
JP 2017-519300 A 2017.7.13

10

(57)【要約】
【課題】ソフトウェア開発、保守、および修復ライフサ
イクルにおける重要な側面を自動化する、大量のソフト
ウェアファイルを活用することが可能なシステム及び方
法を提供する。
【解決手段】デザインパターンを特定する方法は、複数
のファイルのそれぞれについての複数のアーチファクト
を有するデータベースにアクセスする過程と、複数のフ
ァイルのうちの第１のファイルについての、複数のアー
チファクトのうちの少なくとも１つに基づいて、デザイ
ンパターンを自動的に特定する過程と、を備える。
【選択図】図７

(2) JP 2017-519300 A 2017.7.13

10

20

30

40

50

【特許請求の範囲】
【請求項１】
　デザインパターンを特定する方法であって、
　複数のファイルのそれぞれについての複数のアーチファクトを有するデータベースにア
クセスする過程と、
　前記複数のファイルのうちの第１のファイルについての、前記複数のアーチファクトの
うちの少なくとも１つに基づいて、デザインパターンを自動的に特定する過程と、
　を備える、方法。
【請求項２】
　請求項１に記載の方法において、前記デザインパターンが、前記第１のファイル内のも
のである、方法。
【請求項３】
　請求項１に記載の方法において、前記デザインパターンを自動的に特定する過程が、前
記デザインパターンの前記特定を、前記複数のファイルのうちの第２のファイルについて
の、前記複数のアーチファクトのうちの少なくとも１つにも基づかせることを含み、前記
第１のファイルおよび前記第２のファイルが、いずれも同じプロジェクトに属する、方法
。
【請求項４】
　請求項３に記載の方法において、前記デザインパターンを自動的に特定する過程が、前
記第１のファイルについての、前記複数のアーチファクトのうちの前記少なくとも１つと
、前記第２のファイルについての、前記複数のアーチファクトのうちの前記少なくとも１
つとを、前記デザインパターンを表す予め特定されたパターンに照合することを含む、方
法。
【請求項５】
　請求項４に記載の方法において、前記デザインパターンが、前記第１のファイルと前記
第２のファイルとの間のインターフェースに関するものである、方法。
【請求項６】
　請求項１に記載の方法において、前記デザインパターンが、欠陥または修復である、方
法。
【請求項７】
　請求項１に記載の方法において、前記デザインパターンが、機能または付加拡張機能で
ある、方法。
【請求項８】
　請求項１に記載の方法において、前記デザインパターンが、予め特定されたプログラム
断片である、方法。
【請求項９】
　請求項１に記載の方法において、前記複数のアーチファクトのうちの前記少なくとも１
つに基づいて、前記デザインパターンを自動的に特定する過程が、前記複数のアーチファ
クトのうちの前記少なくとも１つにおいて、欠陥または修復を表す文字列を探し出すこと
を含む、方法。
【請求項１０】
　請求項９に記載の方法において、前記複数のアーチファクトのうちの前記少なくとも１
つが、開発中アーチファクトである、方法。
【請求項１１】
　請求項１に記載の方法において、前記複数のアーチファクトのうちの前記少なくとも１
つに基づいて、前記デザインパターンを自動的に特定する過程が、前記複数のアーチファ
クトのうちの前記少なくとも１つにおいて、機能または付加拡張機能を表す文字列を探し
出すことを含む、方法。
【請求項１２】
　請求項１１に記載の方法において、前記複数のアーチファクトのうちの前記少なくとも

(3) JP 2017-519300 A 2017.7.13

10

20

30

40

50

１つが、開発中アーチファクトである、方法。
【請求項１３】
　請求項１に記載の方法において、前記複数のアーチファクトのうちの前記少なくとも１
つに基づいて、前記デザインパターンを自動的に特定する過程が、前記複数のアーチファ
クトのうちの前記少なくとも１つを、前記デザインパターンを表す予め特定されたパター
ンに照合することを含む、方法。
【請求項１４】
　請求項１に記載の方法において、前記複数のアーチファクトのうちの前記少なくとも１
つが、それぞれ静的アーチファクトである、方法。
【請求項１５】
　請求項１に記載の方法において、前記複数のアーチファクトのうちの前記少なくとも１
つが、それぞれ動的アーチファクトである、方法。
【請求項１６】
　請求項１に記載の方法において、前記複数のアーチファクトのうちの前記少なくとも１
つが、それぞれ導出アーチファクトである、方法。
【請求項１７】
　請求項１に記載の方法において、前記複数のアーチファクトのうちの前記少なくとも１
つが、それぞれメタデータアーチファクトである、方法。
【請求項１８】
　請求項１に記載の方法において、さらに、
　前記デザインパターンについての識別子を前記データベースに記憶する過程、
　を備える、方法。
【請求項１９】
　請求項１８に記載の方法において、前記デザインパターンについての識別子を記憶する
過程が、前記第１のファイルについての、前記複数のアーチファクトのうちの少なくとも
１つから得られた文字列を用いて、前記デザインパターンについてのラベルを記憶するこ
とを含む、方法。
【請求項２０】
　請求項２に記載の方法において、さらに、
　前記第１のファイルにおいて、前記デザインパターンに対応するプログラム断片を見つ
け出す過程、
　を備える、方法。
【請求項２１】
　請求項２０に記載の方法において、前記第１のファイルが、バイナリコードフォーマッ
トである、方法。
【請求項２２】
　請求項２０に記載の方法において、前記第１のファイルが、ソースコードフォーマット
である、方法。
【請求項２３】
　請求項２０に記載の方法において、前記第１のファイルが、中間表現（ＩＲ）フォーマ
ットである、方法。
【請求項２４】
　デザインパターンを特定する方法であって、
　複数のアーチファクトを有するデータベースにアクセスする過程と、
　前記複数のアーチファクトをクラスタ化する過程と、
　前記クラスタ化から、これまで特定されていなかったデザインパターンを、少なくとも
１つの予め特定されたデザインパターンに基づいて特定する過程と、
　を備える、方法。
【請求項２５】
　請求項２４に記載の方法において、前記これまでに特定されていなかったデザインパタ

(4) JP 2017-519300 A 2017.7.13

10

20

30

40

50

ーンと前記少なくとも１つの予め特定されたデザインパターンとが、同じデザインパター
ンである、方法。
【請求項２６】
　請求項２４に記載の方法において、前記予め特定されたデザインパターンが、欠陥であ
る、方法。
【請求項２７】
　請求項２６に記載の方法において、さらに、
　予め特定された前記欠陥に対応付けられた少なくとも１つの修復を特定する過程、
　を備える、方法。
【請求項２８】
　請求項２４に記載の方法において、前記複数のアーチファクトが、複数の開発中アーチ
ファクトを含み、当該方法が、さらに、
　クラスタ化された前記複数のアーチファクトに対応する前記複数の開発中アーチファク
トから、当該開発中アーチファクトにおける文字、単語またはフレーズの出現に基づいて
語義上意味を抽出する過程、
　を備える、方法。
【請求項２９】
　請求項２４に記載の方法において、前記複数のアーチファクトをクラスタ化する過程が
、機械学習を用いることを含む、方法。
【請求項３０】
　請求項２４に記載の方法において、前記複数のアーチファクトをクラスタ化する過程が
、深層学習を用いることを含む、方法。
【請求項３１】
　請求項２４に記載の方法において、前記複数のアーチファクトをクラスタ化する過程が
、オートエンコーダを用いることを含む、方法。
【請求項３２】
　請求項２４に記載の方法において、さらに、
　前記複数のアーチファクトの前記クラスタ化のための訓練を提供する過程、
　を備え、前記訓練が、ソフトウェアファイルの第１のバージョンと当該ソフトウェアフ
ァイルの第２のバージョンとの間の少なくとも１つの違いを用いることを含む、方法。
【請求項３３】
　請求項３２に記載の方法において、前記少なくとも１つの違いが、欠陥または修復に対
応する、方法。
【請求項３４】
　請求項３３に記載の方法において、前記欠陥がセキュリティ脆弱性であるか、あるいは
、前記修復がパッチである、方法。
【請求項３５】
　請求項３２に記載の方法において、前記少なくとも１つの違いが、機能または付加拡張
機能に対応する、方法。
【請求項３６】
　デザインパターンを特定するシステムであって、
　複数のファイルのそれぞれについての複数のアーチファクトを有する少なくとも１つの
記憶装置と、
　前記複数のファイルのうちの第１のファイルについての、前記複数のアーチファクトの
うちの少なくとも１つに基づいて、デザインパターンを自動的に特定するように構成され
たプロセッサと、
　を備える、システム。
【請求項３７】
　請求項３６に記載のシステムにおいて、さらに、前記プロセッサを備え、当該プロセッ
サが、さらに、前記第１のファイルにおいて、前記デザインパターンを組み込むプログラ

(5) JP 2017-519300 A 2017.7.13

10

20

30

40

50

ム断片を見つけ出すように構成されている、システム。
【請求項３８】
　請求項３６に記載のシステムにおいて、前記デザインパターンを自動的に特定すること
が、前記デザインパターンの前記特定を、前記複数のファイルのうちの第２のファイルに
ついての、前記複数のアーチファクトのうちの少なくとも１つにも基づかせることを含み
、前記第１のファイルおよび前記第２のファイルが、いずれも同じプロジェクトに属する
、システム。
【請求項３９】
　請求項３６に記載のシステムにおいて、前記デザインパターンが、欠陥または修復であ
る、システム。
【請求項４０】
　請求項３６に記載のシステムにおいて、前記デザインパターンが、機能または付加拡張
機能である、システム。
【請求項４１】
　請求項３６に記載のシステムにおいて、前記デザインパターンが、予め特定されたプロ
グラム断片である、システム。
【請求項４２】
　デザインパターンを特定するシステムであって、
　複数のアーチファクトを有する少なくとも１つの記憶装置と、
　前記複数のアーチファクトをクラスタ化するように、かつ、当該クラスタ化から、これ
まで特定されていなかったデザインパターンを、少なくとも１つの予め特定されたデザイ
ンパターンに基づいて特定するように構成されたプロセッサと、
　を備える、システム。
【請求項４３】
　請求項４２に記載のシステムにおいて、前記予め特定されたデザインパターンが、欠陥
である、システム。
【請求項４４】
　請求項４２に記載のシステムにおいて、さらに、
　予め特定された前記欠陥に対応付けられた少なくとも１つの修復を特定すること、
　を備える、システム。
【請求項４５】
　請求項４２に記載のシステムにおいて、前記複数のアーチファクトをクラスタ化するこ
とが、機械学習を用いることを含む、システム。
【請求項４６】
　請求項４２に記載のシステムにおいて、前記複数のアーチファクトをクラスタ化するこ
とが、深層学習を用いることを含む、システム。
【請求項４７】
　実行可能なプログラムが記憶された、非過渡的なコンピュータ読取り可能な媒体であっ
て、前記プログラムが、処理装置に：
　複数のファイルのそれぞれについての複数のアーチファクトを有するデータベースにア
クセスする手順；および
　前記複数のファイルのうちの第１のファイルについての、前記複数のアーチファクトの
うちの少なくとも１つに基づいて、デザインパターンを自動的に特定する手順；
　を実行させる、非過渡的なコンピュータ読取り可能な媒体。
【請求項４８】
　実行可能なプログラムが記憶された、非過渡的なコンピュータ読取り可能な媒体であっ
て、前記プログラムが、処理装置に：
　複数のアーチファクトを有するデータベースにアクセスする手順；
　前記複数のアーチファクトをクラスタ化する手順；および
　前記クラスタ化から、これまで特定されていなかったデザインパターンを、少なくとも

(6) JP 2017-519300 A 2017.7.13

10

20

30

40

50

１つの予め特定されたデザインパターンに基づいて特定する手順；
　を実行させる、非過渡的なコンピュータ読取り可能な媒体。
【発明の詳細な説明】
【関連出願】
【０００１】
　本願は、2014年6月13日出願の米国仮特許出願第62/012,127号の利益を主張する。この
米国仮特許出願の全教示内容は、参照をもって本願に取り入れたものとする。
［政府支援］
【０００２】
　本発明は、アメリカ空軍からの助成金登録番号FA8750-14-C-0056およびアメリカ国防総
省高等研究計画局からの助成金登録番号FA8750-15-C-0242の下の政府支援を受けてなされ
たものである。政府は、本発明に一定の権利を有する。
【背景技術】
【０００３】
　現今のソフトウェア開発、保守および修復は、人間によって行われる。ソフトウェアベ
ンダーは、時間をかけて、コンピュータプログラムの計画、実装、マニュアル化、テスト
、導入（インストール）および保守を行う。当初の計画、実装、マニュアル、テストおよ
び導入は、しばしば不完全であり、所望の機能を有していなかったり欠陥を含んでいたり
することが必ず起こる。多くのベンダーは、ソフトウェアの運用が進むにつれて逐次バグ
修正、セキュリティパッチおよび付加拡張機能を配信してこれらの欠点に対処する、ライ
フサイクル保守プランを有している。
【０００４】
　世界には、何十億行もの大量のソフトウェアコードが配備されており、保守およびバグ
修正に取り組むには、大量の時間および費用が必要となる。歴史的にみると、ソフトウェ
ア保守は、場当たり的で且つ反作用的な（つまり、バグレポート、セキュリティ脆弱性レ
ポート、および付加拡張機能についてのユーザ要求に対応する）人的プロセスであった。
【発明の概要】
【発明が解決しようとする課題】
【０００５】
　本発明の実施形態は、例えば、バグ（コード内のエラー）、セキュリティ脆弱性、プロ
トコル不備などのプログラム欠陥を見つけ出して修復すること等を含む、ソフトウェア開
発、保守、および修復ライフサイクルにおける重要な側面を自動化する。本発明の例示的
な実施形態は、公衆が利用可能なソフトウェアや工業所有権によって保護されているソフ
トウェアを含む、大量のソフトウェアファイルを活用することが可能なシステム及び方法
を提供する。
【課題を解決するための手段】
【０００６】
　本発明の一実施形態において、デザインパターンを特定する例示的な方法は、複数のフ
ァイルのそれぞれについての複数のアーチファクトを有するデータベースにアクセスする
過程と、前記複数のファイルのうちの第１のファイルについての、前記複数のアーチファ
クトのうちの少なくとも１つに基づいて、デザインパターンを自動的に特定する過程と、
を備える。これらのファイルは、例えば、バイナリコードフォーマット、ソースコードフ
ォーマット、中間表現（ＩＲ）フォーマットであり得る。
【０００７】
　一部の実施形態において、前記デザインパターンは、前記第１のファイル内のものであ
る。例示的な他の実施形態において、前記デザインパターンは、ファイル間（例えば、同
じプロジェクト内のファイル間など）またはコードの断片間の相互作用に関するものであ
り得て、この場合、前記デザインパターンを自動的に特定する過程は、第２のファイル等
についてのアーチファクトにも基づくものとされ得る。
【０００８】

(7) JP 2017-519300 A 2017.7.13

10

20

30

40

50

　一部の実施形態において、前記デザインパターンは、欠陥、修復、機能、付加拡張機能
、または予め特定されたプログラム断片であり得る。さらなる他の実施形態は、前記複数
のアーチファクトのうちの少なくとも１つ（例えば、開発中アーチファクト）において、
欠陥、修復、機能もしくは付加拡張機能を表す文字列、または前記デザインパターンを表
す予め特定されたパターンを探し出し得る。例示的な実施形態において、前記アーチファ
クトは、静的アーチファクト、動的アーチファクト、導出アーチファクトまたはメタデー
タアーチファクトであり得る。
【０００９】
　例示的な他の実施形態は、前記デザインパターンについての識別子を前記データベース
に記憶し得る。例えば、前記第１のファイルについての、前記複数のアーチファクトのう
ちの少なくとも１つから得られた文字列を用いる等して、前記デザインパターンについて
のラベルが使用されてもよい。他の実施形態は、前記第１のファイルにおいて、前記デザ
インパターンに対応するプログラム断片を見つけ出し得る。
【００１０】
　本発明の一実施形態において、デザインパターンを特定する例示的な方法は、複数のソ
フトウェアファイルに対応する複数のアーチファクトを有するデータベースにアクセスす
る過程と、前記ソフトウェアファイルのうちの少なくとも１つについてのデザインパター
ンを、前記ソフトウェアファイルに対応付けられた前記アーチファクトのうちの少なくと
も１つを自動的に分析することによって特定する過程と、を備える。例示的な前記方法の
他の実施形態は、さらに、前記ソフトウェアファイルについての前記デザインパターンに
ついての、識別子を前記データベースに記憶する過程を備える。
【００１１】
　例示的な一部の実施形態において、前記アーチファクトは、インラインコードコメント
、コミット履歴、ドキュメンテーションファイル、および共通脆弱性識別子ソース登録の
うちの少なくとも１つを含む。例示的な一部の実施形態において、前記アーチファクトの
うちの少なくとも１つを分析することは、欠陥または修復を表す列について、開発中アー
チファクトの検索を行うことを有する。また、例示的な前記方法の他の実施形態は、前記
ソフトウェアファイルにおいて、前記デザインパターンを組み込むプログラム断片を見つ
け出す過程を備える。例示的な一部の実施形態において、前記デザインパターンに対応す
る前記プログラム断片は、前記ソフトウェアファイルの中間表現において、前記デザイン
パターンを組み込むコードを探し出すことによって見つけ出される。
【００１２】
　例示的な他の実施形態において、前記ソフトウェアファイルの前記デザインパターンに
ついての識別子を前記データベースに記憶する過程は、前記ソフトウェアファイルについ
ての、前記アーチファクトのうちの少なくとも１つから得られた列を用いて、前記デザイ
ンパターンについてのラベルを記憶することを含む。例示的な実施形態において、前記デ
ザインパターンは、欠陥、修復、機能または付加拡張機能である。
【００１３】
　本発明の例示的な他の実施形態は、デザインパターン（例えば、欠陥等）を特定する方
法であって、ソフトウェアファイルに対応するアーチファクトを有するデータベースにア
クセスする過程と、前記アーチファクトをクラスタ化する過程と、前記クラスタ化から、
これまで特定されていなかったデザインパターンを、少なくとも１つの予め特定されたデ
ザインパターンに基づいて特定する過程と、を備える、方法である。例示的な一部の実施
形態において、そのデザインパターンは同じであるが、例えば、互いに別のファイルに存
在し得る。例示的な一部の実施形態において、例示的な前記方法は、さらに、
予め特定された前記欠陥に対応付けられた少なくとも１つの修復を特定する過程、を備え
る。
【００１４】
　例示的な一部の実施形態において、前記アーチファクトは、開発中アーチファクトを含
み、例示的な前記方法が、さらに、前記開発中アーチファクトから、当該アーチファクト

(8) JP 2017-519300 A 2017.7.13

10

20

30

40

50

における文字（英数字や特殊文字を含む）、単語またはフレーズの出現に基づいて語義上
意味（意味論的意味、セマンティック意味）を抽出する過程、を備える。例示的な一部の
実施形態において、前記複数のアーチファクトをクラスタ化する過程は、オートエンコー
ダを用いることを含む。また、他の実施形態は、前記複数のアーチファクトの前記クラス
タ化のための訓練を提供する過程、を備え、前記訓練が、ソフトウェアファイルの第１の
バージョンと当該ソフトウェアファイルの第２のバージョンとの間の少なくとも１つの違
いを用いることを含む。一部の実施形態において、これらの違いは、欠陥（例えば、セキ
ュリティ脆弱性）または修復（例えば、パッチ）に対応し得る。一部の実施形態において
、これらの違いは、機能または付加拡張機能に対応し得る。さらなる他の実施形態では、
アーチファクトの種類毎に、クラスタ化が行われる。例示的な実施形態において、そのよ
うな種類には、コールグラフ、制御フローグラフ、ｕｓｅ－ｄｅｆチェイン、ｄｅｆ－ｕ
ｓｅチェイン、支配木、基本ブロック、変数、定数、ブランチセマンティック（分岐意味
）、およびプロトコルが含まれる。例示的な一部の実施形態では、複数の種類のアーチフ
ァクトに基づいて、クラスタ化が行われ得る。
【００１５】
　本発明の例示的な他の実施形態は、デザインパターンを特定するシステムであって、ソ
フトウェアファイルに対応するアーチファクトを有する少なくとも１つの記憶装置であっ
て、前記アーチファクトが、当該記憶装置に記憶されたアーチファクトを含む、少なくと
も１つの記憶装置と、前記ソフトウェアファイルのうちの少なくとも１つについてのデザ
インパターンを、前記アーチファクトのうちの、当該ソフトウェアファイルに対応付けら
れた少なくとも１つを自動的に分析することによって特定するように構成されたプロセッ
サと、を備える、システムである。また、例示的な前記システムは、前記プロセッサを備
え得て、当該プロセッサが、前記ソフトウェアファイルにおいて、前記デザインパターン
を組み込むプログラム断片を見つけ出すように構成され得る。
【００１６】
　本発明の例示的な他の実施形態は、デザインパターンを特定するシステムであって、複
数のアーチファクトを有する少なくとも１つの記憶装置と、前記複数のアーチファクトを
クラスタ化するように、かつ、当該クラスタ化から、これまで特定されていなかったデザ
インパターンを、少なくとも１つの予め特定されたデザインパターンに基づいて特定する
ように構成されたプロセッサと、を備える、システムである。例示的な一部の実施形態に
おいて、前記デザインパターンは、欠陥、修復、機能、付加拡張機能または予め特定され
たパターンである。一部の実施形態において、前記クラスタ化は、機械学習または深層学
習を用いることを含む。
【００１７】
　本発明の例示的な他の実施形態は、実行可能なプログラムが記憶された、非過渡的なコ
ンピュータ読取り可能な媒体であって、前記プログラムが、処理装置に：
　ソフトウェアファイルに対応するアーチファクトを有するデータベースにアクセスする
手順；および
　前記複数のファイルのうちの第１のファイルについての、前記複数のアーチファクトの
うちの少なくとも１つに基づいて、デザインパターンを自動的に特定する手順；
　を実行させる、非過渡的なコンピュータ読取り可能な媒体である。
【００１８】
　本発明の例示的な他の実施形態は、実行可能なプログラムが記憶された、非過渡的なコ
ンピュータ読取り可能な媒体であって、前記プログラムが、処理装置に：
　複数のアーチファクトを有するデータベースにアクセスする手順；
　前記複数のアーチファクトをクラスタ化する手順；および
　前記クラスタ化から、これまで特定されていなかったデザインパターンを、少なくとも
１つの予め特定されたデザインパターンに基づいて特定する手順；
　を実行させる、非過渡的なコンピュータ読取り可能な媒体である。
【００１９】

(9) JP 2017-519300 A 2017.7.13

10

20

30

40

50

　前述の内容は、添付の図面に示された本発明の例示的な実施形態についての、以下の詳
細な説明から明らかになる。異なる図面をとおして、同一の符号は同一の構成／構成要素
を指すものとする。図面は必ずしも縮尺どおりではなく、むしろ、本発明の実施形態を示
すことに重点が置かれている。
【図面の簡単な説明】
【００２０】
【図１】ソフトウェアファイルについてのコーパスを提供する方法の例示的な一実施形態
を示すフロー図である。
【図２】本発明の一実施形態における、コーパスへの入力ソフトウェアファイルから中間
表現（ＩＲ）を抽出するための処理の一例を示すフロー図である。
【図３】本発明の一実施形態における、ソフトウェアファイルについてのアーチファクト
間の階層関係を示すブロック図である。
【図４】ソフトウェアファイルについてのアーチファクトのコーパスを提供するシステム
の例示的な一実施形態を示すブロック図である。
【図５】デザインパターンを特定する方法の例示的な一実施形態を示すブロック図である
。
【図６】欠陥を特定する方法の例示的な一実施形態を示すフロー図である。
【図７】本発明の一実施形態における、デザインパターンを特定するためのアーチファク
トのクラスタ化を示すブロック図である。
【図８】コーパスを用いてソフトウェアファイルを特定する方法の例示的な一実施形態を
示すフロー図である。
【図９】プログラム断片を特定する方法の例示的な一実施形態を示すフロー図である。
【図１０】本発明の一実施形態における、コーパスを用いるシステムを示すブロック図で
ある。
【発明を実施するための形態】
【００２１】
　以下では、本発明の例示的な実施形態について説明する。本明細書で引用する特許文献
や刊行物の全教示内容は、参照をもって本明細書に取り入れたものとする。
【００２２】
　本明細書での例示的な実施形態におけるソフトウェア解析は、公衆が利用可能なソース
からのファイルや工業所有権によって保護されているソフトウェアからのファイルを含む
、既存のソフトウェアファイルからの知識を活用することを可能にする。そして、この知
識は、他のソフトウェアファイルに適用されることが可能である。この適用には、欠陥を
修復すること、脆弱性を特定すること、プロトコル不備を特定すること、またはコード改
善を提案することが含まれる。
【００２３】
　本発明の例示的な実施形態は、ソフトウェア解析における様々な構成に向けられ得る。
そのような様々な構成には、知識データベースのための、ソフトウェアファイルのコーパ
ス（集成）および当該ソフトウェアファイルについての関連アーチファクトのコーパスを
、作成、更新、保有または提供することが含まれる。このコーパスは、本発明の構成に従
って様々な目的に用いられ得る。そのような様々な目的には、ソフトウェアファイルのよ
り新しいバージョン、ソフトウェアファイルに利用可能なパッチ、欠陥を有することが知
られているファイルにおける当該欠陥、および既知の欠陥（エラー）を含むことがこれま
で知られていなかったファイルにおける当該既知の欠陥を自動的に特定することが含まれ
る。また、本発明の実施形態は、これらの問題に対処するために前記コーパスからの知識
を活用し得る。
【００２４】
　図１は、本発明の一実施形態における、コーパスへの入力ソフトウェアファイルの処理
の一例を示すフロー図である。図示の最初のステップでは、複数のソフトウェアファイル
を得る（符号１１０）。これらのソフトウェアファイルは、ソースコードフォーマット（

(10) JP 2017-519300 A 2017.7.13

10

20

30

40

50

典型的には、プレーンテキストである）、バイナリコードフォーマット、または他の何ら
かのフォーマットであり得る。また、本発明の例示的な一部の実施形態において、前記ソ
ースコードフォーマットは、コンパイル可能なコンピュータ言語であれば、どのようなコ
ンピュータ言語であってもよい。そのようなコンピュータ言語には、Ａｄａ、Ｃ／Ｃ＋＋
、Ｄ、Ｅｒｌａｎｇ、Ｈａｓｋｅｌｌ、Ｊａｖａ（登録商標）、Ｌｕａ、Ｏｂｊｅｃｔｉ
ｖｅ　Ｃ／Ｃ＋＋、ＰＨＰ、Ｐｕｒｅ、Ｐｙｔｈｏｎ、およびＲｕｂｙが含まれる。例示
的な他の一部の実施形態では、本発明の実施形態に使用するのに、インタプリタ型言語が
得られてもよい。そのようなインタプリタ型言語には、ＰＥＲＬおよびｂａｓｈ　ｓｃｒ
ｉｐｔが含まれる。
【００２５】
　得られるソフトウェアファイルには、ソースコードファイルやバイナリファイルだけで
なく、それらのファイルに関連付けられているか又は対応するソフトウェアプロジェクト
に関連付けられている、任意のファイルが含まれてもよい。例えば、ソフトウェアファイ
ルには、さらに、関連付けられている、ビルドファイル、ｍａｋｅファイル、ライブラリ
、マニュアルファイル、コミットログ、変更履歴、バグジラ（Ｂｕｇｚｉｌｌａ）登録、
共通脆弱性識別子（ＣＶＥ）登録、および他の非構造化テキストが含まれる。
【００２６】
　これらのソフトウェアファイルは、様々なソースから得られ得る。例えば、ソフトウェ
アファイルは、ネットワークインターフェースを介して、インターネットにより、公衆が
利用可能なソフトウェアレポジトリから得られ得る。そのようなソフトウェアレポジトリ
として、例えば、ＧｉｔＨｕｂ、ＳｏｕｒｃｅＦｏｒｇｅ、ＢｉｔＢｕｃｋｔ、Ｇｏｏｇ
ｌｅＣｏｄｅ、共通脆弱性識別子（Ｃｏｍｍｏｎ Ｖｕｌｎｅｒａｂｉｌｉｔｉｅｓ ａｎ
ｄ Ｅｘｐｏｓｕｒｅｓ）システム（例えば、ＭＩＴＲＥ社により保有されるもの）が挙
げられる。一般的に、これらのレポジトリは、ファイルおよび当該ファイルに施された変
更の履歴を含む。この他に、例えば、ファイルが得られるサイトを指し示すユニフォーム
リソースロケータ（ＵＲＬ）が提供されてもよい。また、ソフトウェアファイルは、イン
ターフェースを介してプライベートネットワークから得られるか、または、局所的なロー
カルハードドライブ又は他の記憶装置から得られてもよい。このようなインターフェース
は、ソースとの通信可能な接続を提供する。
【００２７】
　本発明の例示的な実施形態は、ソースから入手可能なファイルのうち、一部、ほとんど
、または全てを取得してもよい。また、例示的な一部の実施形態は、ファイルを得ること
を自動化し、例えば、ファイル、ソフトウェアプロジェクト全体（例えば、変更履歴、コ
ミットログ、ソースコード等）、プロジェクトもしくはプログラムの全ての改変（リビジ
ョン）、ディレクトリ内の全てのファイル、またはソースから入手可能な全てのファイル
を自動的にダウンロードし得る。一部の実施形態は、レポジトリの全体について、入手可
能なソフトウェアファイルの全てを得るために、各改変を丁寧に調べる。例示的な一部の
実施形態は、各ソフトウェアプロジェクトについてのソース管理レポジトリの全体を前記
コーパスで取得することにより、そのプロジェクトについての全ての関連付けられている
ファイルを自動的に得ること（各ソフトウェアファイル改変を得ることを含む）を容易に
する。レポジトリ用のソース管理システムには、例えば、Ｇｉｔ、Ｍｅｒｃｕｒｉａｌ、
Ｓｕｂｖｅｒｓｉｏｎ、Ｃｏｎｃｕｒｒｅｎｔ Ｖｅｒｓｉｏｎｓ Ｓｙｓｔｅｍ、Ｂｉｔ
Ｋｅｅｐｅｒ、Ｐｅｒｆｏｒｃｅが含まれる。また、一部の実施形態は、ソースが変更又
は更新されたか否かを判別するように当該ソースを継続的に又は周期的に再確認してもよ
く、かつ、ソースが変更又は更新された場合には、当該ソースから変更点もしくは更新点
のみを得るか又は全てのソフトウェアファイルを再び得るものであってもよい。多くのソ
ースは、当該ソースへの変更を判別するための方法（例えば、追加日付フィールド、変更
日付フィールドであって、例示的な実施形態がソースから更新点を得るのに用い得る、追
加日付フィールド、変更日付フィールド）を備えている。
【００２８】

(11) JP 2017-519300 A 2017.7.13

10

20

30

40

50

　また、本発明の例示的な一部の実施形態は、レポジトリから得られたソースコードファ
イルにより使用され得るライブラリソフトウェアファイルを、レポジトリがこのようなラ
イブラリを含まなかった場合の当該ファイルの必要性に対処するために別個に得るもので
あってもよい。これらのうちの一部の実施形態は、前記コーパスに含めるために、任意の
パブリックソースから合理的に入手可能であるか又はソフトウェアベンダーから得られる
任意のライブラリソフトウェアファイルを得ることを試みる。一部の実施形態は、さらに
、ソフトウェアファイルにより使用されるライブラリをユーザが提供することを可能にす
るか、あるいは、使用されるライブラリをユーザが特定して当該ライブラリを得られるよ
うにすることを可能にする。一部の実施形態は、各プロジェクトについてのソフトウェア
ファイルをくまなく調べることで、そのプロジェクトにより使用されるライブラリを特定
して当該ライブラリを得たり必要に応じてインストールしたりできるようにする。
【００２９】
　本発明における例示的な方法での次のステップでは、前記複数のソフトウェアファイル
のそれぞれについて複数のアーチファクトを決定する（符号１２０）。ソフトウェアアー
チファクトは、ソフトウェアファイルの機能、アーキテクチャまたはデザインを記述し得
る。アーチファクトの種類には、例えば、静的アーチファクト、動的アーチファクト、導
出アーチファクト、メタデータアーチファクト等が含まれる。
【００３０】
　例示的なこの方法での最後のステップでは、前記複数のソフトウェアファイルのそれぞ
れについての前記複数のアーチファクトをデータベースに記憶する（符号１３０）。これ
ら複数のアーチファクトは、それらが決定された特定のソフトウェアファイルに対応する
ものとして特定可能なように記憶される。この特定は、データベーススキーマにより表現
される前記データベース内のフィールド、ポインタ、記憶されている場所の位置、ファイ
ル名などの他の任意の識別子といった周知の様々な方法のどれによって行われてもよい。
同じプロジェクト又は同じビルドに属するファイル同士が、関係を維持可能なように同様
に追跡されてもよい。
【００３１】
　種々の実施形態に対して、前記データベースは、グラフデータベース、関係データベー
ス、フラットファイルなどといった異なる形態を取り得る。好適な一実施形態は、Ｏｒｉ
ｅｎｔ Ｔｅｃｈｎｏｌｏｇｉｅｓ社主体のＯｒｉｅｎｔＤＢ Ｏｐｅｎ Ｓｏｕｒｃｅ Ｐ
ｒｏｊｅｃｔにより提供される分散グラフデータベースであるＯｒｉｅｎｔＤＢを用いる
。好適な他の実施形態は、マルチマシンクラスタにわたって分散したグラフを記憶及びク
エリするのに最適化されたスケーラブルなグラフデータベースであるＴｉｔａｎと、Ａｐ
ａｃｈｅ Ｃａｓｓａｎｄｒａストレージバックエンドとを用いる。また、例示的な一部
の実施形態は、グラフアーチファクトを記憶し当該グラフアーチファクトに作用する配列
データベースである、Ｐａｒａｄｉｇｍ４からのＳｃｉＤＢを用いる。
【００３２】
　一般的に、静的アーチファクト、動的アーチファクト、導出アーチファクトおよびメタ
データアーチファクトは、ソースコードファイル、バイナリファイルまたは他のアーチフ
ァクトから決定され得る。これらの種類のアーチファクトの例については、以下で説明す
る。例示的な実施形態は、ソースコードソフトウェアファイル又はバイナリソフトウェア
ファイルについて、これらのうちの少なくとも１つのアーチファクトを決定し得る。一部
の実施形態は、これら全種類の全アーチファクト又は特定の種類のアーチファクトにおけ
る全アーチファクトを決定するのではなく、むしろ、一部の種類のアーチファクトおよび
／または所与の種類における一部のアーチファクトを決定するものであってもよく、かつ
／あるいは、特定の種類におけるアーチファクトを全く決定しないものであってもよい。
【００３３】
　＜静的アーチファクト＞
　ソフトウェアファイルについての静的アーチファクトは、コールグラフ、制御フローグ
ラフ、ｕｓｅ－ｄｅｆチェイン、ｄｅｆ－ｕｓｅチェイン、支配木、基本ブロック、変数

(12) JP 2017-519300 A 2017.7.13

10

20

30

40

50

、定数、ブランチセマンティック（分岐意味）、およびプロトコルを含む。
【００３４】
　コールグラフ（ＣＧ）は、関数により呼び出される関数の有向グラフである。ＣＧは、
高位レベルのプログラム構造を表現するものであり、そのグラフの各ノードは関数を表し
、ノード間の各エッジは方向を有し且つある関数が別の関数を呼び出し得るか否かを示す
。
【００３５】
　制御フローグラフ（ＣＦＧ）は、関数内部の基本ブロック間の制御フローの有向グラフ
である。ＣＦＧは、関数レベルのプログラム構造を表現する。ＣＦＧの各ノードは基本ブ
ロックを表し、ノード間のエッジは方向を有し且つフロー内の経路候補を示す。
【００３６】
　Ｕｓｅ－Ｄｅｆ（ＵＤ）チェインおよびＤｅｆ－Ｕｓｅ（ＤＵ）チェインは、入力（使
用）、出力（定義）、およびコードの基本ブロック内で行われる処理の、有向非巡回グラ
フである。例えば、ＵＤチェインは、変数の使用と、当該変数の定義であって、再定義を
介さずにその使用に到達し得る全ての定義とである。ＤＵチェインは、変数の定義と、使
用であって、再定義を介さずにその定義から到達し得る全ての使用とである。これらのチ
ェインは、受け付けられた入力型、生成される出力型、およびコードの基本ブロック内で
行われる処理についての、コードの基本ブロックの意味解析を可能にする。
【００３７】
　支配木（ＤＴ）は、ＣＦＧのどのノードが他のノードを支配するのか（どのノードが他
のノードの経路にあるのか）を表現する行列である。例えば、入口ノードから第２のノー
ドへの全ての経路が第１のノードを通らなければならない場合、第１のノードが第２のノ
ードを支配するという。ＤＴは、前支配木（入口順方向）と後支配木（出口逆方向）とで
表現され得る。ＤＴは、ＣＦＧにおいてある経路が特定のノードに切り換わるときを強調
する。
【００３８】
　基本ブロックは、ＣＦＧの各ノード内の命令およびオペランドである。基本ブロック同
士は比較可能であり、かつ、２つの基本ブロック間の類似性尺度が生成可能である。
【００３９】
　変数は、情報及びその情報の型についての記憶単位であり、任意の関数パラメータ、任
意のローカル変数又は任意のグローバル変数についての記憶可能な情報の型を表現し、デ
フォルト値が存在する場合にはデフォルト値を有し得る。変数は、プログラムに対する初
期状態および基本制約を提供し得て、かつ、プログラム挙動に影響を与え得る前記型の変
化又は初期値の変化を示し得る。
【００４０】
　定数は、任意の定数の型及び数値であり、プログラムに対する初期状態および基本制約
を提供し得る。定数は、プログラム挙動に影響を与え得る前記型の変化又は初期値の変化
を示し得る。
【００４１】
　ブランチセマンティック（分岐意味）は、ｉｆ文やループ内のブーリアン評価である。
分岐は、基本ブロックが実行される条件を制御する。
【００４２】
　プロトコルは、プログラムにより使用されるプロトコル、ライブラリ、システムコール
、および他の既知の関数の、名前とリファレンス（参照先）とである。
【００４３】
　本発明の例示的な実施形態は、ソフトウェアソースコードファイルの中間表現（ＩＲ）
（例えば、公衆が入手可能なＬＬＶＭ（かつては低水準仮想機械）コンパイラインフラス
トラクチャプロジェクト等により提供される中間表現）から静的アーチファクトを自動的
に決定し得る。ＬＬＶＭ ＩＲは、高水準言語を効果的に表現可能であり且つＡＲＭ、Ｘ
８６、Ｘ６４、ＭＩＰＳ、ＰＰＣなどの命令セットアーキテクチャ（ＩＳＡ）から独立し

(13) JP 2017-519300 A 2017.7.13

10

20

30

40

50

ている、低水準共通言語である。コンピュータ言語が異なっても、異なるコンピュータ言
語用の異なるＬＬＶＭコンパイラ（ここでの「コンパイラ」はフロントエンドとも称され
る）を用いて、ソースコードを共通のＬＬＶＭ ＩＲに変換させることが可能であり得る
。少なくともＡｄａ、Ｃ／Ｃ＋＋、Ｄ、Ｅｒｌａｎｇ、Ｈａｓｋｅｌｌ、Ｊａｖａ、Ｌｕ
ａ、Ｏｂｊｅｃｔｉｖｅ Ｃ／Ｃ＋＋、ＰＨＰ、Ｐｕｒｅ、Ｐｙｔｈｏｎ、およびＲｕｂ
ｙ用のフロントエンドは、公衆が入手可能である。また、そのほかの言語用のフロントエ
ンドも、簡単にプログラム可能である。また、ＬＬＶＭには利用可能な最適化器が存在し
、かつ、ＬＬＶＭ ＩＲを様々な異なるＩＳＡ用の機械語に変換可能なバックエンドも存
在する。例示的な他の実施形態は、ソースコードファイルから静的アーチファクトを決定
し得る。
【００４４】
　図２は、本発明の一実施形態において利用可能な、コーパスへの入力ソフトウェアファ
イルの処理の他の例を示すフロー図である。例示的な実施形態は、特に、ソースコード２
０５ソフトウェアファイルとバイナリコード２１０ソフトウェアファイルとの両方を得る
ことができる。ソースコードファイル２０５の言語用のＬＬＶＭコンパイラ２２０が利用
可能な場合には、この言語用のＬＬＶＭコンパイラ２２０を用いてそのソースコードがＬ
ＬＶＭ ＩＲ２５０に翻訳（変換）され得る。利用可能なＬＬＶＭコンパイラがないコン
パイル後言語（コンパイル言語）の場合には、ソースコード２０５がまず、この言語用の
任意のサポートされているコンパイラ２１５を用いてバイナリファイル２３０にコンパイ
ルされ得る。次に、このバイナリファイル２３０が、デコンパイラ２３５（例えば、Ｄｒ
ａｐｅｒ Ｌａｂｏｒａｔｒｙにより提供される公衆が入手可能なオープンソースデコン
パイラであるＦｒａｃｔｕｒｅ等）を用いてデコンパイルされる。具体的に述べると、デ
コンパイラ２３５が、機械コード２３０をＬＬＶＭ ＩＲ２５０に翻訳する。バイナリ形
式２１０で得られたファイルについては、これが機械コード２３０であることから、デコ
ンパイラ２３５を用いてＬＬＶＭ ＩＲ２５０を得るようにデコンパイルされる。例示的
な実施形態は、ＬＬＶＭ ＩＲから、言語非依存で且つＩＳＡから独立したアーチファク
トを抽出し得る。
【００４５】
　本発明の例示的な実施形態は、ソースコードソフトウェアファイルのそれぞれについて
のＩＲを自動的に得ることができる。例えば、例示的な実施形態は、ａｕｔｏｃｏｍｆ、
ｃｍａｋｅ、ａｕｔｏｍａｋｅ、ｍａｋｅファイル、ベンダーの命令などの標準ビルドフ
ァイルに対して、プロジェクト用のレポジトリの検索を自動的に行い得る。例示的な実施
形態は、ビルドプロセスを監視してコンパイラ呼出しをソースコードで使用されている言
語用のＬＬＶＭフロントエンド呼出しに変換することにより、プロジェクトをビルドする
ように上記のようなファイルを用いることを自動的かつ選択的に試み得る。ビルドファイ
ルについてのこの選択プロセスは、ファイルのそれぞれを一つずつ調べて何が存在し且つ
何が完成ビルド又は部分完成ビルド（部分的に完成したビルド）を提供するのかを判断し
得る。
【００４６】
　例示的な他の実施形態は、レポジトリからファイルを自動的に得るのに、および／また
は、ファイルをＬＬＶＭ ＩＲに変換するのに、および／または、ファイルについてのア
ーチファクトを決定するのに、分散型コンピュータシステムを使用し得る。分散型システ
ムは、例えば、マスタコンピュータを用いて、プロジェクトやビルドを、スレーブマシン
が処理するように当該スレーブマシンに渡し得る。それぞれのスレーブは、振り当てられ
たプロジェクト、バージョン、改変又はビルドを処理し得る。かつ、それぞれのスレーブ
は、ソースファイル又はバイナリファイルをＬＬＶＭ ＩＲへと翻訳し得て、および／ま
たは、アーチファクトを決定し得る。かつ、それぞれのスレーブは、結果を、前記コーパ
スに記憶されるように提供し得る。例示的な一部の実施形態は、超大規模のデータセット
の分散記憶・分散処理のためのオープンソースソフトウェアフレームワークであるＨａｄ
ｏｏｐを使用し得る。また、ソースレポジトリからファイルを得ることが、マシンの集団

(14) JP 2017-519300 A 2017.7.13

10

20

30

40

50

内で分散されるものであってもよい。
【００４７】
　例示的な実施形態において、ソフトウェアファイルおよびＬＬＶＭ ＩＲは、前記コー
パス（分散ストレージを含む）に記憶され得る。また、例示的な実施形態は、ソフトウェ
アファイル又はＬＬＶＭ ＩＲコードがデータベースに既に記憶されていることを判定し
得て、かつ、そのファイルを再び記憶しないことを選択し得る。ポインタ、グラフデータ
ベースのエッジ、または他の参照先識別子を用いて、ファイルを、特定のプロジェクト、
ディレクトリ、またはファイルの他の集まりに関連付けてもよい。
【００４８】
　＜動的アーチファクト＞
　動的アーチファクトは、プログラム挙動を表すものであり、ソフトウェアをその備えら
れた環境（例えば、仮想機械、エミュレータ（例えば、クイックエミュレータ（「ＱＥＭ
Ｕ」））、ハイパーバイザ等）で実行することにより生成される。動的アーチファクトは
、システムコールトレース／ライブラリトレースおよび実行トレースを含む。
【００４９】
　システムコールトレース又はライブラリトレースは、システムコール又はライブラリコ
ールが実行される順序と頻度とである。システムコールは、プログラムが、入出力リクエ
ストを管理するオペレーティングシステムのカーネルからのサービスを要求する方法であ
る。ライブラリコールは、ソフトウェアプログラム及びアプリケーションを開発するのに
再使用可能なプログラミングコードの集まりであるソフトウェアライブラリへの呼出しで
ある。
【００５０】
　実行トレースは、命令バイト、スタックフレーム、メモリ使用量（例えば、レジデント
／ワーキングセットサイズ等）、ユーザ／カーネル時間、および他の実行時情報を含む、
命令毎のトレースである。
【００５１】
　本発明の例示的な実施形態は、仮想機械（様々なオペレーティングシステム用の仮想機
械を含む）を生成し得てソースコードファイル及びバイナリファイルを実行およびコンパ
イルし得る。これらの環境は、動的アーチファクトが決定されることを可能にする。例え
ば、Ｖａｌｇｒｉｎｄ、Ｄａｉｋｏｎなどの公衆が入手可能なプログラムを用いることに
より、当該プログラムについての実行時情報であって、アーチファクトとして機能する実
行時情報が提供され得る。Ｖａｌｇｒｉｎｄは、特に、メモリのデバッグ、メモリリーク
の検出およびプロファイリングのためのツールである。Ｄａｉｋｏｎは、コードにおける
不変式であって、コード内の決まった箇所で真となる条件である不変式を検出することが
可能なプログラムである。
【００５２】
　さらなる他の実施形態は、公衆が入手可能な、追加の診断・デバッグプログラム又はユ
ーティリティ（例えば、ｓｔｒａｃｅ、ｄｔｒａｃｅ等）を使用し得る。ｓｔｒａｃｅは
、プロセスとカーネルとの間の相互作用（システムコールを含む）を監視するのに用いら
れる。ｄｔｒａｃｅは、メモリ使用量、ＣＰＵ時間、特定の関数呼出し、および特定のフ
ァイルにアクセスするプロセスを含む、システムについての実行時情報を提供するのに用
いられ得る。また、例示的な実施形態は、プログラムの複数の実行にわたって実行トレー
ス（例えば、Ｖａｌｇｒｉｎｄ等を用いて）を追跡し得る。
【００５３】
　他の実施形態は、ＫＬＥＥエンジンを介してＬＬＶＭ ＩＲを実行し得る。ＫＬＥＥは
、公衆が入手可能なオープンソースコードであるシンボリックな仮想機械である。ＫＬＥ
Ｅは、ＬＬＶＭ ＩＲをシンボリックに実行し、かつ、全てのコードプログラム経路での
テストを自動的に生成する。シンボリック実行は、特に、どの入力がコードの各部分の実
行を引き起こすのかを決定するようにそのコードを解析することに関するものである。Ｋ
ＬＥＥを使用することは、機能正確性エラーおよび挙動不一致を見つけ出すのに極めて効

(15) JP 2017-519300 A 2017.7.13

10

20

30

40

50

果的なので、本発明の例示的な実施形態が類似コード同士の違い（例えば、改変にわたっ
ての違い）を素早く特定することを可能にする。
【００５４】
　＜導出アーチファクト＞
　導出アーチファクトは、高位レベルの複雑なプログラム挙動を表すものであり、これら
の挙動の特徴である特性及び事実を抽出する。導出アーチファクトは、プログラム特性、
ループ不変条件、拡張型情報、Ｚ言語（Ｚ記法）およびラベル遷移体系表現を含む。
【００５５】
　プログラム特性は、実行トレースから導出されるプログラムについての事実（情報）で
ある。これらの事実は、最小メモリサイズ、最大メモリサイズ、平均メモリサイズ、実行
時間およびスタック深さを含む。
【００５６】
　ループ不変条件は、ループにおける全ての反復（又は選択された反復グループ）にわた
って維持される特性である。ループ不変条件は、類似する挙動を明らかにするように分岐
意味にマッピングされ得る。
【００５７】
　拡張型情報は、型についての事実を含む。これらの事実には、変数が保持可能な数値の
範囲、他の変数との関係、および抽象化可能な他の特徴が含まれる。型制約は、コードに
関する挙動及び特徴を明らかにし得る。
【００５８】
　Ｚ言語は、Ｚｅｒｍｅｌｏ－Ｆｒａｅｎｋｅｌ集合論に基づくものである。Ｚ言語は、
型付き代数言語を提供し、基本ブロックと関数全体との間の、構造、順序及び型を無視し
た比較尺度を可能にする。
【００５９】
　ラベル遷移体系（ＬＴＳ）表現は、プログラムから抽象化された高位レベルの状態を表
現するグラフ体系である。このグラフのノードは状態であり、エッジは遷移内の関連する
動作によりラベル付けされる。
【００６０】
　例示的な一部の実施形態において、導出アーチファクトは、他のアーチファクトから決
定され得たり、ソースコードファイルから決定され得たり（動的アーチファクトについて
既述したプログラムを用いてソースコードファイルから決定されることを含む）、ＬＬＶ
Ｍ ＩＲから決定され得たりする。
【００６１】
　＜メタデータアーチファクト＞
　メタデータアーチファクトは、プログラムコンテキストを表すものであり、コードに関
連付けられたメタデータを含む。これらのアーチファクトは、コンピュータプログラムに
対してコンテキスト的関係を有する。メタデータアーチファクトは、ファイル名、改変番
号、ファイルのタイムスタンプ、ハッシュ値、およびファイルの場所（例えば、特定のデ
ィレクトリ又はプロジェクトに属する等）を含む。一部のメタデータアーチファクトは、
ファイル、プログラム又はプロジェクトの開発中プロセスに関するアーチファクトである
開発中アーチファクトとも称され得る。開発中アーチファクトは、インラインコードコメ
ント、コミット履歴、バグジラ登録、ＣＶＥ登録、ビルド情報、コンフィグスクリプト、
およびマニュアルファイル（例えば、ＲＥＡＤＭＥ．＊、ＴＯＤＯ．＊等）を含み得る。
【００６２】
　例示的な実施形態は、公衆が入手可能な文書（マニュアル）生成手段であるＤｏｘｙｇ
ｅｎを使用し得る。Ｄｏｘｙｇｅｎは、特殊コメント付きソースコードファイル（つまり
、インラインコードド文書）から、プログラマおよび／またはエンドユーザのためのソフ
トウェア文書を生成し得る。
【００６３】
　他の実施形態は、Ａｎｏｔｈｅｒ Ｔｏｏｌ Ｆｏｒ Ｌａｎｇｕａｇｅ Ｒｅｃｏｇｎｉ

(16) JP 2017-519300 A 2017.7.13

10

20

30

40

50

ｔｉｏｎ（ＡＮＴＬＲ）４－生成パーサ等のパーサ（構文解析ツール）を使用して抽象構
文木（ＡＳＴ）を生成し得て、かつ、アーチファクトとしても機能し得る高位レベルの言
語特徴を抽出し得る。ＡＮＴＬＲ４は、文法や言語についての列の生成則を捉えて、パー
ス木を構築し得て当該パース木を辿り得るパーサを生成する。結果としてのパーサは、様
々な型、関数定義／呼出し、およびプログラムの構造に関する他のデータを出力する。Ａ
ＮＴＬＲ４－生成パーサにより抽出される低位レベルの属性は、複雑な型／構造、ループ
不変条件／カウンタ（例えば、各パラダイムのａから）、および構造化されたコメント（
例えば、形式的な事前／事後条件記述）を含む。例示的な実施形態は、この抽出されたデ
ータをＬＬＶＭ ＩＲにおけるその被参照位置へとマッピングし得る。これは、ファイル
名、行番号および列番号情報が、パーサにもＬＬＶＭ ＩＲにも存在するからである。
【００６４】
　本発明の例示的な実施形態は、少なくとも１つのメタデータアーチファクトを、ソース
ソフトウェアファイルからインラインコメントなどの文字列を抽出することによって自動
的に決定し得る。さらなる他の実施形態は、メタデータアーチファクトをファイルシステ
ムまたはソース管理システムから自動的に決定する。
【００６５】
　＜アーチファクト間階層関係＞
　図３は、本発明の一実施形態における、ソフトウェアファイルについてのアーチファク
ト間の階層関係を示すブロック図である。例示的な実施形態は、これらのアーチファクト
間階層関係を維持および利用し得る。また、異なる実施形態は、異なるスキーマおよび異
なる階層関係を用い得る。図３の例示的な実施形態では、アーチファクト階層構造の最上
位が、ＬＴＳアーチファクト３１０である。それぞれのＬＴＳノード３１０は、関数及び
特定の変数状態の集合又は部分集合へとマッピング可能である。ＬＴＳアーチファクト３
１０の下に、ＣＧアーチファクト３２０が存在する。それぞれのＣＧノード３２０は、Ｃ
ＦＧアーチファクト３３０を有する特定の関数にマッピング可能である（ＣＦＧアーチフ
ァクト３３０のエッジは、ループ不変条件及び分岐意味３３０を含み得る）。それぞれの
ＣＦＧノード３３０は、基本ブロック及びＤＴ３４０を含み得る。それらのアーチファク
トの下に、変数、定数、ＵＤ／ＤＵチェインおよびＩＲ命令３５０が存在する。図３には
、アーチファクトが、様々な動的情報を記述するＬＴＳノードから個々のＩＲ命令までの
、階層構造における種々の階層へとマッピング可能であることが明らかに示されている。
例示的な実施形態により、これらの階層関係は、マッチするアーチファクトをより効率的
に検索することを含む、様々な用途に用いられ得る。これは、例えば、まず階層構造の最
上位に近いアーチファクトと比較することにより（最下位に近いアーチファクトと比較す
るのではなくて）、上位のアーチファクトがマッチであるか（該当するか）否かに応じて
当該上位のアーチファクトに関連付けられたそれよりも下位のアーチファクトの集合全体
を含めるか又は除外することにより行われ得る。また、他の実施形態は、これらの階層関
係を用いて、欠陥についての又は付加拡張機能についての修復コードを探し出し得るか又
は提案し得る。これは、前記階層構造を上位に向かって上がっていき、より上位のアーチ
ファクトとマッチする欠陥についての修復コードを探し出すことにより行うことを含む。
【００６６】
　図４は、ソフトウェアファイルについてのアーチファクトのコーパスを提供するシステ
ムの例示的な一実施形態を示すブロック図である。例示的な一実施形態は、複数のソフト
ウェアファイルを有するソース４３０と通信することが可能なインターフェース４２０を
備え得る。このインターフェース４２０は、ローカルソース４３０と通信可能に接続され
得る。一部の実施形態において、ローカルソース４３０は、ローカルハードドライブ又は
ディスクである。他の実施形態において、インターフェース４２０は、パブリックネット
ワーク又はプライベートネットワークを介してファイルを得るネットワークインターフェ
ース４２０であり得る。これらのソフトウェアファイルのパブリックソース４３０には、
例えば、ＧｉｔＨＵＢ、ＳｏｕｒｃｅＦｏｒｇｅ、ＢｉｔＢｕｃｋｅｔ、ＧｏｏｇｌｅＣ
ｏｄｅ、共通脆弱性識別子システム等が含まれる。プライベートソースには、例えば、会

(17) JP 2017-519300 A 2017.7.13

10

20

30

40

50

社の内部ネットワークと当該内部ネットワークに記憶されたファイル（共有ネットワーク
ドライブおよび私設レポジトリを含む）とが含まれる。例示的なこのシステムは、さらに
、ソース４３０から複数のソフトウェアファイルを得るようにインターフェース４２０に
接続された少なくとも１つのプロセッサ４１０を備える。また、プロセッサ４１０は、複
数のソフトウェアファイルのそれぞれについての複数のアーチファクトを決定するように
用いられ得る。これらのアーチファクトは、静的アーチファクトおよび／または動的アー
チファクトおよび／または導出アーチファクトおよび／またはメタデータアーチファクト
であり得る。また、他の実施形態において、プロセッサ４１０は、ソフトウェアファイル
のそれぞれを中間表現に変換するように、かつ、当該中間表現からアーチファクトを決定
するように構成され得る。
【００６７】
　例示的なこのシステムは、さらに、ソフトウェアファイルのそれぞれについてのアーチ
ファクトを記憶する少なくとも１つの記憶装置４４０ａ～４４０ｎであって、プロセッサ
４１０に接続された少なくとも１つの記憶装置４４０ａ～４４０ｎを備える。これらの記
憶装置４４０ａ～４４０ｎは、ハードドライブ、ハードドライブのアレイ、他の種類の記
憶装置、および分散ストレージ（例えば、Ｈａｄｏｏｐファイルシステム（ＨＤＦＳ）に
おいてＴｉｔａｎおよびＣａｓｓａｎｄｒａを用いることにより提供されるもの）とされ
得る。同様に、例示的なこのシステムは、単一のプロセッサ４１０を備えるものであって
もよいし、分散処理を用いて複数のプロセッサ４１０を備えるものとされてもよい。また
、さらなる他の実施形態は、インターフェース４２０と記憶装置４４０ａ～４４０ｎとの
間を直接通信可能に接続することを提供する。
【００６８】
　図５は、デザインパターンを探し出す方法の例示的な一実施形態を示すブロック図であ
る。デザインパターンは、例えば、バグ、修復、脆弱性、セキュリティパッチ、プロトコ
ル、プロトコル拡張、機能、付加拡張機能を含む。それぞれのデザインパターンは、ソフ
トウェアプロジェクト階層構造におけるさまざまな階位で抽出されるアーチファクト（例
えば、仕様（specifications）、ＣＧ、ＣＦＧ、Ｄｅｆ－Ｕｓｅチェイン、命令のシーケ
ンス、型、定数）と関連付けられ得る。
【００６９】
　例示的なこの方法は、複数のソフトウェアファイルに対応する複数のアーチファクトを
有するデータベースにアクセスする工程を備える（符号５１０）。このデータベースは、
グラフデータベース、関係データベースまたはフラットファイルであり得る。このデータ
ベースは、プライベートネットワークにおいて局所的に位置してもよいし、インターネッ
ト又はクラウドを介して利用可能なものであってもよい。この方法は、ひとたび前記デー
タベースにアクセスすると、複数のファイルのうちの第１のファイルについての、前記複
数のアーチファクトのうちの少なくとも１つに基づいて、デザインパターンを自動的に特
定し得る（符号５２０）。例示的な一部の実施形態において、前記複数のアーチファクト
のそれぞれは、静的アーチファクト、動的アーチファクト、導出アーチファクトまたはメ
タデータアーチファクトであり得る。他の実施形態は、異なる種類のアーチファクトの組
合せを有し得る。また、前記ファイルのフォーマットに制限はなく、例えば、バイナリコ
ードフォーマット、ソースコードフォーマット、中間表現（ＩＲ）フォーマット等であり
得る。
【００７０】
　一部の実施形態において、前記デザインパターンは、開発中アーチファクトのキーワー
ド検索又は自然言語検索により特定され得る。例えば、ソースコードの所与の改変におけ
るインラインコードコメントは、見つけ出されて修正された欠陥を特定するものとなり得
る。これらのコメントは、欠陥、バグ、エラー、問題、不具合、または誤作動などの単語
を使用し得る。これらの単語を、メタデータのキーワード検索に利用することが可能であ
り得る。また、コミットログは、新しい改変やパッチが適用された理由（例えば、欠陥に
対処するため、または機能を向上させる）を記述するテキストを含み得る。また、訓練や

(18) JP 2017-519300 A 2017.7.13

10

20

30

40

50

フィードバックをこの検索に適用して検索結果を改良するようにしてもよい。
【００７１】
　例示的な他の実施形態は、テキストにおける共通脆弱性及びエラーを特定して且つ欠陥
及び利用可能な修復があれば当該修復を記述し得るＣＶＥソースから、開発中アーチファ
クトを検索し得る。このテキストが、アーチファクトとして得られてデータベースに記憶
されてもよい。また、一部のソースは、欠陥をコード化して且つどのファイルが欠陥を含
むのかを探し出すのにコードをキーワードとして用い得る。また、アーチファクトのソー
スが何であるのかが、ソフトウェアファイルの特定にあたって考慮されて重み付けされ得
る。例えば、ＣＶＥソースは、出所又はインラインコメントのないレポジトリよりも、欠
陥を特定するのにあたって信頼性が高くなり得る。さらなる他の実施形態は、ファイル名
、改変回数などのメタデータアーチファクトを用いて少なくとも暫定的にソフトウェアフ
ァイルを特定してもよく、ＣＧやＣＦＧなどのマッチする追加のアーチファクトに基づい
てその特定を確定してもよい。
【００７２】
　本発明の一部の実施形態は、例示的なこの方法を実行して、一部、ほとんど、又は全て
のソースコードファイル及びＬＬＶＭ ＩＲファイルについてのデザインパターンを特定
することを試みる。また、一部の実施形態は、ファイルがコーパスに追加されるたびに、
データベースにアクセスして任意のデザインパターンを特定することを試みる。また、一
部の実施形態は、特定されたデザインパターンを、後の使用のためにラベル付けし得る。
【００７３】
　また、一部の実施形態は、ソースコード又はファイルと関連付けられたＬＬＶＭ ＩＲ
における欠陥の位置であって、データベースに記憶された位置を見つけ出す。例えば、開
発中アーチファクトは、ソースコードのどこに欠陥が存在するのか及びパッチのどこに修
復が存在するのかを示し得る。また、ソースコード又はＬＬＶＭ ＩＲは、欠陥を有する
ファイル及び当該ファイルのより新しい修復後バージョンと、違いを取り出してどこに欠
陥及び修復があるのかを判別するために分析および比較され得る。また、一部の実施形態
では、開発中アーチファクトにおいて特定された欠陥の種類を用いて、その欠陥の位置に
ついて、コードの検索が絞り込まれ得る。また、他の実施形態は、ラベルなどを用いてデ
ザインパターンを識別可能とし得て、かつ、この識別子をファイルについてのデータベー
スに記憶し得る。これにより、所与の欠陥又は欠陥の種類について、データベースを容易
に検索することが可能となる。このようなラベルには、例えば、ソフトウェアファイルに
ついての開発中アーチファクトまたはソースコードから得られた文字列等が含まれる。こ
れと同じアプローチが、機能や付加拡張機能を特定してこれらにラベル付けすることにも
適用可能である。
【００７４】
　例示的な一部の実施形態において、デザインパターンは、ソフトウェアファイル内に存
在する。例示的な一部の実施形態において、デザインパターンは、ファイル間の相互作用
（例えば、インターフェース等）に関するものであり得る。例示的な実施形態は、デザイ
ンパターンを自動的に特定することを、その特定を、複数のソフトウェアファイル（例え
ば、いずれも同じソフトウェアプロジェクトに属する第１および第２のファイル）につい
てのアーチファクトに基づかせることによって行い得る。例えば、インターフェース不一
致エラーなどのデザインパターンを表す予め特定されたパターンが、前記第１および第２
のファイルからのアーチファクトを用いて当該ファイルについてのインターフェースエラ
ーが存在することを特定可能なようにデータベース又はその他に記憶され得る。例示的な
実施形態において、デザインパターンは、例えば、欠陥、修復、機能、付加拡張機能、ま
たは予め特定されたプログラム断片を含む。
【００７５】
　例示的な一部の実施形態において、この方法は、アーチファクトにおいて、欠陥又は修
復を表す文字列を探し出す。このような列（例えば、バグ、エラー、欠陥）、修復に関す
る列、さらには、コード内のどこにそのような列を見つけ出すことができるのかが、開発

(19) JP 2017-519300 A 2017.7.13

10

20

30

40

50

中アーチファクトにしばしば存在する。また、これらの開発中アーチファクトは、機能又
は付加拡張機能を表す列を有し得る。
【００７６】
　例示的な一部の実施形態において、デザインパターンは、当該デザインパターンを表す
予め特定されたパターンに基づくものである。これらの予め特定されたパターンは、ユー
ザにより作成されたものであってもよいし、本明細書の開示内容に関連する方法により予
め特定されたものであってもよいし、他の何らかの方法で特定されたものであってもよい
。これらの予め特定されたパターンは、欠陥、修復、機能、付加拡張機能、関心のあるも
の、または他の重要なものに対応し得る。
【００７７】
　図６は、欠陥を探し出す方法の例示的な一実施形態を示すフロー図である。この方法は
、複数のソフトウェアファイルに対応する複数のソフトウェアアーチファクトを有するデ
ータベース（例えば、コーパス）にアクセスする工程を備える（符号６１０）。次に、こ
れらのアーチファクトが、その大量のデータからパターンを判別するように分析される。
例えば、この分析は、前記複数のアーチファクトをクラスタ化することを含み得る（符号
６２０）。データをクラスタ化することにより、既知の欠陥を含むことが知られていない
ファイルにおける当該既知の欠陥を見つけ出すことが可能となる。つまり、例示的なこの
方法は、前記クラスタ化から、これまで特定されていなかった欠陥を、少なくとも１つの
予め特定された欠陥に基づいて特定し得る（符号６３０）。
【００７８】
　本発明の例示的な一部の実施形態は、コーパスに機械学習を用い得る。機械学習は、デ
ータ内の関連特徴を捉えるにあたって下位のアーチファクトから始めていってより複雑な
表現を構築することにより、そのデータの階層構造を学習することに関するものである。
例示的な一部の実施形態は、コーパスに深層学習を用い得る。深層学習は、データの表現
を学習することに基づく機械学習手法の、広義のファミリーのなかの一部である。一部の
実施形態では、クラスタ化のためにオートエンコーダが用いられ得る。
【００７９】
　例示的な一部の実施形態において、前記アーチファクトは、ラベル付けされていないグ
ラフアーチファクト及びドキュメントアーチファクトのコンパクトな表現を自動的に見つ
け出すように、オートエンコーダのセットにより処理され得る。グラフアーチファクトは
、ＣＧ、ＣＦＧ、ＵＤチェイン、ＤＵチェイン、ＤＴなどの、グラフ形式で表現可能なア
ーチファクトを含む。そして、これらグラフアーチファクトのコンパクトな表現が、ソフ
トウェアデザインパターンを見つけ出すようにクラスタ化され得る。対応するメタデータ
アーチファクトから抽出された知識を用いて、デザインパターンをラベル付け（例えば、
バグ、修正、脆弱性、セキュリティパッチ、プロトコル、プロトコル拡張、機能、付加拡
張機能）するようにしてもよい。
【００８０】
　例示的な一部の実施形態において、前記オートエンコーダは、ベクトルを入力として共
通の特徴を抽出し得る構造化スパースオートエンコーダ（ＳＳＡＥ）である。一部の実施
形態では、プログラムの特徴を自動的に見つけ出すために、まず、抽出されたグラフアー
チファクトが行列形式で表現される。抽出されるアーチファクトの多く（例えば、ＣＦＧ
、ＵＤチェイン、ＤＵチェインを含む）は、隣接行列として表現可能である。構造的特徴
は、ソフトウェアファイル・プロジェクト階層構造における各々の階位で学習可能であり
得る。
【００８１】
　グラフアーチファクトにおけるノードの数は、幅広く異なり得る。したがって、中間ア
ーチファクトが、深層学習の入力として提供され得る。このような中間アーチファクトの
一つは、グラフラプラシアンの最初のｋ個の固有値であり、深層学習がスペクトルクラス
タ化と同様の処理を実行することを可能にする。他の中間アーチファクトは、グラフにお
けるノード同士が互いにクラスタを形成する傾向についての度合いの尺度を提供するクラ

(20) JP 2017-519300 A 2017.7.13

10

20

30

40

50

スタリング係数（例えば、グローバルクラスタリング係数、ネットワーク平均クラスタリ
ング係数、推移性の比率）を含む。さらなる他の中間アーチファクトは、グラフの密度の
尺度である、当該グラフの樹相度である。エッジが多いグラフは樹相度が大きく、樹相度
が大きいグラフは高密度のサブグラフを有する。さらなる他の中間アーチファクトは、グ
ラフがボトルネックを有するか否かの数値尺度である等周数（isoperimetric number）で
ある。これらの中間アーチファクトは、グラフの構造の様々な側面を、機械学習手法への
使用のために捉える。
【００８２】
　機械学習（例示的な実施形態での深層学習も含む）は、単純なオートエンコーダ構造か
ら始まるマルチステッププロセスを用いて且つこのアプローチを反復的に改良させて前記
ＳＳＡＥを発展させるように訓練される、アルゴリズムを用い得る。また、前記ＳＳＡＥ
は、中間アーチファクトから特徴を学習するように訓練され得る。オートエンコーダは、
ラベル付けされていないデータのコンパクトな表現を学習する。これは、少なくとも１つ
の隠された層からなり且つ恒等関数の近似を学習する同数の入力と出力とを有するニュー
ラルネットワークによってモデル化可能である。オートエンコーダは、入力信号を記述パ
ラメータの本質的な集合へと脱水（エンコード）し、かつ、これらの信号を元来の信号を
再生成するように再水和（デコード）する。それらの記述パラメータは、全ての訓練信号
にわたって再水和を最適化するように訓練時に自動的に選択され得る。脱水後の信号の本
質的性質は、信号をクラスタへとグループ分けする際の基礎となる。
【００８３】
　オートエンコーダは、入力信号を低次元の特徴空間へとマッピングすることにより、当
該入力信号の次元を減少させ得る。例示的な実施形態は、次に、オートエンコーダにより
見つけ出された特徴空間において、コードのクラスタ化および分類を実行し得る。ｋ平均
法アルゴリズムは、学習された特徴をクラスタ化する。ｋ平均法アルゴリズムは、特徴を
、もたらされるクラスタ平均を最小化するｋ個のクラスタへと分ける反復的洗練化（反復
的改良）手法である。最初のクラスタの数ｋは、抽出されたトピックの数に基づいて選択
され得る。この数のクラスタ候補にわたって検索を行い、多数の異なるｋのそれぞれにつ
いて新しい結果を算出することは、ｋ平均法の演算計量がユークリッド距離に基づいてい
ることから極めて効率的である。例示的な実施形態は、クラスタ化された特徴が導き出さ
れたソフトウェアファイル内において最も頻繁に出現するトピックのラベルを用いて、得
られたクラスタを分類し得る。
【００８４】
　特徴ベクトルはスパース（疎）で且つコンパクトであっても、特徴ベクトルを調べるだ
けでは入力ベクトルを理解することが困難であり得る。よって、例示的な実施形態は、予
め学習された重みパラメータに関連付けられた事前情報（prior）を利用し得る。十分な
コーパスであれば、「修復済み」コード等についての、パラメータ空間におけるパターン
が出現するはずである。例示的な実施形態は、その時点までに集められたデータセットに
より与えられる事前情報を用いて、特定のパターンをオートエンコーダに組み込み得る。
具体的に述べると、例示的な実施形態は、ラベルがシステムにより学習されるたびに、そ
の情報をオートエンコーダ処理に組み込み得る。
【００８５】
　例示的な実施形態は、データベース管理（例えば、結合、フィルタ）と解析演算（例え
ば、特異値分解（ＳＶＤ）、バイクラスタリング）との組合せを用い得る。例示的な実施
形態のグラフ理論（例えば、スペクトルクラスタリング）と機械学習アルゴリズム又は深
層学習アルゴリズムとは、いずれも、特徴抽出のために同様のアルゴリズムプリミティブ
を用い得る。また、ＳＶＤを用いて、学習アルゴリズムの入力データのノイズを除去した
り、より少ない次元を用いてデータを近似することによってデータ削減を実行したりして
もよい。
【００８６】
　例示的な実施形態は、時間をかけて且つ複数のプログラムにわたって、コード状態につ

(21) JP 2017-519300 A 2017.7.13

10

20

30

40

50

いてのヒトの理解を、ドキュメントアーチファクトの教師なしの意味ラベル生成（テキス
トアナリティクス（テキスト解析）によるものも含む）を介してカプセル化し得る。テキ
ストアナリティクスの一例として、潜在的ディリクレ配分法（ＬＤＡ）が挙げられる。意
味論的情報は、ＬＤＡおよびトピックモデリングを用いて、ドキュメントアーチファクト
から抽出され得る。これらのアプローチは、単語又はフレーズの出現にその並び方を無視
して注目する「ｂａｇ－ｏｆ－ｗｏｒｄｓ」手法である。例えば、「科学技術計算」を表
すｂａｇは、「ＦＥＴ」、「ウェーブレット」、「ｓｉｎ」，「ａｔａｎ」などのシード
用語を有するかもしれない。例示的な実施形態は、ソースコメント、ＣＧ／ＣＦＧノード
ラベル、コミットメッセージなどの、ソースからの抽出されたドキュメントアーチファク
トを、用語の出現を計数することによって「ｂａｇ」を満たすように用い得る。得られる
決まったビンヒストグラムが、テキスト用途に適した深層学習アルゴリズムの一応用であ
る制限付きボルツマンマシン（ＲＢＭ）に与えられ得る。抽出されたトピックは、抽出さ
れたドキュメントアーチファクトに関連付けられた意味論的情報を捉えて、かつ、オート
エンコーダによるグラフアーチファクトの教師なし学習により形成されるクラスタについ
てのラベル（例えば、バグ／修正、脆弱性／パッチ等）として機能し得る。例示的な他の
実施形態によって用いることが可能な他の形態のテキストアナリティクスには、自然言語
処理、字句解析および予測解析が含まれる。
【００８７】
　ドキュメントアーチファクトから抽出されたトピックラベルは、オートエンコーダの構
造を教えるためにラベル付け情報を提供し得る。例示的な実施形態は、コーパスデータベ
ースを、学習したトピックに基づいて、訓練データのかたまりについて、すなわち、順序
的ソフトウェアパターン（つまり、ソフトウェア改変の前後）を表す意味的な共通性につ
いてクエリし（検索し）得る。これらのパターンは、長期間のソフトウェア開発ライフサ
イクルにまつわるコミットログ、変更ログ、コメントなどのソフトウェア開発中ファイル
に埋まっている変更点を捉え得る。それら変更点の連携が、バグ／修正、脆弱性／セキュ
リティパッチ、機能／付加拡張機能などの検出及び修復に関連した、ソフトウェアの進化
についての知見を提供する。また、この情報は、アーチファクトコーパスから自動的に抽
出された知識を理解しラベル付けするのに用いられ得る。
【００８８】
　図７は、本発明の一実施形態における、デザインパターンを特定するためのアーチファ
クトのクラスタ化を示すブロック図である。構造的特徴は、ソフトウェアファイル階層に
おけるそれぞれの階位（システム、プログラム、関数、およびブロック７１０を含む）で
学習可能であり得る。ＣＧ、ＣＦＧ、ＤＴなどのグラフアーチファクトが、クラスタ化７
１５のために解析可能であり得る。これらのグラフアーチファクトは、グラフ不変量特徴
７２０に変換され得る。そして、これらのグラフ特徴７４０は、オートエンコーダなどの
グラフ解析モジュール７６０への入力として提供され得て、得られたクラスタ化は、類似
のデザインパターンについて調べられ、これら類似のデザインパターンが、一緒にクラス
タ化される（符号７８０）。ソースコードファイルからの又は開発中アーチファクトから
の少なくとも１つの文字列などのテキストが、ラベル７３０にマッピングされ得る。これ
らのラベル７５０が、テキストアナリティクス（テキスト解析）モジュール７７０により
ＬＤＡ又は他の自然言語処理を用いるなどして分析され得て、それらのラベルは、当該ラ
ベルが導き出された対応する見つけ出されたクラスタ７８０に関連付けられ得る。これら
のモジュール７６０，７７０は、ソフトウェア、ハードウェアまたはこれらの組合せによ
り実現可能である。
【００８９】
　図８は、コーパスを用いてソフトウェアを特定する方法の例示的な一実施形態を示すフ
ロー図である。例示的なこの実施形態は、ソフトウェアファイルを得る（符号８１０）。
このファイルは、パブリックソース又はプライベートソースから（例えば、インターネッ
ト介した公開レポジトリ、クラウドまたは民間企業のサーバから）ネットワークインター
フェースを介して得られるものとされ得る。また、例示的な一部の実施形態は、ローカル

(22) JP 2017-519300 A 2017.7.13

10

20

30

40

50

ハードディスク、持ち運び可能なハードドライブ、持ち運び可能なハードディスクなどの
ローカルソースから前記ソフトウェアファイルを得ることができる。例示的な実施形態は
、前記ソースから単一のファイル又は複数のファイルを得ることができ、かつ、スクリプ
ト言語を用いるなどして自動的にこれを行い得るか、あるいは、ユーザが干渉することで
人的にこれを行い得る。例示的なこの方法は、次に、前記ソフトウェアファイルについて
の複数のアーチファクト（例えば、本明細書で説明する他のアーチファクトのうちの任意
のアーチファクト）を決定し得る（符号８２０）。例示的なこの方法は、次に、複数の参
照ソフトウェアファイルのそれぞれについての複数の参照アーチファクトを記憶するデー
タベースにアクセスし得る（符号８３０）。前記参照アーチファクトは、コーパスデータ
ベースに記憶されたものであってもよい。例示的な一部の実施形態において、これらの参
照ファイルは、予め得られたものであるソフトウェアファイルであって、自身のアーチフ
ァクトが前記データベースにおいて記憶済みである（一部の実施形態では、当該ソフトウ
ェアファイルと共に前記データベースにおいて記憶済みである）ソフトウェアファイルを
含み得る。得られた前記ソフトウェアファイルについての決定された前記アーチファクト
又は当該アーチファクトの複数の部分集合が、前記データベースに記憶された前記参照ア
ーチファクト又は当該参照アーチファクトの複数の部分集合と比較される（符号８４０）
。例示的な実施形態は、前記複数のアーチファクトとマッチする前記複数の参照アーチフ
ァクトを有する前記参照ソフトウェアファイルを特定することにより、前記ソフトウェア
ファイルを特定し得る（符号８５０）。前記ソフトウェアファイルと前記参照ソフトウェ
アファイルとが同じファイルであると特定される理由は、比較された前記アーチファクト
と前記参照アーチファクトとがマッチ（一致）するからである。
【００９０】
　また、その後、正確な特定がなされたという信頼度を増加させるように、追加のアーチ
ファクト又はコードにおける追加の部位が比較され得る。信頼度は、固定されるか又は調
節可能とされ得る。信頼度は、マッチするアーチファクトの数、どのアーチファクトがマ
ッチするのか、マッチする数とどのアーチファクトがマッチするのかとの組合せなどの多
種多様な条件に基づくものであり得る。このような調節は、例えば、特定のデータセット
および当該特定のデータセットの観察結果について行われ得る。また、一部の実施形態で
は、マッチングがファジーマッチングを含み得る。このファジーマッチングは、例えば、
１００％未満の、マッチと称するためのマッチング率の、調節可能な設定を有する。
【００９１】
　例示的な一部の実施形態では、特定のアーチファクトに、マッチ・特定プロセスにおい
てより大きいか又はより小さい重みが与えられ得る。例えば、命令が３２ビットプロセッ
サと対応付けられたものであるか、それとも、６４ビットプロセッサと対応付けられたも
のであるか等の共通するアーチファクトには、ゼロの重みか又は他の何らかの小さい重み
が与えられ得る。一部のアーチファクトは変換後も多かれ少なかれ不変であり、例示的な
一部の実施形態では、それに応じてこれらのアーチファクトの重みが調節され得る。例え
ば、ファイル名またはＣＧアーチファクトは、ファイルの正体（アイデンティティ）を明
らかにするのに極めて有益と見なされ得る一方で、ＬＴＳ、ＤＴなどの一部のアーチファ
クトは、有用な手がかりではないと見なされ得て、例示的な一部の実施形態およびソース
ではより小さい重みを与えられ得る。他の実施形態は、比較を行ったときにマッチを特定
するうえで、所与の組合せのアーチファクトにより大きい重みを与え得る。例えば、特定
を行うときには、基本ブロックアーチファクトやＤＴアーチファクトのマッチよりもＣＦ
ＧアーチファクトやＣＧアーチファクトのマッチを有するほうにより大きい重みが与えら
れ得る。同様に、ファイルの特定を行うときには、所与のアーチファクトがマッチしてい
ないことにより大きいか又はより小さい重みが与えられ得る。特定プロセスにおける重み
付けを評価する他の例は、特定閾値を、マッチするアーチファクトを百分率で表したもの
又は他の何らかの尺度などで表現することを含み得る。他の実施形態は、前記特定閾値を
変化させ得る。これは、前記特定閾値を、ファイルのソース、ファイルの種類、タイムス
タンプ（ファイルの日付を含む）、ファイルのサイズ、ファイルについて所与のアーチフ

(23) JP 2017-519300 A 2017.7.13

10

20

30

40

50

ァクトを決定できないか又はそのようなアーチファクトが存在しないことなどに基づいて
変化させることを含む。
【００９２】
　他の実施形態は、前記ソフトウェアファイルについての前記複数のアーチファクトのう
ちの一部を、当該ソフトウェアファイルをＬＬＶＭ ＩＲなどの中間表現に変換すること
、および当該中間表現から前記複数のアーチファクトのうちの少なくとも１つを決定する
ことによって決定し得る。さらなる他の実施形態は、前記複数のアーチファクトのうちの
一部を、前記ソフトウェアファイル（例えば、ソースコードファイル、マニュアルファイ
ル）から文字列を抽出することによって決定し得る。
【００９３】
　また、例示的な実施形態は、前記ソフトウェアファイルのより新しいバージョンが存在
するか否かを、前記参照アーチファクトのうちの、特定された前記参照ソフトウェアファ
イルと対応付けられた少なくとも１つを分析することによって判定することを含み得る。
例えば、ソフトウェアファイルが特定されると、データベースが、そのソフトウェアファ
イルのより新しい改変が利用可能であるか否かを調べるために確認され得る。これは、例
えば、対応する参照ファイルの改変番号又はタイムスタンプを確認することによって、あ
るいは、アーチファクトやファイルと関連付けられた、その参照ファイルが他のファイル
のより古いバージョンであることを特定可能な、データベース内のラベルを確認すること
等によって行われ得る。また、例示的な他の実施形態は、前記ソフトウェアファイルの前
記より新しいバージョンを自動的に提供し得る。これは、ユーザ、パブリックソースまた
はプライベートソースに提供することを含む。
【００９４】
　他の一部の実施形態は、前記ソフトウェアファイルについてのパッチが存在するか否か
を、前記参照アーチファクトのうちの、特定された前記参照ソフトウェアファイルと対応
付けられた少なくとも１つを分析することによって判定し得る。例えば、例示的な実施形
態は、前記参照ソフトウェアファイルと対応付けられたアーチファクトを調べ得て、かつ
、当該ファイルについてのパッチが存在することを判定し得る。このパッチには、当該ソ
フトウェアファイルに未だ適用されていないパッチが含まれる。他の実施形態は、前記パ
ッチを前記ソフトウェアファイルに自動的に適用し得るか又は前記パッチを適用したいか
否かをユーザに尋ね得る。
【００９５】
　他の一部の実施形態は、前記パッチを（一部の実施形態では、前記ソフトウェアファイ
ル（あるいは、前記ソフトウェアファイルと前記参照ソフトウェアファイルとはマッチし
ているので、その参照ソフトウェアファイル）も）、当該パッチのうちの、前記ソフトウ
ェアファイルにおける欠陥の修復に対応する修復部を決定するように分析し得る。一部の
実施形態において、この分析は、前記ソフトウェアファイルが得られる前に又は前記ソフ
トウェアファイルが得られた後に生じ得る。他の実施形態は、前記パッチのうちの前記修
復部のみを前記ソフトウェアファイルに適用し得る。これは、自動的に行われても、ある
いは、前記パッチのうちの前記修復部を適用したいか否かをユーザに尋ねてもよい。他の
実施形態は、前記パッチのうちの前記修復部を、その修復部がソースにおいて適用される
ように当該ソースへと提供し得る。また、前記パッチおよび前記ソフトウェアファイルの
分析は、これらパッチおよびソフトウェアファイルを中間表現に変換すること、および当
該中間表現から前記複数のアーチファクトのうちの少なくとも１つを決定することを含み
得る。同様に、他の実施形態は、前記パッチおよび前記ソフトウェアファイル（あるいは
、前記ソフトウェアファイルと前記参照ソフトウェアファイルとはマッチしているので、
その参照ソフトウェアファイル）を、当該パッチのうちの、前記ソフトウェアファイルに
おける機能の向上または変更に対応する付加拡張機能部を決定するように分析し得る。他
の実施形態は、前記パッチのうちの前記付加拡張機能部のみを前記ソフトウェアファイル
に適用し得る。これは、自動的に行われても、あるいは、前記パッチのうちの前記付加拡
張機能部を適用したいか否かをユーザに尋ねてもよい。

(24) JP 2017-519300 A 2017.7.13

10

20

30

40

50

【００９６】
　例示的な他の実施形態は、前記ソフトウェアファイルにおいて欠陥が存在するか否かを
、前記参照アーチファクトのうちの、特定された前記参照ソフトウェアファイルと対応付
けられた少なくとも１つを分析することによって判定し得る。例えば、前記参照ソフトウ
ェアファイルは、あるアーチファクトであって、修復が利用可能である欠陥を自身が有す
ることを示すアーチファクトを有し得る。他の実施形態は、前記ソフトウェアファイルに
おける前記欠陥を自動的に修復し得る。これは、ソースコードのブロックをソースコード
の修復ブロックに自動的に置き換えること、あるいは、前記ソフトウェアファイルにおけ
る中間表現のブロックを中間表現の修復ブロックに自動的に置き換えることを含む。他の
実施形態は、バイナリファイルにおける前記欠陥を、当該バイナリの一部をバイナリパッ
チに置き換えることによって修復し得る。一部の実施形態では、修復済みのファイルが、
前記ソフトウェアファイルのソースへと送られ得る。他の実施形態は、修復コードを、前
記ソフトウェアファイルが当該ソフトウェアファイルのソースにおいて修復されるように
当該ソースへと提供し得る。
【００９７】
　図９は、コードを特定する方法の例示的な一実施形態を示すフロー図である。例示的な
この方法は、少なくとも１つのソフトウェアファイルを得ることができる（符号９１０）
。これらソフトウェアファイルについての複数のアーチファクトが決定され得る（符号９
２０）。一部の実施形態は、前記アーチファクトが既に決定されている場合、当該アーチ
ファクトを決定するのではなく当該アーチファクトを得る。複数の参照アーチファクトを
記憶するデータベースがアクセスされ得る（符号９３０）。これら参照アーチファクトは
、本明細書で説明するアーチファクトであり、かつ、参照ソフトウェアファイル、参照デ
ザインパターン、または対象のコードにおける他のブロックに対応し得る。前記データベ
ースは、局所的ドライブ、ネットワークドライブ、インターネット又はクラウドを介して
アクセス可能な場所などの様々な場所に記憶され得て、かつ、複数の記憶装置にわたって
分散され得る。そして、前記少なくとも１つのソフトウェアファイル内に存在するプログ
ラム断片または前記少なくとも１つのソフトウェアファイルに関連付けられたプログラム
断片（例えば、インターフェースバグ）は、当該プログラム断片に対応する前記複数のア
ーチファクトと当該プログラム断片に対応する前記複数の参照アーチファクトとを照合す
ることによって特定され得る（符号９４０）。プログラム断片とは、ファイルの一部位、
プログラムの一部位、基本ブロックの一部位、関数の一部位、または関数間のインターフ
ェースの一部位である。プログラム断片は、最小では単一の命令、最大ではファイル全体
、プログラム全体、基本ブロック全体、関数全体またはインターフェース全体になり得る
。選ばれる部位は、プログラム断片を所望の任意の信頼度をもって特定するのに十分なも
のとされ得る。一部の実施形態において、この信頼度は、決まっているか又は調節可能で
ある。この信頼度は、例えばファイルを特定する場合に関して既述したような方法で変化
するものとされ得る。
【００９８】
　一部の実施形態において、前記ソフトウェアファイルについてのアーチファクトを決定
することは、前記ソフトウェアファイルを中間表現に変換すること、および当該中間表現
から前記アーチファクトのうちの少なくとも１つを決定することを含む。一部の実施形態
において、前記ソフトウェアファイルおよび前記参照ソフトウェアファイルは、いずれも
ソースコードフォーマットであるか又はそれぞれバイナリコードフォーマットである。他
の実施形態において、前記プログラム断片は、前記ソフトウェアファイルにおける欠陥に
対応するものであり、当該欠陥に対応させるために、前記データベースにおいて特定済み
である。他の実施形態は、前記ソフトウェアファイルにおける前記欠陥を自動的に修復し
得るか又は前記欠陥を修復するための少なくとも１つの修復選択肢をユーザに提示し得る
。一部の実施形態は、修復選択肢を順序付けし得る。これは、例えば、前記ユーザにより
選択された過去の少なくとも１つの修復選択肢に基づいて行われること、または、前記修
復選択肢についての成功の確率に基づいて行われることを含む。

(25) JP 2017-519300 A 2017.7.13

10

20

30

40

50

【００９９】
　図１０は、本発明の一実施形態における、ソフトウェアファイルのデータベースコーパ
スを用いるシステムを示すブロック図である。例示的なこのシステムは、少なくとも１つ
のソフトウェアファイルを有するソース１０１０と通信することが可能なインターフェー
ス１０２０を備える。インターフェース１０２０は、プロセッサ１０３０にも通信可能に
接続されている。他の実施形態において、インターフェース１０２０は、記憶装置１０４
０にも直接接続され得る。この記憶装置１０４０は、幅広い種類の周知の記憶装置又はシ
ステムのうちの、どのような記憶装置又はシステムであってもよい。そのような記憶装置
又はシステムとして、例えば、ネットワークストレージデバイス、ローカルストレージデ
バイスが挙げられ、これらは、例えば、単一のハードドライブであったり、複数のハード
ドライブを備えた分散ストレージシステムであったりし得る。記憶装置１０４０は、参照
アーチファクト（複数の参照ソフトウェアファイルのそれぞれについての参照アーチファ
クトを含む）を記憶し得て、かつ、プロセッサ１０３０に通信可能に接続され得る。プロ
セッサ１０３０は、ソフトウェアファイルがソース１０１０から取得されるように構成さ
れ得る。このソフトウェアファイルの正体、当該ファイルのより新しいバージョンが存在
するか否か、パッチが存在するか否か、当該ファイルが欠陥又は未向上の機能を含んでい
るか否かなどが、例示的なこのシステムが取り組むことのできる問題の例である。プロセ
ッサ１０３０は、さらに、前記ソフトウェアファイルについての複数のアーチファクトを
決定するように、かつ、記憶装置１０４０内の前記参照アーチファクトにアクセスするよ
うに、かつ、前記ソフトウェアファイルについての前記アーチファクトを記憶装置１０４
０内に記憶された前記参照アーチファクトと比較するように、かつ、前記ソフトウェアフ
ァイルについての比較された前記アーチファクトに対応する前記参照アーチファクトを有
する前記参照ソフトウェアファイルを特定することにより、前記ソフトウェアファイルを
特定するように構成されている。
【０１００】
　例示的なこのシステムの他の実施形態において、プロセッサ１０３０は、パッチを前記
ソフトウェアファイルに、当該ファイルについてのそのようなパッチが記憶装置１０４０
に存在する場合、自動的に適用するように構成され得る。また、さらなる他の実施形態に
おいて、前記プロセッサは、特定されたパッチおよび前記ソフトウェアファイルを、その
パッチのうちの修復部であって、当該ソフトウェアファイルにおける欠陥の修復に対応す
る修復部が存在するか否かを判定するように分析するように、かつ、それが存在する場合
には、前記パッチのうちのその修復部のみを前記ソフトウェアファイルに自動的に適用す
るように又はユーザに尋ねるように構成され得る。
【０１０１】
　図１０は、本発明の一実施形態における、データベースコーパスを用いる例示的な別の
システムを示しているとも言える。例示的なこの別のシステムは、少なくとも１つのソフ
トウェアファイルを有するソース１０１０と通信することが可能なインターフェース１０
２０を備える。インターフェース１０２０は、プロセッサ１０３０にも通信可能に接続さ
れている。他の実施形態において、インターフェース１０２０は、記憶装置１０４０にも
直接接続され得る。この記憶装置１０４０は、幅広い種類の周知の記憶装置又はシステム
のうちの、どのような記憶装置又はシステムであってもよい。そのような記憶装置又はシ
ステムとして、例えば、ネットワークストレージデバイス、ローカルストレージデバイス
が挙げられ、これらは、例えば、単一のハードドライブであったり、複数のハードドライ
ブを備えた分散ストレージシステムであったりし得る。記憶装置１０４０は、参照アーチ
ファクトを記憶し得て、かつ、プロセッサ１０３０に通信可能に接続され得る。プロセッ
サ１０３０は、少なくとも１つのソフトウェアファイルが取得されるように、前記少なく
とも１つのソフトウェアファイルについての複数のアーチファクトを決定するように、複
数の参照アーチファクトを記憶するデータベースにアクセスするように、前記少なくとも
１つのソフトウェアファイルについてのプログラム断片を、当該プログラム断片に対応す
る前記複数のアーチファクトと当該プログラム断片に対応する前記複数の参照アーチファ

(26) JP 2017-519300 A 2017.7.13

10

20

30

40

50

クトとを照合することによって特定するように構成され得る。例示的な一部の実施形態に
おいて、前記プログラム断片は、欠陥に対応させるために、前記データベースにおいて特
定済みである。そのような欠陥は、例えば、バグ、セキュリティ脆弱性、プロトコル不備
を含む。これらの欠陥は、前記少なくとも１つのソフトウェアファイル内のものであり得
るか、あるいは、前記ソフトウェアファイル間の少なくとも１つのインターフェースに関
するものであり得る￥。また、他の実施形態は、前記プロセッサを備え、当該プロセッサ
は、前記少なくとも１つのソフトウェアファイルにおける前記欠陥を自動的に修復するよ
うに構成され得る。例示的な一部の実施形態において、前記プログラム断片は、機能に対
応させるために、前記データベースにおいて特定済みであり、また、一部の実施形態は、
付加拡張機能（ソースコード又はバイナリファイルについてのパッチの形態のものを含む
）を自動的に提供し得る。
【０１０２】
　＜修復＞
　例示的な実施形態は、自動修復のためのプログラム合成を支援する。これは、ＣＧノー
ド（関数）を置き換えること、ＣＦＧノード（基本ブロック）を置き換えること、特定の
命令を置き換えること、あるいは、選ばれた修復をインスタンス化するように特定の変数
及び定数を置き換えることを含む。これらの要素（例えば、関数、基本ブロック、命令等
）は、互換性があるインターフェース（つまり、同数のパラメータ、同数の型および同数
の出力）を有する要素とスワップ可能であり、ＬＬＶＭ ＩＲの欠陥ブロックをＬＬＶＭ
ＩＲの修復ブロックに置き換えることによってＬＬＶＭ ＩＲを変換することが可能であ
る。
【０１０３】
　また、一部の実施形態は、基本ブロックを関数呼出しとスワップすること、および関数
呼出しを少なくとも１つの基本ブロックとスワップすることを選択し得る。一部の実施形
態は、ソースコードおよびバイナリをパッチし得る。また、他の実施形態は、スワップの
ための適切な要素を、そのような要素が存在しない場合に生成し得る。上位のアーチファ
クト（例えば、ＬＴＳ、Ｚ言語の述語（Z predicate））を用いて、ソフトウェアパッチ
に適合する実装が導出されてもよい。例示的な実施形態は、抽出されたグラフ表現の階層
構造を利用し、まず修復パターンの適切な表現へとその階層構造を上った後、（コンパイ
ルを介して）具体的な実装へとその階層構造を下り得る。アーチファクトの階層的性質は
、修復コードを作成するのに役立つものとなり得る。
【０１０４】
　例示的な実施形態は、ユーザがターゲットプログラム（ソース又はバイナリ）を投入（
登録）することを可能にし得て、例示的な実施形態は、あらゆる欠陥デザインパターンの
存在を見つけ出す。それぞれの欠陥について、修復戦略（つまり、修復デザインパターン
）の候補がユーザに提示され得る。ユーザは、修復の合成及びターゲットのパッチについ
ての戦略を選択することが可能とされる。また、例示的な一部の実施形態は、今後の修復
ソリューションを最良にランク付けするようにユーザの選択から学習し得て、また、修復
戦略が、ランク付けの順番でユーザに提示され得る。また、一部の実施形態は、ソフトウ
ェアコーパス全体にわたって欠陥又は脆弱性を修復することを自律的に実行し得る。これ
は、継続的におよび／または周期的におよび／または設計の環境で実行することを含む。
【０１０５】
　これまでに述べた実施形態のほかにも、本発明は、多種多様な用途に利用することが可
能である。例えば、例示的な実施形態は、ソフトウェアコードのプログラミング時にプロ
グラマを支援するように用いられ得る。これは、欠陥を特定することまたはコード再利用
を提案することを含む。例示的な他の実施形態は、欠陥及び脆弱性を見つけ出すこと、な
らびに場合によってはそれらを自動的に修理することに用いられ得る。例示的なさらなる
他の実施形態は、コードを最適化するのに用いられ得る。これは、使用されてないコード
を特定すること、非効率なコードを特定すること、および効率の低いコードを置き換える
ためのコードを提案することを含む。

(27) JP 2017-519300 A 2017.7.13

10

20

30

40

50

【０１０６】
　また、例示的な実施形態は、どの脆弱性が所与のコードに存在する可能性があるのかを
含む、リスク管理及び評価に用いられ得る。また、他の実施形態は、デザイン認定プロセ
スに用いられ得る。これは、ソフトウェアファイルにバグ、セキュリティ脆弱性、プロト
コル不備などの既知の欠陥がないことの認定を提供することを含む。
【０１０７】
　本発明の例示的なさらなる他の実施形態は、コード再利用発見手段（既に同じことをす
るものであるコードをコードベースにおいて見つけ出す）、コード品質測定、テキスト記
述からコードへの翻訳手段、ライブラリ生成手段、テストケース生成手段、コード－デー
タ分離手段、コードマッピング・探索ツール、既存のコードの自動アーキテクチャ生成、
アーキテクチャ改善提案手段、バグ／エラー推定手段、無駄なコードの発見、コード－機
能マッピング、自動パッチ検証、コード改善決定ツール（機能リストを最小変更に対して
マッピングする）、既存のデザインツールの拡張（例えば、ｅｎｔｅｒｐｒｉｓｅ　ａｒ
ｃｈｉｔｅｃｔ等）、代替実装提案手段、コード探索・学習ツール（例えば、教示のため
のもの）、システムレベルコードライセンスフットプリント、および企業ソフトウェア使
用マッピングを含む。
【０１０８】
　これまでに述べた例示的な実施形態は、数多くの異なる方法で実現可能である。場合に
よっては、本明細書で説明する様々な方法や機械は、それぞれ、中央演算処理装置、メモ
リ、ディスク又は他の大容量記憶装置、少なくとも１つの通信インターフェース、少なく
とも１つの入出力（Ｉ／Ｏ）装置、および他のペリフェラルを含む、物理的、仮想的又は
ハイブリッドの汎用コンピュータにより実現可能である。このような汎用コンピュータは
、例えば、ソフトウェア命令をデータプロセッサにロードし当該命令の実行を引き起こし
て本明細書で説明する機能を行わせること等により、これまでに説明した方法を実行する
機械へと変換される。また、それらのソフトウェア命令は、コーパスを形成するようにフ
ァイルを取り入れるインジェストモジュール、デザインパターンについての特定対象又は
分析対象となる、コーパスのためのファイルについてのアーチファクトおよび／またはフ
ァイルを決定するアナリティクス（解析）モジュール、機械学習を実行するグラフアナリ
ティクス（グラフ解析）モジュール及びテキストアナリティクスモジュール、ファイル又
はデザインパターンを特定する特定モジュール、コードを修復するか又は更新済みもしく
は修復済みファイルを提供する修復モジュールなどにモジュール化され得る。例示的な一
部の実施形態において、これらのモジュールは、さらなるモジュールへと結合又は分割さ
れ得る。
【０１０９】
　当該技術分野において知られているように、そのようなコンピュータは、システムバス
を備え得る。このバスは、コンピュータ（又は処理システム）の構成要素間のデータ転送
に用いられるハードウェアラインのセットである。このような１つ以上のバスは、コンピ
ュータシステムにおける相異なる構成要素（例えば、プロセッサ、ディスクストレージ、
メモリ、入力／出力ポート、ネットワークポート等）同士を接続する共有の配管のような
ものであり、それら構成要素間の情報のやり取りを可能にする。少なくとも１つの中央演
算処理装置が、前記システムバスに取り付けられており、コンピュータ命令の実行を行う
。典型的に、前記システムバスには、さらに、様々な入出力装置（例えば、キーボード、
マウス、ディスプレイ、プリンタ、スピーカ等）を前記コンピュータに接続するためのＩ
／Ｏ装置インターフェースが取り付けられる。少なくとも１つのネットワークインターフ
ェースは、コンピュータがネットワークに取り付けられた他の様々なデバイスに接続する
ことを可能にする。メモリは、一実施形態を実現するのに用いられるコンピュータソフト
ウェア命令及びデータを記憶する揮発性のメモリである。ディスクストレージ又は他の大
容量記憶装置は、本発明で説明する様々な手順などを実施するのに用いられるコンピュー
タソフトウェア命令及びデータを記憶する、不揮発性のストレージ又は大容量記憶装置で
ある。

(28) JP 2017-519300 A 2017.7.13

10

20

30

40

【０１１０】
　よって、典型的に、実施形態は、ハードウェア、ファームウェア、ソフトウェアまたは
これらの任意の組合せで実現可能である。また、例示的な実施形態は、全体的に又は部分
的にクラウド上に存在し得て、かつ、インターネット又は他のネットワークアーキテクチ
ャを介してアクセス可能であり得る。
【０１１１】
　一部の実施形態において、本明細書で説明する手順、装置およびプロセスは、本発明に
かかるシステムに対するソフトウェア命令の少なくとも一部を提供するコンピュータプロ
グラムプロダクトを構成する。このようなコンピュータプログラムプロダクトは、非過渡
的なコンピュータ読取り可能な媒体（例えば、少なくとも１つのＤＶＤ－ＲＯＭ、少なく
とも１つのＣＤ－ＲＯＭ、少なくとも１つのディスク、少なくとも１つのテープなどとい
った取外し可能な記憶媒体等）を含む。このようなコンピュータプログラムプロダクトは
、当該技術分野において周知である任意の適切なソフトウェアインストール方法によって
インストール可能なものであり得る。他の実施形態において、前記ソフトウェア命令の少
なくとも一部は、ケーブルおよび／または通信および／または無線接続を介してダウンロ
ード可能なものであり得る。
【０１１２】
　また、本明細書では、ファームウェア、ソフトウェア、ルーチンまたは命令が、データ
プロセッサの所与の動作および／または機能を実行しているかの如く説明されているかも
しれない。しかし、本明細書に含まれるこのような説明はあくまでも便宜上のものに過ぎ
ず、実際には、そのような動作は、それらファームウェア、ソフトウェア、ルーチン、命
令などを実行するコンピューティング装置、プロセッサ、コントローラまたは他の装置か
ら生じるものである。
【０１１３】
　なお、フロー図、ブロック図およびネットワーク図は、構成要素の数が多くなっても又
は少なくなってもよいし、配置構成が異なるものになってもよいし、表現が異なるものに
なってもよい。しかし、応用形態によってはブロック図やネットワーク図が変化し得て、
かつ、実施形態の実行を示すブロック図やネットワーク図の数はその時々によって変化し
得る。
【０１１４】
　つまり、さらなる実施形態が、多種多様なコンピュータアーキテクチャおよび／または
物理的なコンピュータおよび／または仮想的なコンピュータおよび／またはクラウドコン
ピュータおよび／またはこれらの所与の組合せによって実現可能である。よって、本発明
で説明するデータプロセッサはあくまでも例示に過ぎず、実施形態を限定するものではな
い。
【０１１５】
　本発明を、例示的な実施形態を参照しながら具体的に図示・説明したが、当業者であれ
ば、添付の特許請求の範囲により包含される本発明の範囲を逸脱することなく形態や細部
に様々な変更を施せることを理解するであろう。

(29) JP 2017-519300 A 2017.7.13

【図１】 【図２】

【図３】 【図４】

(30) JP 2017-519300 A 2017.7.13

【図５】 【図６】

【図７】 【図８】

(31) JP 2017-519300 A 2017.7.13

【図９】 【図１０】

(32) JP 2017-519300 A 2017.7.13

10

20

30

40

【国際調査報告】

(33) JP 2017-519300 A 2017.7.13

10

20

30

40

(34) JP 2017-519300 A 2017.7.13

10

20

30

フロントページの続き

(81)指定国　　　　 AP(BW,GH,GM,KE,LR,LS,MW,MZ,NA,RW,SD,SL,ST,SZ,TZ,UG,ZM,ZW),EA(AM,AZ,BY,KG,KZ,RU,T
J,TM),EP(AL,AT,BE,BG,CH,CY,CZ,DE,DK,EE,ES,FI,FR,GB,GR,HR,HU,IE,IS,IT,LT,LU,LV,MC,MK,MT,NL,NO,PL,PT,R
O,RS,SE,SI,SK,SM,TR),OA(BF,BJ,CF,CG,CI,CM,GA,GN,GQ,GW,KM,ML,MR,NE,SN,TD,TG),AE,AG,AL,AM,AO,AT,AU,AZ,
BA,BB,BG,BH,BN,BR,BW,BY,BZ,CA,CH,CL,CN,CO,CR,CU,CZ,DE,DK,DM,DO,DZ,EC,EE,EG,ES,FI,GB,GD,GE,GH,GM,GT,H
N,HR,HU,ID,IL,IN,IR,IS,JP,KE,KG,KN,KP,KR,KZ,LA,LC,LK,LR,LS,LU,LY,MA,MD,ME,MG,MK,MN,MW,MX,MY,MZ,NA,NG
,NI,NO,NZ,OM,PA,PE,PG,PH,PL,PT,QA,RO,RS,RU,RW,SA,SC,SD,SE,SG,SK,SL,SM,ST,SV,SY,TH,TJ,TM,TN,TR,TT,TZ,
UA,UG,US

(74)代理人 100142608
 弁理士　小林　由佳
(74)代理人 100154771
 弁理士　中田　健一
(74)代理人 100155963
 弁理士　金子　大輔
(74)代理人 100150566
 弁理士　谷口　洋樹
(72)発明者 カーバック・ザ・サード・リチャード・ティー
 アメリカ合衆国，マサチューセッツ州　０２１４９，エベレット，ウッドローン　ストリート　４
 ３
(72)発明者 ゲイナー・ブラッド・ディー
 アメリカ合衆国，マサチューセッツ州　０２４５９，ニュートン，オークモント　ロード　１５
(72)発明者 シュニドマン・ネイサン・アール
 アメリカ合衆国，マサチューセッツ州　０２４２１，レキシントン，ピットケルン　プレイス　６
(72)発明者 チン・サング・エイチ
 アメリカ合衆国，マサチューセッツ州　０２１３８，ケンブリッジ，コンコード　アベニュー　２
 ４８
Ｆターム(参考) 5B042 HH08 HH39 HH49
　　　　 　　 5B376 BC38 BC57 BC69 BC79

	biblio-graphic-data
	abstract
	claims
	description
	drawings
	search-report
	overflow

