
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2015/0278698 A1

US 20150278698A1

Das et al. (43) Pub. Date: Oct. 1, 2015

(54) METHOD AND SYSTEM FOR MANAGING Publication Classification
COMPUTER SYSTEMS

(51) Int. Cl.
(71) Applicant: IpVenture, Inc., Los Altos, CA (US) G06N5/04 (2006.01)

(52) U.S. Cl.
(72) Inventors: Saumitra Das, Santa Clara, CA (US); CPC G06N5/046 (2013.01)

Stepan Sokolov, Fremont, CA (US); Bill
"Yuan-chi" Chiu, El Monte, CA (US) (57) ABSTRACT - 0

A management system for a computer system is disclosed.
The computer system operates or includes various products

(21) Appl. No.: 14/697.490 (e.g., Software products) that can be managed in a manage
ment system or collectively by a group of management sys

(22) Filed: Apr. 27, 2015 tems. Typically, the management system operates on a com
9 puter separate from the computer system being managed. The

management system can make use of a knowledge base of
Related U.S. Application Data causing symptoms for previously observed problems at other

(60) Continuation of application No. 13/662,680, filed on R or computer systems. In other words, the knowledge
Oct. 29, 2012, now Pat. No. 9,020,877, which is a ase can built from and shared by different users across dif
division of application No. 12/661 24 4 filed on Mar. ferent products to leverage knowledge that is otherwise dis

No parate. The knowledge base typically grows over time. The
O fapplication No. 1 1/58 5 66 o filed on Oct. 23, 2006 management System can use its ability to request information
now Pat No. 7707133 which is a continuation of from the computer system being managed together with the
application No s 10/41 2 63 9, filed on Apr. 10, 2003 knowledge base to infer a problem root cause in the computer
now abandoned sw--- s • ws s system being managed. The computer system being managed

can also request the management system to process its knowl
(60) Provisional application No. 60/371,659, filed on Apr. edge base for possible problem cause analysis. The manage

10, 2002, provisional application No. 60/431,551,
filed on Dec. 5, 2002.

MANAGEMENT
FRAMEWORK

MANAGER

ment system can also continually identify persisting problem
causing Symptoms.

MANAGED AGENT

NODE

104-1

102-1

MANAGED AGENT

NODE

104-2

102-2

MANAGED AGENT

NODE

104-n

US 2015/0278698 A1 Oct. 1, 2015 Sheet 1 of 36 Patent Application Publication

u-ZOT,
EGION EGION

OOT

US 2015/0278698 A1

ETT GJOWN

OTZ

Oct. 1, 2015 Sheet 2 of 36

ZIZ

Patent Application Publication

Patent Application Publication Oct. 1, 2015 Sheet 3 of 36 US 2015/0278698 A1

3OO

KNOWLEDGE INPUT GUI

REPORT OUTPUT GUI

ADMINISTRATOR GUI

FIG. 3

AOO

KNOWLEDGE MANAGER

KNOWLEDGE

RULES/DEFS. KNOWLEDGE CODE TO
CODE KM
GENERATOR

KNOWLEDGE KNOWLEDGE KNOWLEDGE

ENCODER/ IMPORTER/ UPDATE
DECODER EXPORTER MANAGER

FIG. 4

US 2015/0278698 A1 Oct. 1, 2015 Sheet 4 of 36 Patent Application Publication

O BOHDOSEJ /NOLLVTILIS
(S)3OHITOSHA ESVG

© BOHDOSBH /NOLLVTILIS

US 2015/0278698 A1 Oct. 1, 2015 Sheet 5 of 36 Patent Application Publication

• ?
Z89

•)
089

?ZISdeÐHTXVW :: WATe)
929

~~

US 2015/0278698 A1 Oct. 1, 2015 Sheet 6 of 36 Patent Application Publication

Z99

>
079

Patent Application Publication Oct. 1, 2015 Sheet 7 of 36 US 2015/0278698 A1

1.

O
2

O
1. 1.
H
2 LL
O 4.
O

US 2015/0278698 A1 Oct. 1, 2015 Sheet 8 of 36 Patent Application Publication

90/ 80/

Patent Application Publication Oct. 1, 2015 Sheet 9 of 36 US 2015/0278698 A1

PRESENTATION
MANAGER

FORMAT
CONVERTER

REPORT
VIEW

SELECTOR

REPORT MODULE

FIG. 8

Patent Application Publication Oct. 1, 2015 Sheet 10 of 36 US 2015/0278698 A1

KNOWLEDGE

900 KNOWLEDGE
DOMAIN

KNOWLEDGE B 904
DOMAIN

A
902

KNOWLEDGE
DOMAIN

C 906

RULE PACK 92O

914

FIG. 9B

Patent Application Publication Oct. 1, 2015 Sheet 11 of 36 US 2015/0278698 A1

1OOO

FIG. 10

US 2015/0278698 A1 Oct. 1, 2015 Sheet 12 of 36 Patent Application Publication

Patent Application Publication Oct. 1, 2015 Sheet 13 of 36 US 2015/0278698 A1

f 12OO

MANAGED
PRODUCT

1.

1202-1

MANAGED
PRODUCT

1202-2

MANAGED
PRODUCT

N

APP. AGENT

1202-n

FIG. 12

Patent Application Publication Oct. 1, 2015 Sheet 14 of 36 US 2015/0278698 A1

PROTOCOLA

COMMUNICATION sue agent
MODULE

PROTOCOLB
COMMUNICATION

MODULE
SUB-AGENT

2
MASTER
AGENT

PROTOCOLM
COMMUNICATION

MODULE
SUB-AGENT

COMMUNICATION N
MODULE

FIG. 13

Patent Application Publication Oct. 1, 2015 Sheet 15 of 36 US 2015/0278698 A1

14OO

1408 1410

STATISTICAL
ANALYZER

SCHEDULER

REOUEST
PROCESSOR

REGISTRY

REGISTRY 1406

DATA
STORE

FIG. 14

Patent Application Publication Oct. 1, 2015 Sheet 16 of 36 US 2015/0278698 A1

1500

STATISTICAL 1508
ANALYZER

1502
GET RESOURCE MODULE

SET OPERATION 1504
MODULE

EVENT 1506
FORWARDING MODULE

FIG. 15

Patent Application Publication Oct. 1, 2015 Sheet 17 of 36 US 2015/0278698 A1

to
16O2

LOAD KNOWLEDGE BASE

DISCOVER 3RD-PARTY MANAGEMENT FRAMEWORKS

OBTAIN LIST OF NODE GROUPS 1606

1608
SELECT FIRST (NEXT) NODE GROUP

OBTAIN LIST OF NODES WITHIN THE SELECTED 1610
NODE GROUP

1612

1604

MORE NODE
GROUPS

p

NO
1614

SELECT FIRST (NEXT) NODE

1616 OBTAIN LIST OF DOMAINS WITHIN THE SELECTED
NODE

MORE NODES
P

N O

FIG. 1.6A

Patent Application Publication Oct. 1, 2015 Sheet 18 of 36 US 2015/0278698 A1

162O
SELECT FIRST (NEXT) DOMAIN

1622
OBTAIN LIST OF SUPPORTED RESOURCES

1624

MORE
DOMAINS

p

NO

SELECT FIRST (NEXT) NODE

PRODUCE A CUSTOMIZED KNOWLEDGE BASE FOR
THE SELECTED NODE BASED ON THE SUPPORTED

RESOURCES FOR THE SELECTED NODE

O 163

MORE NODES
p

NO

SCHEDULE DATA ACOUISTION FOR BASE RULES
1632

WITHIN THE CUSTOMIZED KNOWLEDGE BASES

FIG. 16B

Patent Application Publication Oct. 1, 2015 Sheet 19 of 36 US 2015/0278698 A1

- 1650

LOAD KNOWLEDGE BASE FOR RESOURCES, RULE PACKS AND 1652
CONFIGURATION INFO.

OBTAN LIST OF NODE GROUPS 1654

1656

No Ge)
GE) YES

SELECT FIRST (NEXT) NODEGROUP 1658

OBTAN LIST OF NODES WITHIN THE SELECTED NODE GROUP 1660

1662

<> NO GO
YES

SELECT FIRST (NEXT) NODE 1664

OBTAIN LIST OF AGENT TYPES ON THE NODE 1668

1670

ANY NO
AGENT TYPESP

GO YES 1671 SELECT FIRST (NEXT) AGENT TYPE

ANY NODE
GROUPS

p

1672

ANY 3RD
PARTY FRAMEWORK

ADAPTERP

YES NO

1676 1674

OBTAIN LIST OF
DOMAINS

DISCOVER LIST OF
SUPPORTED
DOMAINS

FIG. 16C

Patent Application Publication Oct. 1, 2015 Sheet 20 of 36

1678

ANY NO
DOMAINS

p

YES

SELECT FIRST (NEXT) DOMAIN

OBTAN LIST OF SUPPORTED RESOURCES AND DOMAIN
VERSION

MORE
DOMAINS

p

NO

1686

YES

YES p

NODE
YES GROUPS

p

NO

FIG. 16D

US 2015/0278698 A1

Patent Application Publication Oct. 1, 2015 Sheet 21 of 36

1698

PRODUCE A CUSTOMIZED DOMAIN AND
RESOURCES LST BASED ONAVAILABLE DOMAINS

(AND THEIRVERSIONS) AND RESOURCES INFO.
FOR RULES INPUT USING GUI

PRODUCE A CUSTOMIZED KNOWLEDGE BASE FOR
THE SELECTED NODES BASED ON SUPPORTED

DOMAINS AND RESOURCES

IS
KNOWLEDGE PROCESSOR

SELECTED TO RUN
BY GUI

p

SCHEDULE DATA ACOUISITION FOR BASE RULES
WITHIN THE CUSTOMIZED KNOWLEDGE BASE

FIG. 16E

US 2015/0278698 A1

Patent Application Publication Oct. 1, 2015 Sheet 22 of 36 US 2015/0278698 A1

17OO

1702
INITIALIZE ANY PRE-CONFIGURED

SUB-AGENTS FOR THE MASTER AGENT

1704
DISCOVER ANY OTHER SUB-AGENTS FOR THE

MASTER AGENT

17O6
INITIALIZE THE DISCOVERED SUB-AGENTS

ACTIVATE STATISTICAL ANALYZER FOREACH OF THE 1708
SUB-AGENTS

FIG. 17A

Patent Application Publication Oct. 1, 2015 Sheet 23 of 36 US 2015/0278698 A1

1750

1752

ESTABLISH CONNECTION WITH THE MASTER AGENT

1754
DISCOVER APPLICATION RESOURCES

1756
NOTIFY THE MASTER AGENT OF STATUS

1758
ACTIVATE STATISTICAL ANALYZER

FIG. 17B

Patent Application Publication Oct. 1, 2015 Sheet 24 of 36 US 2015/0278698 A1

“s, Cid
NO

18O2
NOTIFICATION

RECEIVED
p

(c) YES
1806

ASSERT FACT IN INFERENCE ENGINE

1808
MAKE LOG ENTRY

RETRIEVE UPDATED
FACTS FOR RULES 1310

DEPENDENT ON THE
ASSERTED FACT

YES

NO 1813 e DISCARD USELESS FACTS

FIG. 18A

Patent Application Publication Oct. 1, 2015 Sheet 25 of 36 US 2015/0278698 A1

DATA
ACOUISITION

p

1816

SELECT ANUPDATED
FACT

YES

CORRECTIVE
ACTION

1820 p

PERFORM CORRECTIVE
ACTION

OBTAIN DEBUG DATA

USER-DEFINED
SITUATION

p

NOTESITUATION

MAKE LOG ENTRY WITH
RULEINFORMATION

FIG. 18B

Patent Application Publication Oct. 1, 2015 Sheet 26 of 36 US 2015/0278698 A1

1900

REPORT s
REOUEST NO

p

YES

RETRIEVE LOG DATA

GENERATE REPORT FROM THE
RETRIEVED LOG DATA

DETERMINE REPORT DELIVERY
METHOD

DELIVER THE REPORT USING THE
1910 DETERMINED REPORT DELIVERY

METHOD

1904

1906

1908

FIG. 19

US 2015/0278698 A1 Oct. 1, 2015 Sheet 27 of 36 Patent Application Publication

u

US 2015/0278698 A1 Oct. 1, 2015 Sheet 28 of 36 Patent Application Publication

(~~~~);

Patent Application Publication Oct. 1, 2015 Sheet 29 of 36 US 2015/0278698 A1

- . . . ' ... Š ... 8:8; $8 is $33s;s&isis....S

33: Sea. instances

FIG. 22

Patent Application Publication

S Netscape

Oct. 1, 2015 Sheet 30 of 36

its

US 2015/0278698 A1

Step 1
Enter Rulc Namc &
Description

Step 2
3 Configure Situation(s)
Step 3
Configure Condition(s)

Step 4
Configure Action(s)

Note: Click on a Step to
edit it. x indicates Step
that is current

SIMILAR RULES

s

r1: 12 OSO)

FIG. 23

Patent Application Publication Oct. 1, 2015 Sheet 31 of 36 US 2015/0278698 A1

Six-x.

S&S $ &ississis: 8 & 3 is is sys&

Enter Rule Name 8,
Dcscription

Step 2

Configure Situation(s) Eadgi
Essailist

Step 3
; Configure Condition(s)

a step 4
: Configure Action(s)

Note: Click on a step to
3 edit it. indicates Step

that is current

SIMILAR RULES

& 8:ss.x sis&is is SS Siss.

FIG. 24

Patent Application Publication Oct. 1, 2015 Sheet 32 of 36 US 2015/0278698 A1

Step 3
Configure Condition(s) w: ThraciStartEwent

i.e. This 8:Esh;Essent
Step 4
Configure Action(s)

Note: Click on a Step to
edit it. indicates Step
that is current

SIMILAR RULES

Sonics on

FIG. 25

US 2015/0278698 A1 Oct. 1, 2015 Sheet 33 of 36 Patent Application Publication

Patent Application Publication Oct. 1, 2015 Sheet 34 of 36 US 2015/0278698 A1

s: Natataps

... arn D.
Step 1
Enter Rule Name 8,
Description

Step 2
; Configure Situation(s) & Six sis: 888&

Step 3
Configure Condition(s)

8

Step 4
Configure Action(s)

: Note: Click on a Step to
edit it. indicates Step
that is current

SIMILAR RULES

FIG. 27

US 2015/0278698 A1 Oct. 1, 2015 Sheet 35 of 36 Patent Application Publication

Patent Application Publication Oct. 1, 2015 Sheet 36 of 36 US 2015/0278698 A1

FIG. 29

US 2015/0278,698 A1

METHOD AND SYSTEM FORMANAGING
COMPUTER SYSTEMS

CROSS-REFERENCE TO RELATED
APPLICATIONS

0001. This application is a continuation of U.S. patent
application Ser. No. 13/662,680, filed Oct. 29, 2012, and
entitled METHOD AND SYSTEM FOR MANAGING
COMPUTER SYSTEMS (now U.S. Pat. No. 9,020,877),
which is hereby incorporated by reference, which is a divi
sional application of U.S. patent application Ser. No. 12/661,
244, filed Mar. 12, 2010, and entitled “METHOD AND SYS
TEM FOR MANAGING COMPUTER SYSTEMS (now
U.S. Pat. No. 8,301,580), which is hereby incorporated by
reference, which is a divisional application of U.S. patent
application Ser. No. 1 1/585,660, filed Oct. 23, 2006, and
entitled METHOD AND SYSTEM FOR MANAGING
COMPUTER SYSTEMS (now U.S. Pat. No. 7,707,133),
which is hereby incorporated by reference herein, which is a
continuation of U.S. patent application Ser. No. 10/412,639,
filed Apr. 10, 2003, and entitled “METHOD AND SYSTEM
FOR MANAGING COMPUTER SYSTEMS, which is
hereby incorporated by reference herein, and which in turn
claims the priority benefit of: (i) U.S. Provisional Patent
Application No. 60/371,659, filed Apr. 10, 2002, and entitled
METHOD AND SYSTEM FOR MANAGING COM
PUTER SYSTEMS,” which is hereby incorporated by refer
ence herein; and (ii) U.S. Provisional Patent Application No.
60/431,551, filed Dec. 5, 2002, and entitled “METHOD AND
SYSTEM FOR MANAGING COMPUTER SYSTEMS,
which is hereby incorporated by reference herein.

BACKGROUND OF THE INVENTION

0002 1. Field of the Invention
0003. The present invention relates to computer systems
and, more particularly, to management of computer systems.
0004 2. Description of the Related Art
0005 Today’s computer systems, namely enterprise com
puter systems, make use of a wide range of products. The
products are often applications. Such as operating systems,
application servers, database servers, JAVAVirtual Machines,
etc. These computer systems often suffer from network and
system-related problems. Unfortunately, given the complex
mixture of products concurrently used by Such computer
systems, there is great difficultly in identifying and isolating
of application-related problems. Typically, when a problem
occurs on a computer system, it must first be isolated to a
particular computer system out of many different computer
systems or to the network interconnect among these systems
and also to a particular application out of many different
applications used by the computer system. However, conven
tionally speaking, isolating the problem is difficult, time con
Suming and requires a team of application experts with dif
ferent domain expertise. These experts are expensive, and the
resulting down time of computer systems is very expensive to
enterprises.
0006 Although management solutions have been devel
oped, such solutions are dedicated to particular customers
and/or specific products. Monitoring systems are able to pro
vide monitoring for events, but offer no meaningful manage
ment of non-catastrophic problems and prevention of cata
strophic problems. Hence, conventional managing and

Oct. 1, 2015

monitoring solutions are dedicated approaches that are not
generally usable across different computer systems using
combinations of products.
0007 Thus, there is a need for improved management
systems that are able to efficiently manage computer systems
over a wide range of products.

SUMMARY OF THE INVENTION

0008 Broadly speaking, the invention relates to a manage
ment system for a computer system. The computer system
operates or includes various products (e.g., software prod
ucts) that can be managed in a management system or collec
tively by a group of management systems. Typically, the
management system operates on a computer separate from
the computer system being managed. The management sys
tem can make use of a knowledge base of causing symptoms
for previously observed problems at other sites or computer
systems. In other words, the knowledge base can be built from
and shared by different users across different products to
leverage knowledge that is otherwise disparate. The knowl
edge base typically grows overtime. The management system
can use its ability to request information from the computer
system being managed together with the knowledge base to
infer a problem root cause in the computer system being
managed. The computer system being managed can also
request the management system to process its knowledge
base for possible problem cause analysis. The management
system can also continually identify persisting problem caus
ing symptoms.
0009. The invention can be implemented in numerous
ways including, as a method, system, apparatus, and com
puter readable medium. Several embodiments of the inven
tion are discussed below.
0010. As a management system for a computer system,
one embodiment of the invention can, for example, include at
least: a plurality of agents residing within managed nodes of
a plurality of different products used within the computer
system, and a manager for said management system. The
manager is operable across the different products.
0011. As a method for isolating a root cause of a software
problem in an enterprise computer system Supporting a plu
rality of software products, one embodiment of the invention
can, for example, include at least: forming a knowledge base
from causing symptoms and experienced problems provided
by a disparate group of personal contributors; and examining
the knowledge base with respect to the software problem to
isolate the cause of the software problem to one of the soft
ware products.
0012. As a method for managing an enterprise computer
system, one embodiment of the invention can, for example,
include at least the acts of receiving a fact pertaining to a
condition of one of a plurality of different products that are
operating in the enterprise computer system; asserting the
fact with respect to an inference engine, the inference engine
using rules based on facts; retrieving updated facts from the
inference engine from those of the rules that are dependent on
the fact that has been asserted; and performing an action in
view of the updated facts.
0013 As a computer readable medium including at least
computer program code stored therein for isolating a root
cause of a problem in an enterprise computer system support
ing a plurality of products, one embodiment of the invention
can, for example, include at least: computer program code for
accessing a knowledge base that is formed from causing

US 2015/0278,698 A1

symptoms and experienced problems provided by a disparate
group of personal contributors; and computer program code
for examining the knowledge base with respect to the prob
lem to isolate the cause of the problem to one of the products.
0014. Other aspects and advantages of the invention will
become apparent from the following detailed description,
taken in conjunction with the accompanying drawings, illus
trating by way of example the principles of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

0015 The present invention will be readily understood by
the following detailed description in conjunction with the
accompanying drawings, wherein like reference numerals
designate like structural elements, and in which:
0016 FIG. 1 is a block diagram of a management system
according to one embodiment of the invention.
0017 FIG. 2 is a block diagram of a manager for a man
agement system according to one embodiment of the inven
tion.
0018 FIG. 3 is a block diagram of a GUI (Graphical User
Interface) according to one embodiment of the invention.
0019 FIG. 4 is a block diagram of a knowledge manager
according to one embodiment of the invention.
0020 FIG. 5A is a diagram of a directed graph represent
ing a knowledge base.
0021 FIG. 5B represents a small portion of knowledge
provided in a segment of a directed graph (e.g., directed
graph).
0022 FIG. 5C represents a small portion of knowledge
provided in a segment a directed graph (e.g., directed graph).
0023 FIG. 6 is a block diagram of a knowledge processor
according to one embodiment of the invention.
0024 FIG. 7 is a block diagram of a management frame
work interface according to one embodiment of the invention.
0025 FIG. 8 is a block diagram of a report module accord
ing to one embodiment of the invention.
0026 FIG. 9A is a diagram illustrating a knowledge base
according to one embodiment of the invention.
0027 FIG.9B is an architecture diagram for a rule pack
according to one embodiment of the invention.
0028 FIG. 10 illustrates a relationship between facts,
rules and actions.
0029 FIG. 11 illustrates an object diagram for a represen

tative knowledge representation.
0030 FIG. 12 is a block diagram of the managed node
according to one embodiment of the invention.
0031 FIG. 13 is a block diagram of an agent according to
one embodiment of the invention.
0032 FIG. 14 is a block diagram of a master agent accord
ing to one embodiment of the invention.
0033 FIG. 15 is a block diagram of a sub-agent according
to one embodiment of the invention.
0034 FIGS. 16A and 16B are flow diagrams of manager
startup processing according to one embodiment of the inven
tion.
0035 FIGS. 16C-16E are flow diagrams of manager star
tup processing according to another embodiment of the
invention.
0036 FIG. 17A is flow diagram of master agent startup
processing according to one embodiment of the invention.
0037 FIG. 17B is a flow diagram of sub-agent startup
processing according to one embodiment of the invention.

Oct. 1, 2015

0038 FIGS. 18A and 18B are flow diagrams of trigger/
notification processing according to one embodiment of the
invention.
0039 FIG. 19 is a flow diagram of GUI report processing
according to one embodiment of the invention.
0040 FIGS. 20-29 are screen shots of a representative
Graphical User Interface (GUI) suitable for use with one
embodiment of the present invention.

DETAILED DESCRIPTION OF THE INVENTION

0041. The invention pertains to a management system for
a computer system (e.g., an enterprise computer system). The
computer system operates or includes various products (e.g.,
Software products) that can be managed in a management
system or collectively by a group of management systems.
Typically, the management system operates on a computer
separate from the computer system being managed. The man
agement system can make use of a knowledge base of causing
symptoms for previously observed problems at other sites or
computer systems. In other words, the knowledge base can be
built from and shared by different users across different prod
ucts to leverage knowledge that is otherwise disparate. The
knowledge base typically grows over time. The management
system can use its ability to request information from the
computer system being managed together with the knowl
edge base to infer a problem root cause in the computer
system being managed. The computer system being managed
can also request the management system to process its knowl
edge base for possible problem cause analysis. The manage
ment system can also continually identify persisting problem
causing Symptoms.
0042 Embodiments of the invention are discussed below
with reference to FIGS. 1-29. However, those skilled in the art
will readily appreciate that the detailed description given
herein with respect to these figures is for explanatory pur
poses as the invention extends beyond these limited embodi
mentS.

0043 FIG. 1 is a block diagram of a management system
100 according to one embodiment of the invention. The man
agement system 100 serves to manage a plurality of managed
nodes 102-1, 102-2, ..., 102-in. Each of the managed nodes
102-1, 102-2,..., 102-in respectively includes an agent 104-1,
104-2. . . . , 104-n. These agents 104 serve to monitor and
manage products at the managed nodes 102. In one imple
mentation, the agents 104 are standalone processes operating
in their own process space. In another implementation, the
agents 104 are specific to particular products being managed
and reside at least partially within the process space of the
products being managed. The agents 104 can monitor and
collect data pertaining to the products. Since the products can
utilize an operating system or network coupled to the man
aged nodes, the agents 104 are also able to collect state
information pertaining to the operating system or the net
work. In still another implementation, the agents 104 are an
embodiment of Simple Network Management Protocol
(SNMP) agents available from third-parties or system ven
dors.
0044) The agents 104 can be controlled to monitor specific
information (e.g., resources) with respect to user-config
urable specifics (e.g., attributes). The information (e.g.,
resources) being monitored can have Zero or more layers or
depths of specifics (e.g., attributes). The monitoring of the
information can be dynamically on-demand or periodically
performed. The information being monitored can be focused

US 2015/0278,698 A1

or limited to certain details as determined by the user-config
urable specifics (e.g., attributes). For example, the informa
tion being monitored can be focused or limited by certain
levels/depths.
0045 Optionally, the agents 104 can also be capable of
performing certain statistical analysis on the data collected at
the managed nodes. For example, the statistical analysis on
the data might pertain to running average, standard deviation,
or historical maximum and minimum.
0046. The management system 100 also includes a man
agement framework 106. The management framework 106
facilitates communications between the agents 104 for the
managed nodes 102 and the manager 108. For example, dif
ferent agents 104 can utilize different protocols (namely,
management protocols) to exchange information with the
management framework 106.
0047. The management system 100 also includes a man
ager 108. The manager 108 serves to manage the management
system 100. Consequently, the manager 108 can provide
cross-products, cross-systems and multi-systems manage
ment in a centralized manner, such as for an enterprise net
work environment having multiple products or applications
which serve different types of requests. In an enterprise net
work environment, the manager 108 has the ability to manage
the various systems therein and their products and/or appli
cations through a single entity. Geographically, these systems
and products and/or applications can be centrally located or
distributed locally or remotely (even globally).
0048 FIG. 2 is a block diagram of a manager 200 for a
management system according to one embodiment of the
invention. For example, the manager 200 illustrated in FIG.2
can pertain to the manager 108 illustrated in FIG. 1.
0049. The manager 200 includes a Graphical User Inter
face (GUI) 202 that allows a user (e.g., an administrator) to
interact with the manager 200 to provide user input. The user
input can pertain to rules, resources or situations. In addition,
the user input with the GUI 202 can pertain to administrative
or configuration functions for the manager 200 or output
information (e.g., reports, notifications, etc.) from the man
ager 200. The input data is supplied from the GUI 202 to a
knowledge manager 204. The knowledge manager 204 con
firms the validity of the rules, resources or situations and then
converts such rules, resources or situations into a format
being utilized for storage in a knowledge base 206. In one
implementation, the format pertains to meta-data represented
as JAVA properties. The knowledge base 206 stores the rules,
resources and situations within the database in a compiled
code format.
0050. The manager 200 also includes a knowledge proces
sor 208. The knowledge processor 208 interacts with the
knowledge manager 204 to process appropriate rules within
the knowledge base 206 in view of any relevant situations or
resources. In processing the rules, the knowledge processor
208 often requests data from the agents 104 at the managed
nodes. Such requests for data are initiated by the knowledge
processor 208 and performed by way of a data acquisition unit
210 and a management framework interface 212. The
returned data from the agents 104 is returned to the knowl
edge processor 208 via the data acquisition unit 210 and the
management framework interface 212. With such monitored
data in hand, the knowledge processor 208 can evaluate the
relevant rules. When the rules (evaluated by the knowledge
processor 208 in accordance with the monitored data received
from the agents 104) indicate that a problem exists, then a

Oct. 1, 2015

variety of different actions can be performed. A corrective
action module 213 can be initiated to take corrective action
with respect to resources at the particular one or more man
aged nodes that have been identified as having a problem.
Further, if debugging is desired, a debug module 214 can also
be activated to interact with the particular managed nodes to
capture system data that can be utilized in debugging the
particular system problems.
0051. The knowledge processor 208 can periodically, or
on a scheduled basis, perform certain of the rules stored
within the knowledge base 206. The notification module 216
can also initiate the execution of certain rules when the noti
fication module 216 receives an indication from one of the
agents 104 via the management framework interface 212.
Typically, the agents 104 would communicate with the noti
fication module 216 using a notification that would specify a
management condition that the agent 104 has sent to the
manager 200 via the management framework 106.
0052. In addition, the manager 200 also includes a report
module 218 that can take the data acquired from the agents
104 as well as the results of the processed rules (including
debug data as appropriate) and generate a report for use by the
user or administrator. Typically, the report module 218 and its
generated reports can be accessed by the user or administrator
through the GUI 202. The manager 200 also includes a log
module 220 that can be used to store a log of system condi
tions. The log of system conditions can be used by the report
module 218 to generate reports.
0053. The manager 200 can also include a security module
222, a registry 224 and a registry data store 226. The security
module 222 performs user authentication and authorization.
Also, to the extent encoding is used, the security module 222
also perform encoding or decoding (e.g., encryption or
decryption) of information. The registry 224 and the registry
data store 226 serve to serve and store structured information
respectively. In one implementation, the registry data store
226 serves as the physical storage of certain resource infor
mation, configuration information and compiled knowledge
information from the knowledgebase 206.
0054 Still further, the manager 200 can include a notifi
cation system 228. The notification system 228 can use any of
a variety of different notification techniques to notify the user
or administrator that certain system conditions exist. For
example, the communication techniques can include elec
tronic mail, a pager message, a Voice message or a facsimile.
Once notified, the notified user or administrator can gain
access to a report generated by the report module 218.
0055. The debug module 214 is able to be advantageously
initiated when certain conditions exist within the system.
Such debugging can be referred to as "just-in-time' debug
ging. This focuses the capture of data for debug purposes to a
constrained time period in specific areas of interest Such that
more relevant data is able to be captured.
0056 FIG.3 is a block diagram of a GUI300 according to
one embodiment of the invention. The GUI 300 is, for
example, suitable for use as the GUI 202 illustrated in FIG. 2.
0057 The GUI300 includes a knowledge input GUI 302,
a report output GUI 304, and an administrator GUI 306. The
knowledge input GUI 302 provides a graphical user interface
that facilitates interaction between a user (e.g., administrator)
and a manager (e.g., the manager 200). Hence, using the
knowledge input GUI 302, the user or administrator can enter
rules, resources or situations to be utilized by the manager.
The report output GUI 304 is a graphical user interface that

US 2015/0278,698 A1

allows the user to access reports that have been generated by
a report module (e.g., the report module 218). Typically, the
report output GUI 304 would not only allow initial access to
Such reports, but would also provide a means for the user to
acquire additional detailed information about reported con
ditions. For example, the report output GUI 304 could enable
a user to view a report on chosen criteria Such as case ID or a
period of time. The administrator GUI 306 can allow the user
to configure or utilize the manager. For example, the admin
istrator GUI 306 can allow creation of new or modification to
existing users and their access passwords, specific informa
tion about managed nodes and agents (including managed
node IP and port, agent name, agent types), electronic mail
server and user configuration.
0058 FIG. 4 is a block diagram of a knowledge manager
400 according to one embodiment of the invention. The
knowledge manager 400 is, for example, Suitable for use as
the knowledge manager 204 illustrated in FIG. 2.
0059. The knowledge manager 400 includes a knowledge
code generator 402. In particular, the knowledge code gen
erator 402 receives rules or definitions (namely, definitions
for resources or situations) and then generates and outputs
knowledge code to a knowledge processor, Such as the knowl
edge processor 208. In one implementation, the knowledge
code generator 402 can be considered a compiler, in that the
rules or definitions are converted into a data representation
Suitable for execution. The knowledge code can be a program
code or it can be a meta-language. In one implementation, the
knowledge code is executable by an inference engine such as
JESS. Additional information on JESS is available at
"herzberg.ca. Sandia.gov/jess' as an example.
0060. The knowledge manager 400 also includes a knowl
edge encoder/decoder 404, a knowledge importer/exporter
406 and a knowledge update manager 408. The knowledge
encoder/decoder 404 can perform encoding when storing
knowledge to the knowledge base 206 or decoding when
retrieving knowledge from the knowledge base 206. The
knowledge importer/exporter 406 can import knowledge
from another knowledge base and can export knowledge to
another knowledge base. In general, the knowledge update
manager 408 serves to manually or automatically update the
knowledge base 206 with additional sources of knowledge
that are available and suitable. In one embodiment, the knowl
edge update manager 408 operates to manage the general
coherency of the knowledge base 206 with respect to a central
knowledge base. Typically, the knowledge base 206 stored
and utilized by the knowledge manager 400 is only a relevant
portion of the central knowledge base for the environment
that the knowledge manager 400 operates.
0061 FIG. 5A is a diagram of a directed graph. 500 repre
senting a knowledge base. The knowledge base represented
by the directed graph. 500 is, for example, suitable for use as
the knowledge base 206 illustrated in FIG. 2. The directed
graph 500 represents a pictorial view of the knowledge code
resulting from rules, situations and resources.
0062. The directed graph 500 is typically structured to
include base resources at the top of the directed graph. 500,
situations/resources in a middle region of the directed graph
500, and actions (action resources) at the bottom (or leaf
nodes) of the directed graph 500. In particular, node 502
pertains to a base resource or resources and node 504 pertains
to situation and/or resource. A relationship 506 between the
nodes 502 and 504 is determined by the rule being repre
sented by the directional arrow between the nodes 502 and

Oct. 1, 2015

504. The situation/resource at node 504 in turn relates to
another situation/resource at node 508. A relationship 510
relates the nodes 504 and 508, namely, the relationship 510 is
determined by the rule represented by the directional arrow
between the nodes 504 and 508. The situations/resources at
nodes 504 and 508 together with the relationship 510 pertain
to another rule. The situation/resource at node 508 is further
related to an action resource at node 512. A relationship 514
between the situation/resource at node 508 and the action
resource at node 512 is determined by still another rule,
namely, an action rule.
0063. The knowledge base represented by the directed
graph. 500 is flexible and extendible given the hierarchical
architecture of the directed graph. 500. Hence, the knowledge
base is able to grow over time to add capabilities without
negatively affecting previously existing knowledge within
the knowledge base. The knowledge base is also able to be
divided or partitioned for different users, applications or ser
Vice plans. In effect, as the knowledge base grows, the
directed graph. 500 representation grows to add more nodes,
Such nodes representing situations or resources as well as
relationships (i.e., rules) between nodes.
0064 FIG. 5B represents a small portion of knowledge
provided in a segment 520 of a directed graph (e.g., directed
graph. 500). The segment 520 includes nodes 522,526, 530
and 534, and relationships 524,528 and 532. The node 522
pertains to a resource, namely, heap size of Java Virtual
Machine (JVM) in use. The relationship 524 indicates that
when the node 522 is triggered, the node 526 is triggered. The
node 526 pertains to a resource, namely, maximum heap size
of JVM. The relationship 528 evaluates whether the maxi
mum heap size for JVM is less than 1/0.8 percent the heap size
for JVM. When the relationship 528 is true, then the node 530
is triggered to acquire a resource, namely, TopHeapCbjects
for JVM, which is a debugging resource that obtains the
information about the objects that are consuming the most
amount of JVM heap. The specifics of this resource include
the resource consumption selected by cumulative size or the
number of objects, the count of the distinct objects, the selec
tion of objects by JAVA classes they belong to are described
by the attributes of the resource. The relationship 532 then
always causes the node 534 to invoke a resource action,
namely, initiating an allocation trace for JVM. The specifics
of this resource selectable by its attributes can include but not
limited to the classes of objects to trace, the time-period for
tracing, and the depth of stack to which to limit every trace.
0065 FIG. 5C represents a small portion of knowledge
provided in a segment 540 of a directed graph (e.g., directed
graph. 500). The segment 540 includes nodes 542, 546, 550,
554 and 558, and relationships 544, 548,552 and 556. The
node 542 pertains to a situation, namely, a JVM exception.
The relationship 544 causes the node 546 to invoke a filter
operation when the situation at node 542 is present. The filter
operation at node 546 is a search expression that searches the
JVM exception resource information received from agent 104
for an attribute “ORA-00018” which represents a particular
problem with Oracle database, namely, the Oracle database
running out of database connections for the managed JAVA
application to use. When the search expression is found, the
relationship 548 causes the node 550 to trigger. At node 550,
a resource for maximum users configured for the Oracle
database being used by the managed JAVA application is
obtained. Then, the relationship 552 determines whether the
maximum users for the Oracle product is less than fifty (50)

US 2015/0278,698 A1

and, if so, the node 554 invokes an action, namely, an email
notification is sent. In addition, the relationship 556 always
triggers the node 558 to acquire a resource pertaining to the
number of connected users the relevant Oracle database. The
two rules, one rule represented by resources 542, 546, 550,
558 and the relationships 544, 548,556, and the second rule
represented by the resources 550, 554 and the relationship
552 are two distinct rules defined using GUI 202 at different
times and possibly by different users and without needing to
know about the existence of the second rule while defining the
first one rule and vice versa. The knowledgebase automati
cally links or chains these rules through the commonality of
the resources (e.g., Oracle maximum configured users
resource 550 in the this example.
0066 FIG. 6 is a block diagram of a knowledge processor
600 according to one embodiment of the invention. The
knowledge processor 600 is, for example, suitable for use as
the knowledge processor 208 for the manager 200 illustrated
in FIG. 2.
0067. The knowledge processor 600 includes a controller
602 that couples to a knowledge manager (e.g., the knowl
edge manager 204). The controller 602 receives the knowl
edge code from the knowledge manager and directs it to an
inference engine 604 to process the knowledge code. In one
embodiment, the knowledge code is provided in an inference
language such that the inference engine 604 is able to execute
the knowledge code.
0068. In executing the knowledge code, the inference
engine 604 will typically inform the controller 602 of the
particular data to be retrieved from the managed nodes via the
agents and the management framework interface. In this
regard, the controller 602 will request the data via a manage
ment interface 606 to a management framework. The returned
data from the managed nodes is then returned to the controller
602 via the management interface 606. Alternatively, in
executing the knowledge code, exceptions (i.e., unexpected
events) can be generated at the managed nodes and pushed
through the management interface 606 to the controller 602.
In either case, the controller 602 then forwards the returned
data to the inference engine 604. At this point, the inference
engine 604 can continue to process the knowledge code (e.g.,
rules). The inference engine 604 may utilize a rule evaluator
608 to assist with evaluating the relationships or rules defined
by the knowledge code. The rule evaluator 608 can perform
not only the relationship checking for rules but also data
parsing. Once the knowledge code has been executed, the
inference engine 604 can inform the controller 602 to have
various operations performed. These operations can include
capturing of additional data from the managed nodes, initiat
ing debug operations, initiating corrective actions, initiating
logging of information, or sending of notifications.
0069. The knowledge processor 600 also can include a
scheduler 610. The scheduler 610 can be utilized by the
inference engine 604 or the controller 602 to schedule a future
action, such as the retrieval of data from the managed nodes.
0070 FIG. 7 is a block diagram of a management frame
work interface 700 according to one embodiment of the
invention. The management framework interface 700 is, for
example, Suitable for use as the management framework
interface 212 illustrated in FIG. 2.
0071. The management framework interface 700 includes
a SNMP adapter 702 and a standard management framework
adapter 704. The SNMP adapter 702 allows the management
framework interface 700 to communicate using the SNMP

Oct. 1, 2015

protocol. The standard management framework adapter 704
allows the management framework interface 700 to commu
nicate with any other communication protocols that might be
utilized by Standard management frameworks, such as other
product managers and the like. The management framework
interface 700 also includes an enterprise manager 706, a
domain group manager 708, and an available domain/re
Sources module 710. During startup of the management
framework interface 700 (which is typically associated with
an enterprise), the enterprise manager 706 will identify all
groups within the enterprise. Then, the domain group man
ager 708 will operate to identify all management nodes within
each of the groups. Thereafter, the available domain/re
sources module 710 will identify all domains and resources
associated with each of the identified domains. Hence, the
domains and resources for a given enterprise are able to be
identified at startup so that the other components of a manager
(e.g., the manager 200) are able to make use of the available
domains and resources within the enterprise. For example, a
GUI can have knowledge of such resources and domains for
improved user interaction with the manager, and the knowl
edge processor can understand which rules within the knowl
edge base 206 are pertinent to the enterprise.
0072 The management framework interface 700 also
includes an incoming notification manager 712. The incom
ing notification manager 712 receives notifications from the
agents within managed nodes. These notifications can pertain
to events that have been monitored by the agents, such as a
system crash or the presence of a new resource. More gener
ally, these notifications can pertain to changes to monitored
data at the managed nodes by the agents.
0073. The management framework interface 700 also
includes a managed node administrator module 714. The
managed node administrator module 714 allows a user or
administrator to interact with the management framework
interface 700 to alter nodes or domains within the enterprise,
Such as by adding new nodes or domains, updating domains,
reloading domains, etc.
0074 Still further, the management framework interface
700 can also include a managed node update module 716. The
managed node update module 716 can discover managed
nodes and thus permits a manager to recognize and receive
status (e.g., active/inactive) of the managed nodes.
(0075 FIG. 8 is a block diagram of a report module 800
according to one embodiment of the invention. The report
module 800 is, for example, suitable for use as the report
module 218 illustrated in FIG. 2.

0076. The report module 800 includes a presentation man
ager 802, a format converter 804 and a report view selector
806. The presentation manager 802 operates to process the
raw report data provided by a log module (e.g., log module
220) in order to present an easily understood, richly formatted
report. Such a report might include associated graphical com
ponents that a user can interact with using a GUI (e.g., GUI
202). Examples of graphical components for use with Such
reports are buttons, pull-down lists, etc. The format converter
804 can convert the raw report data into a format suitable for
printing and display. The report view selector 806 allows
viewing of partial or complete log data/raw report data in
different ways as selected using a GUI. These views can, for
example, includes one or more of the following types of
reports: (1) Report Managed nodes wise—show report for the
selected managed node/process identifier only; (2) Report
time wise—show report for the last xyz hours (time desired

US 2015/0278,698 A1

by the user), with the user having the option of choosing the
managed node he wants to view; (3) Report Rule wise—show
report for the selected rule that might be applicable for num
ber of JVM instances; (4) Report Rule pack wise—show
report for all the rules fired under a particular rule pack; (5)
Report Last Fired Rules wise—show report for rules fired
after last re-start of the inference engine; (6) Report Rule
Fired Frequency wise—show report for rules fired as per
selected fired frequency (e.g., useful to get recurrence pattern
of event occurrence); (7) Report Domain wise—show report
pertaining to aparticular domain (e.g., ifa rule is composed of
multiple domains, in that case this report can show the rules
including the selected domain. e.g., JVM); (8) Report
Resource wise—show report for all rules including a particu
lar resource under the domain, e.g., jVm Exception); (9)
Report filter wise—show report pertaining to rules having
similar filter conditions: (10) Report Day wise—show report
for all events happened in a day; (11) Report Refreshed Val
ues wise—show next refreshed State of the same report and
highlights changed/added records; (12) Report Case ID
wise—show the report based on problem case identifier (id);
and (13)Customized Structure reports—allow user to select a
combination of the above or provide a report filter of their
OW

0077 FIG. 9A is a diagram illustrating a knowledge base
900 according to one embodiment of the invention. The
knowledge base 900 is, for example, suitable for use as the
knowledge base 206 illustrated in FIG. 2 or the knowledge
base 500 illustrated in FIG. 5A. The architecture for the
knowledge base 900 renders the knowledge base 900 well
Suited to be managed, deployed and scaled. The knowledge
base 900 typically resides within a manager, such as the
manager 200 illustrated in FIG. 2. However, the knowledge
base 900 can also be distributed between a manager and
managed nodes, such that the processing load can be likewise
distributed.

0078. The knowledge base 900 includes one or more
knowledge domains and one or more rule packs. In particular,
the knowledge base 900 illustrated in FIG. 9A includes
knowledge domain A 902, knowledge domain B 904 and
knowledge domain C 906. Through use of the rule packs,
these multiple knowledge domains 902,904, and 906 can be
linked together so as to effectively operate to concurrently
cooperate with one another. A particular knowledge domain
is a software representation of know-how pertaining to a
specific field (or domain). The knowledge domains can be
physical domains and/or virtual domains. A physical domain
often pertains to a particular managed product. A virtual
domain can pertain to a defined set of resources defined by a
user to achieve effective manageability.
0079. The knowledge base 900 also includes rule packs
910 and 912. These rule packs (or knowledge rule packs) are
collections of rules (i.e., relationships between different kinds
of resources/situations). The purpose of the rule packs is to
collect the rules such that management modification and
tracking of knowledge is made easier. By separating knowl
edge into domains and rule packs, each knowledge compo
nent can be individually tested as well as tested together with
other knowledge components. In other words, each domain or
rule packis a logically separate piece of knowledge which can
be installed and uninstalled as desired.

0080 FIG.9B is an architecture diagram for a rule pack
914 according to one embodiment of the invention. The rule
pack 914 includes rules 916, facts 918 and functions 920. The

Oct. 1, 2015

rule pack 914 depends on the facts 918 for its reasoning, a set
of facts that it generates, a set of functions 920 that it calls
upon, and a set of rules 916 that act to read and write facts and
perform the functions.
I0081. When a rule pack is installed, the system must keep
track of its rules, functions, inputs and outputs so that a large
installed base of rule packs can be managed. Hence, an indi
vidual rule pack can be added to or removed from the knowl
edge base without adversely affecting the entire system.
I0082 Further, two rule packs may operate on the same set
of shared facts. The two knowledge rule packs may also
generate a set of shared facts. These rule packs can facilitate
the tracking of how a fact travels through various rule packs,
and how a fact may be generated by multiple rule packs. The
functions and rules of rule packs can also be more precisely
monitored by using the Smaller sized rule packs. It is also
possible for one rule to exist in two or more rule packs. Hence,
when Such two or more rule packs that share a rule are merged
into a knowledge base, only one copy of the rule need exist
within the knowledge base.
I0083. An expert system object manages the knowledge
base. For example, the expert System object can reset an
inference engine, load and unload rule packs or domains,
insert or retract runtime facts, etc.
I0084. The knowledge representation utilized by the
present invention makes use of three major components:
facts, rules and actions. Collectively, these components are
utilized to perform the tasks of monitoring and managing a
computer resource, Such as a JVM, an operating System, a
network, database or applications.
I0085 FIG. 10 illustrates a relationship 1000 between facts
1002, rules 1004 and actions 1006. According to the relation
ship 1000, facts 1002 trigger rules 1004. The rules 1004 that
are triggered cause the actions 1006. The actions 1006 then
may cause additional facts to be added to the repository of the
facts 1002. A fact can be considered a record of information.
One example of a fact is the number of threads running in a
JVM. Another example of a fact is an average load on a CPU.
Rules are presented as "if-then statements. In one embodi
ment, the left-hand side of the "if-then statement can have
one or more patterns, and the right-hand side of the "if-then
rule can contain a procedural list of one or more actions. The
patterns are used as conditions to search for a fact in the
repository of the facts 1002, and thus locate a rule that can be
used to infer something. The actions are functions that per
form a task. As an example, the actions can be considered to
be statements that would otherwise be used in the body of a
programming language (e.g., JAVA or C programs). As
another example, the actions can be used to obtain debug
information using a resource.
I0086. The rules 1004 can be represented in JAVA Expert
Systems Shell (JESS) and as a rule engine that drives these
rules. JESS offers a CLIPS-like language for specifying infer
ence rules, facts and functions. The relationship 1000 thus
facilitates the creation of a data-driven knowledge base that is
well-suited for monitoring and managing computer
SOUCS.

I0087 FIG. 11 illustrates an object diagram 1050 for a
representative knowledge representation. The object diagram
1050 includes a rule pack 1 inference object 1052 and a rule
pack 2 inference object 1054. An inference object for a rule
pack encompasses the rules written for that knowledge
domain(s) and a rules engine can then read and execute these
rules. A JESS package can be utilized to provide this func

US 2015/0278,698 A1

tionality. Surrounding each of the inference objects 1052 and
1054 are domain facts and domain actions. Although the
arrangement of the rule packs shown in FIG. 11 is such that
the rule packs pertain to a particular domain, rule packs can
also be arranged to pertain to multiple domains.
0088. The relationship between a domain fact and an infer
ence object is always an arrow pointing from the fact to the
inference object, thereby denoting that facts are “driving the
rules inside the inference engine. The relationship between
the inference object and the actions are that of an arrow
pointing from the inference object toward the action—mean
ing the inference rules “drive' the actions. Between the two
inference objects 1052 and 1054 are facts and actions that
both inference objects 1052 and 1054 utilize. In effect, these
inference objects 1052 and 1054 are cooperative expert sys
tems, namely, expert Systems that cooperate in a group by
sharing some of their knowledge with one another.
0089. Facts can be used to represent the “state' of an
expert System in Small chunks. For example, a fact may
appear as “MAIN::Vm-jVm heapused (v "3166032) (uid
“372244480') (instance “13219) (host unknown)” The con
tent of the fact indicates that in the current Java Virtual
Machine (JVM) on system “unknown with instance or pro
cess id 13219, the size of heap used is 3166032 bytes. In this
example, uid, instance and host are some of the attributes of
the resourceivm heapused belonging to the domainjVm. The
attributes of a resource that are not used for comparison with
other resources, need not be included in the facts for the
resource. Facts, as implemented by JESS, exist inside the
rules engine. To add an additional fact into the rules engine,
the new fact is injected into the inference engine object. The
repository of facts can be represented hierarchically. The
knowledge base can, for example, be sorted and transmitted
as needed as a set of XML documents or provided as shared
distributed databases using LDAP or as JAVA Properties files.
0090. In the case of a cooperative expert system, access to
a shared set of facts is needed. The facts can be logically
organized into separate domains. In one implementation, a
user may choose to organize shared knowledge into separate
knowledge rule packs, or alternatively, allow the same fact
definition to exist within multiple rule packs. In the later
approach, the system can manage the consistency of the facts
using a verification process at the managed resource node (in
the form of capability requests) and at the knowledge control
module (in the form of definition verification).
0091. The rules are used to map facts into actions. Rules
are preferably domain-specific Such that separate domains of
knowledge are thus provided as modular and independent
rule sets. Hence, the modification of one domain of rules and
its internal facts would not affect other domains. These dif
ferent rule packs of rules interact with each other only through
shared facts.
0092 An example of a rule implemented using JESS is as
follows:

(Defrule default jvm-memory-leak-detect
(Vm Vm heapused (v2r1) (uid 2uid) (instance?instance) (host host))
(test (> 2r1 1000000)

(...Some actions...)

0093. The “default- prefix denotes the rule pack the rule
belongs to. Since it is possible that memory leak can exist for

Oct. 1, 2015

application or application server, utilizing separate name
spaces for each rule pack of rules allows separation of these
rules into different rule packs. Another advantage of using
separate name space for different rule packs is that JESS rules
are serializable, meaning that text rules can be encoded into
binary form. The ability to store rules in binary form serves to
protect the intellectual property encoded within the rules.
0094) Actions are procedural statements to be executed.
The actions may reside on the right-hand side of rules in the
form of scripts or can be embedded as methods inside pro
gramming objects (e.g., JAVA objects). In the case of scripts,
the scripts are inference engine-dependent Such that different
inference engines would utilize different scripts because of
the different languages utilized by the inference engines. In
the case of programming objects, the actions are functions.
For example, actions in JAVA can be implemented by regis
tering them as new JESS functions. Alternatively, the func
tions could be packaged inside fact objects for which Such
rules are relevant. The functions could in turn request relevant
resource values from the managed nodes and assert the values
obtained as facts into the inference engine. The fact objects
(e.g., get values) represent values obtained from agents (e.g.,
using a scheduler of an agent).
0.095 Given that actions can be complicated and not tied to
any particular facts, it is often more efficient to create a global
object for a domain and include the methods or functions for
actions therein Such that every rule within a rule pack has
access to the actions.
0096. Through the use of a modular design, the system
becomes easier to manage even when thousands of rules and
facts exist. By separating rules into rule packs and facts into
domains, and making it difficult for domains to interfere with
one another, the expert system is effectively divided into
smaller modular pieces. Additionally, through use of JESS’s
built-in watch facility, the system can track those rules that
have fired and the order in which they have fired. This watch
facility thus provides a limited tool for debugging a knowl
edge system. Groups of rules can be isolated for inspection by
turning off other rules. Rules can be turned off by deactivating
those inference objects from firing which are not desired. If
one were to desire to debug a set of rules related to one
domain, Such a set of rules could be manually grouped into a
logical group (e.g., rule pack) and user of the management
system can use GUI 202 to control the activation of each
group. Using GUI 202, user can additionally control activa
tion of a single or a selected set of rules within a rule pack.
0097. Initialization scripts can be used to set up all the
components needed for a rule pack. The setup can operate to
create the inference object, load the rules, create initial facts,
create action objects, and link all the objects together so that
they can inter-operate.
(0098. In the JESS/JAVA implementation, one inference
object may contain rules from one or more rule packs. Out
side the inference object are objects that represent facts and
objects that encapsulate actions. Each inference object is
attached to a set of facts and actions. The rules engine
searches the facts for matches that can trigger a rule to fire.
Once a rule is fired, one or more action objects being linked
thereto are invoked. Actions can also be explicitly linked by
using an initialization that involves JAVA object creation and
passing handles to these objects to appropriate JESS infer
ence objects.
0099. One useful aspect of the rule engine design is the
ability of the system to manage different combinations of

US 2015/0278,698 A1

multiple products on multiple nodes using one set of rule
packs and one manager. This simplifies the distribution, con
figuration and manageability of rule packs on per-user basis.
For example, the rules engine can have rule packs for man
aged products JVM and Oracle loaded, but one managed node
may not have Oracle as the managed product. In this case,
naturally there will be no facts corresponding to Oracle
resources for the managed node asserted into the inference
engine and hence the rules using those Oracle resources will
not be active for the managed node without Oracle as a
managed product. Note that the information about the man
aged node is part of the fact representing any Oracle resource.
0100 Another useful aspect of the rules engine design is
the implicit chaining of rules by the inference engine. A user
of the system defines individual rules representing a problem
or diagnostic "cases”. The system combines these individual
rules based on the use of common facts representing
resources. For example, one rule can be, represented in a
meta-language, “IF (jVm—uncaught exception AND fil
ter—exception is Oracle connections exhausted) THEN
(get Oracle—max connections configured). A second rule
can be, represented in a meta-language, “IF (Oracle—max
connections configured.<50) THEN (email dba)’. When the
inference engine is running, if the jVm uncaught exception
gets asserted into the inference engine and if the asserted fact
contains the Oracle connections exhausted Status, then the
management system will obtain the Oracle—max connec
tions configured resource from the same managed node as
described by the host attribute of the exception resource. On
request from the interface engine, the corresponding fact will
be asserted into the inference engine. The inference engine
will now automatically detect the second rule definition using
the Oracle—max connections configured resource and the
second rule will automatically get into action. It will check if
the fact value representing the Oracle—max connection
configured resource is greater than 50 and, if so, it will auto
matically send electronic mail to the dba.
0101 FIG. 12 is a block diagram of the managed node
1200 according to one embodiment of the invention. The
managed node 1200 is, for example, Suitable for use as one or
more of the managed nodes 102 illustrated in FIG. 1.
0102 The managed node includes a plurality of different
managed products 1202. In particular, the managed node
1200 includes managed products 1202-1, 1202-2, ..., 1202
n. These managed products 1202 are software products that
form part of the system being managed by a management
system. The managed products can vary widely depending
upon implementation. As examples, the managed products
can pertain to a Solaris operating system, an Oracle database,
or a JAVA application.
0103) The managed node 1200 also includes an agent
1204. The agent 1204 couples to each of the managed prod
ucts 1202. The agent 1204 also couples to a manager (e.g., the
manager 108 illustrated in FIG. 1) via the management frame
work 106. In general, the agent 1204 can interact with the
managed products 1202 Such that the managed products 1202
can be monitored and possibly controlled by the management
system via the agent 1204.
0104. Additionally, in one embodiment, one or more of the
managed products 1202 can include an application agent
1206. For example, as shown in FIG. 12, the managed product
N 1202-n includes the application agent 1206. Here, the
application agent 1206 resides within the process space of the
managed product N 1202-n (and thus out of the process space

Oct. 1, 2015

of the agent 1204). The application agent 1206 can render the
managed product N 1202-n more manageable by the agent
1204. For example, the application agent 1206 can enable any
JAVA application to be managed. The capabilities of the
application agent 1206 can be further enhanced by the user
adding application code to the application agent conforming
to the Application Programming Interfaces (API) provided by
the application agent 1206. This methodology provides a
convenient means for the user to add his/her application spe
cific information Such that it becomes available as resources
to the rest of the management system.
0105 FIG. 13 is a block diagram of an agent 1300 accord
ing to one embodiment of the invention. The agent 1300 is, for
example, suitable for use as the agent 1204 illustrated in FIG.
12.

0106 The agent 1300 includes a master agent 1302 that
couples to a plurality of sub-agents 1304. In particular, the
agent 1300 utilizes N sub-agents 1304-1, 1304-2,..., 1304-n.
Each of the sub-agents 1304-1, 1304-2, ..., 1304-in respec
tively communicates with the managed products 1202-1,
1202-2,1202-n shown in FIG. 12. The master agent 1302
thus interacts with the various managed products 1202
through the appropriate one of the sub-agents 1304. The
master agent 1302 includes the resources that are shared by
the sub-agents 1304. These shared resources are discussed in
additional detail below with respect to FIG. 14. The master
agent 1302 also provides an Application Programming Inter
faces (API) that can be used by the user to write a sub-agent
that can interact with a managed product for which a sub
agent is not provided by the management product. Using this
API, the user-written sub-agent can make available the man
aged product specific information as resources to the rest of
the management product including the master agent 1302 and
the manager 108.
0107 The agent 1300 also includes a communication
module 1306. The communication module 1306 allows the
agent 1300 to communicate with a management framework
(and thus a manager) through a variety of different protocols.
In other words, the communication module 1306 allows the
agent 1300 to interface with other portions of a management
system over different protocol layers. These communication
protocols can be standardized, general purpose protocols
(such as SNMP), or product-specific protocols (such as
HPOV-SPI from Hewlett-Packard Company) or various other
proprietary protocols. Hence, the communication module
1306 includes one or more protocol communication modules
1308. In particular, as illustrated in FIG. 13, the communica
tion module 1306 can include protocol communication mod
ules 1308-a, 1308-b, ..., 1308-m. The protocol A commu
nication module 1308-a interfaces to a communication
network that utilizes protocol A. The protocol B communica
tion module 1308-b interfaces with a communication net
work that utilizes protocol B. The protocol M communication
module 1308-m interfaces with a communication network
that utilizes protocol M.
0.108 FIG. 14 is a block diagram of a master agent 1400
according to one embodiment of the invention. The master
agent 1400 is, for example, suitable for use as the master
agent 1302 illustrated in FIG. 13.
0109 The master agent 1400 includes a request processor
1402 that receives a request from the communication module
1306. The request is destined for one of the managed products
1202. Hence, the request processor 1402 operates to route an
incoming request to the appropriate one of the Sub-agents

US 2015/0278,698 A1

1304 associated with the appropriate managed product 1202.
Besides routing a request to the appropriate Sub-agent 1304.
the request processor 1402 can also perform additional opera
tions, such as routing return responses from the Sub-agents
1304 to the communication module 1306 (namely, the par
ticular protocol communication module 1308 that is appro
priate for use in returning the response to the balance of the
management System, i.e., the manager).
0110. The master agent 1400 typically includes a registry
1404 that stores registry data in a registry data store 1406. The
registry 1404 manages lists which track the sub-agents 1304
that are available for use in processing requests for notifica
tion to the sub-agents 1304 or the protocol communication
modules 1308. These lists that are maintained by the registry
1404 are stored as registry data in the registry data store 1406.
Hence, the registry 1404 is the hub of the master agent 1400
for all traffic and interactions for other system components
carried out at the agent 1300. The functionality provided by
the registry 1404 includes (1) a mechanism for Sub-agent
registration, initialization, and dynamic configuration; (2) a
communication framework for the Sub-agents interaction
with the manager node through different communication
modules present at the agent; (3)a notification mechanism for
asynchronous notification delivery from the monitored sys
tems and applications to the communication modules and the
manager node; and (4) a Sub-agent naming service so that
Sub-agents can be addressed by using simple, human-read
able identifiers. The registry 1404 also acts as an interface
between the communication modules 1308 so that the com
munication modules 1308 are able to configure registered
Sub-agents and receive asynchronous notifications from the
registered sub-agents.
0111. The master agent 1400 also includes a scheduler
1408 and statistical analyzer 1410. The scheduler 1408 can be
utilized to schedule requests in the future to be processed by
the request processor 1402. The statistical analyzer 1410 can
be utilized to process (or at least pre-process) the response
data being returned from the managed product 1202 before
Some or all data is returned to the manager. Hence, by having
the master agent 1400 perform certain statistical analysis at
the statistical analyzer 1410, the processing load on the man
ager can be distributed to the master agents.
0112 Each of the sub-agents 1304 can be a pluggable
component enclosing monitoring and control functionality
pertinent to a single system or application. The Sub-agents
1304 are known to the managed products through the registry
1404. In other words, each of the sub-agents 1304 is regis
tered and initialized by the registry 1404 before it can receive
requests and send out information about the managed product
it monitors. The principal task of the sub-agent 1304 is to
interact with the managed product (e.g., system/application)
it controls or monitors. The sub-agent 1304 serves to hide
much interaction detail from the rest of the agent 1300 and
provides only a few entry points for request into the informa
tion.
0113. The different protocols supported by the communi
cation module 1306 allow the communication module 1306
to be dynamically extended to support additional protocols.
As a particular protocol communication module 1308 is ini
tialized, the registry 1404 within the master agent 1400 is
informed of the particular protocol communication module
1308 so that asynchronous notifications from the managed
objects can be received and passed to the manager via the
particular protocol communication module 1308.

Oct. 1, 2015

0114. The communication module 1306 receives requests
from a manager through the protocol Supported by the par
ticular protocol communication module 1308 that imple
ments and forwards such requests to the appropriate Sub
agent 1304 corresponding to the appropriate managed node.
The registry 1404 within the master agent 1400 is utilized to
forward the request from the protocol communication mod
ule 1308 and the sub-agents 1304.
0.115. In addition, the protocol communication module
1308 also provides a callback for the sub-agents 1304 such
that notifications are able to be received from the managed
product and sent back to the manager. If such callbacks are not
provided, the notifications will be ignored by the sub-agents
1304 and, thus, no error will be reported to the manager.
Hence, each of the protocol communication modules 1308
can be configured to handle or not handle notifications as
desired by any particular implementation.
0116 FIG. 15 is a block diagram of a sub-agent 1500
according to one embodiment of the invention. The Sub-agent
1500 is, for example, suitable for use as any of the sub-agents
1304 illustrated in FIG. 13.

0117 The sub-agent 1500 includes a get resource module
1502, a set operation module 1504, and an event forwarding
module 1506. The get resource module 1502 interacts with a
managed product to obtain resources being monitored by the
managed product. The set operation module 1504 interacts
with the managed product to set or control its operation. The
event forwarding module 1506 operates to forward events
that have occurred on the managed product to the manager. In
addition, the sub-agent 1500 can further include a statistical
analyzer 1508. The statistical analyzer 1508 can operate to
perform statistical processing on raw data provided by a
managed product at the Sub-agent level. Hence, although the
master agent 1400 may include the statistical analyzer 1410,
the presence of statistical analyzer 1508 in each of the sub
agents 1500 allows further distribution of the processing load
for statistical analysis of raw data.
0118 FIGS. 16A and 16B are flow diagrams of manager
startup processing 1600 according to one embodiment of the
invention. The manager startup processing 1600 initially
loads 1602 a knowledge base. The manager is, for example,
the manager 200 illustrated in FIG. 2 and includes a knowl
edge base, such as the knowledge base 206 illustrated in FIG.
2. Once the knowledge base is loaded 1602, third-party man
agement frameworks are discovered 1604. In one implemen
tation, a management framework interface. Such as the man
agement framework interface 212 illustrated in FIG. 2, is
utilized to identify and establish an interface to all available
third-party management frameworks. Next, a list of node
groups is obtained 1606. In one implementation, the list of
node groups is retrieved by the management framework inter
face.

0119) Next, a first node group is selected 1608 from the list
of node groups. For the selected node group, a list of nodes
within the selected node group is obtained 1610. A decision
1612 then determines whether there are more node groups to
be processed. When the decision 1612 determines that there
are more node groups to be processed, then the manager
startup processing 1600 returns to repeat the operations 1608
and 1610 for a next node group. When the decision 1612
determines that there are no more node groups to be pro
cessed, all the nodes within each of the node groups have thus
been obtained.

US 2015/0278,698 A1

0120 At this point, processing is performed on each of the
nodes. A first node from the various nodes that have been
obtained is selected 1614. Then, a list of domains within the
selected node is obtained 1616. A decision 1618 then deter
mines whether there are more nodes to be processed. When
the decision 1618 determines that there are more nodes to be
processed, then the manager startup processing 1600 returns
to repeat the operations 1614 and 1616 for a next node.
0121. On the other hand, when the decision 1618 deter
mines that there are no more nodes to be processed, then
processing can be performed for each of the domains. At this
point, the manager startup processing 1600 performs process
ing on each of the domains that have been obtained. In this
regard, a first domain is selected 1620. Then, a list of Sup
ported resources is obtained 1622 for the selected domain. A
decision 1624 then determines whetherall of the domains that
have been identified have been processed. When the decision
1624 determines that there are additional domains to be pro
cessed, the manager startup processing 1600 returns to repeat
the operations 1620 and 1622 for a next domain such that each
domain can be similarly processed.
0122) Next, processing is performed with respect to each
of the nodes. At this point, a first node is selected 1626. Then,
a customized knowledge base is produced 1628 for the
selected node based on the supported resources for the
selected node. In other words, the generalized knowledge
base that is loaded 1602 is customized at operation 1628 such
that a customized knowledge base is provided for each node
that is active or present within the system being managed. A
decision 1630 then determines whether there are more nodes
to be processed. When the decision 1630 determines that
there are more nodes to be processed, then the manager star
tup processing 1600 returns to repeat the operations 1626 and
1628 for a next node. Alternatively, when the decision 1630
determines that there are no more nodes to be processed, then
data acquisition for those base rules within the customized
knowledge bases can be scheduled 1632. Once the data acqui
sition has been scheduled 1632, the manager startup process
ing 1600 is complete and ends.
0123 FIGS. 16C-16E are flow diagrams of manager star
tup processing 1650 according to another embodiment of the
invention. The manager startup processing 1650 initially
loads 1652 a knowledge base with resources, rule packs and
configuration information. The manager is, for example, the
manager 200 illustrated in FIG. 2 and includes a knowledge
base, such as the knowledge base 206 illustrated in FIG. 2.
Once the knowledge base is loaded 1652, a list of node groups
is obtained 1654.

0124. A decision 1656 then determines whether there are
any node groups to be processed. When the decision 1656
determines that there are node groups to be processed, then a
first node group is selected 1658. Then, a list of nodes within
the selected node group is obtained 1660.
0125. Next, a decision 1662 determines whether there are
any nodes in the selected node group that are to be processed.
When the decision 1662 determines that there are nodes
within the selected node group to be processed, then a first
node is selected 1664. Then, for the selected node, a list of
agent types on the selected node is obtained 1668.
0126. A decision 1670 then determines whether there are
any agent types to be processed. When the decision 1670
determines that there are agent types to be processed, a first
agent type is selected 1671. Then, for the selected agent type,
a decision 1672 determines whether there is any third party

Oct. 1, 2015

framework adapter. When the decision 1672 determines that
there is no third party framework adapter, then a list of
domains is obtained 1674. On the other hand, when the deci
sion 1672 determines that there is a third party framework
adapter, then a list of supported domains is discovered 1676.
Here, the resulting list of Supported domains includes infor
mation about product(s) supported by the third party adapter.
The concept of domain in this case is adapter-specific. For
example, for SNMP adapter, all resources supported by the
SNMP master agent on a managed node can be considered
belonging to a domain. Another concept of domain for SNMP
adapter can correspond to the resources Supported by every
SNMP Sub-agent on the managed node communicating with
the SNMP master agent
I0127. Following the operations 1674 and 1676, a decision
1678 determines whether there are any domains within the
selected agent type. When the decision 1678 determines that
there are domains, then a first domain is selected 1680. Then,
a list of supported resources and domain version are obtained
1682. Next, a decision 1684 determines whether there are
more domains within the selected agent type. When the deci
sion 1684 determines that there are more domains, then the
manager startup processing 1650 returns to repeat the opera
tion 1680 and Subsequent operations so that a next domain
can be similarly processed.
I0128. Alternatively, when the decision 1684 determines
that there are no more domains within the selected agent type
to be processed, as well as directly following the decision
1678 when there are no domains to be processed, a decision
1686 determines whether there are more agent types to be
processed. When the decision 1686 determines that there are
more agent types to be processed, then the manager startup
processing 1650 returns to repeat the operation 1671 and
Subsequent operations so that a next agent type can be simi
larly processed.
0129. On the other hand, when the decision 1686 deter
mines that there are no more agent types to be processed, or
directly following the decision 1670 when there are no agent
types to be processed, a decision 1688 determines whether
there are more nodes to be processed. When the decision 1688
determines that there are more nodes to be processed, then the
manager startup processing 1650 returns to repeat the opera
tion 1664 and Subsequent operations so that a next node can
be similarly processed.
0.130. Alternatively, when the decision 1688 determines
that there are no more nodes to be processed, or directly
following the decision 1662 when there are no nodes, a deci
sion 1690 determines whether there are more node groups to
be processed. When the decision 1690 determines that there
are more node groups to be processed, the manager startup
processing 1650 returns to repeat the operation 1658 and
Subsequent operations so that a next node group can be simi
larly processed.
0131 On the other hand, when the decision 1690 deter
mines that there are no more node groups to be processed, or
directly following the decision 1656 when there are no node
groups, a customized domain and resources list is produced
1692 based on available domains (and their versions) and
resources information for rules input. Then, a customized
knowledge base is produced 1694 for the selected nodes
based on Supported domains and resources.
I0132 A reference resource list can be created using the
most-up-to-date version of each domain type. The reference
resource list is used in rule definitions. For example, a JVM

US 2015/0278,698 A1

domain list of resources obtained from one managed node
may be larger in number than the list of resources obtained for
the JVM domain from a different managed node. This is
possible because of enhancement of agent 1204 over time.
The reference resource list contains the maximal set of
domains and resources from the latest version of all the
knowledge domains by name/type. This enables user to
define rules for the most complete manageability of the user
environment 100 (e.g., using one GUI).
0133. Next, a decision 1696 determines whether a knowl
edge processor has been selected to run. The decision 1696
enables user to start the management system for development
and testing of rules and also, to setup all the managed nodes
and select a set rule packs and rules prior to running the
knowledge processor. The decision 1696 can be facilitated by
a GUI. When the decision 1696 determines that the knowl
edge processor is to be run, then data acquisition for those
base rules within the customized knowledge base can be
Scheduled 1698.
0134. Alternatively, when the decision 1696 determines
that the knowledge processor is not selected to run, then the
operation 1696 can be bypassed. Following the operation
1696, or its being bypassed, the manager startup processing
1600 is complete and ends.
0135 FIG. 17A is flow diagram of master agent startup
processing 1700 according to one embodiment of the inven
tion. A managed node includes an agent to assist the manage
ment system in monitoring and managing the managed node.
In one embodiment, the agent includes a master agent and a
plurality of Sub-agents. Hence, the master agent startup pro
cessing 1700 pertains to startup processing that is performed
by a master agent. The master agent is, for example, the
master agent 1302 illustrated in FIG. 13.
0136. The master agent startup processing 1700 initializes
1702 any pre-configured Sub-agents for the master agent.
Hence, any standard Sub-agents for the master agent are ini
tialized 1702. Then, the presence of any other sub-agents for
the master agent are discovered 1704. These other sub-agents
can be either in-process or out-of-process. An in-process Sub
agent would operate in the same process as the master agent.
On the other hand, an out-of-process Sub-agent would operate
in a separate process from that of the master agent. After the
any other sub-agents are discovered 1704, the discovered
sub-agents are initialized 1706. A statistical analyzer can then
be activated 1708 for each of the sub-agents. The statistical
analyzers provide the statistics collection for the resources
being monitored by the respective Sub-agents. Following the
operation 1708, the master agent startup processing 1700 is
complete and ends.
0.137 FIG. 17B is a flow diagram of sub-agent startup
processing 1750 according to one embodiment of the inven
tion. The sub-agent startup processing 1750 is performed by
a Sub-agent. For example, the Sub-agent can be one of the
sub-agents 1304 illustrated in FIG. 13.
0.138. The sub-agent startup processing 1750 initially
establishes 1752 a connection with the master agent. The
connection is an interface or a communication link between
the master agent and the Sub-agent. Application resources are
then discovered 1754. The application resources are those
resources that are available from an application monitored by
the Sub-agent. The application resources can also include
user-defined resources, e.g., using an API. Next, the master
agent is notified 1756 of the status of the sub-agent. The status
for the Sub-agent can include various types of information.

Oct. 1, 2015

For example, the status of the Sub-agent might include the
resources that are available from the Sub-agent, details about
the version or operability of the sub-agent, etc. Next, a statis
tical analyzer can be activated 1758 for the sub-agent. The
statistical analyzer allows the Sub-agent to perform statistical
analysis on resource information available from the Sub
agent. Following the operation 1758, the sub-agent startup
processing 1750 is complete and ends. It should, however, be
recognized that the sub-agent's startup processing 1750 is
performed for each of the sub-agents associated with the
master agent.
I0139 FIGS. 18A and 18B are flow diagrams of trigger/
notification processing 1800 according to one embodiment of
the invention. The trigger/notification processing 1800 is, for
example, performed by a manager, Such as the manager 108
illustrated in FIG. 1. In particular, the trigger/notification
processing 1800 operates to trigger processing so that man
agement information can be recorded and utilized, including
initiation of notifications as appropriate.
0140. The trigger/notification processing 1800 begins
with a decision 1802 that determines whether a new fact has
been asserted. When the decision 1802 determines that a new
fact has not been asserted, then a decision 1804 determines
whether a notification has been received. Here, the notifica
tions could arrive from managed nodes. When the decision
1804 determines that a notification has not been received,
then the trigger/notification processing 1800 returns to repeat
the decision 1802. Once the decision 1802 determines that a
new fact has been asserted or when the decision 1804 deter
mines that a notification has been received, then a fact is
asserted 1806 in the inference engine. The inference engine
then processes the fact in the manager. For example, in the
case of the manager 200 illustrated in FIG. 2, the inference
engine is implemented by the knowledge processor 208.
Next, a log entry is made 1808 into a log. The log entry
indicates at least that the fact was asserted 1806.
0141 Next, updated facts are retrieved 1810 for one or
more rules that are dependent upon the asserted fact. Hence,
the inference engine receives the asserted fact and determines
which of the rules are dependent upon the asserted fact, and
then for Such rules, requests updated facts so that the rules can
be fully and completely processed using up-to-date informa
tion.
0.142 Following the operation 1810, a decision 1812
determines whether the trigger/notification processing 1800
should stop. When the decision 1812 determines that the
trigger/notification processing 1800 should stop, then those
facts no longer needed are discarded 1813. Following the
operation 1813, the trigger/notification processing 1800 is
complete and ends. For example, a user might terminate the
operation of the manager and thus end the trigger/notification
processing 1800.
0.143 Alternatively, when the decision 1812 determines
that the trigger/notification processing 1800 should not stop,
then additional processing is performed depending upon the
type of resource. For example, the resource or the rule being
processed can signal for data acquisition, corrective action or
debug operations. In particular, a decision 1814 determines
whether data acquisition is requested. When the decision
1814 determines that data acquisition has been requested,
then an updated fact is selected 1816. On the other hand, when
the decision 1814 determines that data acquisition is not
being requested, then a decision 1818 determines whether
corrective action is indicated. For example, a rule within the

US 2015/0278,698 A1

knowledge base can request a corrective action be performed.
In any case, when the decision 1818 determines that a cor
rective action has been requested, then the corrective action is
performed 1820.
0144. Alternatively, when the decision 1818 determines
that a corrective action is not being requested, then a decision
1822 determines whether debug data is being requested.
When the decision 1822 determines that debug data is
requested, then debug data is obtained 1824.
0145 Alternatively, when the decision 1822 determines
that debug data is not being requested, then a decision 1828
determines whether a user-defined situation has occurred.
When the decision 1828 determines that a user-defined situ
ation has occurred, then an action 1830 is taken noting the
occurrence of the user-defined situation.
0146 Following any on the operations 1816, 1820, 1824,
1830 or the decision 1828 whenauser-defined situation is not
present, a log entry is made 1826 into the log. The log entry
indicates the firing of the rule along with the specifics of the
resources (including their values) on the left-hand-side (or
“if part of the rule). Following the logging operation 1826,
the trigger/notification processing 1800 returns to repeat the
operation 1806 and subsequent operations so that additional
facts can be asserted and similarly processed.
0147 Additionally, a user of the management system may
interact with a Graphical User Interface (GUI) to request a
report. The report provides information to the user about the
management state of the one or more managed products
within the enterprise or computer system being monitored.
0148 FIG. 19 is a flow diagram of GUI report processing
1900 according to one embodiment of the invention. The GUI
report processing 1900 is, for example, performed by a man
ager. For example, the manager can be the manager 200
illustrated in FIG. 2.
014.9 The GUI report processing 1900 can begin with a
decision 1902 that determines whether a report has been
requested. When the decision 1902 determines that a report
has not yet been requested, the GUI report processing 1900
awaits such a request. In other words, the GUI report process
ing 1900 can be considered to be invoked once a report
request has been received. In any case, when the decision
1902 determines that a report request has been received, then
log data is retrieved 1904. For example, with respect to the
manager 200 illustrated in FIG. 2, the log data can be retrieved
1904 from the log module 220. After the log data is retrieved
1904, a report is generated 1906 from the retrieved log data.
0150. The report might indicate the various facts and rules
that have been utilized by the management system over a
period of time. For example, a report might specify those of
the rules that were “fired and for each such rules, when it
“fired,” why it “fired, and action (if any) taken. Additionally,
a report might include details on the actions taken and related
values. Still further, if one of the actions taken is a debug
action, then the report might also include debug data. A report
can also be targeted or selective in its content based on crite
ria. For example, a report can be limited with respect to one or
more of a certain time range, an event, exceptions, domains
and/or rule packs.
0151. Once the report has been generated 1906, a report
delivery method is determined 1908. Here, the report delivery
method can be pre-configured by an administrator of the
management system to deliver reports to certain individuals
or locations automatically. For example, the report can be
delivered in the form of a notification that can be carried out

Oct. 1, 2015

using a pager, a Voice mail, a Voice synthesized telephone call,
a facsimile, etc. Once the report delivery method has been
determined 1908, the report is delivered 1910 using the deter
mined report delivery method. It should be understood that
the report delivery method can vary depending upon the
nature of the report. For example, urgent reports can utilize
one or more delivery methods that are more likely to reach the
recipient immediately, Such as a page or a mobile telephone
call. Hence, the report can be delivered in a variety of different
ways depending upon the application, circumstances and
configuration of the management system. Following the
delivery 1910 of the report, the GUI report processing 1900 is
complete and ends.
0152 FIGS. 20-29 are screen shots of a representative
Graphical User Interface (GUI) suitable for use with one
embodiment of the present invention. These screen shots
detail how to create and maintain rules using the GUI.

How to Build a Rule Using Resources
0153. To add (create) a rule, a user would access an Add
New Rule page, such as shown in FIG. 20. Here, the user
would perform the first step of four steps to follow in order to
add a new rule. Namely, the user would enter a name and
description for the rule and select a rule pack it belongs to.
Upon pressing a Submit button, the process proceeds to the
next step where you define the situation or the left-hand side
of a rule, i.e. the conditions under which the rule will fire. Or,
in other words, a list of situations and events (When this
happens . . .) which lead to the actions specified under the
“Then define situation or do this... header, which is referred
to as the right-hand side of the rule. Predicates of the left-hand
side are called antecedents and elements of the right-hand
side are called consequents.
0154 As shown in FIG. 21, to build the left-hand side of a
rule, first choose a knowledge domain from a Domains list on
the left side of the screen. After a domain is selected from the
list the selection box below will be show all resources of that
domain. There are two kinds of domains, physical and special
(or virtual). A physical domain represents a collection of
resources pertaining to a software component or an entire
software product, for instance the Java Virtual Machine, as
opposed to a special, or virtual domain. A special domain
represents a set of resources, which arent associated with any
“physical knowledge domain. Instead such resources are
used by the manager as building blocks to express conditions
of the left-hand side or form actions on the right-hand side of
a rule. In the representative rule being built, both a physical
domain resource and a virtual domain resource are used.
First, select the jvm domain from the list of domains and two
resources of that domain to the right-hand side of the rule (see
FIG. 21).
0.155 Once we have selected all the resources used to
define the situation, the “proceed to next step” button is
selected. The next step is where relationships between the
selected resources and/or their thresholds are set to configure
the condition for the rule to fire. Now, add a condition to the
left-hand side of the rule. This condition basically states that
when the amount of heap memory currently in use is greater
than a certain percentage of the maximum heap memory
available, the rule should fire. In order to add a condition to
the left-hand side of a rule, choose the Filter special domain.
As shown in FIG. 22, one of the domain resources in the
selection box will be Condition. The user just selects “Con
dition' and clicks the add button.

US 2015/0278,698 A1

0156 Next, an Edit Parameter button for the condition is
selected and the desired condition expression entered. Here,
the condition expression shown entered in FIG. 23 binds the
two JVM resources. The condition is typically defined as an
expression. A simple example of a condition expression is
(adb).
0157 Let us look at detail how we came up with the
condition expression in FIG. 23. Please refer to FIG. 22 for
better illustration. Under the “When this happens... header
note that there are three distinct entries one below the other as
follows—

0158 r1 jvm HeapUsed
0159 r2.jvm MaxHeapSize
(0160 Pr3 Condition

0161 Here ?rl, ?r2 and Pr3 are resource variable names
assigned by the system to the resourcesjVm HeapUsed.jVm
MaxHeapSize and Condition resources respectively. This is
to facilitate the definition of the condition expression using
the resource variable names only. A simplified example of a
condition expression using resource Pr1 is (?r1 >1000000),
which states that the rule is considered true (or, gets “fired)
in caseivm HeapUsed exceeds 1000000 bytes or 1 MB. Note
that, in this expression?r1 and 1000000 are operands and > is
a comparator operator in between the two operands.
(0162. In the condition expression ?r1 >(?r2*060) in FIG.
23, the condition states that the rule is considered to be true if
JVM heap being currently used (Vm HeapUsed), Pr1, is
greater than 60% of (or 0.60 times) the maximum allowed
heap size (vim MaxHeapSize), Pr2.
0163 Now, as the left-hand side of the rule has been built,
let us specify using the Configure Action(s) page shown in
FIG. 24 to indicate what we want the system to do when the
condition becomes true. Let's request the system produce a
report on the class whose objects occupy most of the JVM
heap and request a report on objects of the classes thus iden
tified are allocated on the heap during the following 15 sec
onds.

Setting Up a Rule for Auto-Diagnostics

0164. In order to test the rule that has been created (and
also make Sure that all components of the products are
installed properly and communicate with each other), the
manager should be set so that it considers the rule when the
rule evaluation engine is started. Every rule can be configured
in a flexible way. For instance, it can be set to be tested every
10 seconds, or every minute, or every hour. If you want a trial
run of the rule as you run the engine, select a special option on
the list of possible intervals, “once only can be chosen. The
testing interval can be set on the same Rule Editing page as
shown in FIG. 25.

Chaining of Rules

0.165. The rule shown in FIG. 24 is a rule that defines
conditions for an abnormal situation. If the defined situation
occurs, the system is requested to take one or more actions. In
this representative example, the actions are the two request
for jvm TopHeapObjects and jvm AllocTrace on the right
hand side of the rule, under the “Then define situation or do
this... header. This kind of rule is useful, but its capabilities
are limited. If instead of taking action right there in the rule,
a situation is defined, then another rule can be built so that it
gets triggered when this situation has been encountered.

Oct. 1, 2015

Through this mechanism, rules can be chained and hierar
chies, or trees, of rules can be built.
0166 For example, for this rule to be turned into a rule that
can potentially be chained to other rules, a new situation has
to be defined, see FIG. 26. The situation can then be added to
the rule as a consequent, see FIG. 27.
(0167. Thereafter, as desired, another rule or a set of rules
can be defined with JVMLowMemory as the antecedent and
the system will automatically chain these rules, i.e., the set of
rules defined with JVMLowMemory on the left-hand side of
the rule, will fire when the situation in FIG. 27 is declared in
the modified rule in FIG. 24.

Editing Rules

0168 A previously defined (added) rule can be edited. To
editan existing rule, go to the Rule Management page. Such as
shown in FIG. 28, select an existing rule and click on the Edit
button.

Starting and Stopping the Rule Engine

(0169. After a rule or a chain of rules has been created the
system is ready to monitor the Software on the managed
nodes. In order to initiate this process, from the Rule Man
agement page, start the rule engine by clicking on the (Re)
Start Engine button. If the rules engine has to be stopped,
press the Stop Engine button in the Rule Management page. If
any of the rules were edited or new rules were added and you
want these changes to take effect, the (Re)Start Engine button
in the Rule Management page has to be pressed. This will
cause the engine to stop, automatically pick up any changes
that have been made, and restart.
0170 Note that every time the manager process is started,
the Rule Engine status can be Ready. The current status of the
engine is displayed in the top right hand corner in the Rule
Management page. For the rules to be fired according to time
and condition set in its definition, the (Re)Start Engine button
in the Rule Management page needs to be pressed explicitly.
This changes the status of Rule Engine from Ready to Run
ning. You have to do this every-time you add or make changes
to rules and want the Rule Engine to pick up the additions/
changes. As the engine gets into the running state, it checks
resource values of the rules set up for periodic checking. In
case all conditions on the left-hand side of such rule become
valid, the engine will proceed with the actions on the on the
right-hand side of the rule, after which the rule will become
blocked for as long as the conditions are valid. Then, the rule
will be marked active again. All activities of the engine in
respect to rule firing and Subsequent actions are reflected on
the Report page. The page can be accessed through the Report
button on the Rule Management page. Such as shown in FIG.
28.

Report

0171 The Report page for our example above, with heap
usage reduced to 1% and allocation tracing time reduced to 5
seconds, is shown in FIG. 29. The Report page has several
functional buttons which are self-descriptive: a Refresh but
ton is used for updates of the page so it reflects the latest report
information, a Clear button will render the report page empty,
a Mail button will allow the report to be sent via e-mail and the
Done button will take you back to the main page, the Rule
Management page.

US 2015/0278,698 A1

(0172. The sample report shown in FIG. 29 is a result of
running of the rule defined and shown in FIG. 24. The report
reflects all important events associated with the system hav
ing run with the rule being activated for diagnostics. The first
line of the report indicates that rule JVMHeap was fired and
for what system the conditions of the rule became true and
when it happened. Then values of the resources on the left
hand side of the rule, which led to the rule being triggered are
shown. Under the Actions taken header the resources of the
right-hand side are shown. First, the list of the classes whose
objects take up most of the space on the JVM heap is
requested. Filters excluding all standard classes (java.*.
javax.*) are applied so that only two classes appear on the list.
This is because the application run by our JVM is truly
simple. The second action is a 15 second allocation trace
report for objects of the classes found on the top heap objects
list. Under jVm AllocTrace you can see all allocations of
objects of the two classes. Each allocation trace shows where,
in what method of what class, it took place. It also shows the
line number in the source code for that class, if available (such
would be available when the source code was compiled with
out disabling the debugging information generation).
0173 The invention can be implemented in software,
hardware, or a combination of hardware and software. The
invention can also be embodied as computer readable code on
a computer readable medium. The computer readable
medium is any data storage device that can store data which
can be thereafter be read by a computer system. Examples of
the computer readable medium include read-only memory,
random-access memory, CD-ROMs, magnetic tape, and opti
cal data storage devices. The computer readable medium can
also be distributed over a network coupled computer systems
so that the computer readable code is stored and executed in
a distributed fashion.
0.174. The many features and advantages of the present
invention are apparent from the written description, and thus,
it is intended by the appended claims to coverall such features
and advantages of the invention. Further, since numerous
modifications and changes will readily occur to those skilled
in the art, it is not desired to limit the invention to the exact
construction and operation as illustrated and described.

Oct. 1, 2015

Hence, all Suitable modifications and equivalents may be
resorted to as falling within the scope of the invention.
What is claimed is:
1. A non-transitory computer-readable medium including

at least computer program code stored therein for managing
an enterprise computer system, the enterprise computer sys
tem being configured to operate a plurality of different soft
ware products, said computer-readable medium comprising:

computer program code for receiving a fact pertaining to a
condition of at least one of the plurality of different
Software products that are operating in the enterprise
computer system;

computer program code for asserting the fact to an infer
ence engine, the inference engine using rules based on
facts, the rules are obtained from a knowledge base that
stores the rules as well as resources associated with the
plurality of different software programs:

computer program code for retrieving at least one updated
fact from the inference engine based on at least one rule
from those of the rules stored in the knowledge base that
are dependent on the fact that has been asserted;

computer program code for initiating an action in view of
the at least one updated fact,

computer program code for diagnosing a software problem
at the enterprise computer system due to at least one of
the plurality of different software programs operating at
the enterprise computer system, using the inference
engine and the at least one rule from the knowledge base;
and

computer program code for making log entries to store log
data in a log,

wherein at least one of the log entries pertains to at least the
fact that has been asserted,

wherein at least one of the log entries pertains to the at least
one updated fact,

wherein at least one of the log entries pertains to the action
being initiated, and

wherein at least one of the log entries pertains to debug
data.

