磁控溅射法制备铜铟镓硒薄膜太阳能电池光吸收层的方法

摘要

本发明涉及一种铜铟镓硒 (CIGS) 太阳电池光吸收层薄膜的制备方法。本发明的特征在于在底电极板通过磁控溅射法，采用单靶溅射、多靶靶和多靶靶同时或先后溅射制备出具有高反应活性、可快速反应烧结的 CIGS 前驱薄膜，然后将 CIGS 前驱薄膜进行热处理，快速反应生成平整、致密、均匀、光电性能良好的 CIGS 太阳电池光吸收层薄膜。本发明所提供的制备方法，可控性强，薄膜质量高，均匀性好，工艺简单，适合工业化生产。
1. 一种 CIGS 薄膜太阳能电池的制备方法，其特征在于：采用磁控溅射法制备 CIGS 前驱薄膜，然后进行后处理，反应制备成 CIGS 薄膜。具体包括以下工艺步骤：

（1）制备 CIGS 前驱薄膜：在底电极上通过磁控溅射法，采用单靶溅射，富铜靶和贫铜靶同时或先后溅射，制备出 CIGS 前驱薄膜（200）；

（2）CIGS 前驱薄膜热处理：在真空或一定气压的惰性气氛中，将固态单质 Se 源加热到 180℃～450℃，形成 Se 的饱和蒸汽压，将步骤 1 制备的 CIGS 前驱薄膜置于饱和 Se 蒸汽压下，以 10℃/min～100℃/min 的升降温速率升温到 450℃～600℃并保温 10min～60min，制备成 CIGS 薄膜太阳能电池的光吸收层；
其中，①单靶溅射的靶材为 Cu_{1-x}(In,Ga)Se_{2-x/2}，式中 0.05 ≤ x ≤ 0.50；
②富铜靶为 Cu、CuSe、Cu_2Se 和 Cu_{1-x}(In,Ga)Se_{2-x/2}，式中 0.1 ≤ x ≤ 1.0 中的一种或几种的混合；
③贫铜靶为 (In,Ga)_2Se_3、(In,Ga)_2Se_5、Cu(In,Ga)_2Se_3、Cu(In,Ga)_2Se_5、Cu_2(In,Ga)_{1/2}Se_5、
Cu_3(In,Ga)_2Se_9 和 Cu_{1-x}(In,Ga)Se_{2-x/2}，式中 0.4 ≤ x ≤ 1.0 中的一种或几种的混合。

2. 按权利要求 1 所述的制备方法，其特征在于在步骤 1 中采用富铜靶和贫铜靶先后溅射，形成富铜层和富铜层交替出现的叠层结构，最底层为富铜层或贫铜层，顶层为富铜层或贫铜层。

3. 按权利要求 2 所述的制备方法，其特征在于顶层为富铜层。

4. 按权利要求 2 所述的制备方法，其特征在于所述的富铜层和贫铜层的总层数为 2～12 层，富铜层和贫铜层的单层厚度为 10nm～1500nm。

5. 按权利要求 4 所述的制备方法，其特征在于所述的富铜层和贫铜层的总层数为 3～6 层，所述富铜层和贫铜层的单层厚度为 50～1000nm。

6. 按权利要求 1 所述的制备方法，其特征在于：

a）制备步骤（1）中，单靶溅射采用射频溅射，射频溅射的参数为功率密度为 0.2W cm^{-2}～10W cm^{-2}，靶距为 4cm～20cm，工作气压为 0.05Pa～20Pa；

b）制备步骤（1）中，富铜靶采用直流溅射成射频溅射，溅射工艺参数为溅射功率密度为 0.2W cm^{-2}～10W cm^{-2}，靶距为 4cm～20cm，工作气压为 0.05Pa～20Pa；

c）制备步骤（1）中，贫铜靶采用射频溅射，溅射工艺参数为溅射功率密度为 0.2W cm^{-2}～10W cm^{-2}，靶距为 4cm～20cm，工作气压为 0.05Pa～20Pa。

7. 按权利要求 1 或 6 所述的制备方法，其特征在于：

a）制备步骤（1）中，单靶溅射采用射频溅射，单靶溅射工艺参数为溅射功率密度为 0.5W cm^{-2}～5W cm^{-2}，靶距为 5cm～15cm，工作气压为 0.2Pa～10Pa；

b）制备步骤（1）中，富铜靶溅射工艺参数为溅射功率密度为 0.5W cm^{-2}～5W cm^{-2}，靶距为 5cm～15cm，工作气压为 0.2Pa～10Pa；

c）制备步骤（1）中，贫铜靶溅射工艺参数为溅射功率密度为 0.5W cm^{-2}～5W cm^{-2}，靶距为 5cm～15cm，工作气压为 0.2Pa～10Pa。

8. 按权利要求 1 所述的制备方法，其特征在于：

a）制备步骤（1）中，所制备的 CIGS 前驱薄膜中 Cu 原子数与 In 和 Ga 原子数之和的比为 0.5～1.0，即 0.5 ≤ Cu/(In+Ga) ≤ 1.0；

b）制备步骤（1）中，所制备的 CIGS 前驱薄膜中 Ga 原子数与 In 和 Ga 原子数之和的比
为大于 0，小于 1.0，即 \(0 < \text{Ga}/(\text{In}+\text{Ga}) < 1.0\)。

9. 按权利要求 1 或 8 所述的制备方法，其特征在于：
 a) Cu 原子数与 In 和 Ga 原子数之和的比为 0.70–0.95，即 0.7 ≤ Cu/(In+Ga) ≤ 0.95；
 b) Ga 原子数与 In 和 Ga 原子数之和的比为 0.20–0.40，即 0.2 ≤ Ga/(In+Ga) ≤ 0.4。

10. 按权利要求 1 所述的制备方法，其特征在于：
 a) 制备步骤 2 中，所述的真空是指反应容器中的气压 ≤ 2Pa；
 b) 制备步骤 2 中，所述的惰性气氛为氮气、氢气、氖气和氩气中的一种或几种的混合，
所述的气压为 5Pa ~ 100000Pa。
磁控溅射法制备铜铟镓硒薄膜太阳能电池光吸收层的方法

技术领域
[0001] 本发明涉及铜铟镓硒 (CIGS) 薄膜太阳能电池光吸收层的制备方法，更确切地说采用磁控溅射法制备 CIGS 前驱薄膜，然后进行热处理制备成太阳能电池光吸收层，属于光伏材料新能技术领域。

背景技术
[0002] 铜铟镓硒 (Cu(In, Ga)Se₂，简称 CIGS) 薄膜太阳能电池是新一代最有前途的太阳电池，它具有成本低、效率高、寿命长、弱光性能好、抗辐射能力强、可柔性且环境友好等多方面的优点。自 20 世纪 90 年代以来，CIGS 在所有薄膜太阳能电池中，就一直是实验室转换效率最高的薄膜太阳能电池。2008 年 4 月，美国可再生能源实验室 (NREL) 又将其实验室最高转换效率刷新到 19.9%（Ingrid Repins, Miguel A. Contreras, Brian Egaas, Clay DeHart, John Scharf, Craig L. Perkins, Bobby To and Rommel Noufi, Progress in Photovoltaics: Research and Applications, 16(3), 235-239, 2008），与多晶硅的实验室最高转换效率 20.3% 已非常接近，发展前景巨大。

[0003] CIGS 光吸收层的制备是 CIGS 薄膜太阳能电池的核心工艺。目前产业化制备 CIGS 光吸收层的主要工艺包括蒸发法、磁控溅射 Cu-In-Ga 预制膜后硒化法和蒸发—溅射混合法等。但这些方法都不可避免地在薄膜的制备过程中会出现易挥发的中间相（如 In₃Se₅、In₃Se₇、InSe 和 In₈Se₇ 等），使薄膜最终的实际成分与名义成分差别很大，而且由于易挥发中间相的生成和挥发速度与温度、气压、挥发性物质的分压和表面气流状态等因素密切相关，大面积温场中不可控因素（分压、气流状态等）的涨落，会导致大面积薄膜成分出现不可控的变化，从而导致薄膜的均匀性和重复性都难以控制，电池的生产良率无法得到保证，严重制约了产业化生产的大规模扩张。

发明内容
[0004] 本发明的目的在于提供 CIGS 薄膜太阳能电池光吸收层的一种制备方法，采用所述的方法可以提高大面积 CIGS 薄膜制备工艺的稳定性和成分的均匀性，提高 CIGS 薄膜太阳能电池的光电转换效率和电池生产良率。本发明所提供的方法具有工艺可控性强，制备的薄膜质量高、均匀性好，工艺简单，适合工业化生产的特点。

[0005] 因为，In₃Se₅、In₈Se₇、InSe 和 In₈Se₇ 等物质在 300℃以上都具有很高的蒸汽压，在 300℃以上这些物质都具有很强的挥发性，而报道的 CIGS 薄膜的制备温度往往在 500℃以上 (Marianna Kemell, Mikko Ritala, and Markku Leskel, Critical Reviews in Solid State and Materials Sciences, 30:1-31, 2005)。若在 CIGS 薄膜的制备过程中生成这些高挥发性的中间物质，往往会导致 CIGS 薄膜的最终成分难以控制。

[0006] 本发明通过磁控溅射法，采用富铟靶和富铟靶在室温下制备出 CIGS 前驱薄膜，这一方面避免了高温下导致的铟硒化合物的挥发问题；另一方面，在 CIGS 前驱薄膜中，富铟相和富铟相紧密结合，处于原位复合的状态，在热处理反应时，物质输运路径非常短，反
应速度非常快，快速生成蒸汽压非常低的铜铟镓硒多元化合物，有效地避免了元素的挥发。

实现本发明所提供的 CIGS 薄膜太阳能电池光吸收层制备方法的一种方案（a）为：

CIGS 薄膜太阳能电池光吸收层的一种制备方法，其特征在于：采用包括射频溅射和直流溅射的磁控溅射法制备具有高反应活性的 CIGS 前驱薄膜，并进行热处理以快速反应，制备 CIGS 薄膜。具体包括以下工艺步骤：

（1）制备 CIGS 前驱薄膜：在底电极（101）上通过磁控溅射法，采用单靶溅射、富铜靶和贫铜靶同时溅射，制备出 CIGS 前驱薄膜（200）。

（2）CIGS 前驱薄膜热处理：在真空中或一定气压的惰性气氛中，将固态单质 Se 源加热到 180℃～450℃，形成 Se 的饱和蒸汽压，将上述 CIGS 前驱薄膜置于饱和 Se 蒸蒸汽压中，以 10℃/min～100℃/min 的升温速度快速升温到 450℃～600℃，并保温 10min～60min，生成 CIGS 薄膜太阳能电池的光吸收层。

实现本发明所提供的 CIGS 薄膜太阳能电池光吸收层制备方法的另一种方案（b）为：

CIGS 薄膜太阳能电池光吸收层的一种制备方法，其特征在于包括以下步骤：

（1）制备 CIGS 前驱薄膜：在底电极（101）上通过磁控溅射法，采用富铜靶和贫铜靶先后溅射，形成富铜层和贫铜层交替出现的叠层结构，制备出 CIGS 前驱薄膜；

（2）CIGS 前驱薄膜热处理：在真空中或一定气压的惰性气氛中，将固态单质 Se 源加热到 180℃～450℃，形成 Se 的饱和蒸汽压，将上述 CIGS 前驱薄膜置于饱和 Se 蒸汽压中，以 10℃/min～100℃/min 的升温速度快速升温到 450℃～600℃，并保温 10min～60min，生成 CIGS 薄膜太阳能电池的光吸收层。

上述方案（a）的制备步骤（1）中，其中单靶溅射的靶材为 Cu$_{1-x}$（In, Ga）Se$_{2-3/2}$（0.05 ≤ x ≤ 0.50）。

上述方案（a）和方案（b）的制备步骤（1）中，其中富铜靶为 Cu, CuSe, Cu$_2$Se 和 Cu$_{1-x}$（In, Ga）Se$_{2-x/2}$（0.1 ≤ x ≤ 1.0）中的一种或几种的混合。

上述方案（a）和方案（b）的制备步骤（1）中，其中贫铜靶为 In, Ga, Se$_3$, （In, Ga)$_2$Se, Cu（In, Ga）Se, Cu（In, Ga）$_2$Se, Cu（In, Ga）$_3$Se, Cu（In, Ga）$_4$Se, Cu$_2$（In, Ga）Se 和 Cu$_{1-x}$（In, Ga）Se$_{2-x/2}$（0.4 ≤ x ≤ 1.0）中的一种或几种的混合。

上述方案（a）的制备步骤（1）中，其中单靶的溅射条件为：采用射频溅射，溅射功率密度为 0.2W/cm2～10W/cm2，靶距为 4cm～20cm，工作气压为 0.05Pa～20Pa；其中溅射功率密度优选为 0.5W/cm2～5W/cm2，靶距优选为 5cm～15cm，工作气压优选为 0.2Pa～10Pa。

上述方案（a）和方案（b）的制备步骤（1）中，其中富铜靶的溅射条件为：采用直流溅射或射频溅射，溅射功率密度为 0.2W/cm2～10W/cm2，靶距为 4cm～20cm，工作气压为 0.05Pa～20Pa；其中溅射功率密度优选为 0.5W/cm2～5W/cm2，靶距优选为 5cm～15cm，工作气压优选为 0.2Pa～10Pa。

上述方案（a）和方案（b）的制备步骤（1）中，其中贫铜靶的溅射条件为：采用射频溅射，溅射功率密度为 0.2W/cm2～10W/cm2，靶距为 4cm～20cm，工作气压为 0.05Pa～20Pa；其中溅射功率密度优选为 0.5W/cm2～5W/cm2，靶距优选为 5cm～15cm，工作气压优选为 0.2Pa～10Pa。
[0021] 上述方案 (b) 的制备步骤 (1) 中，其中富铜层和贫铜层的总层数为 2 ～ 12 层，优选为 3 ～ 6 层。
[0022] 上述方案 (b) 的制备步骤 (1) 中，其中富铜层和贫铜层的单层厚度为 10nm ～ 1500nm，优选为 50nm ～ 1000nm。
[0023] 上述方案 (a) 和方案 (b) 的制备步骤 (1) 中，其中 CIGS 前驱薄膜中 Cu 原子数与 In 和 Ga 原子数之和的比为 0.5 ～ 1.0，即 0.5 ≤ Cu/(In+Ga) ≤ 1.0，优选为 0.7 ≤ Cu/(In+Ga) ≤ 0.95。
[0024] 上述方案 (a) 和方案 (b) 的制备步骤 (1) 中，其中 CIGS 前驱薄膜中 Ga 原子数与 In 和 Ga 原子数之和的比为 0 ～ 1.0，即 0 ≤ Ga/(In+Ga) ≤ 1.0，优选为 0.2 ≤ Ga/(In+Ga) ≤ 0.4。
[0025] 上述方案 (a) 和方案 (b) 的制备步骤 (1) 中，其中 CIGS 前驱薄膜的厚度为 500nm ～ 3500nm，优选为 1000nm ～ 2500nm。
[0026] 上述方案 (a) 和方案 (b) 的制备步骤 (2) 中，其中的真空是指反应容器中的气压 ≤ 2Pa。
[0027] 上述方案 (a) 和方案 (b) 的制备步骤 (2) 中，其中所述的惰性气氛为氮气、氩气、氢气、氨气、氟氯气的一种或几种的混合，所述的一定气压为 5Pa ～ 100000Pa。
[0028] 本发明所提供的 CIGS 薄膜的制备方法，薄膜质量高，均匀性好，工艺简单，适合工业化生产。

附图说明
[0029] 图 1 为本发明方案 (a) 所制备的 CIGS 前驱薄膜截面示意图；
[0030] 图 2 为本发明方案 (b) 所制备的 CIGS 前驱薄膜截面示意图；
[0031] 图 3 为实施例 13 所制备的 CIGS 薄膜的扫描电子显微镜 (SEM) 图。

具体实施方式
[0032] 下面对附图 1 和附图 2 详细说明本发明所述的制备方法及其优选方式。如图 1 和图 2 所示，本发明所采用的基片可以是普通碱石灰玻璃、不锈钢箔、钛箔和聚酯亚胺膜等材料。基片上的底电极 101 是钼电极，钼电极是采用磁控溅射法制备的。
[0033] 在底电极上的 CIGS 光吸收层，本发明所提供的制备方法可以通过两种方案实现。
[0034] 第一种方案如图 1 所示。在底电极上 101 通过磁控溅射法，采用 Cu_{1-x} (In, Ga) Se_{2+1/2} (0.05 ≤ x ≤ 0.50) 化合物靶材进行单靶溅射，制备出 CIGS 前驱薄膜 200，然后经过热处理生成 CIGS 光吸收层；也可以采用富铜靶和贫铜靶同时溅射，制备出 CIGS 前驱薄膜 200，并经过热处理生成 CIGS 光吸收层。对于富铜靶，如 Cu、CuSe、Cu_{2}Se 和 Cu_{1-x} (In, Ga) Se_{2+1/2} (0.1 ≤ x ≤ 1.0) 等，既可采用直流溅射，也可采用射频溅射；对于贫铜靶，如 (In, Ga)_{2}Se_{3}、(In, Ga)_{2}Se_{5}、Cu (In, Ga)_{2}Se_{8}、Cu (In, Ga)_{2}Se_{5} 和 Cu (In, Ga)_{2}Se_{7}、Cu_{2} (In, Ga)_{2}Se_{9} 和 Cu_{1-x} (In, Ga) Se_{2+1/2} (0.4 ≤ x < 1.0) 等，由于靶材的电导率很差，采用直流或光溅射制膜时会形成电荷积累，导致溅射速率不稳定，因此只能采用对靶材电导率不敏感的射频溅射；对于单靶溅射靶材 Cu_{1-x} (In, Ga) Se_{2+1/2} (0.05 ≤ x ≤ 0.50)，其电导率也很低，同样也只能采用射频溅射。
一个典型的单靶溅射制备 CIGS 光吸收层的制备流程为：以 Cu_{0.8}(In,Ga)Se_{1.9} 作为靶材，采用射频溅射法制备 CIGS 前驱薄膜。溅射功率密度为 2Wcm^{-2}，靶距为 8cm，工作气压为 0.8Pa。所制备的 CIGS 前驱薄膜的厚度为 1500nm；在 10000Pa 的氨气中，将 CIGS 前驱薄膜置于 Se 源温度为 250℃的 Se 的饱和蒸汽压中，以 20℃/min 快速升温至 530℃并保温 30min，即制备出所需的 CIGS 光吸收层。

一个典型的多靶和清靶同时溅射制备 CIGS 光吸收层的制备流程为：以 CuSe 靶作为富铜靶，Cu(In, Ga)_{5}Se_{3} 靶作为贫铜靶，Cu_{2}Se 靶采用直流溅射，溅射功率密度为 0.8Wcm^{-2}，靶距为 8cm，气压为 0.8Pa；Cu(In, Ga)_{5}Se_{3} 靶采用射频溅射，溅射功率密度为 2Wcm^{-2}，靶距为 8cm，工作气压为 0.8Pa。所制备的 CIGS 前驱薄膜的厚度为 1000nm，薄膜中 Cu/(In+Ga) = 0.90，Ga/(In+Ga) = 0.30；在 30000Pa 的氨气中，将 CIGS 前驱薄膜置于 Se 源温度为 300℃的 Se 的饱和蒸汽压中，以 30℃/min 快速升温至 550℃并保温 20min，即制备出所需的 CIGS 光吸收层。

第二种方案如图 2 所示。在底电极 101 上通过磁控溅射法，采用富铜靶和清铜靶先后溅射，形成富铜层和清铜层交替出现的叠层结构（201 ~ 20n），制备出 CIGS 前驱薄膜，并经过热处理生成 CIGS 光吸收层。其中最底层 201 既是富铜层也是是清铜层，顶层 20n 同样既可是富铜层也可是清铜层，顶层 20n 优选为贫铜层。

一个典型的多靶和清靶先后溅射制备 CIGS 光吸收层的制备流程为：以 Cu_{2}Se 靶作为富铜靶，(In, Ga)_{5}Se_{3} 靶作为贫铜靶，Cu_{2}Se 靶采用射频溅射，溅射功率密度为 0.4Wcm^{-2}，靶距为 8cm，工作气压为 0.8Pa；(In, Ga)_{5}Se_{3} 靶也采用射频溅射，溅射功率密度为 2Wcm^{-2}，靶距为 8cm，工作气压为 0.8Pa。首先制备的底层 201 层为清铜的 (In, Ga)_{5}Se_{3}，然后制备富铜的衬底 202 层 Cu_{2}Se，再次制备清铜的顶层 203 层 (In, Ga)_{5}Se_{3}，形成 1500nm 厚的 CIGS 前驱薄膜。薄膜中 Cu/(In+Ga) = 0.85，Ga/(In+Ga) = 0.30；在 50Pa 的氨气中，将前驱薄膜置于 Se 源温度为 250℃的 Se 的饱和蒸汽压中，以 30℃/min 快速升温至 550℃并保温 20min，即制备出所需的 CIGS 光吸收层。

在所制备的 CIGS 光吸收层表面通过化学液氧沉积法制备 70nm 厚的 CdS 层，再在其上通过溅射法制备 100nm 厚的 i-ZnO 层和 600nm 厚的 ZnO:Al 层，即得到 CIGS 薄膜太阳电池。

下面介绍本发明的实施例，但本发明不局限于实施例。

实施例 1：

制备 CIGS 前驱薄膜：在镀钼的钠钙硅玻璃上，以 Cu_{0.9}In_{0.8}Ga_{0.2}Se_{1.95} 作为靶材，采用射频溅射法制备 CIGS 前驱薄膜，溅射功率密度为 1.2Wcm^{-2}，靶距为 7cm，工作气压为 1.2Pa；所制备的 CIGS 前驱薄膜的厚度为 1200nm。由于元素溅射率的差异，所制备的 CIGS 前驱薄膜中 Cu/(In+Ga) = 0.86，Ga/(In+Ga) = 0.20。

CIGS 前驱薄膜热处理：在 30000Pa 的氨气中，将固态单质 Se 温度加热到 230℃，形成 Se 的饱和蒸汽压，将 CIGS 前驱薄膜置于饱和 Se 蒸汽压中，以 30℃/min 的升温速度将 CIGS 前驱薄膜加热到 530℃并保温 30min，即制备出所需的 CIGS 光吸收层。

实施例 2：

制备 CIGS 前驱薄膜：在镀钼的陶瓷板上，以 Cu_{0.7}In_{0.6}Ga_{0.3}Se_{1.85} 作为靶材，采用射频溅射法制备 CIGS 前驱薄膜，溅射功率密度为 0.2Wcm^{-2}，靶距为 4cm，工作气压为 0.05Pa；
所制备的 CIGS 前驱薄膜的厚度为 500nm，由于元素溅射率的差异，所制备的 CIGS 前驱薄膜中 Cu/(In+Ga) = 0.67, Ga/(In+Ga) = 0.40。

【0046】 CIGS 前驱薄膜热处理：在 100000Pa 的氮气中，将固态单质 Se 粉加热到 180℃，形成 Se 的饱和蒸汽压，将 CIGS 前驱薄膜置于饱和 Se 蒸汽压中，以 10°C /min 的升温速度将 CIGS 前驱薄膜加热到 450℃并保温 60min，即制备出所需的 CIGS 光吸收层。

【0047】 实施例 3：
【0048】制备 CIGS 前驱薄膜：在镀钼的不锈钢箔上，以 Cu_{0.5}In_{0.5}Ga_{0.5}Se_{1.5} 作为靶材，采用射频溅射法制备 CIGS 前驱薄膜，溅射功率密度为 3.0W/cm^2，靶距为 10cm，工作气压为 5Pa；所制备的 CIGS 前驱薄膜的厚度为 1500nm，由于元素溅射率的差异，所制备的 CIGS 前驱薄膜中 Cu/(In+Ga) = 0.49, Ga/(In+Ga) = 0.70。

【0049】 CIGS 前驱薄膜热处理：在 10000Pa 的氮气中，将固态单质 Se 粉加热到 350℃，形成 Se 的饱和蒸汽压，将 CIGS 前驱薄膜置于饱和 Se 蒸汽压中，以 50°C /min 的升温速度将 CIGS 前驱薄膜加热到 500℃并保温 30min，即制备出所需的 CIGS 光吸收层。

【0050】 实施例 4：
【0051】制备 CIGS 前驱薄膜：在镀钼的钛箔上，以 CuIn_{0.05}Ga_{0.95}Se_{1.5} 作为靶材，采用射频溅射法制备 CIGS 前驱薄膜，溅射功率密度为 10.0W/cm^2，靶距为 20cm，工作气压为 20Pa；所制备的 CIGS 前驱薄膜的厚度为 2500nm，由于元素溅射率的差异，所制备的 CIGS 前驱薄膜中 Cu/(In+Ga) = 0.96, Ga/(In+Ga) = 0.95。

【0052】 CIGS 前驱薄膜热处理：在 5Pa 的氮气中，将固态单质 Se 粉加热到 450℃，形成 Se 的饱和蒸汽压，将 CIGS 前驱薄膜置于饱和 Se 蒸汽压中，以 100°C /min 的升温速度将 CIGS 前驱薄膜加热到 600℃并保温 10min，即制备出所需的 CIGS 光吸收层。

【0053】 实施例 5：
【0054】 制备 CIGS 前驱薄膜：在镀钼的钠钙硅玻璃上，以 Cu_{2}Se 和 Cu(In, Ga)_{5}Se_{8} 作为靶材，分别采用直流和射频同时溅射法制备 CIGS 前驱薄膜，溅射功率密度均为 3.5W/cm^2，靶距均为 8cm，工作气压为 5.5Pa；所制备的 CIGS 前驱薄膜的厚度为 1600nm。

【0055】 CIGS 前驱薄膜热处理：在 30000Pa 的氮气中，将固态单质 Se 粉加热到 230℃，形成 Se 的饱和蒸汽压，将 CIGS 前驱薄膜置于饱和 Se 蒸汽压中，以 30°C /min 的升温速度将 CIGS 前驱薄膜加热到 500℃并保温 30min，即制备出所需的 CIGS 光吸收层。

【0056】 实施例 6：
【0057】 制备 CIGS 前驱薄膜：在镀钼的聚酰亚胺膜上，以 Cu 和 (In, Ga)_{2}Se_{3} 作为靶材，分别采用直流和射频同时溅射法制备 CIGS 前驱薄膜，溅射功率密度均为 0.2W/cm^2，靶距均为 4cm，工作气压为 0.05Pa；所制备的 CIGS 前驱薄膜的厚度为 600nm。

【0058】 CIGS 前驱薄膜热处理：在 100000Pa 的氮气中，将固态单质 Se 粉加热到 180℃，形成 Se 的饱和蒸汽压，将 CIGS 前驱薄膜置于饱和 Se 蒸汽压中，以 10°C /min 的升温速度将 CIGS 前驱薄膜加热到 450℃并保温 60min，即制备出所需的 CIGS 光吸收层。

【0059】 实施例 7：
【0060】 制备 CIGS 前驱薄膜：在镀钼的钠钙硅玻璃上，以 Cu_{2.2}(In, Ga)_{1.8}Se_{2.1} 和 Cu_{2}(In, Ga)_{5}Se_{8} 作为靶材，分别采用直流和射频同时溅射法制备 CIGS 前驱薄膜，溅射功率密度均为 5.0W/cm^2，靶距均为 12cm，工作气压为 10Pa；所制备的 CIGS 前驱薄膜的厚度为 2000nm。
CIGS前驱薄膜热处理：在100Pa的氮气中，将固态单质Se源加热到350℃，形成Se的饱和蒸汽压，将CIGS前驱薄膜置于饱和Se蒸汽压中，以50℃/min的升温速度将CIGS前驱薄膜加热到500℃并保温30min，即制备出所需的CIGS光吸收层。

制备CIGS前驱薄膜：在镀钼的钠钙硅玻璃上，以Cu(In, Ga)Se₂和Cu(In, Ga)Se₁.₅作靶材，分别采用直流和射频同时溅射制备CIGS前驱薄膜，溅射功率密度均为10.0W/cm²，靶距均为20cm，工作气压为20Pa；所制备的CIGS前驱薄膜的厚度为2400nm。

CIGS前驱薄膜热处理：在5Pa的氮气中，将固态单质Se源加热到450℃，形成Se的饱和蒸汽压，将CIGS前驱薄膜置于饱和Se蒸汽压中，以100℃/min的升温速度将CIGS前驱薄膜加热到600℃并保温10min，即制备出所需的CIGS光吸收层。

制备CIGS前驱薄膜：在镀钼的钠钙硅玻璃上，以贫铜靶Cu(In, Ga)₅Se₅作靶材，采用射频溅射法制备贫铜靶CIGS前驱薄膜201，溅射功率密度为1.2W/cm²，靶距为7cm，工作气压为1.2Pa；以富铜靶Cu₃Se作为靶材，采用直流溅射法制备富铜靶CIGS前驱薄膜202，溅射功率密度为1.2W/cm²，靶距为7cm，工作气压为1.2Pa；以Cu(In₁.₅Ga₀.₅)₅Se₅作为靶材，采用射频溅射法制备贫铜靶CIGS前驱薄膜203，溅射功率密度为1.2W/cm²，靶距为7cm，工作气压为1.2Pa；所制备的CIGS前驱薄膜的厚度为1200nm，所制备的CIGS前驱薄膜中Cu/(In+Ga) = 0.86，Ga/(In+Ga) = 0.30。

CIGS前驱薄膜热处理：在30000Pa的氮气中，将固态单质Se源加热到250℃，形成Se的饱和蒸汽压，将CIGS前驱薄膜置于饱和Se蒸汽压中，以30℃/min的升温速度将CIGS前驱薄膜加热到550℃并保温30min，即制备出所需的CIGS光吸收层。

制备CIGS前驱薄膜：在镀钼的钠钙硅玻璃上，以贫铜靶(In, Ga)₅Se₅作靶材，采用射频溅射法制备贫铜靶CIGS前驱薄膜201，溅射功率密度为0.2W/cm²，靶距为4cm，工作气压为0.05Pa；以富铜靶Cu₃Se作靶材，采用直流溅射法制备富铜靶CIGS前驱薄膜202，溅射功率密度为0.2W/cm²，靶距为4cm，工作气压为0.05Pa；以(In, Ga)₅Se₅作靶材，采用射频溅射法制备贫铜靶CIGS前驱薄膜203，溅射功率密度为0.2W/cm²，靶距为4cm，工作气压为0.05Pa；所制备的CIGS前驱薄膜的厚度为500nm。

CIGS前驱薄膜热处理：在100000Pa的氮气中，将固态单质Se源加热到180℃，形成Se的饱和蒸汽压，将CIGS前驱薄膜置于饱和Se蒸汽压中，以10℃/min的升温速度将CIGS前驱薄膜加热到450℃并保温60min，即制备出所需的CIGS光吸收层。

制备CIGS前驱薄膜：在镀钼的钠钙硅玻璃上，以贫铜靶(In, Ga)₅Se₅作靶材，采用射频溅射法制备贫铜靶CIGS前驱薄膜201，溅射功率密度为5W/cm²，靶距为15cm，工作气压为5Pa；以富铜靶Cu(In, Ga)Se作靶材，采用直流溅射法制备富铜靶CIGS前驱薄膜202，溅射功率密度为5W/cm²，靶距为15cm，工作气压为5Pa；以(In, Ga)₅Se₅作靶材，采用射频溅射法制备贫铜靶CIGS前驱薄膜203，溅射功率密度为5W/cm²，靶距为15cm，工作气压为5Pa；所制备的CIGS前驱薄膜的厚度为1500nm。

CIGS前驱薄膜热处理：在100Pa的氮气中，将固态单质Se源加热到350℃，形成Se
的饱和蒸汽压，将CIGS前驱薄膜置于饱和Se蒸汽压中，以50℃/min的升温速度将CIGS前驱薄膜加热到500℃并保温30min，即制备出所需的CIGS光吸收层。

【0074】 实施例12：

【0075】 制备CIGS前驱薄膜：在镀膜的钠钙硅玻璃上，以贫铜靶Cu_{1.6}(In,Ga)Se_{1.75}为靶材，采用射频溅射法制备贫铜相CIGS前驱薄膜201，溅射功率密度为10W/cm²，靶距为20cm，工作气压为20Pa；以富铜靶Cu_{2}Se作为靶材，采用直流溅射法制备富铜相CIGS前驱薄膜202，溅射功率密度为10W/cm²，靶距为20cm，工作气压为20Pa；以Cu_{1.6}(In,Ga)Se_{1.75}为靶材，采用射频溅射法制备贫铜相CIGS前驱薄膜203，溅射功率密度为10W/cm²，靶距为20cm，工作气压为20Pa；所制备的CIGS前驱薄膜的厚度为2500nm。

【0076】CIGS前驱薄膜热处理：在5Pa的氮气中，将固态单质Se源加热到450℃，形成Se的饱和蒸汽压，将CIGS前驱薄膜置于饱和Se蒸汽压中，以100℃/min的升温速度将CIGS前驱薄膜加热到600℃并保温10min，即制备出所需的CIGS光吸收层。

【0077】 实施例13：

【0078】 制备CIGS前驱薄膜：在镀膜的钠钙硅玻璃上，以贫铜靶(In,Ga)Se_{2}和Cu(In_{0.6}Ga_{0.4})Se_{2}为靶材，采用射频溅射法制备贫铜相CIGS前驱薄膜201，溅射功率密度为1.2W/cm²，靶距为7cm，工作气压为1.2Pa；以富铜靶Cu_{2}Se和Cu(In,Ga)Se_{2}为靶材，采用直流溅射法制备富铜相CIGS前驱薄膜202，溅射功率密度为1.2W/cm²，靶距为7cm，工作气压为1.2Pa；以Cu_{1.6}(In,Ga)Se_{1.75}为靶材，采用射频溅射法制备贫铜相CIGS前驱薄膜203，溅射功率密度为1.2W/cm²，靶距为7cm，工作气压为1.2Pa；所制备的CIGS前驱薄膜的厚度为1200nm，所制备的CIGS前驱薄膜中Cu/(In+Ga) = 0.86，Ga/(In+Ga) = 0.30。

【0079】CIGS前驱薄膜热处理：在30000Pa的氮气中，将固态单质Se源加热到250℃，形成Se的饱和蒸汽压，将CIGS前驱薄膜置于饱和Se蒸汽压中，以30℃/min的升温速度将CIGS前驱薄膜加热到550℃并保温30min，即制备出所需的CIGS光吸收层。

【0080】 实施例14：

【0081】 制备CIGS前驱薄膜：在镀膜的钠钙硅玻璃上，以贫铜靶Cu(In_{0.6}Ga_{0.4})Se_{2}为靶材，采用射频溅射法制备贫铜相CIGS前驱薄膜201，溅射功率密度为1.2W/cm²，靶距为7cm，工作气压为1.2Pa；以富铜靶Cu_{2}Se和Cu(In_{0.6}Ga_{0.4})Se_{2}为靶材，采用直流溅射法制备富铜相CIGS前驱薄膜202，溅射功率密度为1.2W/cm²，靶距为7cm，工作气压为1.2Pa；以贫铜靶Cu_{1.6}(In,Ga)Se_{1.75}为靶材，采用射频溅射法制备贫铜相CIGS前驱薄膜203，溅射功率密度为1.2W/cm²，靶距为7cm，工作气压为1.2Pa；所制备的CIGS前驱薄膜的厚度为1200nm，由于元素溅射率的差异，所制备的CIGS前驱薄膜中Cu/(In+Ga) = 0.86，Ga/(In+Ga) = 0.30。

【0082】CIGS前驱薄膜热处理：在30000Pa的氮气中，将固态单质Se源加热到250℃，形成Se的饱和蒸汽压，将CIGS前驱薄膜置于饱和Se蒸汽压中，以30℃/min的升温速度将CIGS前驱薄膜加热到550℃并保温30min，即制备出所需的CIGS光吸收层。

【0083】 实施例15：
制备 CIGS 前驱薄膜：在镀钼的钠钙硅玻璃上，以贫铜靶 (In, Ga)\(_2\)Se\(_3\) 为靶材，采用射频溅射法制备贫铜相 CIGS 前驱薄膜 201，溅射功率密度为 0.2Wcm\(^2\)，靶距为 4cm，工作气压为 0.05Pa；以富铜靶 CuSe 作为靶材，采用直流溅射法制备富铜相 CIGS 前驱薄膜 202，溅射功率密度为 0.2Wcm\(^2\)，靶距为 4cm，工作气压为 0.05Pa；以贫铜靶 (In, Ga)\(_2\)Se\(_3\) 为靶材，采用射频溅射法制备贫铜相 CIGS 前驱薄膜 203，溅射功率密度为 0.2Wcm\(^2\)，靶距为 4cm，工作气压为 0.05Pa；以富铜靶 CuSe 作为靶材，采用直流溅射法制备富铜相 CIGS 前驱薄膜 204，溅射功率密度为 0.2Wcm\(^2\)，靶距为 4cm，工作气压为 0.05Pa；以贫铜靶 (In, Ga)\(_2\)Se\(_3\) 为靶材，采用射频溅射法制备贫铜相 CIGS 前驱薄膜 205，溅射功率密度为 0.2Wcm\(^2\)，靶距为 4cm，工作气压为 0.05Pa；所制备的 CIGS 前驱薄膜的厚度为 1200nm，由于元素溅射率的差异，所制备的 CIGS 前驱薄膜中 Cu/(In+Ga) = 0.86，Ga/(In+Ga) = 0.30。

CIGS 前驱薄膜热处理：在 100000Pa 的氮气中，将固态单质 Se 源加热到 180℃，形成 Se 的饱和蒸汽压，将 CIGS 前驱薄膜置于饱和 Se 蒸汽压中，以 10℃/min 的升温速度将 CIGS 前驱薄膜加热到 450℃并保温 60min，即制备出所需的 CIGS 光吸收层。

实施例 16：

制备 CIGS 前驱薄膜：在镀钼的钠钙硅玻璃上，以贫铜靶 (In, Ga)\(_2\)Se\(_3\) 为靶材，采用射频溅射法制备贫铜相 CIGS 前驱薄膜 201，溅射功率密度为 5Wcm\(^2\)，靶距为 15cm，工作气压为 5Pa；以富铜靶 Cu(In, Ga)Se 作为靶材，采用直流溅射法制备富铜相 CIGS 前驱薄膜 202，溅射功率密度为 5Wcm\(^2\)，靶距为 15cm，工作气压为 5Pa；以贫铜靶 (In, Ga)\(_2\)Se\(_3\) 为靶材，采用射频溅射法制备贫铜相 CIGS 前驱薄膜 203，溅射功率密度为 5Wcm\(^2\)，靶距为 15cm，工作气压为 5Pa；以富铜靶 Cu(In, Ga)Se 作为靶材，采用直流溅射法制备富铜相 CIGS 前驱薄膜 204，溅射功率密度为 5Wcm\(^2\)，靶距为 15cm，工作气压为 5Pa；以贫铜靶 (In, Ga)\(_2\)Se\(_3\) 为靶材，采用射频溅射法制备贫铜相 CIGS 前驱薄膜 205，溅射功率密度为 5Wcm\(^2\)，靶距为 15cm，工作气压为 5Pa；以富铜靶 Cu(In, Ga)Se 作为靶材，采用直流溅射法制备富铜相 CIGS 前驱薄膜 206，溅射功率密度为 5Wcm\(^2\)，靶距为 15cm，工作气压为 5Pa；以贫铜靶 (In, Ga)\(_2\)Se\(_3\) 为靶材，采用射频溅射法制备贫铜相 CIGS 前驱薄膜 207，溅射功率密度为 5Wcm\(^2\)，靶距为 15cm，工作气压为 5Pa；所制备的 CIGS 前驱薄膜的厚度为 1800nm，由于元素溅射率的差异，所制备的 CIGS 前驱薄膜中 Cu/(In+Ga) = 0.86，Ga/(In+Ga) = 0.30。

CIGS 前驱薄膜热处理：在 100Pa 的氮气中，将固态单质 Se 源加热到 350℃，形成 Se 的饱和蒸汽压，将 CIGS 前驱薄膜置于饱和 Se 蒸汽压中，以 30℃/min 的升温速度将 CIGS 前驱薄膜加热到 500℃并保温 30min，即制备出所需的 CIGS 光吸收层。