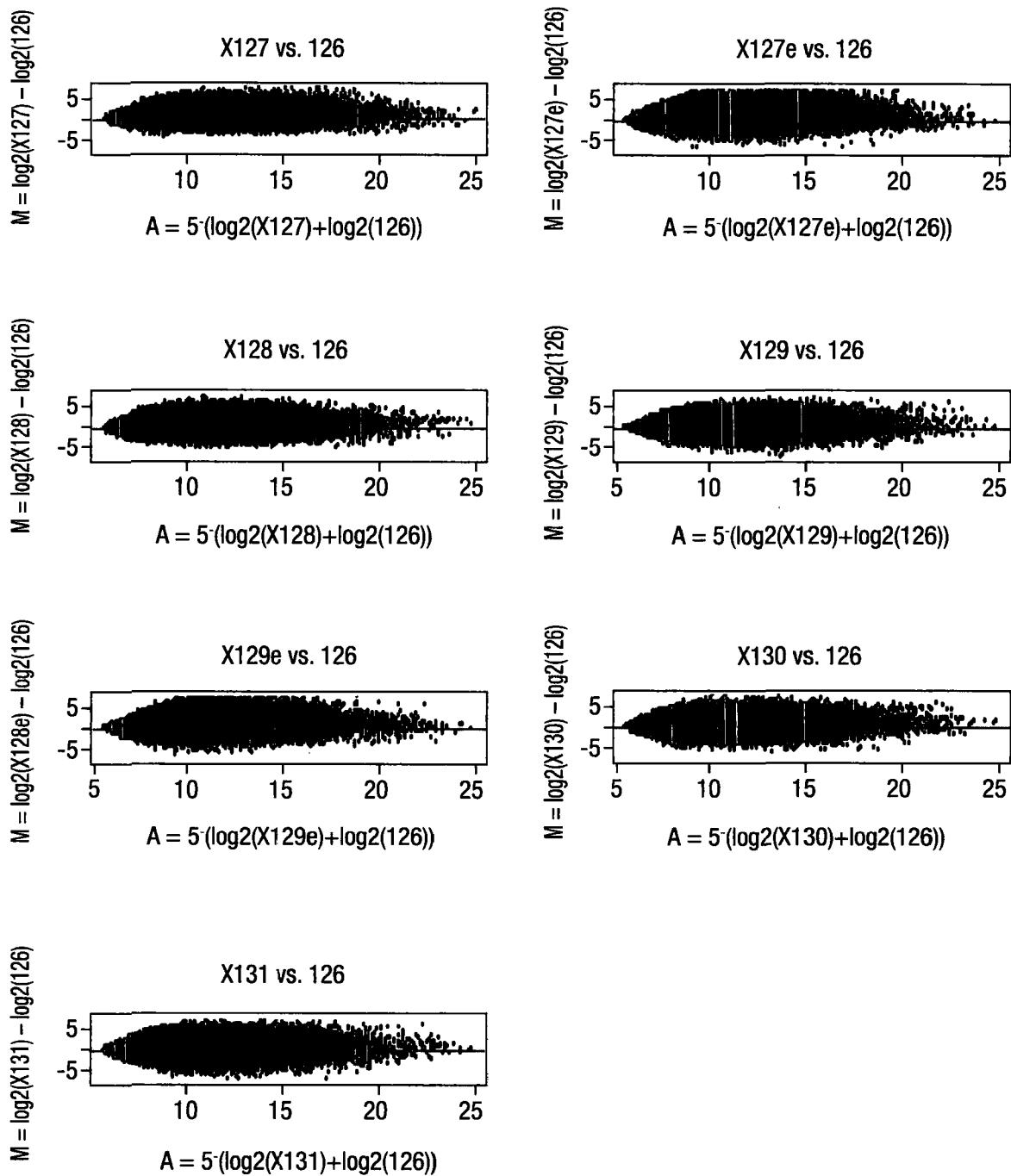


FIG. 8a

17/53

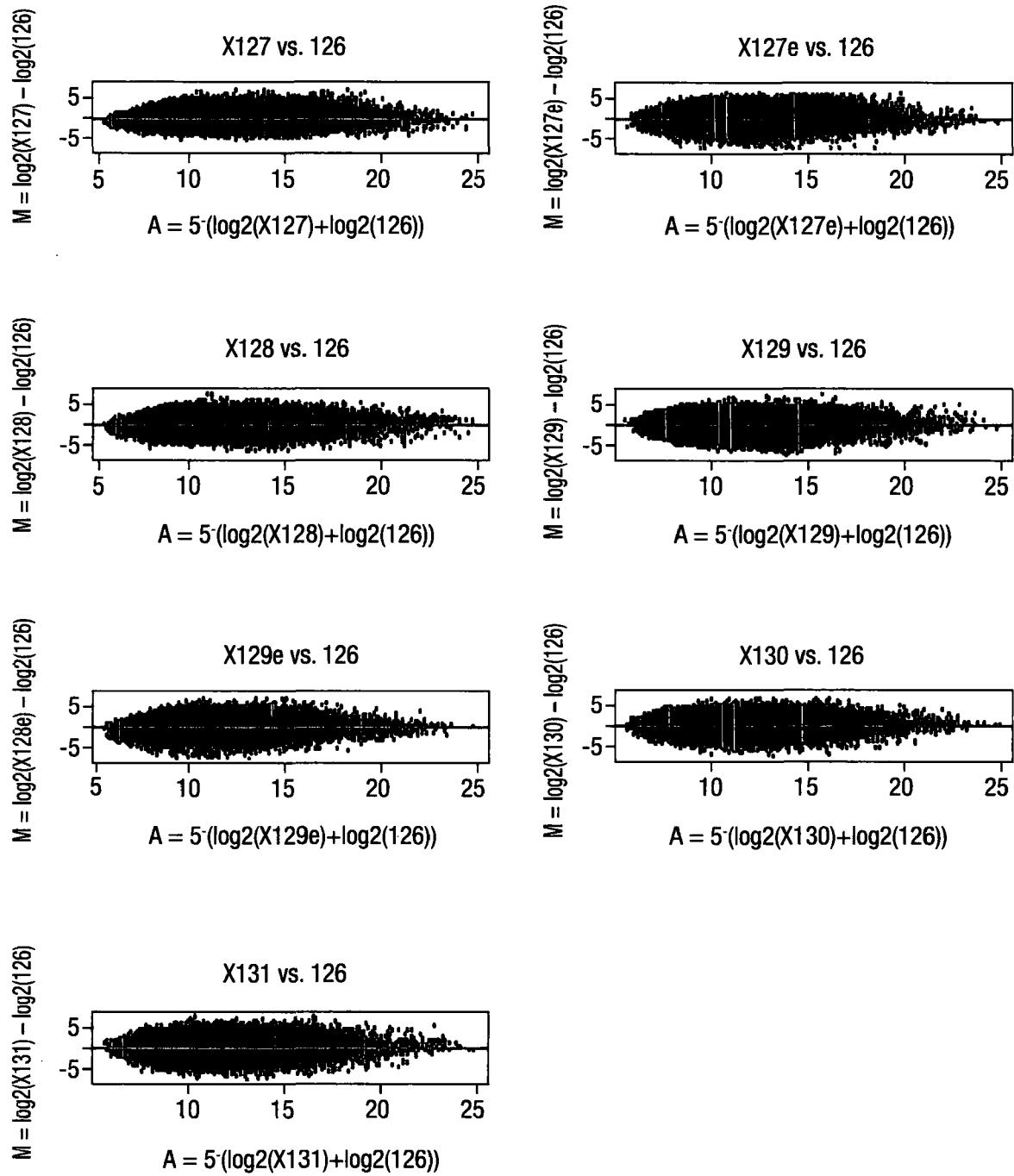


FIG. 8b

18/53

	# PSM (phos)	# PSM (non-phos)	# PSM (phos + non-phos)	# Unique peptides (phos)	# Unique peptides (Non-phos)	# unique peptides (phos + non-phos)	# phospho-sites Mascot + Sequest
Σ TMT8plex - 1	21428	88911	110339	3245	14673	17918	3161
Σ TMT8plex - 2	29300	88568	117868	4569	14769	19338	4426
Σ TMT8plex - 3	25914	102303	128217	4264	17548	21812	4184
Σ TMT8plex 1+2+3	76642	279782	356424	6543	22909	29452	6284

Table. 1

Uniprot-ID	Protein	t-test p-values	log ₂ [T/NT]	Function	Role in cancer	References
P14618	Pyruvate kinase isozymes M1/M2	4.20E-05	0.383	Glycolytic enzyme that catalyzes the transfer of a phosphoryl group from phosphoenolpyruvate (PEP) to ADP, generating ATP	In addition to aerobic glycolysis, regulates gene transcription. Isoform M2 phosphorylates histone H3 at T11, which is related to expression of cyclin D1 and c-Myc, tumor cell proliferation, cell-cycle progression, and brain tumorigenesis.	Yang W, et al. Cell 2012. Christofk HR, et al. Nature 2008.
Q86Z02	Homeodomain-interacting protein kinase 1	1.59E-04	1.002	Belongs to the Ser/Thr family of protein kinases and HIPK subfamily. Phosphorylates p53, DAXX, and MYB. Prevents MAP3K5-JNK activation in the absence of TNF.	Known to be upregulated in many tumor cell lines. Involved in tumorigenesis and tumour growth by its oncogenic and anti-apoptotic function.	Kondo S, et al. Proc Natl Acad Sci USA 2003. Lee D, et al. EMPO Rep 2012.
Q14847	LIM and SH3 domain protein 1	2.01E-04	0.496	Plays an important role in the regulation of dynamic actin-based, cytoskeletal activities	Involved in proliferation, invasion and migration of cancer cells.	Zhao L, et al. Gut 2010. Grunewald TG, et al. Br J Cancer 2007.
P37802	Transgelin-2	2.34E-04	0.519	Contains a conserved actin-binding domain also known as the calponin homolog (CH) domain, suggesting a role in cytoskeletal organization.	Overexpressed in various cancers. Higher expression levels were associated with metastasis, advanced clinical stage, and poor survival. But its biological function remains unknown.	Zhang Y, et al. Cancer Sci 2010.
Q92538	Golgi-specific brefeldin A-resistance guanine nucleotide exchange factor 1	2.84E-04	1.397	Involved in mitosis. Phosphorylated by CDK1. Promotes the activation of ADP-ribosylation factor 5 (ARF5) through replacement of GDP with GTP.	Unknown.	Morohashi Y, et al. Biochem J 2010.
P21291	Cysteine and glycine-rich protein α1	3.96E-04	0.628	A cytoskeletal lin-11 isl-1 mec-3 (LIM)-domain protein. Involved in smooth muscle differentiation.	Down-regulated in hepatocellular carcinoma and colorectal cancer. But, its function is unknown.	Miyasaka KY, et al. Proc Natl Acad Sci U S A. 2007. Hirasawa Y, et al. Oncology 2006.
Q8WY93	Palladin	6.97E-04	0.588	Cytoskeletal protein that is required for organization of normal actin cytoskeleton. Roles in establishing cell morphology, motility, cell adhesion and cell-extracellular matrix interactions.	Overexpressed in breast cancer. Involved in cell migration. Plays a key role in the formation of podosomes, actin-rich structures that function in adhesion and matrix degradation.	Goicoechea SM, et al. Oncogene 2009.
Q14195-2	Isoform LCRMP-4 of Dihydropyrimidinase-related protein 3	7.01E-04	0.555	Necessary for signaling by class 3 semaphorins and subsequent remodeling of the cytoskeleton. Plays a role in axon guidance and cell migration	Unknown.	Weitzdoerfer R, et al. J Neural Transm Suppl. 2001.

20/53

Q9NR12	PDZ and LIM domain protein 7	7.39E-04	0.778	PDZ domain binds actin-binding proteins such as β -tropomyosin, while LIM domains interact with proteins involved in mitogenic or insulin signaling such as protein kinases. Involved in bone morphogenesis.	Promotes cell survival and chemoresistance by suppressing p53-mediated apoptosis. Elicited p53 degradation by inhibiting MDM2 self-ubiquitination and increasing its ubiquitin ligase activity toward p53 in cells.	Jung CR, et al. <i>J Clin Invest</i> 2010.
P26038	Moesin	7.62E-04	0.334	A membrane-cytoskeleton linking protein, belongs to the ERM (ezrin, radixin and moesin) family. Participates in various signalling pathways and play a crucial role in cell morphology, adhesion and motility.	Involved in actin filament remodelling and epithelial mesenchymal transition.	Haynes J, et al. <i>Mol Biol Cell</i> . 2011.
P15941	Mucin-1	8.57E-04	0.873	A transmembrane glycoprotein. The alpha subunit has cell adhesive properties. The beta subunit contains a C-terminal domain which is involved in cell signaling, through phosphorylation and protein-protein interactions.	An anti-adhesion molecule that inhibits cell adhesion. Promoting motility and invasive properties by reducing interactions between integrins and the extracellular matrix. Involved in activation of Wnt and MAP signal pathways, and repression of the p53 gene.	Yonezawa, et al. <i>Pathol Int</i> 2011. Wei X, et al. <i>Cancer Res</i> 2007. Ren J, et al. <i>J Biol Chem</i> 2002.
Q05682	Caldesmon	9.37E-04	0.597	A cytoskeletal protein. Stabilizes actin filaments and involves in myosin-actin interaction. Plays an essential role during cellular mitosis and receptor capping.	Inhibitory effects on cell motility and migration. But phosphorylation at particular sites (i.e., S12) reduces the anti-migratory effect.	Schwappacher R, et al. <i>J Cell Sci</i> 2013. Mayanagi T, et al. <i>J Biol Chem</i> 2008.

Table. 2 (continued)

KEGG	Uniprot	Protein	TiO2 + IMAC + Non-enrich			TiO2 + IMAC + Non-enrich			TiO2 + IMAC + Non-enrich			
			IMAC		TiO2	Non-enrich		IMAC		TiO2	Non-enrich	
			Protein	Phos pep	t-test p-values	t-test p-values	t-test p-values	Protein	Phos pep	t-test p-values	log2 T/NT	log2 T/NT
FA, RAC, VSMC	O14974	Protein phosphatase 1 regulatory subunit 12A	S507	2.31E-02	2.25E-02	NaN	NaN	0.9886	-0.2470	NA	NA	
FA, RAC, VSMC	O14974	Protein phosphatase 1 regulatory subunit 12A	S995	2.31E-02	2.38E-02	NaN	NaN	0.9886	-0.2245	NA	NA	
VSMC	O15085	Rho guanine nucleotide exchange factor 11	S251	NaN	1.81E-02	NaN	NaN	NA	0.8076	NA	NA	
VSMC	O43306	Adenylyl cyclase type 6	S576	NaN	1.59E-02	5.05E-02	NaN	NA	-1.1487	-1.1316	NA	
VSMC	O43306-2	Isoform 2 of Adenylyl cyclase type 6	S576	4.56E-02	1.07E-02	4.00E-02	NaN	-1.6305	-1.2488	-0.8333	NA	
VSMC	O43306-2	Isoform 2 of Adenylyl cyclase type 6	S576	4.56E-02	1.16E-02	NaN	NaN	-1.6305	-0.7207	NA	NA	
FA, RAC	O60610	Protein diaphanous homolog 1	S22	1.56E-01	3.24E-02	NaN	NaN	0.2000	-0.4683	NA	NA	
TJ	O95049	Tight junction protein ZO-3	S605	NaN	1.15E-02	NaN	NaN	NA	0.8249	NA	NA	
FA	P02452	Collagen alpha-1(I) chain	S176	2.83E-01	NaN	2.65E-03	NaN	-0.1859	NA	-0.9487	NA	
FA	P05412	Transcription factor Ap-1	S73	NaN	6.74E-04	2.94E-04	6.64E-02	NA	-1.4547	-1.5842	-0.8164	
FA	P06241	Tyrosine-protein kinase Fyn	Y420	9.78E-02	1.82E-02	2.58E-02	NaN	0.4737	-0.6782	-0.5255	NA	
RAC, VSMC	P10398	Serine/threonine-protein kinase A-Raf	S157	NaN	4.78E-02	NaN	NaN	NA	-0.7991	NA	NA	
FA	P10451	Osteopontin	S303;S308	NaN	2.21E-02	2.50E-01	NaN	NA	0.6135	0.1925	NA	
TJ, FA	P12931	Proto-oncogene tyrosine-protein kinase Src	Y419	NaN	3.72E-02	7.01E-02	NaN	NA	-0.6782	-0.4745	NA	
FA, RAC	P16144	Integrin beta-4	S1483;S1486	5.22E-01	1.74E-01	4.38E-02	NaN	0.1948	1.1656	2.0578	NA	
FA, RAC	P18206	Vinculin	S272	4.46E-03	5.71E-01	7.05E-03	NaN	0.3363	0.1297	0.7110	NA	
FA, RAC	P18206	Vinculin	S290	4.46E-03	8.44E-02	4.62E-02	NaN	0.3363	1.1502	1.0478	NA	
FA, RAC	P18206	Vinculin	S579	4.46E-03	7.24E-03	NaN	NaN	0.3363	0.7051	NA	NA	
FA, RAC	P18206	Vinculin	Y822	4.46E-03	4.02E-02	NaN	NaN	0.3363	-0.7723	NA	NA	
FA	P21333	Filamin-A	S1459	1.34E-03	5.43E-01	8.53E-02	3.24E-02	0.6182	0.3807	0.9812	1.0915	
FA, RAC	P26010	Integrin beta-7	T797	NaN	7.29E-03	NaN	NaN	NA	0.6350	NA	NA	
RAC	P26038	Moesin	S576	7.62E-04	8.55E-03	NaN	NaN	0.3340	0.7557	NA	NA	
TJ	P35221	Catenin alpha-1	S655	1.24E-01	7.45E-01	4.86E-02	NaN	-0.2074	0.2050	1.4275	NA	
TJ, RAC	P35579	Myosin-9	S1480	5.93E-03	5.97E-04	NaN	NaN	0.2877	2.0980	NA	NA	
TJ, RAC	P35580	Myosin-10	S1939	2.18E-02	1.19E-02	8.92E-01	NaN	0.2259	-0.5713	-0.1338	NA	
TJ, VSMC	P35749	Myosin-11	S1954	2.75E-02	1.55E-02	4.50E-02	NaN	0.3431	1.2465	1.2156	NA	
TJ, VSMC	P35749	Myosin-11	S1954	2.75E-02	2.01E-02	8.83E-02	NaN	0.3431	0.9621	1.6869	NA	
TJ, VSMC	P35749	Myosin-11	S1954	2.75E-02	1.74E-02	9.48E-02	NaN	0.3431	0.6778	1.0375	NA	
TJ, VSMC	P35749	Myosin-11	S1954	2.75E-02	4.78E-03	NaN	NaN	0.3431	0.8695	NA	NA	
RAC, VSMC	P36507	Dual specificity mitogen-activated protein kinase kinase 2	T394	3.97E-01	1.17E-02	1.91E-02	NaN	-0.1358	0.5546	0.8362	NA	
RAC, VSMC	P36507	Dual specificity mitogen-activated protein kinase kinase 2	T394	3.97E-01	NaN	2.38E-02	NaN	-0.1358	NA	0.6415	NA	
FA, RAC	P49023	Paxillin	S106	NaN	4.87E-02	4.19E-01	NaN	NA	-0.5612	-0.0669	NA	
RAC	P53667	LIM domain kinase 1	S298	NaN	7.75E-03	2.56E-01	NaN	NA	0.8768	0.7315	NA	

TJ	P55196	Afadin	S1182	5.11E-01	8.59E-03	3.28E-02	NaN	0.1801	-0.8898	NA
TJ	P55196	Afadin	S1721	5.11E-01	4.50E-02	4.50E-01	NaN	0.1801	-0.6459	-0.3325
TJ, VSMC	Q05655	Protein kinase C delta type	S645	5.08E-01	5.75E-03	5.75E-03	NaN	0.1801	-1.1066	-1.5385
RAC	Q13576	Ras GTPase-activating-like protein IQGAP2	S16	3.86E-01	2.04E-03	9.01E-03	NaN	0.1666	-0.0412	-0.7690
RAC	Q13576	Ras GTPase-activating-like protein IQGAP2	S16	3.86E-01	9.74E-03	9.74E-03	NaN	0.1666	-0.6374	-2.1648
RAC	Q13576	Ras GTPase-activating-like protein IQGAP2	S16	3.86E-01	9.75E-03	9.75E-03	NaN	0.1666	-1.4953	NA
TJ	Q13813	Spectrin alpha chain, brain	S1217	3.35E-01	5.40E-01	3.90E-02	NaN	0.1001	-0.2181	-1.3428
TJ	Q14247	Src substrate contactin	T4015405	3.23E-01	NaN	1.92E-02	NaN	0.0531	NA	-0.8638
FA	Q14315	Filamin-C	S2233	2.38E-03	3.08E-04	5.89E-04	NaN	0.5615	1.5875	NA
VSMC	Q14573	Inositol 1,4,5-trisphosphate receptor type 3	S1832	5.61E-01	4.81E-03	1.15E-01	6.38E-02	0.1397	0.5481	0.3586
TJ, VSMC	Q3MNF1	NA		6.29E-02	1.97E-02	7.96E-02	NaN	0.3760	0.9201	1.1924
TJ	Q5JDD0	Tight junction-associated protein 1	T422	NaN	4.49E-02	NaN	NaN	0.7021	NA	NA
TJ	Q6P1M3	Lethal(2) giant larvae protein homolog 2	S1013	3.68E-01	1.50E-02	NaN	NaN	-0.5227	-0.5448	NA
TJ, RAC	Q7Z406	Myosin-14	S1504	2.03E-02	4.50E-04	NaN	3.33E-02	0.3493	2.1786	NA
TJ	Q8N335	InaD-like protein	S645	4.68E-01	2.82E-02	NaN	NaN	0.6231	-0.9323	NA
FA	Q92934	Bcl2 antagonist of cell death	S118	NaN	2.75E-03	NaN	NaN	-1.3183	NA	NA
FA	Q92934	Bcl2 antagonist of cell death	S134	NaN	1.90E-01	1.79E-02	NaN	NA	0.6779	0.7760
VSMC	Q96A00	Protein phosphatase 1 regulatory subunit 14A	S1285136	7.28E-01	5.35E-02	2.11E-02	NaN	-0.0997	-1.2981	-0.8118
VSMC	Q96A00	Protein phosphatase 1 regulatory subunit 14A	S1285136	7.28E-01	1.20E-02	NaN	NaN	-0.0997	-1.5386	NA
TJ	Q9H4G0	Band 4.1-like protein 1	S510	9.68E-01	2.87E-03	1.58E-01	NaN	0.1569	-1.8342	-3.3910
TJ	Q9H4G0	Band 4.1-like protein 1	S5415544	9.68E-01	2.83E-02	2.59E-02	NaN	0.1569	-0.4904	-1.3756
TJ	Q9H4G0	Band 4.1-like protein 1	S784	9.68E-01	4.85E-03	NaN	NaN	0.1569	-1.2407	NA
TJ	Q9H4G0	Band 4.1-like protein 1	S820	9.68E-01	1.68E-04	NaN	NaN	0.1569	-1.7144	NA
RAC, VSMC	Q9NZNS	Rho guanine nucleotide exchange factor 12	S1327	6.82E-01	1.01E-02	7.07E-02	NaN	0.1232	-0.6148	-1.5399
RAC, VSMC	Q9NZNS	Rho guanine nucleotide exchange factor 12	T703	6.82E-01	2.42E-02	NaN	NaN	0.1232	-0.8934	NA
TJ	Q9P2M7	Cingulin	S149	NaN	2.09E-02	2.11E-01	NaN	NA	-1.1041	-1.2806
RAC	Q9Y217	1-phosphatidylinositol-3-phosphate 5-kinase	S3075312	NaN	4.38E-02	2.49E-01	NaN	NA	0.6748	0.8822
FA	Q9Y90	Talin-1	S1201	1.06E-03	4.04E-01	7.01E-01	3.26E-02	0.3681	-0.0394	-0.1647
FA	Q9Y90	Talin-1	S1225	1.06E-03	3.57E-02	2.13E-01	NaN	0.3681	-0.6687	-0.8313
FA	Q9Y90	Talin-1	S620	1.06E-03	1.08E-02	2.11E-01	NaN	0.3681	1.7192	NA
FA	Q9Y4G6	Talin-2	T1843	2.00E-02	1.42E-02	NaN	NaN	0.5179	-0.5952	NA
TJ	Q9Y624	Junctional adhesion molecule A	S284	NaN	6.59E-05	NaN	NaN	NA	-1.0066	NA
VSMC	Q9Y6F6	Protein MRV11	S657	NaN	1.67E-02	2.19E-01	NaN	NA	0.4638	0.2463
VSMC	Q9Y6F6	Protein MRV11	S657	NaN	1.82E-02	NaN	NaN	NA	0.4092	NA

Peptide log ₂ ratios															
TiO2 + IMAC + Total Protein															
1T / 1NT	4T / 4NT	5T / 5NT	6T / 6NT	7T / 7NT	8T / 8NT	9T / 9NT	10T / 10NT	11T / 11NT	12T / 12NT	13T / 13NT	14T / 14NT	Name	Sequence	Global Position	DrugBank
-	-	-	-	-1.136	0.414	0.386	0.642	-0.71	0.088	0.567	0.483	Fyn	dG\$LNQSSGYR	S21	Dasatinib
1.149	0.076	-0.792	-0.494	0.086	0.801	-0.099	0.615	-	-	-	-	Fyn	ITEFRDG\$LNQSGYR	S21	Dasatinib
-	-	-	-0.749	-0.237	0.375	-0.994	-0.626	-0.195	-0.736	-0.796	-0.796	Fyn	IIEDNEYATAR	Y420	Dasatinib
-	-	-	-	-	-	-	-	0.769	0.091	-1.227	-0.484	Src	IFGGFN\$SDTVTSPQR	S69	Dasatinib
-	-	-	-	-	-	-	-0.626	-0.195	-0.736	-0.796	-0.796	Src	IIEDNEYATAR	Y419	Dasatinib
0.534	0.188	-0.555	-0.406	-	-	-	-	-	-	-	-	Ab12	gAQASSG\$PAPLPR	S620	Dasatinib
-	-	-	-	-0.155	-0.453	-0.734	-0.121	-0.971	0.18	0.605	-1.251	Raf1	ST\$TPNVHMV\$TLPVDSR	S259	Sorafenib
-	-	-	-0.137	0.46	-0.846	1.485	-1.712	0.354	1.913	0.269	Raf1	SA\$EPSLHR	S621	Sorafenib	
-	-	-	-0.359	-0.167	-0.223	0.261	0.649	-0.325	0.381	0.48	B-Raf	SA\$EPSLNR	S729	Sorafenib	
-1.293	0.08	-0.292	-0.147	-	-0.622	-1.042	0.216	-	-	-	-	HDAC1	i\$IC\$SDKR	S409	Vorinostat
-	-	-	-	-0.359	-0.167	-0.223	0.261	0.649	-0.325	0.381	0.48	HDAC1	iAcEEF\$D\$EEEGGGRK	S421;S423	Vorinostat
-	-	-	-	0.056	1.433	0.055	-0.254	-	-	-	-	HDAC2	iAcDEEF\$D\$EEDEGGGR	S422	Vorinostat
-	-	-	-	0.014	-0.13	0.272	0.458	-0.367	-0.408	1.421	0.873	HDAC2	iAcDEEF\$D\$DEEGGGR	S422;S424	Vorinostat
-0.554	1.034	-1.089	0.486	-0.895	-0.421	-0.682	-1.747	-	-	-	-	RICTOR	h\$DTG\$TP\$IGENDIK	S1174;S1177	Temsirolimus
0.145	0.438	0.306	-0.195	-	-	-	0.124	0.034	1.242	0.093	RPTOR	SV\$SYGNIR	S722	Temsirolimus	
-	-	-	-	-0.146	-0.269	-0.734	0.321	-	-	-	-	ERK1	iADP\$HDHTGFL\$EYVATR	T202;Y204	AEZs-131
-0.115	-1.927	1.046	-0.508	0.037	1.437	-0.428	1.285	-1.074	-0.019	-0.809	0.059	ERK2	VADPDHDHTGFL\$EYVATR	T185;Y187	AEZs-131
-1.036	1.305	-0.269	-1.099	1.119	-2.86	-1.263	1.256	-	-	-	-	Akt1	SG\$PSD\$GAA\$EMEV\$SLAKP	S124;S129	GSK2141795
-1.162	1.587	-0.31	-0.38	-	-1.572	-0.127	-0.208	-0.806	0.171	1.482	-0.838	Akt1	SG\$PSD\$NSGA\$EEmEV\$SLAKP	S124	GSK2141795
-1.283	1.688	-0.178	-0.029	-0.004	-1.572	-0.127	-0.208	-0.806	0.171	1.482	-0.838	Akt1	SG\$PSD\$NSGA\$EEmEV\$SLAKP	S124	GSK2141795

24/53

Case #	Sample name	BioBank #	Tissue Type	Tissue weight (mg)
1	1T	14981	Pancreatic cancer	362
1	1NT	14980	Background pancreas	198
2	2T	14837	<i>Pancreatic cancer</i>	102
2	2NT	14836	<i>Background pancreas</i>	128
3	3T	14786	<i>Pancreatic cancer</i>	135
3	3NT	14785	<i>Background pancreas</i>	56
4	4T	14938	Pancreatic cancer	458
4	4NT	14987	Background pancreas	231
5	5T	11967	Pancreatic cancer	204
5	5NT	11966	Background pancreas	223
6	6T	11946	Pancreatic cancer	204
6	6NT	11945	Background pancreas	136
7	7T	11250	Pancreatic cancer	303
7	7NT	11251	Background pancreas	240
8	8T	10652	Pancreatic cancer	315
8	8NT	10653	Background pancreas	273
9	9T	10619	Pancreatic cancer	247
9	9NT	10618	Background pancreas	223
10	10T	10666	Pancreatic cancer	436
10	10NT	10665	Background pancreas	489
11	11T	14894	Pancreatic cancer	145
11	11NT	14896	Background pancreas	150
12	12T	16195	Pancreatic cancer	113
12	12NT	16194	Background pancreas	110
13	13T	14784	Pancreatic cancer	202
13	13NT	14783	Background pancreas	190
14	14T	14950	Pancreatic cancer	190
14	14NT	14949	Background pancreas	120

Table. 5

25/53

1pT3N1	Stage IIB
4pT3N1	Stage IIB
5pT3N0	Stage IIA
6pT3N1	Stage IIB
7pT3N1	Stage IIB
8pT3N0	Stage IIA
9pT3N1	Stage IIB
10pT3N0	Stage IIA
11pT3N1	Stage IIB
12pT3N1	Stage IIB
13pT3N1	Stage IIB
14pT3N1	Stage IIB

Table. 6

Clinical information (e.g. time of recurrence)	Case #
Liver metastasis at 11 mo	1
No recurrence for 10 mo	4
Local recurrence at 19 mo	5
No recurrence for 19 mo	6
No recurrence for 13 mo	7
No recurrence for 23 mo	8
Liver metastasis at 5 mo	9
Lung metastasis at 31 mo	10
Local recurrence, peritoneal disease at 17 mo	11
No recurrence for 8 mo	12
No recurrence for 16 mo	13
Local recurrence, peritoneal disease at 2 mo	14

Table. 7

26/53

Sample-Name	µg	µg 8plex
1T	3900	31200
1NT	3900	
4T	3900	
4NT	3900	
5T	3900	
5NT	3900	
6T	3900	
6NT	3900	
10NT	3900	29800
10T	3900	
9NT	3900	
9T	3900	
8NT	3900	
8T	3900	
7NT	3200	
7T	3200	25720
11T	3900	
11NT	3900	
12T	2800	
12NT	2800	
13T	2560	
13NT	2560	
14T	3600	
14NT	3600	

Table. 8

27/53

TMT reporter mass:	126	127e	127	128	129e	129	130	131
TMT8plex-1	1T	1NT	4T	4NT	5T	5NT	6T	6NT
TMT8plex-2	10NT	10T	9NT	9T	8NT	8T	7NT	7T
TMT8plex-3	11T	11NT	12T	12NT	13T	13NT	14T	14NT

Table. 9

Sample/aliquot	SCX-HPLX	Enrichment method
TMT8plex 1a	12 x fractions	for TiO2
TMT8plex 1b	12 x fractions	for IMAC
TMT8plex 1c	12 x fractions	for total protein
TMT8plex 2a	12 x fractions	for total protein
TMT8plex 2b	12 x fractions	for IMAC
TMT8plex 2c	12 x fractions	for TiO2
TMT8plex 3a	12 x fractions	for TiO2
TMT8plex 3b	12 x fractions	for IMAC
TMT8plex 3c	12 x fractions	for total protein

Table. 10

Uniprot ID	Protein	Global	Peptide sequence	GetLocalizeSites	Phosphopeptide log2ratios													
					MEDIAN (TTO2 + IMAC + Non-enrich)													
					11	19	5	17	2	10	19	13	8	16	15	23	31	31
Q14639	Actin-binding LM protein 1	S452	.SFGQSSPSVSR	S3:99:6	1.12	3.57	2.38	1.07	3.27	0.15	2.27	0.13	0.14	2.06	3.02	2.70		
Q94929	Actin-binding LM protein 3	S388	.QGFLSTPSR	S4:99:5	1.84	3.03	2.81	2.55	2.34	-0.64	0.99	0.18	-0.30	1.07	1.39	1.34		
Q94929	Actin-binding LM protein 3	S388	.QGFLSTPSR	S4:100:0	1.68	1.68	1.77	2.76	1.67	-0.38	-0.33	0.43	-0.48	1.61	0.76	0.95		
Q95999	B-cell lymphoma/leukemia 10	S138	.SNSDEWSEKLR	S3:100:0	1.04	1.29	1.95	0.91	2.15	-0.59	0.95	0.66	0.13	0.25	2.00	2.49		
Q51179	Centrosomal protein of 170 kDa	S1160	.LGSLAR	S3:100:0	1.36	1.75	1.74	1.48	1.70	0.22	1.75	-0.82	-0.13	0.49	2.09	0.00		
Q51179	Centrosomal protein of 170 kDa	S1160S1165	.LGSLARDEATSR	S3:99:4;S8:98:8	1.56	2.06	1.06	3.89	1.48	0.53	0.82	0.49	-0.20	0.26	-0.11	0.23		
Q51179	Centrosomal protein of 170 kDa	S1089	.SISLSALVR	S3:100:0	0.74	2.33	1.41	1.45	2.33	-0.10	1.82	-0.40	-0.40	0.84	1.68	0.72		
P99082	DEINN domain-containing protein 4C	S723	.QISPLTK	S3:100:0	1.01	1.09	1.09	0.73	-0.33	0.09	-0.04	-0.41	-0.64	1.84	-0.78			
Q17591	Disabled homolog 2	S330	.ATSEPLDQGER	S3:100:0	2.20	1.28	2.52	0.91	2.09	0.80	1.14	-0.35	-1.01	-0.26	2.09	-0.61		
P35507	Docking protein 3	T394	.INQPSAPTR	T6:100:0	1.79	1.98	1.84	0.96	2.00	-0.53	1.92	-0.60	-0.39	0.16	-0.05	2.09		
P35507	Dual specificity mitogen-activated protein kinase kinase 2	T394	.INQPSAPTRAV	T6:100:0	3.41	2.14	2.12	4.26	2.39	-0.13	0.22	0.31	-0.70	-0.99	-1.14	1.21		
P35507	Dual specificity mitogen-activated protein kinase kinase 2	T394	.INQPSAPTRAV	S3:100:0	1.22	2.34	1.81	2.43	2.85	-0.24	1.40	0.11	-0.74	0.88	2.36	1.60		
Q32944	Echinoderm microtubule-associated protein-like 3	S176	.LGSLAHLVR	S7:100:0	1.94	1.44	1.52	2.86	1.47	0.36	0.95	-1.87	-0.94	-0.39	2.83	0.47		
P21333	Filamin A	S1459	.SFGPSLPGTR	S3:100:0	1.47	1.93	2.19	2.67	2.52	1.62	0.52	0.58	-0.40	2.62	2.35	0.53		
Q14315	Filamin C	S2233	.LGEGSTTR	S4:100:0	1.76	1.61	1.46	2.27	1.97	0.28	1.15	-0.15	-0.49	0.20	1.92	0.72		
Q9P107	GEF-H1 interacting protein	S937	.SDAPTSRPGTR	S1:100:0;S5:100:0	1.98	1.44	2.08	1.27	2.14	0.73	0.30	0.08	-0.63	0.62	0.58	0.38		
Q9V444	G-protein signalling modulator 3	S55:339	.SAPPSPPGTR	S10:100:0	2.39	1.72	1.86	4.35	3.26	0.27	2.79	-0.67	-0.98	0.62	-0.89	-0.18		
Q9BPY6	Homocysteine only protein	S70	.SEGPSEKRTD	S3:100:0	0.78	1.78	2.34	3.63	1.14	-0.33	0.38	0.00	-0.18	0.46	1.94	0.10		
Q9Y4H2	Insulin receptor substrate 2	S577	.TSLTPTR	S3:100:0	1.56	0.89	0.90	3.05	1.68	0.04	0.97	-0.98	-0.47	-0.19	-2.26	-0.72		
Q8N3V7	Isotropin 2 of Sympatopilin	S894	.LGSEPAESECT	S3:100:0	1.38	2.63	3.87	6.14	3.72	0.45	1.06	1.50	-0.05	1.55	2.83	3.20		
Q151494	Isotropin 4 of Plectin	S21	.TSSEDUNVAVLR	S3:100:0	1.20	2.29	1.64	2.18	4.12	-0.07	2.36	0.02	-0.44	2.13	2.45	1.06		
Q151494	Isotropin 4 of Plectin	S9249	.SSGGSSESPSPAVSR	S3:100:0	1.30	1.41	0.96	1.65	0.98	-0.11	1.81	-0.05	-0.33	0.44	1.85	0.21		
Q9P266	Junctional protein associated with coronary artery disease	S757	.SLSPLNSAEGSR	S6:99:6	1.17	2.27	3.25	4.23	0.81	-0.29	1.22	-0.35	0.09	1.64	2.06	0.90		
P08727	Keratin, type I cytoskeletal 19	S13	.QSSAEEGEGEGSQR	S3:100:0	1.90	1.77	2.23	4.53	2.29	-0.21	0.59	0.81	-0.82	1.79	-0.40	1.63		
Q43896	Kinesin-like protein KIF1C	S1092	.QSEPDIEGEGAV															

Q86229	Lipolysis-stimulated lipoprotein receptor	S643	.MALSRSW	S5:996	2.55	3.18	3.88	2.03	0.06	-0.57	-0.54
Q86229	Lipolysis-stimulated lipoprotein receptor	S643	.MALSRSW	S5:1000,98:1000	2.61	2.84	4.53	2.19	0.69	0.70	0.67
Q83052	Lipoma-preferred partner	S619	.VTAKASTL	S7:99,7	2.36	2.27	2.84	3.20	1.00	-0.26	-0.53
Q77406	Mystin-14	S1504	.AISLTR	S3:1000	2.71	2.48	2.20	1.99	2.26	-1.14	1.90
Q98666	Neuroblast differentiation-associated protein ANHAK	T5824	.FGEGFGSK	T3:1000	1.59	1.23	1.21	3.71	1.14	-1.02	-0.95
Q8W93	Paladin	S893	.IADEEGGTDVWDLER	S3:1000	1.40	1.60	2.27	2.86	1.76	1.19	-0.14
Q15149	Plectin	S4386	.SSVGGSSSSPSPASR	S3:1000	1.20	2.29	1.64	2.18	4.12	0.07	2.36
Q95QH2	PNL-ARA-regulated adapter molecule 1	S382,S388	.TSEPFASLPR	S3:1000,S9:1000	2.00	1.08	3.17	1.02	1.64	0.53	1.28
P02545	Prelaminin A/C	S12	.SGQASLPLSFR	S1:1000	1.10	1.21	0.98	1.50	3.17	0.04	0.80
P02545	Prelaminin A/C	S392	.ISPFPTSR	S4:1000	1.39	1.55	2.38	0.74	0.81	1.27	-0.66
P02545	Prelaminin A/C	S632	.SVGGGGGGSGGNVTR	S5:1000	1.11	1.08	1.14	2.21	1.42	-0.67	1.07
P02545	Prelaminin A/C	S336	.SVGGGGGGSGGNVTR	S9:1000	1.51	1.54	2.30	3.18	1.54	-0.49	0.93
Q2M23	Protein FAM83E	S351	.ISPATPAPALDIR	S11:1000	0.96	1.44	1.04	1.04	0.40	-0.01	0.59
Q91666	Protein MRV1	S657	.SmLTLGK	S3:1000	0.81	1.37	0.90	1.26	0.96	0.35	0.45
Q91666	Protein MRV1	S657	.SMETLGEK	S3:1000	0.76	1.50	0.72	1.11	0.94	0.22	0.49
Q97597	Protein NDRC1	S337,S333	.TAGSSATLDR	S5:99,5,S6:99,5	0.95	2.42	3.26	3.19	2.67	-0.23	2.38
Q97597	Protein NDRC1	S333	.TAGSSATLDR	S6:99,6	1.06	1.08	2.12	2.55	1.80	0.00	1.48
Q97597	Protein NDRC1	S333,S336	.TAGSSATLDR	S6:98,6,S9:99,4	0.76	0.92	1.82	1.32	1.91	0.74	1.21
P29590	Protein PML	T867	.AEVGRPLAGR	T6:99,6	1.30	2.22	2.39	1.39	1.64	-0.26	0.87
Q9B166	Rai111 family-interacting protein 5	S307	.TYDANIQMR	S3:99,4	1.99	1.99	1.49	2.75	2.53	-0.27	2.32
Q96P62	Ribonuclease nucleotide exchange factor 17	S420	.SPFAGEGLR	S3:1000	0.90	1.92	1.29	1.66	3.09	0.68	0.20
Q92974	Ribonuclease nucleotide exchange factor 2	S174	.LSQSTDLSLHMR	S5:99,5	1.74	1.77	1.80	1.34	1.82	0.64	0.78
Q92974	Ribonuclease nucleotide exchange factor 2	S174	.LSQSTDLSLHMR	S5:100,0	0.90	1.14	1.99	1.99	3.49	0.27	-0.81
Q9U335	Serine/arginine repetitive matrix protein 2	S24	.LISLVR	S3:100,0	0.93	1.20	0.90	1.34	2.36	0.33	1.20
Q97725	Serine/threonine protein kinase MRCK alpha	S1629	.SmASSG SAR	S3:100,0	0.92	1.41	1.05	0.91	2.45	0.29	1.13
Q5T2Z1	SH3 and PX domain-containing protein 2A	S420	.AQISPNLR	S4:100,0	1.54	2.67	2.92	3.20	1.76	0.85	0.98
P53814	Smoothelin	S301	.SISVLR	S3:100,0	1.30	0.95	1.11	1.19	1.34	1.33	-0.89
Q9H810	Tensin-1	S1119	.SGLGQPSYQQR	S3:100,0	0.87	2.09	0.83	1.33	2.61	-0.84	1.80
Q972W1	Thyroid hormone receptor-associated protein 3	S682	.DISPSTER	S4:99,6	1.12	0.99	0.85	1.07	1.14	0.58	0.81
Q13263	Transcription intermediary factor 1-beta	S473	.SGEGEVSGLMR	S1:100,0	1.58	4.42	3.01	3.15	2.72	0.40	1.69
Q13263	Transcription intermediary factor 1-beta	S473	.SGEGEVSGMR	S1:100,0	0.85	2.72	2.71	2.68	1.77	0.29	0.54
Q43194	Transforming growth factor beta-1-induced transcript 1 protein	S418	.QSAIGR	S3:100,0	1.17	1.32	0.71	3.39	1.19	0.02	0.94
Q77118	Uncharacterized protein C11orf6	S425	.JNGLQSDSDAL	S4:100,0	1.85	0.94	1.66	3.07	2.08	-0.05	-0.51
Q8W72	Uncharacterized protein C19orf21	S394	.ALSDQSPADAR	S3:100,0	4.39	1.59	1.55	3.12	1.63	-0.39	0.25
P08670	Vimentin	S55	.SIYASPGGGWATR	S5:100,0	1.22	2.03	1.36	2.87	3.71	-0.74	0.10
P08670	Vimentin	S73	.SSVPGVR	S2:100,0	1.18	1.33	0.96	2.12	2.97	-1.87	2.07
Q13303	Voltage-gated potassium channel subunit beta-2	S9	.MNPESTGSPAR	S9:98,9	0.91	0.72	1.68	1.77	1.67	0.89	1.11

P23396	40S ribosomal protein S3	T221	delIPRENEQK	T7:1000	-2.43	-2.21	-2.17	-4.66	-5.21	0.16	-1.00	-0.56	0.75	2.18	-1.94	-3.01
P62753	40S ribosomal protein S5	S235/S236	.1.SS.RASTK	S3:1000;S4:1000	-2.64	-0.77	-1.61	-1.74	-2.82	0.09	-0.08	0.33	0.20	0.70	-1.33	-0.59
P35611	Alpha aducin	S358	S.SS.GPGEETGSPPK	S6:1000	-0.99	-1.46	-0.97	-1.62	-1.61	-1.24	-0.73	-1.54	0.12	-1.67	-2.45	-1.75
Q9H4G0	Band 4.1-like protein 1	S550	KAQHNEIK	S4:1000	-1.64	-1.82	-2.71	-2.87	-4.42	-0.40	-1.11	0.09	1.11	-1.61	-2.74	-4.86
Q9H4G0	Band 4.1-like protein 1	S620	gF5ETRNEK	S4:1000	-1.71	-2.18	-1.31	-2.20	-1.98	-0.95	-0.75	-0.73	-0.06	-0.59	-3.47	-2.24
P27324	Cathelin	S583	AEDEELNSPR	S10:1000	-1.48	-1.43	-1.68	-2.39	-2.67	-0.99	-0.65	0.01	0.38	-0.10	-1.34	-0.90
Q60716	Catenin delta-1	S332	gLSASDLSRK	S8:1000	-0.89	-0.84	-1.14	-1.97	-1.81	0.09	-0.17	-0.29	0.62	0.70	-0.38	-0.26
Q53577	Cordon-bleu protein-like 1	S294/T298	.dQTA.RAPLWIK	S5:1000;T9:1000	-1.85	-1.08	-1.97	-3.33	-2.39	0.77	-1.22	0.33	0.32	1.52	-2.35	-1.62
P15924	Desmoplakin	S2209	SmsFGQR	S3:1000	-1.54	-1.22	-1.72	-2.91	-2.71	-0.39	-0.41	-0.62	0.19	0.38	-1.63	-2.18
P15924	Desmoplakin	S2821/S2825	gLPSPWNSAAGR	S10:1000;S14:1000	-1.46	-0.76	-1.01	-1.89	-2.74	0.25	-0.27	-0.58	0.60	2.28	-0.51	-1.38
Q92466	DNA damage-binding protein 2	S26	S.RSLEELPEAK	S3:1000	-0.76	-0.71	-1.22	-0.06	-1.66	0.92	-0.11	0.54	0.21	2.54	-1.15	-0.22
Q92685	Dhfr-Man-Man5[GlcNAc2]PP-Dol alpha-1,3-mannosyltransferase	S13	gPSSGAAAGESLCK	S5:99;7	-2.46	-1.85	-3.44	-3.90	-3.57	-0.89	-0.41	-0.03	0.17	-0.22	-1.26	-0.67
Q9H4G0	Doublecortin domain-containing protein 2	S270	.SVDGSSDSSPQPLR	S10:1000	-1.01	-1.89	-1.79	-1.54	-1.81	0.06	1.11	-1.56	0.85	-1.05	-0.31	-1.46
Q9HC35	Echinoderm microtubule-associated protein-like 4	S208/T201	.gPSPKPK	S3:1000;T4:1000	-1.73	-1.21	-1.71	-3.10	-2.82	0.17	-1.34	0.21	0.23	0.02	-2.15	-2.22
Q9Y6R1	Electrogenic sodium bicarbonate cotransporter 1	S223	.SLADIGK	S1:1000	-3.38	-1.92	-3.08	-3.72	-4.54	-0.46	0.16	-1.41	0.57	0.28	-4.39	-4.42
Q9Y6R1	Electrogenic sodium bicarbonate cotransporter 1	S223	.SNLSLADIGK	S5:1000	-3.34	-3.15	-2.92	-3.04	-4.36	-2.02	-0.39	-0.05	0.99	-0.11	-3.10	-3.27
Q9Y6R1	Electrogenic sodium bicarbonate cotransporter 1	S223/S233	.S.LADIGKTSASR	S10:1000;S11:1000	-0.73	-2.22	-2.33	-1.41	-2.73	-0.43	0.11	-0.45	0.95	-0.30	-3.12	-3.30
P13639	Elongation factor 2	T57	gEGRTRTR	T7:99;4	-1.98	-0.80	-1.85	-3.16	-1.38	-0.11	1.62	-0.05	0.31	2.56	-0.84	-0.11
Q04637	Eukaryotic translation initiation factor 4 gamma 1	S1185	.SFSKEVEER	S1:1000	-1.88	-1.14	-2.42	-4.38	-2.77	-0.31	-0.02	0.85	0.84	1.14	-1.83	-0.89
Q60841	Eukaryotic translation initiation factor 5B	S224	.MPPGNEGNDDDASF	S9:1000	-0.75	-0.91	-1.48	-3.61	-1.98	1.28	-0.02	0.05	0.53	1.36	0.61	-0.54
Q9Y4F1	FERM, RhoGEF and pleckstrin domain-containing protein 1	S23/T24	.IGAPENGSHLER	S10:1000;T11:1000	-1.59	-1.43	-1.12	-3.06	-2.16	-0.31	0.51	-0.75	0.70	1.25	-0.81	-0.94
Q9NQ13	Glycophylin	S305	.A3KHAIDITK	S4:1000	-1.44	-0.95	-2.85	-2.77	-2.31	-0.56	-0.80	-0.04	0.95	-0.10	-0.92	-0.11
P09210	Glutathione S-transferase A2	S202	.R.QGSPR	S6:1000	-2.45	-1.29	-3.14	-1.92	-4.51	-0.14	-0.52	-1.75	-0.15	0.20	-3.92	-2.82
Q13322	Growth factor receptor-bound protein 10	S104	SQ.PQSFRR	S7:1000	-0.85	-1.44	-1.01	-1.33	-2.48	0.40	-0.31	-1.01	0.54	0.10	-2.26	-1.90
P12268	Insulin-5-monophosphate dehydrogenase 2	S160	.AQNEDAIARSR	S7:1000	-0.77	-1.18	-2.20	-2.46	-1.77	0.62	-0.43	-0.57	0.06	-0.46	-1.80	-2.19
Q8P7R3	Isletform 3 of Cofilin-like MARVEL transmembrane domain-containing protein 1179	S374	.dDSDRPEQRDT	T13:1000	-1.32	-1.29	-0.87	-0.97	-2.27	-0.47	0.04	0.08	0.15	0.08	-0.77	-1.04
Q9A8T5-3	Isletform 3 of Sorbin and SH3 domain-containing protein 2	S224	.SFTSSPSPSR	S9:97;8	-1.10	-1.14	-1.04	-2.71	-0.78	-0.93	0.41	-0.10	0.18	-1.61	-1.20	-0.89
P05787	Keratin, type II cytoskeletal 8	S224	.AQNEDAIARSR	S10:1000	-2.16	-1.56	-1.20	-3.34	-3.71	-0.64	-0.03	-0.23	0.76	1.53	-1.99	-1.50
Q8P7G0	Larilated protein 1	S517/S521	.gHQKETTSRSPR	S9:100;S13:100	-1.03	-1.26	-1.98	-2.46	-2.63	0.00	0.09	0.01	0.20	0.84	-1.51	-0.92
P11137	Microtubule-associated protein 2	S1782	.V.HGAEIETGSPR	S11:1000	-1.84	-1.06	-0.91	-3.18	-2.64	-0.89	1.47	-0.34	0.63	-0.23	-1.86	-0.35
P50219	Motor neuron and pancreas homeobox protein 1	S77/S79	.R.AESPPR	S5:100;S7:1000	-0.71	-1.82	-2.12	-1.56	-2.98	0.69	1.10	-1.63	0.40	-0.06	-2.70	-2.94
Q9STA1	Nifaritin-like protein 1	S696	.dRPEASSPASPLQHLLPCK	S11:1000	-1.06	-0.85	-1.35	-1.73	-1.43	-0.16	1.05	-0.22	-0.27	-0.31	-1.45	-0.94

Table. 11B

Q6KCT9	Nipped- β -like protein	S1658	.ATSLGGGSPK	S10:100.0
P19338	Nucleolin	S563	.AEQSPRGSNAR	S9:100.0
Q8TEW8	Partitioning defective 3 homolog 8	S780	.GNEFRAIDK	S5:100.0
Q99599	Plakophilin-2	S251	.SMGNLKK	S1:100.0
Q6UQ23	Plakophilin homology domain-containing family A member 7	S556	.SRSNLVPR	S3:99.6
Q6UQ23	Plakophilin homology domain-containing family A member 7	S604	.SVDISGSDPR	S1:100.0
Q3EEL6	Programmed cell death protein 4	S457	.AFSEEGDGR	S4:100.0
Q9PZB2	Prostaglandin F2 receptor negative regulator	S875	.IMSLFEND	S3:100.0
Q9PZB2	Prostaglandin F2 receptor negative regulator	S975	.IMSLFEND	S3:100.0
Q9PZB2	Prostaglandin F2 receptor negative regulator	S875	.IMSLFEND	S3:100.0
Q9YB99	Protein FAM176A	S114	.NIFTEAELK	S5:100.0
Q8N512	Protein FAM63A	S103	.2C5PQEPR	S11:100.0
Q8UN26	Protein NDRG2	S332,5338	.TASLTSAVYDGNR	S3:100.0, S9:100.0
Q6E400	Protein phosphatase 1 regulatory subunit 1A	S128,5136	.AFGRGRPRHGSPLQGR	S8:100.0, S16:99.2
Q14671	Plamillo homolog 1	S709	.DSELGSSDQIK	S3:100.0
P08559	Pyruvate dehydrogenase E1 component subunit alpha, somatic form, mito	S232	.YGMGSEVER	S6:99.5
P08559	Pyruvate dehydrogenase E1 component subunit alpha, somatic form, mito	S322	.YGMGSEVER	T5:99.5
P08559	Pyruvate dehydrogenase E1 component subunit alpha, somatic form, mito	T231	.YGMGSEVER	T4:99.5
Q5TZA2	Rodlettin	S1460	.AFSPARPRVGPAPR	S12:100.0
Q8LQ35	Serine/arginine repetitive matrix protein 2	S295,5297	.THITLAAGRSPASR	S10:100.0, S12:100.0
P10398	Serine/threonine-protein kinase A-Raf	S157	.AQFTHSVDLSGSR	S6:100.0
Q13573	SWI domain-containing protein 1	S224,5322	.GPSPPPAPVNHPSR	S4:100.0, S12:100.0
EPASS5	Sorbin and SH3 domain-containing 2	S13	.YQSPNLLAAGR	S3:100.0
EPASS5	Sorbin and SH3 domain-containing 2	S13,514	.NQSPNLLAAGR	S4:100.0, S5:100.0
EPASS5	Sorbin and SH3 domain-containing 2	S13,514	.QSPNLLAAGR	S3:100.0, S4:100.0
EPASS5	Sorbin and SH3 domain-containing 2	S173	.SPSSSSPSR	S9:97.8
Q6B343	TBC1 domain family member 4	S591	.IGSDIFER	S6:100.0
P15374	Ubiquitin carboxyl terminal hydrolase isomerase 3	S330	.KEEESYSSPFEER	S10:99.7
Q6D701	UDP-glucose 6-dehydrogenase	S476	.APYARSGPPT	S7:100.0

Table. 11B [continued]

32/53

KEGG	Uniprot ID	Protein	TIO2+MAC+ Nonenrich		Protein (patient t1)		Protein (patient t4)		Protein (patient t5)		Protein (patient t6)		Protein (patient t7)		Protein (patient t8)		Protein (patient t9)		Protein (patient t10)		Protein (patient t11)		Protein (patient t12)		Protein (patient t13)								
			Protein[non-phos peptides]	1T/1NT	4T/4NT	5T/5NT	6T/6NT	7T/7NT	8T/8NT	9T/9NT	10T/10NT	11T/11NT	12T/12NT	13T/13NT	14T/14NT																		
Glycolysis/ Glucogenesis	P14618	Pyruvate kinase isozymes M1/M2	4.20E 0.05	0.383	0.256	0.916	0.210	0.321	0.287	0.618	0.784	0.344	0.557	0.197	0.488	0.314	0.344	0.557	0.197	0.344	0.557	0.197	0.488	0.314	0.344	0.557	0.197						
	Q86202	Homeodomain - interacting protein kinase 1	1.59E 0.04	1.002	1.189	0.756	1.171	0.545	0.450	2.508	1.711	0.848	2.997	1.216	0.992	0.767	1.216	0.992	1.216	0.992	1.216	0.992	1.216	0.992	1.216	0.992	1.216	0.992					
	Q14847	LIM and SH3 domain protein 1	2.01E 0.04	0.496	0.492	0.843	0.413	0.904	0.251	1.574	0.513	1.004	0.354	0.020	0.878	0.565	0.354	0.020	0.878	0.565	0.354	0.020	0.878	0.565	0.354	0.020	0.878	0.565					
	P37802	Trangeline - 2	2.34E 0.04	0.519	0.457	1.032	0.363	0.551	0.425	0.864	1.198	0.397	0.354	0.076	1.044	0.122	0.354	0.076	1.044	0.122	0.354	0.076	1.044	0.122	0.354	0.076	1.044	0.122					
	P55036	26S proteasome non ATPase regulatory subunit 4	2.77E 0.04	-0.445	-0.723	-1.280	-0.994	-0.904	-0.323	-0.599	-0.436	-0.334	-0.547	0.191	-0.335	-1.039	-0.335	-0.547	0.191	-0.335	-1.039	-0.335	-0.547	0.191	-0.335	-1.039	-0.335	-0.547					
	Q92538	Golgi specific brevifidin A- resistance Biotin nucleotide exchange factor 1	2.84E 0.04	1.397	0.989	0.659	2.121	2.614	0.169	3.464	2.151	2.040	0.975	0.048	1.979	3.281	0.975	0.048	1.979	3.281	0.975	0.048	1.979	3.281	0.975	0.048	1.979	3.281					
	P31937	3-hydroxyisobutyrate dehydrogenase, mitochondrial	3.60E 0.04	-0.913	-0.969	-0.642	-1.056	-0.477	-0.017	-0.797	-1.374	-0.913	-1.517	0.370	-1.079	-0.933	-1.517	0.370	-1.079	-0.933	-1.517	0.370	-1.079	-0.933	-1.517	0.370	-1.079	-0.933					
	P21291	Cysteine and glycine - rich protein 1	3.96E 0.04	0.628	0.638	1.894	0.360	0.279	0.436	0.856	0.680	1.243	0.908	-0.002	1.646	0.725	0.856	0.680	1.243	0.908	-0.002	1.646	0.725	0.856	0.680	1.243	0.908	-0.002	1.646	0.725			
	Q95394	Phosphoacetylglucosamine mutase	4.04E 0.04	-0.961	-1.293	0.153	-1.731	-1.014	-0.250	-0.961	-1.832	-1.272	-1.319	-0.105	-0.362	-1.151	-1.319	-0.105	-0.362	-1.151	-1.319	-0.105	-0.362	-1.151	-1.319	-0.105	-0.362	-1.151	-1.319	-0.105			
TJ	Q96A55	Exocyst complex component 4	5.79E 0.04	-0.694	-0.712	-0.565	-0.647	-0.936	-0.229	-0.783	-0.227	-1.109	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA				
	Q8WY93	Palladin	6.97E 0.04	0.588	0.909	1.470	0.485	0.476	0.041	0.776	1.016	1.077	0.876	0.295	0.957	0.243	0.876	1.016	1.077	0.876	0.295	0.957	0.243	0.876	1.016	1.077	0.876	0.295	0.957	0.243			
	Q14195-2	Isotform LCRMP - 4 of Dihydropyrimidinase - related protein 3	7.01E 0.04	0.555	0.677	0.951	0.592	0.854	0.048	0.354	0.721	0.327	0.453	-0.353	0.906	1.028	0.354	0.721	0.327	0.453	-0.353	0.906	1.028	0.354	0.721	0.327	0.453	-0.353	0.906	1.028			
	Q9NR12	PDZ and LIM domain protein 7	7.39E 0.04	0.778	0.599	1.162	0.775	0.544	0.127	1.259	1.589	0.022	1.101	-1.101	1.961	1.365	0.022	1.101	1.589	0.022	1.101	-1.101	1.961	1.365	0.022	1.101	1.589	0.022	1.101	-1.101	1.961	1.365	
RAC	P26038	Moesin	7.62E 0.04	0.334	0.256	0.570	0.391	0.525	-0.003	0.630	0.648	0.525	-0.143	-0.011	0.549	0.445	0.648	0.525	-0.143	-0.011	0.549	0.445	0.648	0.525	-0.143	-0.011	0.549	0.445	0.648	0.525			
	P15941	Mucin-1	8.57E 0.04	0.873	0.873	0.863	0.666	-0.217	1.737	0.101	1.479	1.051	0.523	0.063	1.170	1.664	0.523	0.063	1.170	1.664	0.523	0.063	1.170	1.664	0.523	0.063	1.170	1.664	0.523	0.063			
VSMC	Q05682	Caldesmon	9.37E 0.04	0.597	1.015	1.280	0.581	0.601	0.025	0.786	0.732	0.673	-0.003	-0.047	1.672	0.656	0.732	0.673	-0.003	-0.047	1.672	0.656	0.732	0.673	-0.003	-0.047	1.672	0.656	0.732	0.673			
	Q02838	Nucleobindin - 1	9.56E 0.04	0.800	1.472	0.494	2.586	1.895	0.207	2.815	2.055	2.244	-0.517	0.066	1.612	1.581	2.055	2.244	-0.517	0.066	1.612	1.581	2.055	2.244	-0.517	0.066	1.612	1.581	2.055	2.244			
FA	Q9Y490	Talin - 1	1.06E 0.03	0.368	0.363	1.017	0.251	0.562	-0.240	0.591	0.567	0.521	0.482	-0.125	0.684	0.549	0.567	0.521	0.482	-0.125	0.684	0.549	0.567	0.521	0.482	-0.125	0.684	0.549	0.567	0.521			
	Q433994	Isoform 4 of Tumor D54 protein	1.17E 0.03	0.409	0.213	0.567	0.280	1.354	0.408	0.648	0.171	0.453	0.669	-0.168	0.419	1.043	0.669	0.171	0.453	0.669	-0.168	0.419	1.043	0.669	0.171	0.453	0.669	-0.168	0.419	1.043	0.669	0.171	
Glycolysis/ Glucogenesis	P06733	Alpha - enolase	1.18E 0.03	0.347	0.033	0.906	-0.092	0.590	0.170	0.804	1.027	0.456	0.458	0.158	0.429	0.300	0.458	0.158	0.429	0.300	0.458	0.158	0.429	0.300	0.458	0.158	0.429	0.300	0.458	0.158			
	P53384	Cytosolic Fe-S cluster assembly factor NUBP1	1.22E 0.03	-1.109	-0.648	-0.090	-1.135	-1.082	0.092	-2.435	-1.592	-1.309	-1.298	0.205	-0.747	-1.312	-1.298	-1.309	-1.298	0.205	-0.747	-1.312	-1.298	-1.309	-1.298	0.205	-0.747	-1.312	-1.298	-1.309	-1.298		
FA	P21333	Filamin - A	1.34E 0.03	0.618	0.795	1.436	0.633	0.544	-0.218	0.993	1.020	0.415	0.444	-0.208	1.620	0.767	0.444	0.415	0.444	-0.208	1.620	0.767	0.444	0.415	0.444	-0.208	1.620	0.767	0.444	0.415	0.444		
	P11277	Spectrin beta chain, erythrocyte	1.42E 0.03	-0.342	-0.105	-1.101	-0.214	-0.058	-0.887	-0.392	-0.098	-1.198	-0.744	-0.039	-0.791	-0.558	-0.744	-0.039	-0.791	-0.558	-0.744	-0.039	-0.791	-0.558	-0.744	-0.039	-0.791	-0.558	-0.744	-0.039	-0.791	-0.558	
	Q151494	Isoform 4 of Plectin	1.62E 0.03	0.325	0.508	0.557	0.250	0.481	-0.200	1.049	0.689	0.419	0.331	0.033	0.955	0.127	0.689	0.419	0.331	0.033	0.955	0.127	0.689	0.419	0.331	0.033	0.955	0.127	0.689	0.419	0.331	0.033	
	P40763	Signal transducer and activator of transcription 3	1.63E 0.03	0.697	0.242	0.945	1.336	1.260	-0.057	1.469	0.955	0.673	-0.055	-0.066	0.432	1.008	0.673	0.673	0.432	1.008	0.673	0.673	0.432	1.008	0.673	0.673	0.432	1.008	0.673	0.673	0.432	1.008	0.673
	Q15149	Plectin	1.63E 0.03	0.324	0.507	0.557	0.249	0.481	-0.200	1.049	0.689	0.419	0.327	0.033	0.953	0.127	0.689	0.419	0.327	0.033	0.953	0.127	0.689	0.419	0.327	0.033	0.953	0.127	0.689	0.419	0.327	0.033	
	Q9HB10	Tensin-1	1.74E 0.03	0.359	0.098	0.606	0.120	0.606	-0.140	0.546	0.703	0.554	0.682	-0.049	0.734	1.308	0.682	0.703	0.554	0.682	-0.049	0.734	1.308	0.682	0.703	0.554	0.682	-0.049	0.734	1.308	0.682	0.703	-0.049
	Q6P597	Kinesin light chain 3	1.78E 0.03	-1.114	-2.285	-0.557	-1.133	-1.020	-0.338	-1.864	-1.752	-1.232	-0.288	-0.196	-0.274	-0.274	-0.288	-0.196	-0.274	-0.274	-0.288	-0.196	-0.274	-0.274	-0.288	-0.196	-0.274	-0.274	-0.288	-0.196	-0.274	-0.274	

33/53

Table 12 (continued)

34/53

	Q14980	Nuclear mitotic apparatus protein 1	6.22E-03	0.369	-0.122	0.614	0.093	1.496	0.055	0.263	0.248	0.822	0.568	0.092	1.408	0.538
	Q14639	Actin-binding LIM protein 1	6.72E-03	-0.924	-0.363	-0.565	-1.934	-0.544	0.113	-2.831	-1.788	0.522	-2.268	0.039	-0.996	-1.504
	Q96CX2	BTB/POZ domain-containing protein KCTD12	6.77E-03	0.477	0.644	0.269	0.278	0.891	-0.148	0.593	0.663	1.200	-0.364	-0.045	1.008	1.487
	Q722W4	Zincfinger CCCH-type antiviral protein 1	7.06E-03	0.825	1.636	0.838	1.609	0.275	-0.577	1.569	0.707	1.131	1.834	0.407	0.811	-0.688
	Q8UHD8	Septin-9	7.16E-03	0.425	0.481	1.236	0.090	0.694	0.194	-0.188	0.900	-0.304	0.614	0.144	0.751	0.573
	P11532	Dystrophin	7.40E-03	0.938	0.918	0.806	1.088	1.201	-0.250	2.395	1.278	0.781	-1.059	0.102	2.009	1.502
	P52594	Arf-GAP domain and FG repeat-containing protein 1	7.72E-03	0.452	0.081	0.617	-0.105	0.477	0.005	0.293	0.478	0.969	0.524	-0.298	0.966	0.506
	Q9P035	3-hydroxyacyl-CoA dehydratase 3	7.94E-03	-0.580	0.115	-0.712	-0.938	-0.754	0.291	-0.219	-0.490	-0.791	-1.464	0.331	-0.648	-1.447
	P50440-2	GATM_HUMAN Isoform 2 of glycine amidinotransferase, mitochondrial	7.94E-03	-0.912	-1.560	-0.239	-1.764	-0.290	-0.084	-0.967	-2.338	-1.201	NA	NA	NA	NA
	Q14791	Apolipoprotein L1	8.14E-03	-0.344	-0.080	-0.592	-0.123	-0.069	0.138	-0.492	-1.173	-0.577	-0.924	0.108	-0.524	-0.221
FA	B2ZB33	Filamin B	8.47E-03	0.326	0.202	0.871	0.248	0.409	-0.032	0.603	0.857	0.275	0.374	0.131	1.653	-0.152
	Q15075	Serine/threonine-protein kinase DCLK1	8.64E-03	0.429	0.035	0.636	1.174	0.672	-0.050	0.397	0.794	0.429	NA	NA	NA	NA
	Q53EL6	Programmed cell death protein 4	8.79E-03	-0.625	-0.727	0.086	-0.815	0.262	0.031	-0.811	-2.262	-1.162	-1.644	0.318	-0.743	-1.649
	Q9BZQ8	Protein Niban	8.85E-03	-0.635	-1.097	0.377	-0.997	-0.145	-0.010	-1.125	-0.998	-0.944	-2.389	0.187	-0.210	-1.907
	P05408	Neuroendocrine protein 782	9.07E-03	-0.399	-0.437	-0.751	-0.395	-0.193	-0.342	-0.328	-0.403	0.069	-0.677	-0.360	0.326	-1.559
	P41219	Peripherin	9.31E-03	0.383	0.177	0.091	0.443	0.812	0.222	1.519	0.641	1.674	-0.359	-0.054	0.519	1.006
	P62753	40S ribosomal protein S6	9.57E-03	-0.452	-0.904	0.293	-0.938	-0.207	-0.146	-0.227	-1.242	-0.503	-0.819	-0.199	0.205	-1.585
VSMC	Q05682-4	Isoform 4 of Caldesmon	1.06E-02	0.682	1.021	1.233	0.602	0.659	NA	NA	NA	NA	-0.014	-0.047	1.706	0.656
	Q8NHQ9	ATP-dependent RNA helicase DDX55	1.07E-02	0.854	2.040	0.509	1.037	0.260	0.466	2.285	1.824	-0.891	1.042	-0.313	0.869	0.749
	Q96Y6	PDZ and LIM domain protein 2	1.11E-02	0.785	0.735	0.805	1.269	1.876	-0.616	1.092	0.522	0.190	0.198	-0.355	0.512	1.330
	Q9BPU6	Dihydropyrimidinase-related protein 5	1.14E-02	0.305	0.304	-0.423	1.076	1.040	-0.397	1.247	0.034	0.986	0.936	-0.007	0.575	0.928
	P62258	14-3-3 protein epsilon	1.19E-02	-0.384	-0.174	0.382	-0.671	-0.289	-0.255	-0.882	-0.410	-1.060	-1.647	-0.002	0.046	-0.979
	E2QRBS5	NCK-associated protein 5-like	1.19E-02	0.800	NA	NA	NA	NA	1.290	0.546	0.843	0.756	NA	NA	NA	NA
	Q14767	Latent-transforming growth factor-beta binding protein 2	1.22E-02	0.337	0.230	0.654	0.502	1.527	-0.393	-0.419	0.415	0.760	1.260	0.051	0.716	1.658
	Q15056	Eukaryotic translation initiation factor 4H	1.24E-02	-0.424	-0.858	0.063	-0.848	0.143	0.094	-0.485	-0.960	-0.526	-0.920	0.129	0.002	-1.431
	Q43175	D-3-phosphoglycerate dehydrogenase	1.27E-02	-0.547	-1.777	0.363	-1.633	-0.098	0.210	-0.693	-1.674	-0.791	-1.798	0.250	0.038	-1.409
TJ	P11171	Protein 4.1	1.28E-02	-0.581	0.207	-0.049	-0.736	-0.496	-0.396	-2.049	-0.535	-1.892	0.308	-0.130	-1.187	-0.757
FA, RAC	P02751	Fibronectin	1.32E-02	0.513	1.204	0.526	0.865	0.227	-0.097	1.942	1.638	-0.007	2.760	-0.203	0.748	-0.048
FA, RAC	Q05397	Focal adhesion kinase 1	1.33E-02	-1.696	NA	NA	NA	NA	-0.705	-1.722	-1.671	-2.063	NA	NA	NA	NA
	Q06210	Glucosamine-fructose-6-phosphate aminotransferase [isomerase] 1	1.34E-02	-0.634	-1.247	-0.159	-1.328	-0.371	0.058	-0.411	-1.551	-0.394	-2.462	0.277	-0.212	
TJ	P16989	DNA-binding protein A	1.35E-02	-0.521	-0.043	0.336	-0.970	-0.139	-0.510	-0.492	-0.536	-1.565	0.091	-0.521	-0.105	-0.833
	Q15751	Probable E3 ubiquitin-protein ligase HERC1	1.41E-02	-0.947	-1.304	-0.563	-1.570	-1.124	NA	NA	NA	-1.922	0.575	-0.449	-0.770	
	Q95831	Apoptosis-inducing factor 1, mitochondrial	1.52E-02	-0.695	-1.049	0.118	-0.786	-0.493	0.042	-1.029	-1.429	-0.818	-2.542	0.437	0.351	-1.810
	F60468	Protein transport protein Sec61 subunit beta	1.58E-02	-0.527	-1.817	0.124	-0.871	-0.227	-0.460	-1.355	-2.080	-0.673	-2.949	0.096	0.860	-3.369

Table. 12 [continued]

35/53

	Q13884	Beta-1-syntrophin	1.63E-02	-0.329	-0.949	0.186	-0.826	-0.055	-0.438	-0.694	-1.512	-0.106	-1.525	0.190	0.326	-0.934
	Q00341	Villin	1.71E-02	-0.502	-0.730	0.251	-0.897	-0.304	0.082	-0.624	-1.153	-0.397	-1.831	0.018	0.305	-1.764
	Q13557	Isoform Delta 6 of calcium/calmodulin-dependent protein kinase type 1 subunit delta	1.75E-02	0.301	0.064	0.484	0.116	0.473	-0.032	0.805	0.197	0.301	NA	NA	NA	NA
	Q8TAQ2	SWI/SNF complex subunit SMARCC2	1.78E-02	-0.483	-0.325	-0.117	-0.435	-0.502	-0.003	-1.146	-0.586	-1.135	-1.231	0.119	0.669	-0.873
FA	Q15942	Zyxin	1.81E-02	0.363	0.721	0.762	0.155	0.645	-0.374	-0.206	0.948	-0.074	1.222	-0.144	0.883	0.533
	Q9JD84	Latent-transforming growth factor beta-binding protein 1	1.96E-02	1.029	0.661	0.866	-0.143	0.128	0.314	1.329	2.224	1.029	NA	NA	NA	NA
FA	Q5TDH0	Protein DDI1 homolog 2	1.98E-02	-0.851	NA	NA	NA	-0.775	-1.497	-0.570	-1.638	0.294	0.129	-2.012	-0.927	
	P14625	Endoplasmic	1.98E-02	-0.528	-1.128	0.126	-1.071	-0.344	0.008	-0.038	-1.148	-0.270	-1.872	0.086	0.270	-1.234
FA	Q9Y4G6	Talin-2	2.00E-02	0.518	NA	NA	NA	-0.341	1.023	0.645	0.613	0.847	-0.146	0.737	0.785	
	Q7Z406	Myosin-14	2.09E-02	0.349	0.255	1.364	0.386	0.329	-0.055	0.737	0.610	0.246	-0.194	0.101	1.741	-0.044
FA, RAC, VSMC	Q8TEH3	DENN domain-containing protein 1A	2.09E-02	-0.578	NA	NA	NA	-0.056	-1.996	-1.421	-1.302	-0.032	0.060	-0.578	-2.003	
	P31942	Heterogeneous nuclear ribonucleoprotein H3	2.16E-02	0.447	-0.023	1.080	-0.101	0.802	0.422	2.459	0.058	1.345	-0.459	0.025	1.711	0.651
FA, RAC, VSMC	P05387	60S acidic ribosomal protein P2	2.21E-02	-0.756	-1.824	0.479	-1.430	-0.134	0.014	-0.587	-1.860	-0.933	-2.680	0.208	0.609	-2.120
	Q14974	Protein phosphatase 1 regulatory subunit 12A	2.31E-02	0.989	-0.351	1.098	0.136	0.803	NA	NA	NA	1.342	-0.013	1.066	1.401	
FA, RAC, VSMC	P40306	Proteasome subunit beta type-10	2.39E-02	0.408	0.186	0.261	0.100	1.017	0.390	-0.607	1.333	1.324	1.271	-0.240	-0.054	1.289
	P28799	Graulins	2.41E-02	0.747	NA	NA	NA	-0.407	0.498	1.891	1.486	2.622	-0.270	1.122	2.471	
FA, RAC, VSMC	Q13263	Transcription intermediary factor 1-beta	2.58E-02	0.322	0.354	1.204	0.768	1.470	0.237	2.009	0.321	1.081	-0.865	0.090	0.498	-0.204
	Q13202	Dual specificity protein phosphatase 8	2.60E-02	-1.340	-2.445	0.451	-1.969	-0.339	0.140	-1.426	-2.951	-1.218	NA	NA	NA	NA
FA, RAC, VSMC	P35749	Myosin-11	2.75E-02	0.343	0.341	1.727	0.120	0.068	0.215	0.180	0.351	0.145	0.040	-0.082	1.930	0.838
	Q00515	Ladinin-1	2.80E-02	0.401	0.366	0.004	-0.117	0.593	0.515	0.721	0.643	-0.321	1.010	0.366	0.957	-0.483
FA, RAC, VSMC	Q99961	Endophilin-A2	2.85E-02	0.423	NA	NA	NA	-0.068	0.605	0.617	-0.104	0.827	-0.085	0.781	0.601	
	P01833	Polymeric immunoglobulin receptor	2.90E-02	0.398	0.464	0.351	0.005	0.640	-0.221	0.081	2.144	1.453	0.727	0.694	-0.256	1.589
FA, RAC, VSMC	Q15746	Myosin light chain kinase, smooth muscle	2.95E-02	0.497	0.625	1.843	0.267	0.234	0.004	0.789	1.177	-0.671	-0.027	-0.170	2.051	0.954
	Q6Y7W6	PERQ amino acid-rich with GYF domain-containing protein 2	3.02E-02	0.376	NA	NA	NA	NA	0.022	0.205	0.135	0.352	0.903	-0.130	0.928	0.874
FA, RAC, VSMC	D9YZV3	Tropomyosin 1 (Alpha) isoform 3	3.09E-02	0.490	0.417	1.548	0.361	0.478	NA	NA	NA	-0.154	-0.039	1.258	0.617	
	E9PCT1	Serine/arginine repetitive matrix protein 1	3.18E-02	0.566	NA	1.180	0.633	0.499	0.380							
FA, RAC, VSMC	Q8IYB3	Serine/arginine repetitive matrix protein 1	3.22E-02	0.566	NA											
	B1AHM9	Fibulin 1 (Fragment)	3.22E-02	0.525	NA	NA	NA	NA	-0.061	1.864	2.396	0.300	0.416	-0.034	0.918	0.899
FA, RAC, VSMC	C9JFC3	Uncharacterized protein	3.22E-02	0.435	NA	NA	NA	NA	-0.332	1.019	1.002	1.268	0.469	-0.154	0.266	1.443
	Q9P2E9	Ribosome-binding protein 1	3.24E-02	-0.512	-1.465	0.203	-1.355	-0.039	0.011	-0.017	-2.052	-0.588	-2.565	0.177	0.598	-2.087
FA, RAC, VSMC	E9PND2	Cysteine and glycine-rich protein 1 (Fragment)	3.26E-02	0.625	0.123	1.732	0.593	0.672	NA	NA	NA	0.020	0.049	2.299	0.739	
	Q86U86	Protein polybromo-1	3.30E-02	0.520	0.416	1.732	0.009	0.913	-0.264	0.915	1.243	0.124	-0.017	-0.105	-0.342	1.730
FA, RAC, VSMC	Q14005	Proline-rich protein 16	3.46E-02	-0.374	-0.528	0.440	-0.578	-0.012	0.169	-1.210	-1.374	-0.594	-0.582	0.065	0.243	-1.491
	P23588	Eukaryotic translation initiation factor 4B	3.46E-02	0.374	-0.528	0.440	-0.578	-0.012	0.169	-1.210	-1.374	-0.594	-0.582	0.065	0.243	-1.491

Q9H3Q1	Cdc42 effector protein 4	3.47E ₀₂	-1.252	-1.386	1.160	-2.577	-0.234	-0.708	-2.058	-1.737	-1.118	NA	NA	NA	NA
Q5SW79	Centrosomal protein of 170 kDa	3.51E ₀₂	-0.717	-0.585	-0.850	-1.207	-0.271	NA							
Q96Q06	Perilipin-4	3.53E ₀₂	-0.804	0.045	-1.860	-0.880	-1.716	0.362	-0.979	-1.071	-1.337	-0.061	0.012	-1.475	1.164
Q92597	Protein NDRG1	3.53E ₀₂	0.398	0.187	0.220	-0.408	0.668	-0.125	3.049	0.963	0.747	1.391	0.037	-0.017	1.002
E9PP16	Liprin - beta - 2	3.55E ₀₂	0.875	NA	NA	NA	NA	0.211	1.011	1.216	0.739	NA	NA	NA	NA
Q86W92-	Isoform 2 of Liprin-beta-1	3.55E ₀₂	0.875	NA	NA	NA	NA	0.211	1.011	1.216	0.739	NA	NA	NA	NA
Q9UBG0	C-type mannose receptor 2	3.59E ₀₂	0.461	0.388	0.729	-0.120	0.654	-0.424	0.445	0.601	0.461	0.601	-0.235	1.241	-0.245
P08727	Keratin, type I cytoskeletal 19	3.80E ₀₂	0.422	0.198	0.383	0.412	1.078	0.075	0.816	1.428	0.300	-0.839	0.409	2.362	-0.034
P49590	Probable histidine -- tRNA ligase, mitochondrial	3.92E ₀₂	-0.520	NA	NA	NA	NA	-0.302	-0.349	-1.031	-0.729	NA	NA	NA	NA
Q92598	Heat shock protein 105 kDa	4.07E ₀₂	0.496	-0.332	0.605	-0.636	0.496	0.250	1.245	0.811	0.128	2.397	-0.102	0.934	0.608
Q9UDT6	CAP-Gly domain-containing linker protein 2	4.13E ₀₂	0.780	NA	NA	NA	NA	-0.146	2.950	0.835	1.194	0.161	-0.099	1.528	0.801
Q8TD22	Protein - methionine sulfoxide oxidase MICAL1	4.26E ₀₂	0.676	NA	1.067	0.253	0.933	0.418							
Q96P42	Microtubule-actin cross-linking 1, factor isoform 4	4.30E ₀₂	0.488	0.644	1.034	0.231	0.655	-0.072	1.827	0.248	0.167	-0.491	-0.053	1.125	-0.140
Q14151	Scaffold attachment factor B2	4.44E ₀₂	-0.535	-0.783	-0.224	-0.535	-0.498	NA	NA	NA	-0.681	0.245	0.278	-0.787	
Q94903	Proline synthase co-transcribed bacterial homolog protein	4.53E ₀₂	-0.306	-0.862	0.697	-1.113	-0.066	0.094	-1.565	-1.099	-0.721	-2.063	0.135	0.818	-1.546
VSMC	Isoform 2 of Adenylate cyclase type 6	4.56E ₀₂	-1.630	NA	NA	NA	NA	-0.789	-0.816	-2.445	-2.667	NA	NA	NA	NA
Q14157	Ubiquitin - associated protein 2 - like	4.57E ₀₂	-0.931	NA	-0.886	-0.093	-0.975	-1.163							
Q8TEW8	Partitioning defective 3 homolog B	4.59E ₀₂	0.581	NA	NA	NA	NA	-0.637	0.451	1.229	1.871	0.604	0.132	0.872	0.558
Q13951-2	Isoform 2 of Core-binding factor subunit beta	4.62E ₀₂	0.537	0.342	-0.220	0.733	-0.010	0.003	1.684	1.571	0.842	NA	NA	NA	NA
Q15424	Scaffold attachment factor B1	4.90E ₀₂	-0.535	-0.797	-0.165	-0.535	-0.498	NA	NA	NA	-0.681	0.245	0.278	-0.787	
Q9Y4K4	Mitogen - activated protein kinase kinase kinase kinase 5	4.93E ₀₂	0.399	0.691	0.285	-0.341	0.048	0.469	0.454	1.004	0.180	2.059	-0.332	0.411	0.029

Table. 12 (continued)

37/53

Case	Term	Count	%	PValue	Genes	List Total	Pop Total	Fold Enrichment	Bonferroni	Benjamini	FDR
T1/NT1	hsa04530:Tight junction	16	4.8338369	1.67E-07	Q96A65, Q9HAG0, Q3MNFI, P35221, Q05655, P35222, P35579, Q43491, P55196, Q9P2M7, P35580, Q77406, Q3MIV8, Q9Y624, P31749, P35749, Q14247, Q07157	113	134	5085	5.3731343	1.92E-05	1.90E-04
T1/NT1	hsa04520:Adherens junction	11	3.3232628	5.71E-06	P55196, Q43318, P29350, P18206, Q8WW11, Q92974, P68366, Q9BQE3, P06241, P35222, P07157	113	77	5085	6.4285714	6.57E-04	3.28E-04
T1/NT1	hsa05130:Pathogenic Escherichia coli infection	7	2.1148036	1.45E-03	Q14247	113	57	5085	5.5263158	0.1539067	5.42E-02
T1/NT1	hsa04660:T cell receptor signaling pathway	9	2.7190332	2.44E-03	Q43318, P29350, Q95999, Q14920, Q9BXL7, Q14934, P06241, P36507, P311749	113	108	5085	3.75	0.2445643	6.77E-02
T1/NT1	hsa05415:Viral myocarditis	7	2.1148036	4.47E-03	P35580, Q3MNFI, Q72406, Q3MNF1, Q046337, P06241, Q3MIV8, P11532, P35749, P35579	113	71	5085	4.4366197	0.4025028	9.79E-02
T1/NT1	hsa04662:B cell receptor signaling pathway	7	2.1148036	5.85E-03	P29350, Q95999, Q14920, Q9BXL7, Q14934, P36507, P31749	113	75	5085	4.2	0.4908272	1.06E-01
T1/NT1	hsa05412:Arrhythmogenic right ventricular cardiomyopathy (ARVC)	7	2.1148036	6.24E-03	P02545, P15924, P35221, P17661, Q99959, P35222, P11532	113	76	5085	4.1447368	0.5132938	9.78E-02
T1/NT1	hsa04670:Leukocyte transendothelial migration	8	2.4169184	1.49E-02	P55196, P18206, Q60716, P26038, Q96FS4, P35221, P35222, Q9Y624	113	118	5085	3.0508475	0.8191351	1.92E-01
T1/NT1	hsa04370:VEGF signaling pathway	6	1.8126888	2.41E-02	P29474, Q14934, P35507, P04792, P47712, P31749	113	75	5085	3.6	0.9396232	2.68E-01
T1/NT1	hsa05221:Acute myeloid leukemia	5	1.510574	3.81E-02	Q14920, P36507, P42229, P31749, P29590	113	58	5085	3.8793103	0.9884995	3.60E-01
T4/NT4	hsa04530:Tight junction	13	4.5454545	1.18E-06	Q3MNFI, Q9UDY2, P11171, Q05655, P35222, P35579, Q9P2M7, P55196, P35580, Q5JTD0, Q7Z406, Q9Y624, P31749, P35749	83	134	5085	5.9436252	1.15E-04	1.15E-04
T4/NT4	hsa04660:T cell receptor signaling pathway	8	2.7972028	1.65E-03	Q43318, P29350, Q14920, Q9BXL7, P28482, Q14934, P075791, P31749	83	108	5085	4.5381526	0.1491123	7.76E-02
T4/NT4	hsa04662:B cell receptor signaling pathway	6	2.0979021	6.89E-03	P29350, Q14920, Q9BXL7, P28482, Q14934, P31749	83	75	5085	4.9012048	0.4920664	2.02E-01
T4/NT4	hsa05412:Arrhythmogenic right ventricular cardiomyopathy (ARVC)	6	2.0979021	7.28E-03	P02545, P15924, P17661, Q99959, P35222, P11532	83	76	5085	4.8337153	0.5114174	1.64E-01
T4/NT4	hsa04270:Vascular smooth muscle contraction	7	2.4475524	8.99E-03	Q43306, Q05682, Q3MNFI, P28482, Q05655, Q14974, P35749, Q96A00	83	112	5085	3.8290663	0.5673256	1.62E-01
T4/NT4	hsa05221:Acute myeloid leukemia	5	1.7482517	1.38E-02	Q14920, P28482, Q01196, P40763, P31749	83	58	5085	5.2814707	0.7432498	2.03E-01
T4/NT4	hsa04722:Neurotrophin signaling pathway	7	2.4475524	1.44E-02	Q14920, P28482, Q05655, Q13554, Q99759, P31749, Q99523	83	124	5085	3.4585115	0.7589093	1.84E-01
T4/NT4	hsa04910:Insulin signaling pathway	7	2.4475524	2.11E-02	P10644	83	135	5085	3.1767068	0.8762019	2.30E-01

38/53

T4/NT4	hsa04010:MARK signalingpathway	10	3.4965035	2.70E-02	Q14315,043318,Q01201,O14920,P28482, Q14934,P21333,P11831,Q99759,P31749	83	267	5085	2.2945715	0.9314064	2.57E-01	26.090432
T4/NT4	hsa05416:Viral myocarditis	5	1.7482517	2.70E-02	P35580,Q72406,Q3MNF1,P11532,P35579	83	71	5085	4.3144409	0.9314481	2.35E-01	26.095508
T4/NT4	hsa04370:VEGF signalingpathway	5	1.7482517	3.22E-02	P49023,P29474,P28482,Q14934,P31749	83	75	5085	4.0843373	0.9594031	2.53E-01	30.337414
T4/NT4	hsa04540:Adherens junction	5	1.7482517	3.50E-02	P55196,043318,P29350,P28482,P35222, Q14315,P49023,P28482,P02457,P21333,P35222, Q14974,P31749	83	77	5085	3.9782507	0.9694356	2.52E-01	32.533139
T4/NT4	hsa04510:Focal adhesion	8	2.7972028	4.23E-02	Q14573,P63092,Q3MNFQ,Q3MNF1,P10398, Q96A00,Q9Y6F6,O43306,Q15746,P28482,P36507, Q3MIV8,P35749,O15085	83	201	5085	2.4384104	0.9855755	2.78E-01	38.013707
T5/NT5	hsa04270:Vascular smoothmuscle contraction	11	3.3742331	8.26E-05	Q9H4G0,B727H6,Q3MNF0,Q3MNF1,O95049, P35222,P35579,Q9P2M7,P35580,Q72406, Q3MIV8,P35749,Q07157	105	112	5085	4.7563776	0.0088823	8.88E-03	0.0929764
T5/NT5	hsa04530:Tightjunction	10	3.0674847	1.55E-03	Q43306,Q14573,P63092,P68366,Q9BQE3,P28482, P36507,Q07157	105	134	5085	3.6140725	0.1538314	8.01E-02	1.7264351
T5/NT5	hsa04540:Gapjunction	8	2.4539877	2.13E-03	Q14315,P22105,P18206,Q15746,Q9Y490,Q92934, P28482,P02452,P21333,Q15942,B2Z283,P35222	105	89	5085	4.35313	0.2057072	7.39E-02	2.3725258
T5/NT5	hsa04510:Focal adhesion	12	3.6809816	2.48E-03	Q04632,P35580,Q3MNF0,Q72406,Q3MNF1, Q3MIV8,P35749,P35579	105	201	5085	2.891258	0.235444	6.49E-02	2.7601375
T5/NT5	hsa05416:Viral myocarditis	7	2.1472393	3.09E-03	Q04637,Q3MIV8,P11532,P35749,P35579	105	71	5085	4.7746479	0.2843357	6.47E-02	3.427805
T5/NT5	hsa05130:Pathogenic Escherichiacoli infection	6	1.8404908	5.86E-03	Q92974,P68366,P05783,Q9BQE3,P35222,P19338	105	57	5085	5.0977444	0.4696496	1.00E-01	6.398432
T5/NT5	hsa05221:Acute myeloidleukemia	6	1.8404908	6.31E-03	Q92934,P28482,P10398,P36507,P40763,P29590	105	58	5085	5.0098522	0.4949715	9.30E-02	6.8746491
T5/NT5	hsa04720:Longterm potentiation	6	1.8404908	1.22E-02	Q14573,Q13522,P28482,P10398,Q13554,P36507	105	68	5085	4.2731092	0.7349611	1.53E-01	12.928771
T5/NT5	hsa04520:Adherens junction	6	1.8404908	2.01E-02	P29550,P18206,C60716,P28482,P35222,Q07157	105	77	5085	3.7736549	0.8879411	2.16E-01	20.403138
T5/NT5	hsa05216:Thyroid cancer	4	1.2269939	2.07E-02	P28482,P36507,P35222,Q16204	105	29	5085	6.679803	0.8949838	2.02E-01	20.93999
T5/NT5	hsa05213:Endometrial cancer	5	1.5337423	2.11E-02	Q92934,P28482,P10398,P36507,P35222	105	52	5085	4.6565934	0.8999753	1.89E-01	21.340372
T5/NT5	hsa05110:Vibrio cholerae infection	5	1.5337423	2.69E-02	P13569,P63092,Q43731,P60468,Q07157	105	56	5085	4.3239796	0.9474237	2.18E-01	26.441898
T5/NT5	hsa04912:GnRH signalingpathway	6	1.8404908	4.94E-02	Q43306,Q14573,P63092,P28482,Q13554,P36507	105	98	5085	2.9650146	0.9958125	3.44E-01	43.497533
T6/NT6	hsa04530:Tightjunction	11	4.0892193	1.97E-05	P55196,P35580,Q9H4G0,Q77406,Q5JTD0,P35221, P35749,P35579,Q9Y624,P31749,Q14247	75	134	5085	5.5656716	0.001774	1.77E-03	0.0214598
T6/NT6	hsa04910:Insulin signalingpathway	8	2.9739777	3.25E-03	Q92934,Q14432,Q95685,P10398,P36507,P13861, P31749,P10644	75	135	5085	4.0177778	0.2542474	1.36E-01	3.4838869
T6/NT6	hsa05221:Endometrial cancer	5	1.8587361	6.60E-03	Q92934,P35221,P10398,P36507,P31749	75	52	5085	6.5192308	0.4491342	1.80E-01	6.9537378
T6/NT6	hsa04670:Leukocyte transendothelial migration	7	2.6022305	7.05E-03	P55196,P18206,Q60716,Q96F54,P35221,Q9NRY4, Q9Y624	75	118	5085	4.0220339	0.4709377	1.47E-01	7.4068415
T6/NT6	hsa05221:Acute myeloidleukemia	5	1.8587361	9.69E-03	Q92934,Q01196,P10398,P36507,P31749	75	58	5085	5.8448276	0.5838409	1.61E-01	10.054798
T6/NT6	hsa05416:Viral myocarditis	5	1.8587361	1.93E-02	P35580,Q72406,P11532,P35749,P35579	75	71	5085	4.7746479	0.8265815	2.53E-01	19.085621

39/53

T6/NT6	hsa05220:Chronic myeloid leukemia	5	1.8587361	2.31E 02	Q92934, Q01196, P10398, P36507, P31749	75	75	5085	4.52	0.8779095	2.59E-01	22.446264
T6/NT6	hsa04520:Adherens junction	5	1.8587361	2.52E 02	P55196, Q043318, P18206, Q60716, P35221, P35580, P18206, Q77406, P53667, P10398, Q9NRV4, P36507, P35579	75	77	5085	4.4025974	0.8991223	2.49E-01	24.214903
T6/NT6	hsa04810:Regulation of actin cytoskeleton	8	2.9739777	3.58E 02	Q92934, P10398, P36507, P31749, P55196, P08069, P29550, P18206, Q8WW1, Q60716, P06241, P18031, Q07157, P08069, P18206, Q9Y490, P49841, P49023, P02452, P21333, P06241, Q15942, P31749	75	215	5085	2.5227907	0.9623427	3.05E-01	32.724673
T6/NT6	hsa05223:Non - small cell lung cancer	4	1.4869888	4.32E 02	Q92934, P10398, P36507, P31749, P55196, P08069, P29550, P18206, Q8WW1, Q60716, P06241, P18031, Q07157, P08069, P18206, Q9Y490, P49841, P49023, P02452, P21333, P06241, Q15942, P31749	75	54	5085	5.0222222	0.9812867	3.28E-01	38.177535
T7/NT7	hsa04520:Adherens junction	9	3.8793103	9.44E 06	P55196, Q9H460, Q77406, Q95049, P35749, P31749, Q14247, Q07157	72	77	5085	8.2548701	8.77E-04	8.77E-04	0.0103315
T7/NT7	hsa04510:Focal adhesion	10	4.3103448	1.75E 03	Q92934, P10398, P36507, P31749, Q9H460, Q77406, Q95049, P35749, P31749, Q14247, Q07157	72	201	5085	3.5136816	0.150061	7.81E-02	1.8997344
T7/NT7	hsa04530:Tight junction	8	3.4482759	2.46E 03	Q92934, P10398, P36507, P31749, Q9H460, Q96465, Q95049, Q9UDY2, P11171, Q05655, P35579, Q13813, Q8TEW0, P55196, Q9P2M/, P35580, Q5JTD0, Q77406, Q9Y2J2, Q9Y624, P31749, P35749, Q07157, Q14247, P52272, P26368, Q75643, P49756, Q60231, Q13573, P08621, Q13242, Q08839, P61978, P09653, Q15365, P38159, Q05655, Q60237, Q9NZNS, Q14974, P47712, Q96A00, Q9Y6F6, Q15746, Q05682, P47901, P28482, P36507, P22694, Q15085, P35749	72	134	5085	4.2164179	0.2049008	7.36E-02	2.6629666
T8/NT8	hsa04530:Tight junction	20	2.8129395	2.15E 06	Q07955, Q9DKV3, Q08170, Q9Y559, P08621, Q13242, Q08839, P61978, P09653, Q15365, P55196, Q92934, P105642, Q95685, P62753, P55568, P13861, P18031, Q9Y4H2, P54646, P28482, P36507, P08716, P28482, Q9UQ88, P18031, Q8TEW0, P36507, P22694, Q15085, P35749	213	134	5085	3.5631701	2.84E-04	2.84E-04	0.0025155
T8/NT8	hsa03040:Spliceosome	18	2.5316456	1.49E 05	Q07955, Q9DKV3, Q08170, Q9Y559, P08621, Q13242, Q08839, P61978, P09653, Q15365, P38159, Q05655, Q60237, Q9NZNS, Q14974, P47712, Q96A00, Q9Y6F6, Q15746, Q05682, P47901, P28482, P36507, P22694, Q15085, P35749	213	126	5085	3.4104628	0.0019674	9.84E-04	0.0174202
T8/NT8	hsa04270:Vascular smooth muscle contraction	15	2.1097046	1.99E 04	Q07955, Q9DKV3, Q08170, Q9Y559, P08621, Q13242, Q08839, P61978, P09653, Q15365, P38159, Q05655, Q60237, Q9NZNS, Q14974, P47712, Q96A00, Q9Y6F6, Q15746, Q05682, P47901, P28482, P36507, P22694, Q15085, P35749	213	112	5085	3.1973089	0.0259813	8.74E-03	0.2326065
T8/NT8	hsa04520:Adherens junction	11	1.5471167	1.22E 03	Q07955, Q9DKV3, Q08170, Q9Y559, P08621, Q13242, Q08839, P61978, P09653, Q15365, P38159, Q05655, Q60237, Q9NZNS, Q14974, P47712, Q96A00, Q9Y6F6, Q15746, Q05682, P47901, P28482, P36507, P22694, Q15085, P35749	213	77	5085	3.4104628	0.148375	3.94E-02	1.4107526
T8/NT8	hsa04910:Insulin signalling pathway	15	2.1097046	1.35E 03	P49841, Q02934, Q15642, Q95685, P62753, P55568, P13861, P18031, Q9Y4H2, P54646, P28482, P36507, P08716, P28482, Q9UQ88, P18031, Q8TEW0, P36507, P22694, P13861, Q9Y4H2, P54646, P28482, P36507, P08716, P28482, Q9UQ88, P18031, Q8TEW0, P36507, P22694, Q15085, P35749	213	135	5085	2.6525822	0.1636104	3.51E-02	1.5680658
T8/NT8	hsa04650:1 cell receptor signalling pathway	13	1.8284107	1.64E 03	P05412, P29350, Q0910C2, Q92934, Q92769, P28482, P05412, P29350, Q14934, P28482, Q16559, P36507, P31749	213	108	5085	2.8736307	0.1947729	3.55E-02	1.8981408
T8/NT8	hsa05220:Chronic myeloid leukemia	10	1.4064638	3.68E 03	Q13547, Q9UQ88, P28482, Q28482, P36507, P46527, P42229, P31749, Q15111, P07948	213	75	5085	3.1830986	0.383359	6.72E-02	4.2142762
T8/NT8	hsa04652:B-cell receptor signalling pathway	10	1.4064638	3.68E 03	P05412, P29350, Q095999, P49841, P28482, Q14934, P36507, P31749, Q15111, P07948	213	75	5085	3.1830986	0.383359	6.72E-02	4.2142762
T8/NT8	hsa04040:MAPK signalling pathway	21	2.9535865	7.33E 03	P10636, Q1536, P15317, P15318, P15319, P15320, P15321, P15322, P15323, P15324, P15325, P15326, P15327, P15328, P15329, P15330, P15331, P15332, P15333, P15334, P15335, P15336, P15337, P15338, P15339, P15340, P15341, P15342, P15343, P15344, P15345, P15346, P15347, P15348, P15349, P15350, P15351, P15352, P15353, P15354, P15355, P15356, P15357, P15358, P15359, P15360, P15361, P15362, P15363, P15364, P15365, P15366, P15367, P15368, P15369, P15370, P15371, P15372, P15373, P15374, P15375, P15376, P15377, P15378, P15379, P15380, P15381, P15382, P15383, P15384, P15385, P15386, P15387, P15388, P15389, P15390, P15391, P15392, P15393, P15394, P15395, P15396, P15397, P15398, P15399, P15310, P15311, P15312, P15313, P15314, P15315, P15316, P15317, P15318, P15319, P15320, P15321, P15322, P15323, P15324, P15325, P15326, P15327, P15328, P15329, P15330, P15331, P15332, P15333, P15334, P15335, P15336, P15337, P15338, P15339, P15340, P15341, P15342, P15343, P15344, P15345, P15346, P15347, P15348, P15349, P15350, P15351, P15352, P15353, P15354, P15355, P15356, P15357, P15358, P15359, P15360, P15361, P15362, P15363, P15364, P15365, P15366, P15367, P15368, P15369, P15370, P15371, P15372, P15373, P15374, P15375, P15376, P15377, P15378, P15379, P15380, P15381, P15382, P15383, P15384, P15385, P15386, P15387, P15388, P15389, P15390, P15391, P15392, P15393, P15394, P15395, P15396, P15397, P15398, P15399, P15310, P15311, P15312, P15313, P15314, P15315, P15316, P15317, P15318, P15319, P15320, P15321, P15322, P15323, P15324, P15325, P15326, P15327, P15328, P15329, P15330, P15331, P15332, P15333, P15334, P15335, P15336, P15337, P15338, P15339, P15340, P15341, P15342, P15343, P15344, P15345, P15346, P15347, P15348, P15349, P15350, P15351, P15352, P15353, P15354, P15355, P15356, P15357, P15358, P15359, P15360, P15361, P15362, P15363, P15364, P15365, P15366, P15367, P15368, P15369, P15370, P15371, P15372, P15373, P15374, P15375, P15376, P15377, P15378, P15379, P15380, P15381, P15382, P15383, P15384, P15385, P15386, P15387, P15388, P15389, P15390, P15391, P15392, P15393, P15394, P15395, P15396, P15397, P15398, P15399, P15310, P15311, P15312, P15313, P15314, P15315, P15316, P15317, P15318, P15319, P15320, P15321, P15322, P15323, P15324, P15325, P15326, P15327, P15328, P15329, P15330, P15331, P15332, P15333, P15334, P15335, P15336, P15337, P15338, P15339, P15340, P15341, P15342, P15343, P15344, P15345, P15346, P15347, P15348, P15349, P15350, P15351, P15352, P15353, P15354, P15355, P15356, P15357, P15358, P15359, P15360, P15361, P15362, P15363, P15364, P15365, P15366, P15367, P15368, P15369, P15370, P15371, P15372, P15373, P15374, P15375, P15376, P15377, P15378, P15379, P15380, P15381, P15382, P15383, P15384, P15385, P15386, P15387, P15388, P15389, P15390, P15391, P15392, P15393, P15394, P15395, P15396, P15397, P15398, P15399, P15310, P15311, P15312, P15313, P15314, P15315, P15316, P15317, P15318, P15319, P15320, P15321, P15322, P15323, P15324, P15325, P15326, P15327, P15328, P15329, P15330, P15331, P15332, P15333, P15334, P15335, P15336, P15337, P15338, P15339, P15340, P15341, P15342, P15343, P15344, P15345, P15346, P15347, P15348, P15349, P15350, P15351, P15352, P15353, P15354, P15355, P15356, P15357, P15358, P15359, P15360, P15361, P15362, P15363, P15364, P15365, P15366, P15367, P15368, P15369, P15370, P15371, P15372, P15373, P15374, P15375, P15376, P15377, P15378, P15379, P15380, P15381, P15382, P15383, P15384, P15385, P15386, P15387, P15388, P15389, P15390, P15391, P15392, P15393, P15394, P15395, P15396, P15397, P15398, P15399, P15310, P15311, P15312, P15313, P15314, P15315, P15316, P15317, P15318, P15319, P15320, P15321, P15322, P15323, P15324, P15325, P15326, P15327, P15328, P15329, P15330, P15331, P15332, P15333, P15334, P15335, P15336, P15337, P15338, P15339, P15340, P15341, P15342, P15343, P15344, P15345, P15346, P15347, P15348, P15349, P15350, P15351, P15352, P15353, P15354, P15355, P15356, P15357, P15358, P15359, P15360, P15361, P15362, P15363, P15364, P15365, P15366, P15367, P15368, P15369, P15370, P15371, P15372, P15373, P15374, P15375, P15376, P15377, P15378, P15379, P15380, P15381, P15382, P15383, P15384, P15385, P15386, P15387, P15388, P15389, P15390, P15391, P15392, P15393, P15394, P15395, P15396, P15397, P15398, P15399, P15310, P15311, P15312, P15313, P15314, P15315, P15316, P15317, P15318, P15319, P15320, P15321, P15322, P15323, P15324, P15325, P15326, P15327, P15328, P15329, P15330, P15331, P15332, P15333, P15334, P15335, P15336, P15337, P15338, P15339, P15340, P15341, P15342, P15343, P15344, P15345, P15346, P15347, P15348, P15349, P15350, P15351, P15352, P15353, P15354, P15355, P15356, P15357, P15358, P15359, P15360, P15361, P15362, P15363, P15364, P15365, P15366, P15367, P15368, P15369, P15370, P15371, P15372, P15373, P15374, P15375, P15376, P15377, P15378, P15379, P15380, P15381, P15382, P15383, P15384, P15385, P15386, P15387, P15388, P15389, P15390, P15391, P15392, P15393, P15394, P15395, P15396, P15397, P15398, P15399, P15310, P15311, P15312, P15313, P15314, P15315, P15316, P15317, P15318, P15319, P15320, P15321, P15322, P15323, P15324, P15325, P15326, P15327, P15328, P15329, P15330, P15331, P15332, P15333, P15334, P15335, P15336, P15337, P15338, P15339, P15340, P15341, P15342, P15343, P15344, P15345, P15346, P15347, P15348, P15349, P15350, P15351, P15352, P15353, P15354, P15355, P15356, P15357, P15358, P15359, P15360, P15361, P15362, P15363, P15364, P15365, P15366, P15367, P15368, P15369, P15370, P15371, P15372, P15373, P15374, P15375, P15376, P15377, P15378, P15379, P15380, P15381, P15382, P15383, P15384, P15385, P15386, P15387, P15388, P15389, P15390, P15391, P15392, P15393, P15394, P15395, P15396, P15397, P15398, P15399, P15310, P15311, P15312, P15313, P15314, P15315, P15316, P15317, P15318, P15319, P15320, P15321, P15322, P15323, P15324, P15325, P15326, P15327, P15328, P15329, P15330, P15331, P15332, P15333, P15334, P15335, P15336, P15337, P15338, P15339, P15340, P15341, P15342, P15343, P15344, P15345, P15346, P15347, P15348, P15349, P15350, P15351, P15352, P15353, P15354, P15355, P15356, P15357, P15358, P15359, P15360, P15361, P15362, P15363, P15364, P15365, P15366, P15367, P15368, P15369, P15370, P15371, P15372, P15373, P15374, P15375, P15376, P15377, P15378, P15379, P15380, P15381, P15382, P15383, P15384, P15385, P15386, P15387, P15388, P15389, P15390, P15391, P15392, P15393, P15394, P15395, P15396, P15397, P15398, P15399, P15310, P15311, P15312, P15313, P15314, P15315, P15316, P15317, P15318, P15319, P15320, P15321, P15322, P15323, P15324, P15325, P15326, P15327, P15328, P15329, P15330, P15331, P15332, P15333, P15334, P15335, P15336, P15337, P15338, P15339, P15340, P15341, P15342, P15343, P15344, P15345, P15346, P15347, P15348, P15349, P15350, P15351, P15352, P15353, P15354, P15355, P15356, P15357, P15358, P15359, P15360, P15361, P15362, P15363, P15364, P15365, P15366, P15367, P15368, P15369, P15370, P15371, P15372, P15373, P15374, P15375, P15376, P15377, P15378, P15379, P15380, P15381, P15382, P15383, P15384, P15385, P15386, P15387, P15388, P15							

40/53

hsa04664:Fc epsilon RI signaling pathway	9	1.2658228	1.53E-02	Q9UQC2, P30273, P28482, Q16559, Q05655, P36507, P47712, P31749, P07948	213	78	5085	2.7546046	0.8685133	1.44E-01	16.429408
hsa04510:Focal adhesion	16	2.2503516	1.97E-02	P20751, P18206, Q9V490, P49841, Q92934, P02452, P21333, P16144, Q13174, P14451, P14974, Q14315, P05412, P54646, P35568, Q8N559, P40763, P31749, Q15111, Q96RR4	213	201	5085	1.9003574	0.9275308	1.71E-01	20.719655
hsa04920:Adipocytokine signaling pathway	8	1.1251758	2.06E-02	P9V4H2, P54646, P35568, Q8N559, P40763, P31749, Q15111, Q96RR4	213	67	5085	2.8505361	0.9363084	1.68E-01	21.619998
hsa04620:Toll-like receptor signaling pathway	10	1.4064698	2.42E-02	P043318, Q135456, P05412, P28482, Q16539, Q9NY18, P36507, P10451, P31749, Q15111, P05412, P9V841, Q92934, P28482, Q13177, P36507, P46527, P42229, P31749	213	101	5085	2.3636871	0.960387	1.83E-01	24.844586
hsa04012:Erbb signaling pathway	9	1.2658228	2.77E-02	Q13547, Q9Y6R0, Q9Y618, Q92769, Q13573, Q8TDB6	213	87	5085	2.4696455	0.9754317	1.96E-01	27.954395
hsa04330:Notch signaling pathway	6	0.8438819	4.45E-02	Q9P665, Q9H4G0, Q95049, P35222, P35579, Q9P2M7, P55196, P35580, Q72406, P31749, P35749, Q9V624, Q07157	213	47	5085	3.0476476	0.9875498	2.84E-01	41.245623
hsa04530:Tight junction	13	2.5742574	1.24E-03	P20751, P18206, Q9V490, Q92934, P02452, P21333, P16144, P10451, Q15942, P35222, Q14315, P22105, P05412, Q15746, B22283, P31749	166	134	5085	2.9718126	0.1402452	1.40E-01	1.4159514
hsa04510:Focal adhesion	16	3.1683168	2.04E-03	P05412, Q15746, B22283, P31749	166	201	5085	2.4384104	0.2204942	1.17E-01	2.3234027
hsa03040:Spliceosome	12	2.3762376	2.42E-03	Q9V4K3, P52227, P26328, P075643, P075643, Q13573, Q8N127, Q75533, P61978, Q00839, P38159	166	126	5085	2.9173838	0.2556182	9.37E-02	2.7474917
hsa05221:Acute myeloid leukemia	8	1.5841584	2.49E-03	Q9V934, Q06455, P10398, P36507, P40763, P31749, Q15111, P29590	166	58	5085	4.2251766	0.2620032	7.31E-02	2.8265259
hsa04910:Insulin signaling pathway	12	2.3762376	4.14E-03	Q9V4H2, Q92934, P54646, Q15642, Q95635, P62753, P10398, P36507, P25588, P13861, P46019, P31749	166	135	5085	2.7228916	0.397191	9.63E-02	4.6645079
hsa04620:B cell receptor signaling pathway	8	1.5841584	1.04E-02	P05412, P29350, Q95999, Q9BKL7, Q14934, P36507, P31749, Q15111	166	75	5085	3.2674699	0.719697	1.91E-01	11.310903
hsa04370:VEGF signaling pathway	8	1.5841584	1.04E-02	Q9V934, P29474, Q14934, Q16539, P36507, P04792, P47712, P31749	166	75	5085	3.2674699	0.719697	1.91E-01	11.310903
hsa04920:Adipocytokine signaling pathway	7	1.3861386	2.08E-02	Q9V4H2, P54646, P35568, Q8N559, P40763, P31749, Q15111	166	67	5085	3.2004136	0.9227555	3.06E-01	21.468611
hsa04660:T cell receptor signaling pathway	9	1.7821782	2.33E-02	P05412, P29350, Q95999, Q9BKL7, Q14934, Q16539, P36507, P31749, Q15111	166	108	5085	2.5527108	0.9439676	3.02E-01	23.812309
hsa04010:MAPK signalling pathway	16	3.1683168	2.57E-02	P05412, P29350, Q95999, Q9BKL7, Q14934, Q16539, P36507, P27283, P04792, P31749	166	267	5085	1.8356572	0.9582575	2.97E-01	25.900039
hsa04670:Leukocyte transendothelia migration	9	1.7821782	3.70E-02	P55196, P15311, P18206, P60716, P26038, Q96FS4, Q16539, P35222, Q9V624	166	118	5085	2.3363794	0.9899851	3.69E-01	35.23915
hsa04520:Adherens junction	7	1.3861386	3.80E-02	P55222, Q07157, P55196, Q14319, P05412, P16949, Q14934, Q16539, P35579, P35580, Q15746, P15311, Q72406, P36507, Q13576	166	77	5085	2.7847755	0.9910099	3.49E-01	35.950324
hsa04810:Regulation of actin cytoskeleton	13	2.5742574	4.56E-02	Q9V4G0, P05049, P35221, P11171, P35222, P35579, Q13813, P55196, Q9PBM7, P35568, Q51109, Q72406, Q8N135, Q9V624, P31749, P35749, Q07157, P14247	222	134	5085	3.0768455	0.0072945	7.29E-03	41.584981
T10/NT 10	hsa04510:Focal adhesion	21	3.0927835	3.95E-04	P18206, Q9V490, P49841, Q92934, P02452, P16144, P14247	201	5085	2.3931021	0.0489562	1.25E-02	0.0658322
T10/NT 10	hsa04510:Focal adhesion	21	3.0927835	3.95E-04	P18206, Q9V490, P49841, Q92934, P02452, P16144, P14247	201	5085	2.3931021	0.0489562	1.25E-02	0.0658324

Table 13 (continued)

10	adhesion				P21333, Q13177, Q9Y4G6, P10451, Q15942, P95222, Q14974, P94049, P22105, P05412, Q13905, Q05397, P49023, P28482, P31749						
T10/NT	hsa04370:VEGF signaling pathway	12	1.7673049	3.42E-04	P04049, Q92934, Q05397, P49023, P29474, P28482, Q14934, P49841, Q13177, P10398, P42229, P04049, P05412, Q05397, P28482, P16333, P36507, P31749	222	75	5085	3.6648649	0.0424668	1.44E-02
T10/NT	hsa04012:Erbb signaling pathway	13	1.9145803	3.32E-04	P46527, P22727, Q75643, Q13573, Q60231, Q13247, P49756, Q01955, Q9UKV3, Q08170, Q9Y559, P08621, P49023, P28482, P36507, Q13576	222	87	5085	3.4226468	0.0412915	2.09E-02
T10/NT	hsa03040:Spliceosome	15	2.2091311	1.03E-03	P61978, P09651, Q15365, P38159	222	126	5085	2.726834	0.1224251	2.15E-02
T10/NT	hsa04810:Regulation of actin cytoskeleton	21	3.0927835	9.40E-04	P04049, P49841, Q09294, P28482, P35224, P10398, P36507, P55222, P31749	222	52	5085	2.7372722	0.1126095	2.36E-02
T10/NT	hsa05213:Endometrial cancer	9	1.3254786	1.61E-03	Q9Y999, P49841, Q08209, Q13177, P04049, P05412, Q9Y4N5, Q14974, P35579, Q14155, P35580, P14934, P28482, P16333, Q16559, P36507, P31749, Q12959	222	108	5085	2.7571321	0.2565939	3.64E-02
T10/NT	hsa04660:T cell receptor signaling pathway	13	1.9145803	2.33E-03	P04049, Q02934, P28482, P10398, P36507, P40763, P42229, P31749, P29590	222	58	5085	3.554287	0.3414775	4.09E-02
T10/NT	hsa05221:Acute myeloid leukemia	9	1.3254786	3.28E-03	Q14573, P10398, Q9N2ZN5, Q14974, P06237, Q9EA00, Q9Y6F6, P04049, Q05682, P28482, P36507, Q15085, P35749	222	112	5085	2.658631	0.3318033	4.38E-02
T10/NT	hsa04270:Vascular smooth muscle contraction	13	1.9145803	3.17E-03	P04049, P05412, Q095999, P49841, P28482, Q14934, Q08209, P36507, P31749, P07948	222	75	5085	3.0540541	0.4603011	5.45E-02
T10/NT	hsa04662:8 cell receptor signaling pathway	10	1.4727541	4.84E-03	Q13547, P04049, Q92934, P28482, P10398, P36507, P46527, P42229, P31749	222	89	5085	2.5736411	0.8440867	1.24E-01
T10/NT	hsa05220:Chronic myeloid leukemia	9	1.3254786	1.54E-02	P04049, P14672, Q49841, Q92934, P28482, P10398, P36507, P35222, P46527, P31749	222	75	5085	2.7486486	0.8605715	1.23E-01
T10/NT	hsa05215:Prostate cancer	10	1.4727541	1.45E-02	P04049, P05412, Q13905, Q9Y5Y3, P49841, Q92934, P28482, Q9U1H0, Q165539, P36507, P35568, P160174, P60174, P36871, P168669, Q966603, P04075, P08559, P17858	222	89	5085	2.2166521	0.904157	1.36E-01
T10/NT	hsa0410:Glycolysis / Gluconeogenesis	8	1.1782032	1.45E-02	P04049, P05412, Q13905, Q9Y5Y3, P49841, Q92934, P28482, Q9U1H0, Q165539, P36507, P35568, P13861, P04049, Q13905, P28482, P36507, P31749, P46109	222	60	5085	3.0540541	0.8430846	1.33E-01
T10/NT	hsa04722:Neurotrophin signaling pathway	12	1.7673049	1.83E-02	P28482, Q9U1H0, Q165539, P36507, P35568, P160174, P60174, P36871, P168669, Q966603, P04075, P04049, P05412, Q13905, P28482, P36507, P31749, P46109	222	124	5085	2.2057057	0.8289625	1.37E-01
T10/NT	hsa04910:insulin signaling pathway	13	1.9145803	1.38E-02	Q9Z608, P04049, Q9Y217, Q9U1H1, P28482, P39966, Q43150, P49006, P31749, P07948	222	95	5085	2.4110953	0.936581	1.42E-01
T10/NT	hsa04665:Fc gamma R mediated phagocytosis	10	1.4727541	2.15E-02	P37837, P36871, Q966G03, P04075, P17858, Q8N1DX1, Q9U1H1, Q152776, Q8N6H7, Q03150, Q9N6L1, Q9BXH6, Q99961, Q9Y217, Q96PU5, Q9U1QN3, Q96897, Q15075, Q00610, Q7L804	222	25	5085	4.5810811	0.9359705	1.49E-01
T10/NT	hsa04720:Long-term potentiation	8	1.1782032	2.77E-02	P04049, Q14573, Q13522, P28482, Q08209, P10398, P36507, Q14974	222	68	5085	2.6947536	0.9697753	1.68E-01
T10/NT	hsa04670:Leukocyte transendothelial migration	11	1.6200295	3.16E-02	P55196, P18206, Q05397, P49023, Q060716, P26038, Q96FS4, P35221, Q16539, P35222, Q9Y624	222	118	5085	2.1352497	0.9831067	1.69E-01
T10/NT	hsa0211:Renal cell	8	1.1782032	3.13E-02	P04049, P05412, Q13905, P28482, P10398, Q13177, P222	222	70	5085	2.6177606	0.982283	1.75E-01

42/53

10	carcinoma				P36507,P31749								
T10/NT 10	hsa03216:Thyroid cancer	5	0.736377	3.51E-02	P12270,P28482,P36507,P35222,Q16204	222	29	5085	3.9492078	0.9893578	1.79E-01	33.95539	
T10/NT 10	hsa04010:MAPK signaling pathway	19	2.7982327	4.10E-02	Q10636,Q08209,P21333,P15336,Q9Y4GB,Q13177, 095819,Q9UB16,P04049,P05412,P16949,P28482, Q14934,P11831,Q16539,P36507,Q9NY18,P04792, P31749	222	267	5085	1.6299727	0.9951076	1.92E-01	38.479787	
T10/NT 10	hsa0520:Aminocugar and nucleotidesugar metabolism	6	0.8836524	4.06E-02	Q06210,P36871,Q96603,Q9UJ70,Q60701,Q95394	222	44	5085	3.1234644	0.9947976	1.97E-01	38.133693	
T11/NT 11	hsa04530:Tightjunction	23	3.1420765	6.44E-08	014493,Q9HA60,P16899,Q3MNF1,Q9NV12, 095049,Q9UDY2,P35221,Q05655,P35579, Q13813,O43491,P55196,Q9P2M17,P35580, Q16625,P511D0,Q72406,Q8N135,O43707,Q9V624, P78369,P57749,Q07157	226	134	5085	3.8619403	8.56E-06	8.56E-06	7.53E-05	
T11/NT 11	hsa04270:Vascular smoothmuscle contraction	16	2.1857923	1.04E-04	Q14573,P63092,Q3VNF1,Q13454,P10398, Q05655,O60237,Q9NZN5,O14974,Q96A00, Q9Y6F6,P04049,Q05682,P28482,P36507,015085, P35749	226	112	5085	3.2142857	0.0137585	6.90E-03	0.1217248	
T11/NT 11	hsa04810:Regulationof actin cytoskeleton	23	3.1420765	1.74E-04	014493,P18206,P26038,Q13454,Q9UOB8,P10398, Q9N8N5,O14974,P35579,Q14155,P35580,P04049, Q15052,Q72406,P49023,P25054,P26010,P28482, Q76176,O43707,Q9NRY4,P36507,P13576	226	215	5085	2.4069767	0.0229065	7.69E-03	0.2035185	
T11/NT 11	hsa04670:Leukocyte transendothelial migration	15	2.0491803	6.35E-04	014493,P18206,P26038,Q13454,P35221, P55196,Q16625,P49023,Q15080,Q60716, P08648,P18206,Q9Y490,Q92934,Q13454,P21333, Q9NRY4,043707	226	118	5085	2.8601695	0.0809759	2.09E-02	0.7396355	
T11/NT 11	hsa03040:Spliceosome	15	2.0491803	1.22E-03	Q52272,P51991,Q13573,Q13247,Q07955, Q9UAV3,P16629,Q9Y559,P08621,Q5V1L8, Q13242,P61978,P99651,Q15365,P38159	226	126	5085	2.6785714	0.1502805	3.20E-02	1.4214971	
T11/NT 11	hsa04510:Focal adhesion	19	2.5956284	3.15E-03	P08648,P18206,Q9Y490,Q92934,Q13454,P21333, P51915,Q15942,O14974,Q03135,Q14315,P04049, P05412,P49023,Q9NVD7,P26010,P28482, Q9NRY4,043707	226	201	5085	2.1268657	0.3425831	6.75E-02	3.6203464	
T11/NT 11	hsa04520:Adherens junction	10	1.3661202	6.48E-03	P28482,Q9UJH0,P35221,043707,Q07157	226	77	5085	2.9220779	0.5788665	1.02E-01	7.3211555	
T11/NT 11	hsa05213:Endometrial cancer	8	1.0928962	7.39E-03	P04049,P92934,P25054,P28482,P35221,P10398, P36507,043524	226	52	5085	3.4615385	0.6273717	1.04E-01	8.3128594	
T11/NT 11	hsa04722:Neurotrophin signaling pathway	13	1.7759563	8.30E-03	Q13233,Q92934,Q9UJH0,Q05655,P35568, 043524,Q99523,Q9Y4H2,P04049,Q13480,P05412, P28482,P36507	226	124	5085	2.358871	0.6699201	1.05E-01	9.285054	
T11/NT 11	hsa05412:Arrhythmoge nic right ventricular cardiomyopathy (ARVC)	10	1.3661202	5.95E-03	P02545,P08648,P15924,Q14126,P26010,P35221, Q43707,Q99959,P16615,P11532	226	76	5085	2.9605263	0.5476174	1.07E-01	6.7360995	
T11/NT 11	hsa03010:Ribosome	10	1.3661202	1.41E-02	P15880,P57795,P05387,P05386,P62888,P61247, P62753,P42677,P23396,P26373	226	87	5085	2.5862069	0.8483653	1.45E-01	15.281282	
T11/NT 11	hsa05221:Acute myeloidleukemia	8	1.0928962	1.33E-02	P04049,Q72415,Q92934,P28482,P10398,P36507, P42229,P29590	226	58	5085	3.1034483	0.8313104	1.49E-01	14.483689	
T11/NT 11	hsa04910:Insulin signaling pathway	13	1.7759563	1.57E-02	P13131,Q93100,Q92934,Q95685,P62753,P10398, P35568,P13861,Q9Y4H2,P04049,P28482,Q16822, P36507	226	135	5085	2.1666667	0.8785906	1.50E-01	16.926986	
T11/NT 11	hsa04120:Ubiquitin mediatedproteolysis	13	1.7759563	1.75E-02	Q15344,Q9C0C9,Q13233,Q15751,Q7767, Q91385,Q14669,Q9UJX2,Q00308,Q92466, P36507	226	137	5085	2.1330365	0.9045369	1.54E-01	18.658616	

43/53

SUBSTITUTE SHEET (RULE 26)

44/53

T13/NT	hsa04810:Regulation of actin cytoskeleton	12	2.2988306	4.77E-02	P04049, P18206, Q15746, Q77406, P49023, Q14185, Q9UQB8, P19634, P10398, P46108, Q14974, P35579	149	215	5085	1.9047916	0.9938063	2.72E-01	42.109451
T14/NT	hsa04530:Tight junction	20	3.2894737	3.65E-07	Q14493, Q9H4G0, Q3MNF1, P16389, Q6P1M3, Q95049, Q9UDY2, P35221, P35222, P35579, P55196, Q9P2M7, P35580, Q166625, Q77406, Q8N135, Q9Y624, P78369, P55749, Q07157, Q14247	190	134	5085	3.9945012	4.79E-05	4.79E-05	4.26E-04
T14/NT	hsa03040:Spliceosome	16	2.6315789	5.58E-05	P52272, Q13573, Q60231, Q13247, P49756, Q07955, Q9UKV3, Q166629, P62995, Q5VTL8, Q13242, P61978, Q00839, P09651, Q15365, P38159	190	126	5085	3.3984962	0.0072869	3.65E-03	0.0650832
T14/NT	hsa04270:Vascular smooth muscle contraction	13	2.1381579	8.32E-04	P63092, Q3MNF1, Q13464, P10398, Q9NZN5, Q60237, P47712, Q96A00, Q9Y6F6, P04049, Q15746, P36507, Q15085, P35749	190	112	5085	3.106438	0.1032587	3.57E-02	0.965499
T14/NT	hsa04810:Regulation of actin cytoskeleton	19	3.125	9.41E-04	P18206, Q60610, Q12464, P19634, P10398, Q9NZN5, P35579, Q14155, P25580, P04049, Q15746, Q15052, Q77406, P25054, P26010, Q9Y2X7, Q14185, P36507, Q13576	190	215	5085	2.3651163	0.1160829	3.04E-02	1.0924018
T14/NT	hsa04910:Insulin signalling pathway	13	2.1381579	4.13E-03	Q13131, Q9Y934, Q308M2, Q14432, Q95685, P49815, P62753, P10398, P13861, Q9Y4H2, P04049, Q16822, P56507	190	135	5085	2.571193	0.4484421	1.03E-01	4.7106193
T14/NT	hsa03010:Ribosome	10	1.6447368	4.69E-03	P15880, P55795, P05387, P05386, P62888, P61247, P62753, P42677, P23396, P26373	190	87	5085	3.076225	0.4596029	9.75E-02	5.3312569
T14/NT	hsa05130:Pathogenic Escherichia coli infection	8	1.3157895	4.80E-03	Q43639, Q92974, Q16625, Q13464, P05783, P35222, P19338, Q14247	190	57	5085	3.7562327	0.4676489	8.61E-02	5.457902
T14/NT	hsa05412:Arrhythmogenic right ventricular cardiomyopathy (ARVC)	9	1.4802632	6.80E-03	P02545, P15924, Q14126, P26010, P35221, P17661, Q99959, P35222, P11532	190	76	5085	3.1693213	0.5908833	1.06E-01	7.6477751
T14/NT	hsa04520:Adherens junction	9	1.4802632	7.35E-03	P55196, P08069, Q43318, P18206, Q8WW11, P060716, P35221, P35222, Q07157	190	77	5085	3.1281613	0.6196813	1.02E-01	8.2458909
T14/NT	hsa04510:Focal adhesion	16	2.6315789	7.38E-03	P18206, Q60610, Q94934, Q308M2, Q13464, P21333, P10451, P35222, Q14315, P04049, P08069, P05412, Q15746, Q9NWD7, P26010, Q14185	190	201	5085	2.1304006	0.6210144	9.25E-02	8.2745655
T14/NT	hsa05213:Endometrial cancer	7	1.1513158	1.20E-02	P04049, Q92934, P25054, P35221, P10398, P36507, P35222	190	52	5085	3.6027328	0.7931399	1.33E-01	13.087384
T14/NT	hsa04670:leukocyte transendothelial migration	10	1.6447368	3.06E-02	P55196, Q14493, P18206, Q16625, Q060716, Q13464, P35221, P35222, Q9Y624, P78369	190	118	5085	2.2680642	0.983051	2.88E-01	30.439663
T14/NT	hsa05210:Colorectal cancer	8	1.3157895	3.57E-02	P08069, P04049, P05412, Q92934, Q308M2, P25054, P10398, P35222	190	84	5085	2.5488722	0.9914331	3.07E-01	34.538812
T14/NT	hsa04012:Erbb signaling pathway	8	1.3157895	4.20E-02	P04049, P05412, Q43369, Q92934, Q308M2, P10398, P36507, P42229	190	87	5085	2.46098	0.9963749	3.31E-01	39.363299

Table. 13 [continued]

45/53

Accession	Protein	Peptide	Global	1T/INT	KEGG Path
P55196	Afadin	TQVLSPDSDLFTAK	S1721	-1.63	AJ, TJ
Q9H4G0	Band 4.1-like protein1	hqASINEK	S510	1.64	TJ
Q9H4G0	Band 4.1-like protein1	rLPSSPASPSPK	S541;S544	-1.11	TJ
Q9H4G0	Band 4.1-like protein1	SLSPIIGK	S784	1.53	TJ
Q9H4G0	Band 4.1-like protein1	GGFSETRIEK	S820	-1.71	TJ
Q9H4G0	Band 4.1-like protein1	qksYTLVVAK	S87	1.28	TJ
Q9H4G0	Band 4.1-like protein1	SSsMAAGLER	S366	1.41	AJ
Q9H4G0	Band 4.1-like protein1	SSsMAAGLER	S36	1.63	AJ
Q9UQB8	Brain-specific angiogenesisinhibitor 1-associated protein2	SRTSVQTEDDQIAGQSAR	S655	1.12	AJ, TJ
Q9UQB8	Brain-specific angiogenesisinhibitor 1-associated protein2	rTsmGTTQQFVEGVR	S552	4.03	FA, AJ, TJ
P35221	Cateninalpha-1	rtSmGTTQQFVEGVR	T551	-1.12	FA, AJ, TJ
P35222	Cateninbeta-1	gS1ASLDsIRK	S349;S352	1.12	AJ
P35222	Cateninbeta-1	SDFQVNLLNNASR	S857	-1.08	AJ
060716	Catenin delta-1	SQSSHsYDDSTLPLIDR	S864	1.99	AJ
060716	Catenin delta-1	SHsQASLAGPGPVDPNSR	S131	-1.36	TJ
060716	Catenin delta-1	SNSmLELAPK	S149	1.07	TJ
Q9P2M7	Cingulin	SNSmLELAPK	S149	-1.87	TJ
Q9P2M7	Cingulin	dAsVPLIDVTNLPTPR	S226	1.45	TJ
Q96A65	Exocyst complex component4	aFGPGIQGGSGASPAR	S1084	1.86	FA
P21333	Filamin-A	cSGPGLsPGmVR	S1459	1.94	FA
P21333	Filamin-A	SsFTVDCSK	S2577	1.03	FA
P21333	Filamin-A	lGsEGS1TR	S2233	1.47	FA
Q14315	Filamin-C	qLVRGEPNVSYlCSR	Y279	1.14	FA
P49840	Glycogen synthase kinase-3 alpha	vLSTSsTLTR	S1483;S1486	1.25	FA
P16144	Integrin beta-4	kvIYSQPsAR	S284	-1.00	TJ
Q9Y624	Junctional adhesion moleculeA	SRsTELDYSTNk	S1423	1.06	AJ
Q8WW11	LIM domain only protein7	TSTTGATQSPTPR	S1586	1.16	AJ
Q8WW11	LIM domain only protein7	rmsADMSEIEAR	S389	1.13	AJ
O43318	Mitogen-activated protein kinase kinase kinase 7	alslAR	S1487	1.94	TJ
P35580	Myosin-10	alslAR	S1487	1.94	TJ
P35749	Myosin-11	vIENADGSEEEETDTR	S1954	1.56	TJ
P35749	Myosin-11	mTEsLPSASK	S638	1.78	TJ
P35749	Myosin-11	alslTR	S1504	2.71	TJ
Q72406	Myosin-14	alslAR	S1480	1.94	TJ
P35579	Myosin-9	fRIshEDsASSEVN	S303;S308	1.42	FA
P10451	Osteopontin	iSHEEDsASSEVN	S308	1.56	FA
P10451	Osteopontin	aRLsYSDK	S645	-1.52	TJ
Q05655	Protein kinase C delta type				

P31749	RAC-alpha serine/threonine-protein kinase	SGsPSDNGAEEFmEVSLAKPK	S124	-1.28	FA, T]
P31749	RAC-alpha serine/threonine-protein kinase	SGsPSDNGAEEFmEVSLAKPK	S124	-1.16	FA, T]
P31749	RAC-alpha serine/threonine-protein kinase	SGsPSDNGAEEFmEVSLAKPK	S124;S129	-1.04	FA, T]
Q11247	Src substrate cortactin	akTQTPPVsPAPQPTTEER	T401;S405	-2.17	T]
Q9Y490	Talin-1	aSVPTEQDQASAmQLsQcAk	S1021	1.34	FA
Q9Y490	Talin-1	cVscLPGQR	S1201	2.12	FA
Q9Y490	Talin-1	ILsD1PPSTGTFQEAQSR	S1225	1.02	FA
Q9Y490	Talin-1	gLAGAVSELLR	S620	2.47	FA
Q9Y490	Talin-1	vVAPtI5sPvCQEQLVEAGR	S729	1.37	FA
Q07157	Tight junction protein ZO-1	iDpPGFkPASQk	S912	-2.96	A, T]
P06241	Tyrosine-protein kinase Fyn	ITEERDGSLNQSGYR	S21	1.15	FA, A]
P29350	Tyrosine-protein phosphatase non-receptor type 6	dlsGLDAETLLK	S10	1.79	A]
P18206	Vinculin	dPSAsPGDAGEQAIR	S290	1.56	FA, A]
Q15942	Zyxin	fSPVtPK	T270	1.24	FA

Table. 14 [continued]

47/53

CASE #	Uniprot	Protein	Peptide	T/NT	Global	Phos Site 1_Function	Phos Site 2_Function	Drug
1	P47712	Cytosolic phospholipase A2	qNPSPRCsVSLISNVEAR	1.63	S727	enzymatic activity, induced		
1	P49840	Glycogen synthase kinase-3 alpha	qLVRGEPNVSYlCSR	1.14	Y279	enzymatic activity, induced		
1	P08559	Pyruvate dehydrogenase E1 component subunit alpha, somatic form, mitochondrial	YGMGTSVER	-1.53	S232	enzymatic activity, inhibited		
1	P08559	Pyruvate dehydrogenase E1 component subunit alpha, somatic form, mitochondrial	YGMGTSVER	-1.67	S232	enzymatic activity, inhibited		
1	P08559	Pyruvate dehydrogenase E1 component subunit alpha, somatic form, mitochondrial	YHGHSmSDPGVSYR	-1.10	S233;S300	enzymatic activity, inhibited	enzymatic activity, inhibited	
1	P31749	RAC-alpha serine/threonine-protein kinase	SGsPSDNGSAEEMEVSLAKPK	-1.28	S124	enzymatic activity, induced		GSK2141795
1	P31749	RAC-alpha serine/threonine-protein kinase	SGsPSDNGSAEEmEVSLAKPK	-1.16	S124	enzymatic activity, induced		GSK2141796
1	P31749	RAC-alpha serine/threonine-protein kinase	SGsPSDNGSAEEMEVSLAKPK	-1.04	S124;S129	enzymatic activity, induced	enzymatic activity, induced	GSK2141797
1	P06241	Tyrosine-protein kinase Fyn	ITEGRDGSLNQSSGYR	1.15	S21	enzymatic activity, induced		
4	P28482	Mitogen-activated protein kinase 1	VADPDHDHTGFLtEyVATR	-1.93	T185;Y187	enzymatic activity, induced	enzymatic activity, induced	AEZS-131
4	P31749	RAC-alpha serine/threonine-protein kinase	SGsPSDNGSAEEMEVSLAKPK	1.69	S124	enzymatic activity, induced		GSK2141795
4	P31749	RAC-alpha serine/threonine-protein kinase	SGsPSDNGSAEEmEVSLAKPK	1.59	S124	enzymatic activity, induced		GSK2141796
4	P31749	RAC-alpha serine/threonine-protein kinase	SGsPSDNGSAEEMEVSLAKPK	1.31	S124;S129	enzymatic activity, induced	enzymatic activity, induced	GSK2141797
5	P13569	Cystic fibrosis transmembrane conductance regulator	r1sLVPDSEQGEAILPR	-1.11	S737	enzymatic activity, inhibited		
5	Q06210	Glucosamine-fructose-6-phosphate aminotransferase [isomerizing] 1	gSclNLSRVDsTTcLFPVEEK	-1.02	S261	enzymatic activity, induced		
5	Q06210	Glucosamine-fructose-6-phosphate aminotransferase [isomerizing] 1	vDsTTcLFPVEEK	-1.25	S261	enzymatic activity, induced		

5	P28482	Mitogen-activated protein kinase 1	vADPBDHDHTGFtEyVATR	1.05	T185;Y187	enzymatic activity, induced	AE25-131
5	P08559	Pyruvate dehydrogenase E1 component subunit alpha, somatic form, mitochondrial	YGMGTsVER	-1.41	S232	enzymatic activity, inhibited	
5	P08559	Pyruvate dehydrogenase E1 component subunit alpha, somatic form, mitochondrial	YGmGTsVER	-1.82	S232	enzymatic activity, inhibited	
5	P08559	Pyruvate dehydrogenase E1 component subunit alpha, somatic form, mitochondrial	YHGHSmSDPGVsYR	-1.53	S293;S300	enzymatic activity, inhibited	
6	Q06210	Glucosamine-fructose-6-phosphate aminotransferase [isomerizing] 1	gScNLSRVDsTTcLFPVEEK	-1.33	S261	enzymatic activity, induced	
6	Q06210	Glucosamine-fructose-6-phosphate aminotransferase [isomerizing] 1	vDSTTcLFPVEEK	-1.14	S261	enzymatic activity, induced	
6	P49840	Glycogen synthase kinase-3 alpha	gEPNVSyICSR	1.03	Y279	enzymatic activity, induced	
6	P31749	RAC-alpha serine/threonine-protein kinase	SGsPSDNsGAEEMEVSLAKPK	-1.10	S124;S129	enzymatic activity, induced	GSK2141795
7	Q06210	Glucosamine-fructose-6-phosphate aminotransferase [isomerizing] 1	gScNLSRVDsTTcLFPVEEK	1.11	S261	enzymatic activity, induced	
7	P49841	Glycogen synthase kinase-3 beta	TTsFAESckPVQQPSAFGSmk	-1.11	S9	enzymatic activity, inhibited	
7	P31749	RAC-alpha serine/threonine-protein kinase	SGsPSDNsGAEEMEVSLAKPK	1.12	S124;S129	enzymatic activity, induced	GSK2141795
7	P06241	Tyrosine-protein kinase Fyn	dGsLNQSSGYR	-1.14	S21	enzymatic activity, induced	Dasatinib
8	P13569	Cystic fibrosis transmembrane conductance regulator	rlsLVPDSEQQEAIPLR	-4.50	S737	enzymatic activity, inhibited	
8	Q06210	Glucosamine-fructose-6-phosphate aminotransferase [isomerizing] 1	vDSTTcLFPVEEK	-1.13	S261	enzymatic activity, induced	
8	P49841	Glycogen synthase kinase-3 beta	TTsFAESckPVQQPSAFGSmk	2.05	S9	enzymatic activity, inhibited	

49/53

8	P49841	Glycogen synthase kinase-3 beta	TTsFAESckPVQQPSAFGSmK	1.23	S9	enzymatic activity, inhibited
8	P49841	Glycogen synthase kinase-3 beta	gEPNVSYlCSR	2.32	Y216	enzymatic activity, induced
8	P49841	Glycogen synthase kinase-3 beta	qLVRGEPNVSYlCSR	1.13	Y216	enzymatic activity, induced
8	Q13547	Histone deacetylase 1	iACEEEFsDSEEEGEGGRK	-1.04	S421;S423	enzymatic activity, induced
8	Q92769	Histone deacetylase 2	iAcDEEFsDSEDEEGEGGR	1.43	S422	enzymatic activity, inhibited
8	P28482	Mitogen-activated protein kinase 1	vADPDHDHTGFLtEyVATR	1.44	T185;Y187	enzymatic activity, induced
8	Q16539	Mitogen-activated protein kinase 14	hTDDDEMltGYVATR	1.33	T180;Y182	enzymatic activity, induced
8	Q16539	Mitogen-activated protein kinase 14	hTDDDEMtgYVATR	-1.34	Y182	enzymatic activity, induced
8	P29474	Nitric oxide synthase, endothelial	iRtQsFSLQER	-1.23	T1175;S1177	enzymatic activity, induced
8	P29474	Nitric oxide synthase, endothelial	iRtQsFSLQER	-1.77	T1175;S1179	enzymatic activity, induced
8	P08559	Pyruvate dehydrogenase E1 component subunit alpha, somatic form, mitochondrial	YGmGTsVER	-2.68	S232	enzymatic activity, inhibited
8	P08559	Pyruvate dehydrogenase E1 component subunit alpha, somatic form, mitochondrial	YHGhsMSDPGVsYR	-1.44	S293;S300	enzymatic activity, inhibited
8	P08559	Pyruvate dehydrogenase E1 component subunit alpha, somatic form, mitochondrial	YHGhsMSDPGVsYR	-1.27	S293;S300	enzymatic activity, inhibited
8	P31749	RAC-alpha serine/threonine-protein kinase	SGsPSDNGAEEEMEVSLAKPK	-1.57	S124	enzymatic activity, induced
8	P31749	RAC-alpha serine/threonine-protein kinase	SGsPSDNGAEEEMEVSLAKPK	-2.86	S124;S129	enzymatic activity, induced
9	P13569	Cystic fibrosis transmembrane conductance regulator	rlsLVPDSEQGEAILPR	-2.35	S737	enzymatic activity, inhibited
9	Q06210	Glucosamine-fructose-6-phosphate aminotransferase isomerase 1	gScNLsRVDsTTcLFPVEEK	-1.28	S261	enzymatic activity, induced
9	Q06210	Glucosamine-fructose-6-phosphate aminotransferase isomerase 1	vDsTTcLFPVEEK	-2.06	S261	enzymatic activity, induced

9	Q16539	Mitogen-activated protein kinase 14	hTDDDEM ^t GyVATR	1.39	T180;Y182	enzymatic activity, induced	enzymatic activity, induced
9	P29474	Nitric oxide synthase, endothelial	iRtQSFsLQER	-1.22	T1175;S1179	enzymatic activity, inhibited	enzymatic activity, inhibited
9	P08559	Pyruvate dehydrogenase E1 component subunit alpha, somatic form, mitochondrial	YGMGTSVER	-1.03	S232	enzymatic activity, inhibited	enzymatic activity, inhibited
9	P08559	Pyruvate dehydrogenase E1 component subunit alpha, somatic form, mitochondrial	YGmGTsVER	-2.07	S232	enzymatic activity, inhibited	enzymatic activity, inhibited
9	P08559	Pyruvate dehydrogenase E1 component subunit alpha, somatic form, mitochondrial	YHGHSmSDPGVSYR	-1.14	S293;S300	enzymatic activity, inhibited	enzymatic activity, inhibited
9	P31749	RAC-alpha serine/threonine-protein kinase	SGPSDSDNsGAEEIMEVSLAKPK	-1.26	S124;S129	enzymatic activity, induced	enzymatic activity, induced
9	Q15139	Serine/threonine-protein kinase D1	alGERVSL	1.28	S910	enzymatic activity, induced	enzymatic activity, induced
10	Q9Y217	1-phosphatidylinositol-3-phosphate 5-kinase	SASITNLSLDR	-1.39	S307	enzymatic activity, induced	enzymatic activity, induced
10	P13569	Cystic fibrosis transmembrane conductance regulator	rlsLVPDSEQGEALPRL	-4.08	S737	enzymatic activity, inhibited	enzymatic activity, inhibited
10	Q06210	Glucosamine-fructose-6-phosphate aminotransferase [isomerizing] 1	vDSTTcLFVVEK	-2.33	S261	enzymatic activity, induced	enzymatic activity, induced
10	P49841	Glycogen synthase kinase-3 beta	TTsFAE5CKPVQQPSAFGSMK	1.01	S9	enzymatic activity, inhibited	enzymatic activity, inhibited
10	P49841	Glycogen synthase kinase-3 beta	gEPNVSYICSR	1.80	Y216	enzymatic activity, induced	enzymatic activity, induced
10	P49841	Glycogen synthase kinase-3 beta	qLVRGEPNVSYICSR	1.57	Y216	enzymatic activity, induced	enzymatic activity, induced
10	Q13547	Histone deacetylase 1	iAEEEFSdSEEEGGGRK	-1.57	S421;S423	enzymatic activity, induced	enzymatic activity, induced
10	P28482	Mitogen-activated protein kinase 1	vADPDHDHTGFLtEyVATR	1.28	T185;Y187	enzymatic activity, induced	enzymatic activity, induced
10	Q16539	Mitogen-activated protein kinase 14	hTDDDEM ^t GyVATR	2.20	T180;Y182	enzymatic activity, induced	enzymatic activity, induced
10	P29474	Nitric oxide synthase, endothelial	iRtQSFsLQER	-1.94	T1175;S1177	enzymatic activity, inhibited	enzymatic activity, inhibited
10	P08559	Pyruvate dehydrogenase E1 component subunit alpha, somatic form, mitochondrial	YGmGTsVER	-2.81	S232	enzymatic activity, inhibited	enzymatic activity, inhibited

10	P08559	Pyruvate dehydrogenase E1 component subunit alpha, somatic form, mitochondrial	YHGHSmSDPGVSYR	-1.58	\$293;S300	enzymatic activity, inhibited	enzymatic activity, inhibited
10	P08559	Pyruvate dehydrogenase E1 component subunit alpha, somatic form, mitochondrial	YHGHSMSDPGVSYR	-1.47	\$293;S300	enzymatic activity, inhibited	enzymatic activity, inhibited
10	P31749	RAC-alpha serine/threonine-protein kinase RAF proto-oncogene	SGsPSDnsGAEEEMEVSLAKPK	1.26	\$124;S129	enzymatic activity, induced	enzymatic activity, induced
10	P04049	serine/threonine-protein kinase	SASEPSLHR	1.49	S621	enzymatic activity, inhibited/induced	Sorafenib
10	P10398	Serine/threonine-protein kinase A-Raf	SASEPSLHR	1.49	S582	enzymatic activity, induced	Sorafenib
10	Q15139	Serine/threonine-protein kinase D1	alGERVSL	-1.23	S910	enzymatic activity, induced	
11	P52564	Dual specificity mitogen-activated protein kinase 6	mCDFGISGYLVVDsVAK	-2.23	S207	enzymatic activity, inhibited	
11	P49840	Glycogen synthase kinase-3 alpha	qLVRGEPNVSYicSR	1.38	Y279	enzymatic activity, induced	
11	P28482	Mitogen-activated protein kinase 1	VADPDHDHTGFltEyVATR	-1.07	T185;Y187	enzymatic activity, induced	AE25-131
11	P29474	Nitric oxide synthase, endothelial	irtQsFSLQER	1.03	T1175;S1177	enzymatic activity, induced	
11	P08559	Pyruvate dehydrogenase E1 component subunit alpha, somatic form, mitochondrial	YGMGTsVER	-2.81	S232	enzymatic activity, inhibited	
11	P08559	Pyruvate dehydrogenase E1 component subunit alpha, somatic form, mitochondrial	YGmGTsVER	-3.45	S232	enzymatic activity, inhibited	
11	P04049	serine/threonine-protein kinase	SASEPSLHR	-1.71	S621	enzymatic activity, inhibited/induced	Sorafenib
11	P10398	Serine/threonine-protein kinase A-Raf	SASEPSLHR	-1.71	S582	enzymatic activity, induced	Sorafenib
11	Q9Y385	Ubiquitin-conjugating enzyme E2 J1	qlsFkAEVNSSGK	-1.42	S184	enzymatic activity, induced	
13	P49840	Glycogen synthase kinase-3 alpha	gEPNVSYicSR	1.15	Y279	enzymatic activity, induced	
13	Q13547	Histone deacetylase 1	iAcEEFFsDSEEEGEGGRK	1.66	S421;S423	enzymatic activity, induced	Vorinostat

13	Q92769	Histone deacetylase 2	iACDEEEsDsEDDEGGRR	1.42	S422;S424	enzymatic activity, inhibited	enzymatic activity, inhibited	Vorinostat
13	P08559	Pyruvate dehydrogenase E1 component subunit alpha, somatic form, mitochondrial	YGMGTSVER	2.82	S232	enzymatic activity, inhibited	enzymatic activity, inhibited	
13	P08559	Pyruvate dehydrogenase E1 component subunit alpha, somatic form, mitochondrial	YHGHSmSDPGVSYR	1.89	S293	enzymatic activity, inhibited	enzymatic activity, inhibited	
13	P08559	Pyruvate dehydrogenase E1 component subunit alpha, somatic form, mitochondrial	YHGHSMSDPGVSYR	1.01	S295;S300	enzymatic activity, inhibited	enzymatic activity, inhibited	
13	P31749	Pyruvate dehydrogenase E1 component subunit alpha, somatic form, mitochondrial RAC-alpha serine/threonine-protein kinase	SGsPSDNGSAEEMEVSLAKPK	1.48	S124	enzymatic activity, induced	enzymatic activity, induced	GSK2141795
13	P04049	RAF proto-oncogene serine/threonine-protein kinase	SAsEPSLHR	1.91	S621	enzymatic activity, inhibited/induced	enzymatic activity, inhibited/induced	Sorafenib
13	P10398	Serine/threonine-protein kinase A-Raf	SAsEPSLHR	1.91	S582	enzymatic activity, induced	enzymatic activity, induced	Sorafenib
13	P18031	Tyrosine-protein phosphatase non-receptor type 1	YRDVsPFDHSR	1.38	S50	enzymatic activity, inhibited/induced	enzymatic activity, inhibited/induced	Sorafenib
14	Q14432	cGMP-inhibited 3,5-cyclic phosphodiesterase A	rTSLPCIPR	-1.42	S312	enzymatic activity, induced	enzymatic activity, induced	
14	P47712	Cytosolic phospholipase A2	qNPSRcsVslSNEAR	1.18	S727;S729	enzymatic activity, induced	enzymatic activity, induced	
14	P52564	Dual specificity mitogen-activated protein kinase 6	mcDFGISGYLVDSVAK	-2.78	S207	enzymatic activity, inhibited	enzymatic activity, inhibited	
14	P49840	Glycogen synthase kinase-3 alpha	qLVRGEPNVSYlCSR	1.08	Y279	enzymatic activity, induced	enzymatic activity, induced	
14	P08559	Pyruvate dehydrogenase E1 component subunit alpha, somatic form, mitochondrial	YGMGTSVER	-3.02	S232	enzymatic activity, inhibited	enzymatic activity, inhibited	
14	P08559	Pyruvate dehydrogenase E1 component subunit alpha, somatic form, mitochondrial	YGmGTSVER	-2.82	S232	enzymatic activity, inhibited	enzymatic activity, inhibited	

14	P08559	component subunit alpha, somatic form, mitochondrial Pyruvate dehydrogenase E1 component subunit alpha, somatic form, mitochondrial	YHGHSmSDPGVSYR	-1.38	\$293,\$300 enzymatic activity, inhibited	enzymatic activity, inhibited
14	P08559	RAF proto-oncogene serine/threonine-protein kinase	YHGHSMSDPGVSYR	-1.08	\$293,\$300 enzymatic activity, inhibited	enzymatic activity, inhibited
14	P04049	Ubiquitin-conjugating enzyme E2 J1	STS ⁵ TPNVHMVSTTLPVDSR	-1.25	\$259 enzymatic activity, inhibited	
14	Q9Y385		qlsFKAEVNSSGK	-1.12	\$184 enzymatic activity, induced	

Table. 15 (continued)