PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 3 : (11) International Publication Number: WO 94/18621
* GOGF 9/46, 11/00 Al . o

(43) International Publication Date: 18 August 1994 (18.08.94)

(21) International Application Number: PCT/SE94/00079 | (81) Designated States: AU, BR, CA, CN, FI, JP, KR, NO,

(22) International Filing Date: 2 February 1994 (02.02.94)

(30) Priority Data:
9300431-5 10 February 1993 (10.02.93) SE
(71) Applicant: TELEFONAKTIEBOLAGET LM ERICSSON

[SE/SE]; S-126 25 Stockholm (SE).

(72) Inventor: MALOY, Jon, Paul; Himlabacken 9, S-170 74 Solna
(SE).

(74) Agents: ROSENQUIST, Per, Olof et al.; Bergenstrahle &
Lindvall AB, P.O. Box 17704, S-118 93 Stockholm (SE).

European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR,
IE, IT, LU, MC, NL, PT, SE).

Published
With international search report.

(54) Title: A METHOD AND A SYSTEM IN A DISTRIBUTED OPERATING SYSTEM

(57) Abstract

For establishing two-way
communication links between
processes in a distributed
operative system, the processes
are provided with ports through
which communication between
the processes is performed.
The processes and the ports

"REPORTING"

te
tr
o

SA sp

make possible for the operative
system to keep a check on
processes having links and
to use these links also if the
process per se is terminated,
and to discover an error in
the process and terminate it.
For enabling the operative
system to be able to transmit
via the links information
regarding process or computer
drop out and thus be able to

QN

w

p

L

OFF
SA

propagate this information
through the whole chain of
linked processes, and to report
this information to applications
executed in the linked processes

/!

N\

U

SA ,
“REPORTING”

in order to enable for these to
undertake application specific
measures, a code is used which
is called at link abortion and
communication errors. The
function of this code includes terminating an erroneous process and

“PUTON’
62

SAI

PUT OFCF)L

reporting the error to an error handling code. The first mentioned

code is always executing in a process to which an error has been reported.

applications under the PCT.

AT
AU

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international

Austria
Australia
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus
Canada

Central African Republic
Congo
Switzerland
Cdte d'Ivoire
Cameroon
China
Czechoslovakia
Czech Republic
Germany
Denmark
Spain

Finland

France

Gabon

United Kingdom
Georgia

Guinea

Greece

Hungary

Ireland

Ttaly

Japan

Kenya

Kyrgystan
Democratic People’s Republic
of Korea
Republic of Korea
Kazakhstan
Liechtenstein

Sri Lanka
Luxembourg
Latvia

Monaco

Republic of Moldova
Madagascar

Mali

Mongolia

Mauritania
Malawi

Niger

Netherlands
Norway

New Zealand
Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Slovenia

Slovakia

Senegal

Chad

Togo

Tajikistan
Trinidad and Tobago
Ukraine

United States of America
Uzbekistan

Viet Nam

10

15

20

25

30

35

WO 94/18621 PCT/SE94/00079

A method and a system in a distributed operating

system.

Technical field of the invention

The present invention generally relates to
handling processes and related resources in a distributed
operating system.

With a process, in the present connection also
called context, is here meant a resource in an operating
system which needs to be used by a job for enabling it to
execute program code in the process. The process provides
the job with several indispensable resources, such as its
own program counter, its own memory space, and its own set
of processor registers. The process synchronizes jobs by
only allowing one job at a time to execute.

By job is here meant, more generally, a phenomenon
which is directed towards a process, so that a method in an
object owned by the process is executed. A job can create

new jobs directed towards other processes or to the own
process.

Description of related art.

US 3 905 023 illustrates and describes a system
including a multiple level operating system. The system is
characterized as very big and extraordinary complicated.
The reliability of the system hardware is secured by the
capacity of the multiple level operating system to
reconfigurate the system modules dynamically and
automatically in a suitable way. In all main modules of the
system there are error detecting and error reporting
circuits providing the operating system with information
for performing error analyses and dynamic reconfiguration
of the system resources. The memory modules are provided
with "single bit" error correcting ability independently of
the operating system. The operating system may be regarded
as including a basic level and N consecutive levels. The
basic level is defined as the core of the operating system.

A process in each level of the operating system 1is

10

15

20

25

30

35

WO 94/18621 PCT/SE94/00079

2

responsible for the processes creating on the nearmost
higher level and not for any other ones. The operating
system controls the system resources dynamically and plans
job or tasks in a multiple program mixture. It reassigns
resources, starts jobs and supervises their execution.

GB 2 079 997 relates to a distributed computer
system with a plurality of systems connected to each other.
Each one of the systems has a plurality of mutually
connected elements. The systems include redundant elements
with a distributed operating system
for operating, error supervision and reconfiguration of
functions while using vertical addressing. When an error is
detected, the error is verified, the erronous element is
isolated and its task is assigned to another unoccupied
element. If no other element should be available the system
is reconfigurated for enabling deteriorated operatior while
using the available elements.

In US 4 933 936 there is described a distributed
computer system providing for flexible error tolerance. A
distributed operating system is resident in all computers.
Each computer is controlled by a resident copy of a common

operating system.

Summary of the invention.

In a computer it is desired that communication
errors, or errors caused by erroneous programs, shall be
able to be handled by the operating system of the computer
in such a way that it is kept intact and that other
programs and calls will not be affected by the error. An
error shall at worst involve controlled disengagement of
the chain of linked processes, or calls, where the error
occurred. The effects of the error shall be completely
isolated with respect to this call. In other words recovery
of an arisen error must not include greater consequences
for the system than those caused by the error itself.

A first object of the invention is to enable, 1n a
distributed operating system, demounting of a chain of
linked processes while returning as many memory and

hardware resources as possible to the systen.

10

15

20

25

30

35

WO 94/18621 PCT/SE94/00079

3

A second object of the invention is to enable
isolation of errors and limit their consequences, including
the consequences of the recovery measures, only to the
transaction/call in question, and thus if possible avoid
computer restarts and influence on other calls.

A third object is to enable tracing of errors,
irrespective of where these appear in the system.

A fourth object is to enble, in connection with
system updating, type marking of certain activities for
being able to control the execution of these towards the
desired program ware version.

Generally according to the invention, for
establishing two-way communication links between processes
in a distributed operative system, the processes are
provided with ports through which communication between the
processes is performed. The processes and the ports make
possible for the operative system to keep a check on
processes having links and to use these links also if the
process per se is terminated, and to discover an error in
the process and terminate it. For enabling the operative
system to be able to transmit via the links information
regarding process or computer drop out and thus be able to
propagate this information through the whole chain of.
linked processes, and to report this information to
applications executed in the linked processes in order to
enable for these to undertake application specific
measures, a code is used which is called at link abortion
and communication errors. The function of this code
includes terminating an erroneous process and reporting the
error to an error handling code. The first mentioned code
is always executing in a process to which an error has been
reported.

More particularly, a method according to the
invention, for handling resources in a distributed
operating system
comprises the steps ot

providing two-way communication links between said
processes and using said operating system

for keeping up with processes having links, and

10

15

20

25

30

35

WO 94/18621 PCT/SE94/00079

4

using said links also if a process having links is
terminated,

detecting an error in a process and terminating
it,

transferring information via said links regarding
process or computer failure, and propagating this
information through a whole chain of linked processes, and

reporting this information to applications
executed in said linked processes for enabling these to
perform application specific recoveries.

A system according to the invention comprises code
means including

first means for providing two-way communication
links between processes,

second means for enabling said operating system to
keep up with processes having links, and to use said links
also if a process is terminated,

third means for enabling said operating system, or
in certain cases a process itself, to detect an error in a
process and terminate it,

fourth means for enabling said operating system to
transfer failure information via said links regarding
process or computer failure, and to propagate this failure
information through a whole chain of linked processes, and

fifth means for enabling said operating system to
report said failure information to applications executed in
the linked processes in order to enable for these to

perform application specific recoveries.

Brief description of the drawings.

The invention will now be described more closely
with reference to embodiments schematically shown on the
attached drawings, on which

Figure 1 illustrates an exemple of an activity in
the form of a chain of jobs in a distributed operating
systenm,

Figure 2 illustrates exemples of an activity group
formed by several such activities,

Figure 3 illustrates how resources can belong to

10

15

20

25

30

35

WO 94/18621 PCT/SE94/00079

5

an activity for a shorter or longer time,

Figure 4 shows a link representation view of an
activity,

Figure 5 is intended to illustrate that
consequences of an error in an activity may be isolated to
the activity itself,

Figures 6 a-d illustrate how disengagement of an
activity may be performed when an error has appeared in a
process,

Figure 7 illustrates system upgrading,

Figure 8 illustrates the design of an error
chasing system in the activity according to Figure 1,

Figure 9 shows actors performing at the appearance
of an error situation in a process,

Figures 10-13 illustrate the handling of process
local errors,

Figures 14-16 illustrate the handling of
communcation errors,

Figures 17-19 illustrate the handling of errors in
other processes,

Figure 20 in a table sums up error cases described
with reference to Figures 6-19.

Detailed description of preferred embodiments.

In the different Figures the same reference
characters are used for illustrating the same or similar
elements.

In the description below and on the drawings,
expressions familiar to the man of the art relating to
messages and communication may be used, as well as pseudo
syntax expressions of a certain type. To the extent that
they are not explained below, it is presumed that the man
of the art does not require any closer explanation or
translation of these expressions and syntax, respectively.

The concept of activity used below is used for
defining a chain of jobs created in an operating system as
a result of an independent external or internal event, plus
the sum of the resources used by the chain during its

execution.

10

15

20

25

30

35

WO 94/18621 PCT/SE94/00079

6

Figure 1 shows a "log" of such a job chain which
as an example is illustrated as arisen due to events in a
telephone exchange between two telephone subscribers A and
B. More particularly the Figure shows an activity in the
form of a chain of jobs, and three of the types of resource
an activity can attach to itself, viz. processes, ports and
subscriber equipment. More particularly, processes are
designated 2, jobs 4.n, ports 6, and subscriber equipment 8
in the Figure.

The arrows relate to different messages in the job
chain, such as an asynchronous communication message 10,
also called "cast" message, and synchronous messages in the
form of call and reply messages 12 and 14. More
particularly, with asynchronous messages are here meant
such messages which a process sends and can continue its
execution without waiting for response, whereas in the case
of synchronous messages the process is locked until a reply
has arrived. Each new "cast" message results in a new job,
such as 4.2, which then very well can exist simultanously
with the job 4.1, which has created it. The call 12 also
results in a new job 4.6, whereas the calling job 4.5 is
temporarily suspended. Not until the new job 4.6 has
stopped executing and has sent a reply message 14, the
suspended job 4.5 may continue.

With an "independent" external event is meant an
event not directed to any activity in the system. If the A-
subscriber lifts the telephone receiver is this an
independent event starting a new activity. If the B-
subscriber lifts the receiver it is not an independent
event, since it is directed towards a call under erection
and thereby towards an existing activity. If the A or B
subscriber puts on the receiver the same is true.

Most internal events are not independent. If e.g.
a debiting pulse is received this is the result of the fact
that an activity has ordered a periodic time supervision,
and has thus created a temporarily resting "timeout" job.
This is included in the activity. Certain internal events
should however be regarded as independent. This may apply

to such as start of test activities from a test generator

10

15

20

25

30

35

WO 94/18621 PCT/SE94/00079

7

or triggered absolute time supervisions (of the type waking
up, start of routine tests).

It is not necessarily so that a job in the chain
directly has to have arisen in another job or a call via
the communication mechanisms in the operating system. It
méy e.g. happen that, during a certain space of time, there
is no job within the activity, either executing or waiting
in some queue. In such cases it is only the link picture,
which will be described more closely below, that defines
the activity. If now a new job is started from some of the
resources which exclusively belong to the activity, e.g.
the line circuit of the B subscriber, also this job 4.10
belongs to the activity.

Referring to Figure 2, if an operator or a third
part C wishes to be connected into the speech, the
distinction between "independent" and "dependent" will be
somewhat more difficult. It is true that the event is
directed to an existing activity 20, but it results at
first in the creation of a new activity 22. These two
activities will then form an "activity group", shown
schematically in Figure 2, by the job chains "meeting" in
the same resource, i.e. in the half call process 24 of A.
It should however be observed that the fact that two
activities share a resource is not a sufficient criterium
for allowing that they'shall form an activity group. Many
activities (calls) shall of course share the access
processes without being included in the same recovery
domain for that reason.

A criterium good enough is presumably that
activities sharing dynamic processes form an activity
group, whereas those sharing static processes do not.
Static processes are considered to be robust enough to be
able to stand that an activity is recovered without this
affecting the other ones sharing the process.

As is schematically illustrated in Figure 3 the
activity, during its lifetime, attaches different resources
for shorter or longer time. A job 25 beginning to execute
attaches e.g. always a resource 26 of the type process. In

many cases, e.g. static start processes, the process is

10

15

20

25

30

35

WO 94/18621 PCT/SE94/00079

8

released directly when the job terminates, but it may also
pe attached to the activity for a longer time, e.g. by
there being created a port 28 to the process, so that new
calls from the same activity can arrive at a later point of
time, as is indicated at 30 and 32, and which e.g. may
imply that a new process 34 is attached or disconnected,
respectively.

One important type of resource that the activity
usually attaches is communication ports which belong to the
communication mechanisms of the operating system. All ports
belong to a process and each port has a reference to an
opposite port. By linking together ports the activity may
thus create a link picture according to Figure 4, which
keeps together the "owner" processes of the ports 6. In
that way the activity may attach a process also during the
time in which it has no job which shall be executed in it.
Please observe, however, that this "attaching" does not
imply any exclusive access to the process.

It is important to notice that a link picture is
only something existing in the form of its nodes and links.
Thus, there is no central or even distributed co-ordinating
function which has knowledge of the extension and existance
of the link pictures. The only knowledge of a link picture
existing in the system is the limited information existing
in each port (a node knows its immediate neighbours in the
link picture).

The ports 6 are also usable for indirectly
attaching such resources that are administrated in a
process to an activity. In the program executing in the
process "Access A" in Figure 4 there is an internal
reference between the port 6, that has contact with the
hardware of the subscriber A, and the port 6 that directly
belongs to the link picture. Such "internal" connections
may be needed when it is not desirable to terminate the
current process together with the rest of the link picture.
Typically, static processes are expected to survive
disengagement of a link picture (c.f Figure 6).

Of course there are a number of other types of

resources which may be attached to an activity during the

10

15

20

25

30

35

WO 94/18621 PCT/SE94/00079

9

existance thereof, but it is always the ports and the link
picture which make it possible to keep together all these
resources.

Due to the fact that resources and jobs belonging
to an activity are kept together there is formed a new type
of "domain" in the system. As illustrated in Figure 5 this
domain 40 "traverses" all the computers 42, 44, 46 and 48
involved in the call, but are on the other hand well
delimited within each computer. With support of the right
type of mechanisms this domain 40, i.e. the activity, may
to great advantage be used as a recovery domain.

If it is possible to limit the consequences and
extension of an error to keep within the activity, and
simultaneously accomplish that all occupied resources are
released, it is then possible, at worst, to disconnect the

call controlled by the activity, whereas all other calls
remain untouched.

This is in great contrast to methods according to
the stand of the art, where the smallest recovery domain is
the separate computer. In case of more serious errors in a
call the standard measure is to restart the computer, with
the consequence that all calls belonging to that computer
must be disconnected.

In case of a serious error appearing in one of the
processes in the link picture, the normal measure is to
disconnect the whole call, i.e. the activity, in a way that
no “"call rests" remain. If the ambition is only this, it is
possible to perform this by means of the operating system
itself. Release of busy resources may however be more
flexible and faster if the application contains code which
can handle the release. Figures 6a-d illustrate the typical
view when a call is disconnected due to error. In these
Figures the erronous process is designated 50, static
processes 52, and dynamic processes 54. In the example
shown, the chain of events extends through three steps,
viz. according to Figures 6a, 6b and 6c, respectively, and
results in the condition shown in Figure 6d where only the
static processes 52 remain. More particularly, every

process always first sends an interruption message 56,

10

15

20

25

30

35

WO 94/18621 PCT/SE94/00079

10

called "ConnectionAbort" out over its links before it
terminates itself according to arrows 58. For the last
mentioned step the designation "ContextTerminate" is used.

An activity may also operate as a client for
system updating. All, or parts, of the activity may be
directed towards executing a specific version of program
ware. If e.g. a new version of a program has been installed
it is possible to create during a time "test activities"
which use this program version, whereas "normal" activities
still are controlled towards the old version. Later it is
possible to choose to also control new "normal" activities
towards the new program ware.

This requires that the activity is associated with
an "activity attribute". The attribute must include a field
with information about the type of activity. This attribute
must follow in all messages, jobs, time supervisions and
job creating resources included in the activity.

The "area of interest" of the system updating in
the activity is the job chain and the job creating
resources (e.g. access processes and ports) i.e. the parts
of the activity which may contain a system updating
attribute. The link picture is not of interest or visible
from the point of view of system updating.

Figure 7 more in detail illustrates the
performance of system updating. In this Figure contexts A,
B, ¢, D, E, E’/, F, F/, G are shown. In one each of these
contexts programs execute, which for the sake of simplicity
may be assumed to have the same designation as the
corresponding context. There is only one program version in
the contexts A-D and G, the programs A,D and G being
assumed to be of an old version, and the programs B and C
of a new version. Each of the programs E and F exist in two
different versions, which execute in E and E’ and F and F’,
respectively.

During a certain phase of the system updating e.g.
all "normal traffic" proceeds towards an "old" program
version, i.e. contexts E and F, and all "test traffic"
towards "new" program version, i.e. the contexts E’and F’.

The shift between the two versions according to this system

10

15

20

25

30

35

WO 94/18621 PCT/SE94/00079

11

is illustrated by means of arrows E" and F", which are
indicated as movable. Running of test traffic is thus shown
in the Figure. If only one program version exists, all
traffic will necessarily be controlled towards this, which
thus is true for contexts A-D and G. The rectangles UA with
the text "TEST" included in the Figure indicate the above
mentioned system updating attribute included in the
activity.

The communication service of the operating system
knows the program versions which are available and controls
the calls according to existing "directing rules". It
should be emphasised that the "rules" which are used
according to Figure 7 only are a simplified example.

when it is necessary to trace errors the activity
can also be used as carrier of tracing information. The
activity attribute therefore includes a field indicating if
the tracing is activated or not, and some “visibility
attributes", for indicating which type of events (e.g. each
message sending) that are to be "viewed" during the
tracing. A tracing identity is also included. Attribute and
tracing identity may indirectly, ordered by an operator, bé
changed wherever and whenever during the execution of the
activity. If the tracing is on, the activity attaches a
resource in the form of a tracing information buffer. This
also follows the activity and is available in all computors
where the activity executes.

In Figure 8 a started tracing in the activity
according to Figure 1 is marked with a thicker line 60. The
above mentioned tracing attribute is indicated by
rectangles SA, the text "OFF" and "ON", respectively,
indicating that the attribute is "off" and "on",
respectively. The view of the tracing system of the]
activity is still more limited than the one for the system
updating. The interest is only directed to parts of the job
chain, viz. the parts following after the tracing attribute
has been "put on" at 62 and up to the point (the points) 64
where it is put off again. This part 60 of the job chain
may be called an execution thread. Within the execution

thread it is furthermore only certain events which are of

10

15

20

25

30

35

WO 94/18621 PCT/SE94/00079

12

interest to be seen. The tracing attribute changes its size
in the moment it is changed. In the position "on", which
appears in five cases at SA’, the attribute contains a
buffer B with tracing information. In the position "off" no
such buffer is needed.

The tracing attributes may be read and changed in
certain "tracing points", which are located in well defined
points along the extension of the job chain. Some of these
tracing points have been marked as an exmple in Figure 8 as
triangles SP. A tracing point is a code which is always
called in case of events in the activity. The tracing point
is able to read, during this call, the contents of the
tracing buffer and decide, from its "visibility attribute",
if the event shall be reported, i.e. be visible to the
tracing operator, or not.

Examples of visibility attributes which can exist
are: "Report the contents in each message which is being
sent", whereupon the tracing point located in each port
takes care of this being done, or "Report the identity to
each job being created" resulting in one tracing point in
each process creating such a report.

In order that the tracing points shall be able to
both report events and also change tracing attributes it is
required that they have an interface to an operator, i.e. a
man. How this communication is performed does not form part
of the invention, but it may be elucidating to see which
type of information that passes the interface.

A typical order to be given by an operator to a
tracing point is "put on the tracing attributes in all
execution threads passing and put in a visibility attribute
with the meaning ‘report message sendings’ in the buffer of
the tracing attributes";)

A typical report to be given by a tracing point to
the operator is "A message with the identity XX and
contents xyz was just sent from port No. ABC to port No.
DEX". _

The link picture or further resources are not of
interest from the point of view of tracing.

The present invention is based on the following

10

15

20

25

30

35

WO 94/18621 PCT/SE94/00079

13

conditions:

- All computers directly involved in the activity
must work with an operating system which supports the
mechanisms which are required for carrying through the
invention. Computers not having such operating system must
only exist as usable "resources" controlled from the
activity.

- The communication mechanisms of the operating
system are expected to have advanced means for error
detection, and possibility of reporting errors to the
users, which is known per se.

- The required extensions of the communication
mechanisms of the operating system must not affect the
executing and sending capacity more than superficially.

- The system and its hardware components are
assumed to be so robust that recovery measures become
relatively rare. Frequent and massive recoveries would
seriously affect the availability of the system.

The invention is not concerned with

- how static processes recover after context
failure,

- support, if any, for recovering failured or
partly failured activities - all recovery, going beyond the
functionality to disconnect the activity and return the
execution resources must be performed by the application
itself,

- some mechanism for returning used resources
except execution resources of the type ports and contexts.
Below a description will be given of the
architecture and the principles on which the invention is

pased. In turn, actors in case of error situations,
handling of process local errors, handling of communication
errors, and errors in other processes will be treated.

Actors in case of error situations.

These are codes in a machine interpretable
language which may be known per se, e.9g. compiled from the
programming language C++, and which can be executed in case
of appearance of different types of error situations. In

the below used names of the actors in question appears 1in

10

15

20

25

30

35

WO 94/18621 PCT/SE9%4/00079

14

some cases a syllable "Exception". This syllable is
included for particularly indicating that the actor in
question is executed in connection with some type of
abnormal event, i.e. an exceptional event.

- "ErrorHandler"

This is the error handler of the operative system.
In Figure 9 66 designates a faulty process and 68 an
associated executive core. A neighbour process and the
associated executed core are designated 70 and 72,
respectively. The processes 66 and 70 communicate,
indicated at 74, with each other via ports 76 and 78,
respectively.

"ErrorHandler", which is indicated at 80 and 82,
respectively, has as its task to receive error indications
from the processer hardware and the executive core, as well
as from the applications themselves, which are indicated at
84 and 86, respectively, in Figure 9. In case of such
indications "ErrorHandler" can sometimes actively intervene
and control the recovery, sometimes only keep statistics
over the number of errors. "ErrorHandler" is reached only
by means of two calls: via the call "UserException" 88 from
the application 84, and the call "reportError" 90 from the
parts of the core functions executing in supervisor mode.
The errors indicated are then stated in parameters
following the respective calls. "UserException" is a call
to be used when an error shall be reported. As a parameter
in connection with this call an error code and textual
error information, if any, is stated.

All error codes to "ErrorHandler" following with
the call "UserException" and "reportError" will be
supplemented with available error information, i.e.
normally an error code and a short textual description of
the error.

- "PortExceptionHandler" 92

This is a specialized exception handler of the
communication mechanisms of the operative system, which is
called in case of link abort and communication errors. Its
immediate recovery measure is to terminate the process in

gquestion and report the error to "ErrorHandler". The

10

15

20

25

30

35

WO 94/18621 PCT/SE94/00079

15

handler can however be rewritten or further specialized by
the application designer so as to enable a more qualified
recovery. This exception handler executes always in the
process to which the error has been reported.

As regards error calls to "PortExceptionHandler",
it is a name of the code which is executed in case of the
exception call "handleException" in a function "Port" and
its specializations, which will be described more closely
below.

- "ApplicationExceptionHandler" 94

This is the specialized exception handler of the
application which is called in cases where the application
is allowed to get back the control after the detection of
an error. Default recovery measure 1is to return all
resources and terminate the process in question. The
handler may, however, be further specialized by the
application designer, so that more qualified recovery can
be done. This exception handler always executes in the
process where the error has appeared.

"ApplicationExceptionHandler" is the name of a
code executed after the call "UserException".
"ApplicationExceptionHandler" does not handle communication
errors, but only process local executing errors.

- "Context" = process

Among other things, "Context" will also keep a
check on which ports are attached to it. When a process
gets instructions to terminate, either it is a normal or
abnormal termination, it can very fast point to the ports
which will be without an owner and order these to terminate
themselves and their links.

A call to "Context" is "terminateProcess". This

takes away the process in question, and also envolved

therein is that all these remaining ports shall be taken
away.

- "port"

In connection with error handling a port has
several tasks:

1) To receive "delete" and while performing this
send out "ConnectionAbort", arrow 96, to the port, if any,

10

15

20

25

30

35

WO 94/18621 PCT/SE94/00079

16

78, to which it is linked.

2) To receive error indications from other ports
or from "MainGate" 98 and call "PortExceptionHandler" 92,
arrow 100, with information regarding the error.

Regarding error indications to "Port" the
following applies:

1) Send a message of the type "ReturnedMessage"
including available error information to the port. The port
will then call "PortExceptionHandler" with an error code.

2) Send a message of the type "connectionAbort"
including available error information to the port. The port
will then call "PortExceptionHandler" with the error code
“"connectionError".

3) The call "connectionAbort" gives the
information to the port that the port to which it is linked
does not exist any longer. This has the same importance and
effect as the message "connectionAbort".

- "MainGate" 98

This "port" handles some specific errors which
have to be taken care of by the communication mechanisms of
the operating system. Among other things it must be able to
receive and handle wrongly addressed messages, as there is
no destination port which can handle this. When such a
message arrives, it generates a message of the type
"ReturnedMessage" towards the sending port. "MainGate" 1is
not connected to any process.

- "Computer Execution Capability Control" -
"COECC" 102

"COECC" has as its task to know the status of all
other computers belonging to the subnet. In the case of
error handling it has only one task, namely to find ports
having links towards ports in a failured computer and
thereafter call these with "connectionAbort". A message
"stateChange" gives the information that a computer in the
subnet has changed its status.

- "Application" 84 = 86

The expression "Application" is used in a wide
sense, i.e. all users of the communication mechanisms

described here. In many cases it can discover errors

10

15

20

25

30

35

WO 94/18621 PCT/SE94/00079

17

itself, and report and even handle these.

- "Kernel" 104 = 68 = 72

By "Kernel" is meant the executive core. It
reports errors to "ErrorHandler". "Kernel" among other
things includes certain parts of the commucation mechanisms
of the operating system, namely "MainGate" and "Port",
since the error handling of these includes executing on the
user process and reporting errors therefrom. "COECC" is
also a part of "Kernel", but is drawn separately, since its
functionality has a specific relevance in case of error
detection.

No specific error calls to "Kernel" exist. In
cases where "Kernel" acts in error situations it has only
an active role.

Below a number of error handling situations will
now be described with reference to drawing Figures 11-19.
With respect to their general contents these drawing
Figures correspond to Figure 9 and have the same reference
characters as in this Figure for designating similar
functions and phenomenon. The figures appearing within
brackets in the drawing figures in question indicate
numbers of order for the function steps appearing in the
respective Figures.

Handling of processor local errors.

- Execution errors in the application, detection
by a component or the execution core. Reference is made to
Figure 10.

Errors of this type can be such as addressing
beyond a permitted area, division with zero, overflow,
loops etc.

The error results in an (often hardware)
interruption that causes the current core function 104 to
send via "reportError" (1) an error indication 90 to the
"ErrorHandler" 80 of the operating system. In case of such
errors the process is always judged as unreliable, and
"ErrorHandler" therefore sends "terminateProcess" (2) to
the process which in turn sends "delete" (3) to the ports
which are left. These in turn send "ConnectionAbort" (4)

over their links. If it is the question of a static process

10

15

20

25

30

35

WO 94/18621 PCT/SE94/00079

18

"ErrorHandler" then creates a new process of the same type
and calls the start routine of the same.

- Execution errors in the application detected by
the application 84 itself. Reference is made to Figure 11.

If the application program 84 detects that some
serious error has occurred during the execution it takes
the initiative itself to call (1) "ErrorHandler" 90, as
usual via "UserException" 88. This time the process is
judged as "reliable" since it is capable of detecting and
reporting the error itself. "Kernel" 104 therefore has the
possibility of letting the control return to the
specialized "ApplicationExceptionHandler" 94 of the
application. Default measure for this should nevertheless
consist in terminating the process with "TerminateProcess"
(2), whereupon everything proceeds as in the present case
with "delete" (3) and "ConnectionAbort" (4).

- Error in case of system call. Reference is made
to Figure 12 and 13.

If a serious error is detected by the core 68
during a system call 105 the return value from the core
will indicate this (1) according to Figure 12. An
"Exception" 106 is thrown (2) to the application so that
the "ApplicationExceptionHandler" 94 itself of the
application program can take care of the error (3). After
this the case enters that just described with reference to
Figure 11, with "terminateProcess" (4), "delete" (5) and
“"connectionAbort" (6) with termination, if any, (8) of the
process.

In case of certain errors the core 104 can,
however, directly draw the conclusion that the process is
unreliable. In such cases the core reports (1) instead
directly to "ErrorHandler" 80, according to Figure 13, and
this then terminates the process (2). The continuation is
the same as in Figure 12.

Handling communication errors.

- Lost message.

If a message of the type "Call" or "Reply" has
peen lost this will be detected by a time supervision of

the original calling part being released. In the case

10

15

20

25

30

35

WO 94/18621 PCT/SE94/00079

19

"Call-Reply" it is the calling port that orders time
supervision, and when this is released the relevant error
code is returned as a reply to the call "Call". The
continuation will be exactly the same as for failed system
calls, as has been described earlier with reference to
Figures 12 and 13.

If the lost message is a "Cast" it is instead the
calling application itself which orders the time
supervision. When this is released the calling part is in
the same situation as in the case already described with
reference to Figure 11.

With reference to Figure 14 lost messages can also
be detected by sequence enumeration. For e.g. "call",
vcast" and "Reply" the following appears. In case of a two-
way link all messages sent over this will be sequence
enumerated, so that the receiver can detect gaps in the
enumeration. The following can happen. The calling part
sends a sequence enumerated message, which is lost'on its
way (1). The calling part sends its next message (2), the
sequence number of which is incremented with one. The
receiving port 76 detects the gap in the enumeration and
sends a message to the calling part 78 of the type
"ReturnMessage" (3) with information regarding the missing
number. The port 78 first calls "ErrorHandler" 82 (4) and
then "PortExceptionHandler" 92 with an error code
"LostMessage" (Sj, whereupon "PortExceptionHandler" makes
some form of recovery.

- Wrongly addressed message. Reference is made to
Figure 15.

A message 130 (1) which for some reason includes
an erronous destination address (a portname not published,
an old port reference or similar) will appear in "MainGate"
98. This then sends a message (2) of the type
"ReturnedMessage" to the port 78 of the sender. The port 78
first calls "ErrorHandler" 82 (3) and then
"portExceptionHandler" 92 (4) with the error code
"portNotAvailable". Thereafter the case can be brought back
to those earlier described.

- Disconnected contact.

10

15

20

25

30

35

WO 94/18621 PCT/SE94/00079

20

If the contact 74 to another computer is broken
this may be detected in two ways:

1) Reference is made to Figure 16. An emitted
message will not arrive. Instead it will appear in
"MainGate" 98 of the computer to which it has arrived (1).
As in the former case this will send a "ReturnedMessage" to
the sender port 78 (2), whereupon the case can be brought
back to the former one described with reference to Figure
15, although with another error code, namely
"ComputerNotAvailable".

2) The link supervision of the sender port detects
that the destination can no longer be reached, and calls
with "reportError" to the "ExceptionHandler" (not shown).
Thereafter the case will be the same as case (1).

Errors in other processes.

- Failured process in own or other computer.
Reference is made to Figure 17.

When a process 66 fails (i.e. is terminated by
"ErrorHandler"), but the computer, on which it was
executing still is intact, all its linked ports, such as
76, will send out "ConnectionAbort" (1) over its links.
This results in a call with an error code (2), first to
"ErrorHandler" and then to "PortExceptionHandler" 92 in the
receiver process 70, which performs default or a specified
recovery.

- Failed computer in own subnet. Reference is made
to Figure 18.

If a computer in the own subnet fails, "COECC" 102
will very soon be informed about that with "StateChange"
(1) . "COECC" will then find out the ports having links
directed towards this computer, and calls these with
"ComputerNotAvailable" (N). Each port then calls
"ErrorHandler" and its own "PortExceptionHandler" with
"ComputerNotAvailable". Thereafter the course of events
proceeds analogously with other errors of the same type.

- Failed computer in another subnet. Reference is
made to Figure 19.

If a computer in another subnet fails, "COECC"

will not be informed. The disappearance of the computer

10

15

20

25

WO 94/18621 PCT/SE94/00079

21

will be detected either by no message arriving or by the
link supervision of the operating system. The case is
therefore in practice the same as the case described
earlier with reference to Figure 16, and is detected and
treated the same way.

-Loops in other processes.

Infinite program loops are detected in two ways:

1) "Kernel" detects the loop and releases the same
chain of events as described with reference to Figure 10.

2) The time supervision in the calling process
releases. The case then passes into the case "Lost
messages" as described above, c.f Figure 14.

The error cases described above i.a. with
reference to Figure 11-19, are also summed up in Figure 20.
The table contains the abbreviation IPC, which refers to
the communication mechanisms of the operating system.

In the above description of different error cases
with reference to the drawings no closer description in
detail has been given of software and hardware, to be used,
or of how the described functions and processes are
performed in practice, since it is pre-supposed to be clear
to the man of the art how the invention shall be practiced
guided by the description and the drawings. The inventicn
may also be used in known operating systems and does not

presuppose any special hardware.

10

15

20

25

30

35

WO 94/18621 PCT/SE94/00079

22

Claims

1. A method in a distributed operating system for
enabling demounting of a chain of linked processes,
wherein

with a process is meant a resource in said
operating system in which applications may be executed, and
which must be used by a job for enabling execution of
program code in the process,

with said job is meant a phenomenon which is
directed to said process in order that a method in an
object owned by the process should be executed, a job also
being able to create new jobs directed to other processes
or towards an own process, and wherein

said process provides the job with resources and
synchronizes jobs by only allowing one job at a time to
execute,

said method comprising the steps of

providing two-way communication links between said
processes and using said operating system

for keeping up with processes having links, and
using said links also if a process having links is
terminated,

detecting an error in a process and terminating
it, |

transferring information via said links regarding
process or computer failure, and propagating this
information through a whole chain of linked processes, and

reporting this information to applications
executed in said linked processes for enabling these to
perform application specific recoveries.

2. The method according to claim 1, comprising
the further step of using error tracing attributes to be
sent from job to job in a chain of linked processes.

3. The method according to claim 2, comprising

allowing change of value of said attributes at any
time during the execution of a job chain.

4. The method according to claim 2 or 3,
comprising

providing a said tracing attribute with a tracing

10

15

20

25

30

35

WO 94/18621 PCT/SE94/00079

23

buffer able to store information regarding events in said
system traced by said attribute, and

creating by means of said information a log over
said events.

5. The method according to any of the preceding
claims, comprising

providing in said system a system updating
function,

providing system updating information attributes
able to carry information internal to said updating
function regarding type of traffic carrying on in the
systen,

tranferring said information attributes in a chain
of jobs for enabling determination of version of a specific
program to be executed at an execution occasion.

6. A system for enabling in a distributed
operating system demounting of a chain of linked processes,
wherein

with a process is meant a resource in said
operating system in which applications may be executed, and
which must be used by a job for enabling execution of
program code in the process,

with said job is meant a phenomenon which is
directed to said process in order that a method in an
object owned by the process should be executed, a job also
being able to create new jobs directed to other processes
or towards an own process, and wherein

said process provides the job with resources and
synchronizes jobs by only allowing one job at a time to
execute,

comprising code means including

first means for providing two-way communication
links between processes,

second means for enabling said operating system to
keep up with processes having links, and to use said links
also if a process is terminated,

" third means for enabling said operating system, or
in certain cases a process itself, to detect an error in a

process and terminate it,

10

15

20

25

30

35

WO 94/18621 PCT/SE94/00079

24

fourth means for enabling said operating system to
transfer failure information via said links regarding
process or computer failure, and to propagate this failure
information through a whole chain of linked processes, and

fifth means for enabling said operating systenm to
report said failure information to applications executed in
the linked processes in order to enable for these to
perform application specific recoveries.

7. The system according to claim 6, comprising

communicating mechanisms,

process ports included in said first means, via
which communication between processes may be performed,

communication ports not connected to a process for
handling specific errors which have to be dealt with by
said communication mechanisms of the operating systen,

said process ports having in connection with error
handling the task of

receiving a "delete" instruction relating to its
own process, and while executing this instruction, sending
a link disconnecting message, to any port, to which it is
linked,

receiving error indications from other process
ports and from any communication port, and calling code in
said communication mechanisms for transferring information
thereto regarding the error in such an error indication.

8. The system according to claim 7, wherein said
second means include processes ports.

9. The system according to claim 7 or 8, wherein
said third means include the operating system and
processes.

10. The system according to any of claims 7-9,
wherein said code is an exception handling code included in
said fourth means and always executing in a process, to “
which an error is reported, and has the function of

being called in case of link abort and
communication errors,

terminating an erronous process, and

reporting the error to an error handling code.

11. The system according to any of claims 7-9,

10

15

20

WO 94/18621 PCT/SE94/00079

25

including error tracing attributes to be sent from job to
job in a chain of linked processes.

12. The system according to claim 11, comprising
means for allowing change of value of said tracing
attributes at any time during the execution of a job chain.

13. The system according to claim 10 or 11,
wherein a said tracing attribute is associated with a
tracing buffer for storing information regarding events in
said system when traced by said attribute, said systen
comprising means for creating by means of said information
a log over said events.

14. The system according to any of claims 6-13,
comprising

a system updating function,

system updating information attributes for
carrying information internal to said updating function
regarding type of traffic carrying on in the systenm,

means tranferring said information attributes in a
chain of jobs for enabling determination of the version of

a specific program to be executed at an execution occasion.

WO 94/18621
1 / 12 PCT/SE94/00079

SUBSTITUTE SHEET

?
WO 94/18621 2/ 1 PCT/SE94/00079

F1g.3

Job chain 1% User related resources

25

WO 94/18621 PCT/SE94/00079

2 ' 3
= (]

SUBSTITUTE SHEET

WO 94/18621 PCT/SE94/00079

EI
A g |- F
7Y [TEST
(AST S TEST’, TEST
UA UA/Z 1 \UA
E TEST
TEST
¢ O
res UL UL
UA | \
A TEST B C 0
G
- ‘REPORTING"
Fig.8
60 g |
1eSP OFF | SA ON , hge
WY sa~JoFF <%N 5]/ SA S
V2 ré\\ / |
o SPY Tsp /\0bL 4
/;/ B
OFF Sp [
1 Q e
OF U ‘
OFF
SA | \ /S /
Sp BN N
SA
O o “REPORTING”
. ./ (LB kb —
PUTOg o PUT OFF,

SUBSTITUTE SHEET

WO 94/18621 5 / 12

PCT/SE94/00079
F1g. 9
Port Ex ce'p’rion
Handler
66
Failing Context NP / Neighbour(om‘@(%
\ /N0
pplication | o Application +
L} :
#__|Application
88 ser . E)ECPG’TEOH“ 97 ——
ception f|Handler %7@ o, (73 |Fortixception
el \RAS _'ﬂ |P_c—cgphec.\ <9
Error mzc&.gmk err 2 Error
30~y[Handler CpECC/r' 1105 [coecc ||Hondier |}
/7 vainjCommiinicg- — M- 82
>\"€ +«.‘0790 Gate | tion E|rror 1027
A port e i
0" \Error g\am 72
are
. Kernel Kernel
‘o8 160 1047

SUBSTITUTE SHEET

WO 94/18621 6 / 12 PCT/SE94/00079

Fig. 10
66
')(:Oiﬂﬂg LQFfGK;\\\ (/hKﬂqthUFCO”k;?\\

- 8L,

n
0o~4 —

Appiication Appiication ~+70

3:Delete Port EXCeDleﬂL/~92
. n 7L €l|
AN 7N

Error)2¢ T
i Htermina’e

B0-r1Handler] ~ process | 4. Conection Abort:
|
J:report Error '

0"\ (err Ex D By &: Context
Zero) terminate d27
! Kernel . Kernel
o8 104 “104

Fig 11
66
)%Faximg Convtext : /\lelghbourwnfe% 85

gL, _

L _""70

App\icaﬂon Application

83~ User / APP\\CO'flOn QL Port ExcepTJOﬂ .57
Exception Exception Handler
\ ondle 3.de!e+e78‘\‘,f;@‘? Not Avail,””

\: eer% D
Error +€rmmo+€
Handle] Process 4 Conmection Abort
Y
6: Context form-
nate
Kerne| Kernel

SUBSTITUTE SHEET

WO 94/18621 7 / 12 PCT/SE94/00079

| F1g. 12
DO~
8A\/\<:J.l:nq Comexf\ Aei@h 'DOJFCODTEXN

C Apphcahon [Application L.
T1E Port Znienmlr _
. ' Wandler A5
A .
0 \ 7: Port Nat A
% \rrocess P B
D A\ VCEDD B ¢
\\‘\-_‘,M/
& Conpeciicn '
ADOD)
7 81C()‘r“,‘.-:'.>§.
Lerparate
f ernel . Kernel
o8 72/

66 F:TQQ.WZB
)/Fa g CON@N A@i@hb(}ur@orﬁg\

- 8L
/Applicaﬁon’ 86-TApplication ~70
/ Port E:v:ce?ﬂoﬂ .92
Hangler
([Sidelete / 5: Port Nt A
2 tormngie— | |
[Process 4:Connedrion
80 Error Abort Y
Har)}dler & Context +erminatq
1: ercor -7
68~} \ Kernel \ verne)
‘0L 0L

SUBSTITUTE SHEET

WO 94/18621 8 / 17 PCT/SE94/00079

-1g. 14

70
60~ Faiing Coni*e‘/n?\ /NefQ'"fDOWCO”*eM
B6~, ‘
TApplication !

g24—___Port Excepior]

|Hand €n |

i%. \ 5:_'Lo'is+ M.essag

. Ra| Error 31782
11 Casi ~-rHandier
PRIRENI | <[ol ,28500¢€
3:Retugned_ / '
+150 o: Cortexr termi-
s nate
. Kornel . vernel
U 04

Fig o

66
>/Fcum9 Con‘rexw‘\/& /NeiqhbourCoanex+
i N +~70
5 Application YApplication
‘ ser .
88 1 EXCQPTIOD Port. Ex- Port Txception
- | jception 4~q2 Hgndler
. Handler 3 7 =
lError G |lCasth— Error
80 —{THandler L‘:_{r 3: Port Net(Handler
Gate | vessage MainGate
raT 5: Context ferminate
Excepftonl yornel ernel

SUBSTITUTE SHEET

WO 94/18621

9/12

PCT/SE94/00079

Fig. 16

Fdl!mg COrﬁexf\

A@\qhbour Com‘ek

"Application

;4"78
AR

7 L[dﬂ;TQr }
L, “
% _’_/_28 —
‘(7[? [(ad‘ renr “r“az
2 KD | i U
' {urnee ﬁana\er
/ VISSA 3: Comp
» ' Ay alkable
sl et Ly,
~ L nae e |
Kernel Main Gare Kernel

Fatiing Context

A

Bo\—=— s
[Application
Port fxcepﬂon
Handler 192

\3 Port Not Avalable,””

Error J

\

Kernel

=

(" [Handler

2 Port Not
Available

4: Context ferminate

[82

ornel

SUBSTITUTE SHEET

WO 94/18621 10 / 12 PCT/SE94/00079

F1g.18
/Fa(lmg Con‘reh Neghbour Con%

N
Application b Application
Port Excephion]4: Gonted
ermi -
Handler e

Handler

2:Comp Not
Avatl

Kernel Avail

-19.19
/Foi ling Coﬁre“ Aeighbour Con‘r%

Application

Port Exception
Handler

\ ;/ M@fﬂpNoT/%}\va\bble /
\

3:(omp

Not
5. Confext Avatlable
terminate

n
Kemnel g“a% Kervel

SUBSTITUTE SHEET

11/12

PCT/SE94/00079

WO 94/18621
ig. 20
Type of Errars Errar Errar code Errar code Default
errrar detection | to Part- to Errar- recovery
Exeption- Hendler measure
Handler
Context Executing | Camporent/ Errar Terminate
local EerTars care specific context
Applic- Errar Termingte
ation specific context
far
aurrent
aoplic-
ation
Errars in | Care Errar Terminate
case of specific cortext
system
calls
CcmTuni- Lost Time replyNot replyNot Terminate
cation message release in | Received Received context
errars IPC
Time Errar
Release in specific
the far
applic- current
gtion applic-
gtion
Sequence message message Terminate
enumera- Lost Lost context
Wrongly Retum remotePart remotePart Terminate
adressed | message NotAvail- NotAvail- context
message able able
Dis- Retum remoteCam- remoteCan- Terminate
comected | message puter Not puter Nat context
contact Available Available
Link remoteCam- remoteCom- Terminate
super- puter Not puter Not cortext
vision in | Available Available
IrC

SUBSTITUTE SHEET

WO 94/18621

12/12

PCT/SE94/00079
i Fig.20
: g
Type of Errars Errar Errar code Errar code Default
errar detection |to Part- to Errar- Tecovery
Exeption- Handler measure
Handler
Context Failured |Lirk abart |remotePart remotePart Terminate
external context NotAvail- NotAvail- cortext
errars able able
Failured |Indication |remoteCam- remoteCom- Terminate
local fram COECC | puter Not puter Not cottext |-
computer Available Available
Failured |Retum remoteCan- remotelom- Terminate
camputer | message puter Not puter Not cortext
in another Available Available
subnet
IPC link remoteCam- remoteCan- Terminate
SuUper- puter Not puter Not corttext
vision Available Available
Infinite |Time replyNot TeplyNot Terminate
loop in a [release received received cotext
called
corttext Link abart | remotePart ranotePart Terminate
NotAvail- NotAvail- corttext
able able/Loop

1
INTERNATIONAL SEARCH REPORT

International application No.

PCT/SE 94/00079

A. CLASSIFICATION OF SUBJECT MATTER

IPC : GO6F 9/46, GO6F 11/00

According Lo lnternau'onaf Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

IPC : GO6F

Minimum documentation searched (classification system followed by classification symbols)

SE,DK,FI,NO classes as above

Docomentation searched other than minimum documentation to the extent that such documents are included in the fields searched

DIALOG: CLAIMS, WPI, JAPIO, INSPEC

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*| Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

A US, A, 5165018 (GABOR SIMOR), 17 November 1992 1-14
(17.11.92), column 4, line 45 - column 5, line 4;
column 12, line 37 - column 14, line 2

A US, A, 5117352 (LOUIS H. FALEK), 26 May 1992 1-14
(26.05.92), column 1, line 46 - Tine 61

A US, A, 5129080 (DONALD M. SMITH), 7 July 1992 1-14
(07.07.92), column 2, line 3 - line 38

A US, A, 3905023 (FRANK JOSEPH PERPIGLIA), 1-14
9 Sept 1975 (09.09.75), abstract

Further documents arc listed in the continuation of Box

C. m See patent family annex.

Special categories of cited documents:
“A” document defining the general state of the art which is not considered
to be of particular relevance

*B” erlier document but published on or after the international filing date
#1” document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

“O” document referring to an oral disclosure, use, exhibition or other
means

document published prior to the international filing date but later than
the priority date claumed

npow

“T* {ater document published after the international {iling date or priority
date and not in conflict with the application but cited to understand
the principte or theory underlying the invention

X document of particular relevance: the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y* document of particular relevance: the claimed invention caanot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

*&” document member of the same patent family

Date of the actual completion of the international search

5 May 1994

Date of mailing of the international search report

10 -05- 1994

Name and mailing address of the ISA/
Swedish Patent Office

Box 5055, S-102 42 STOCKHOLM
Facsimile No. +46 8 666 02 86

Telephone No.

Authorized officer

Katarina Fredriksson
+46 8 782 2500

Form PCT/ISA/210 (second sheet) (July 1992)

2

INTERNATIONAL SEARCH REPORT International application No.

PCT/SE 94/00079

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

CORPORATION), 28 April 1993 (28.04.93),
abstract

Category*| Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

A GB, A, 2079997 (RAYTHEON COMPANY), 27 January 1982 1-14
(27.01.82)

A,b EP, A2, 0539130 (INTERNATIONAL BUSINESS MACHINES 1-14

Form PCT/ISA/210 {conuinuation of second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No.

0539130

16/04/94 | PCT/SE 94/00079
Patent document Publication Patent family Publication

cited in search report date member(s) date
US-A- 5165018 17/11/92 CA-A- 1292323 19/11/91
EP-A- 0274406 13/07/88

US-A- 5117352 26/05/92 DE-A- 4033336 25/04/91
FR-A- 2655168 31/05/91

GB-A,B- 2237130 24/04/91

JP-A- 3194647 26/08/91

US-A- 5129080 07/07/92 CA-C- 2053344 29/03/94
EP-A- 0481231 22/04/92

US-A- 3905023 09/09/75 BE-A- 818364 02/12/74
CA~-A- 1029131 04/04/78

CH-A- 574646 15/04/76

DE-A,C- 2437200 27/02/75

FR-A,B- 2295486 16/07/76

GB-A- 1454198 27/10/76

JP-C- 1254410 12/03/85

JP-A- 50073541 17/06/75

JP-B- 59014776 06/04/84

NL-A- 7410212 18/02/75

GB-A- 2079997 27/01/82 CA-A- 1176337 16/10/84
DE-A,C- 3127349 16/09/82

FR-A,B- 2486682 15/01/82

GB-A,B- 2166271 30/04/86

JP-C- 1460620 28/09/88

JP-A- 57050064 24/03/82

JP-B- 63006894 12/02/88

NL-A- 8103136 01/02/82

US-A- 4412281 25/10/83

EP-A2- 28/04/93 GB-A- 2260835 28/04/93

Form PCT/ISA/210 (patent family annex) (July 1992)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

