发明名称
一种参原药材、食品、保健品原料加工方法

摘要
本发明涉及中药现代化领域，涉及一种以人参、西洋参和人参茎叶、西洋参茎叶为原材料、通过纯化应用生物复合酶制剂，加工生产药用、食品用、保健品用原料的方法。该加工方法工艺先进，方法简单易行，人参功效成分浸出率高、浸出速度快、有效成分易被人体吸收。其产品可直接或经简单再加工后用于药品、食品、保健品。
1. 一种气爆联用生物复合酶制剂制备参原药产品、食品、保健品原料的加工方法，由以下步骤完成：

(1) 原料前处理；将人参、西洋参和人参茎叶、西洋参茎叶水洗去泥沙等杂质后粉碎；

(2) 气爆处理；将经过原料前处理的参、西洋参和人参茎叶、西洋参茎叶置于气爆罐内，先通入空气至气爆罐内压力为 0.5-1.0MPa，气爆处理 5-20 分钟；然后迅速通入蒸汽至气爆罐内压力为 1.0-1.5MPa，蒸汽气爆处理 0.5-5 分钟；

(3) 生物复合酶处理；将气爆后原料以适量水或缓冲液润湿，加入生物复合酶制剂（包含纤维素酶、淀粉酶、木聚糖酶、漆酶），混合均匀，进行酶促降解反应，降解纤维素、淀粉、木质素、半纤维素大分子物质；

(4) 干燥灭菌；将经 (3) 处理得到的反应体系，干燥，灭菌；

(5) 检测；取样参粉原料进行批检验；

(6) 包装；经检验合格的参粉按规格包装，封存。

2. 如权利要求 1 所述的气爆技术，其气爆介质为空气、蒸汽，先以空气加压较长时间气爆，然后以蒸汽短时间气爆处理。

3. 如权利要求 1 所述的生物复合酶制剂，其特征在于它是由下述重量百分比的成分组成的复合物：纤维素酶 15-30%，α-淀粉酶 20-35%，木聚糖酶 10-25%，漆酶 10-25%。
说明书

一种参原药品、食品、保健品原料加工方法

技术领域
【0001】本发明属于中药现代化领域，涉及一种以人参、西洋参和人参茎叶、西洋参茎叶为原材料，通过气爆联用生物复合酶制剂，加工生产药用、食品用、保健品用原料的方法。该加工方法工艺先进，方法简单易行，人参功效成分浸出率高、浸出速度快，有效成分易被人体吸收。其产品可直接或简单再加工后用于药品、食品、保健品。

背景技术
【0002】人参（Panax ginseng C.A.Mey.）、西洋参（Panax quinquefolium L.）均为五加科（Araliaceae）人参属（Panax）植物。其中，人参属希腊文的含义是“万能药”，人参的满语发音为“奥尔勿达”，是“百草之王”的之意。作为传统药材，具有数千年的历史，在世界各国广泛应用。

【0003】人参大补元气，复脉固脱，补脾益肺，生津，安神。西洋参补气养阴，清热生津。人参皂苷、人参多糖、人参蛋白多肽是其主要活性成分；除此之外，还含有氨基酸、甾醇、黄酮、微量元素等有效成分，这些是其具有“百草之王”美誉的物质基础。其中，人参皂苷具有抗肿瘤，抗糖尿病，抗辐射，等多种生物活性；人参蛋白及多肽具有抗辐射，提高免疫力等功效；人参多糖具有调节免疫、抗肿瘤、抗病理、抗氧化、降血糖等活性。然而在利用这些活性成分过程中，无论是直接服用原药材或其简单加工品（如粉碎、蒸制等），还是通过提取、分离得到有效部位再服用，其细胞壁的屏障作用都是影响人参功效成分浸出率、浸出速度，及生物体吸收的关键制约因素，而这些都直接影响着人参、西洋参功效的发挥。

【0004】人参、西洋参细胞壁中的木质素和半纤维素以共价键的方式相结合，果胶以嵌入的形式将木质素、半纤维素和纤维素结合，纤维素分子被包埋其中，形成一层天然屏障。无论是微生物发酵，还是生物酶制剂直接作用于细胞壁，都无法直接打开木质素的天然屏障。

【0005】气爆技术可将渗透植物组织内部被压缩的气体短时间突发性释放完毕，目的是用较少的能量将原料按要求分解。气爆机将容器内的全部原料在毫秒级时间内范围内、以炸开的形式悬在大气空间。由于其作用时间短、能量密度高而且集中，气体分子可以渗透到纤维素与木质素等大分子之间，充分的在大分子水平上将物料分解。因此，气爆过程可以将植物细胞壁果胶嵌入的木质素、半纤维素和纤维素的聚集体打散为木质素、果胶、半纤维素和纤维素的分散体，从而在一定程度上破坏细胞壁天然屏障系统。

【0006】酶作为一种特殊的以蛋白质形式存在的生物催化剂，在食品、啤酒、果汁果酒、纺织、饲料、皮革、酒精等行业得到了广泛的应用，并以其特异、高效、绿色环保等特点而备受青睐。

【0007】本发明正是考虑到气爆技术可以破坏细胞壁天然屏障系统，从而采用气爆技术将人参、西洋参和人参茎叶、西洋参茎叶细胞壁中的果胶嵌入的木质素、半纤维素和纤维素的聚集体打散为木质素、果胶、半纤维素和纤维素的分散体后，继而利用生物复合酶将木质素、纤维素和半纤维素降解为小分子。从而最大限度的提高人参、西洋参等作为药用、食品、保健品及其原料时，人参功效成分浸出率、浸出速度。
发明内容

[0008] 本发明针对目前在利用人参、西洋参等的人参功效成分过程中，无论是直接服用原药材或其简单加工品（如粉碎、蒸制等），还是通过提取、分离得到有效部位再服用，其细胞壁的屏障作用对人参功效成分浸出率、浸出速度，及生物体吸收的制约，致使人参、西洋参功效难以发挥的问题；以人参、西洋参和人参茎叶、西洋参茎叶等为原料，依据实验数据，发明了一种利用汽爆联用生物复合酶制剂制备参原药品，食品、保健品原料加工方法。

[0009] 本发明的目的是提供一种以人参、西洋参和人参茎叶、西洋参茎叶等为原料，利用汽爆联用生物复合酶制剂制备参原药品，食品、保健品原料加工方法。

[0010] 本发明提供的汽爆联用生物复合酶制剂制备参原药品，食品、保健品原料的加工方法，由以下步骤完成；

[0011] (1) 原料前处理：将人参、西洋参和人参茎叶、西洋参茎叶水洗去泥沙等杂质后粉碎；

[0012] (2) 汽爆处理：将经过原料前处理的人参、西洋参和人参茎叶、西洋参茎叶置于汽爆罐内，先通入空气至汽爆罐内压力为 0.5~1.0MPa，爆破处理 5~20 分钟；然后迅速通入蒸汽至汽爆罐内压力为 1.0~1.5MPa，蒸汽爆破处理 0.5~5 分钟；

[0013] (3) 生物复合酶处理：将汽爆后原料以适量水或缓冲溶液润湿，加入生物复合酶制剂（包含纤维素酶、淀粉酶、木聚糖酶、漆酶），混合均匀，进行酶促降解反应，降解纤维素、淀粉、木质素、半纤维素大分子物质；

[0014] (4) 干燥灭菌：将经 (3) 处理得到的反应体系，干燥，灭菌；

[0015] (5) 检测：取样参粉原料进行批检验；

[0016] (6) 包装：经检验合格的参粉按规格包装，封存。

[0017] 本发明从技术原理上有以下显著特点：

[0018] (1) 本发明涉及的汽爆处理是以空气和蒸汽作为汽爆介质，先通入空气至汽爆罐内压力为 0.5~1.0MPa，爆破处理 5~20 分钟；然后迅速通入蒸汽至汽爆罐内压力为 1.0~1.5MPa，蒸汽爆破处理 0.5~5 分钟；如此处理条件比较温和，有利于保护人参功效成分，避免其活性成分的破坏。

[0019] (2) 本发明涉及的生物复合酶可以将木质素、纤维素、淀粉和半纤维素降解为小分子。

[0020] (3) 汽爆技术联用生物复合酶，可以实现最大限度的降低其它大分子物质对人参、西洋参功效成分溶出的干扰，从而提高人参功效成分浸出率、浸出速度，使有效成分易被人体吸收。其产品可直接或经简单再加工后用于药品、食品、保健品。

具体实施方式

[0021] (1) 本发明的生产工艺流程：原料前处理，汽爆处理，生物复合酶处理，干燥灭菌，检测，包装。

[0022] (2) 本发明的生产工艺中汽爆处理为：将经过原料前处理的人参、西洋参和人参茎叶、西洋参茎叶置于汽爆罐内，先通入空气至汽爆罐内压力为 0.5~1.0MPa，爆破处理 5~20 分钟；然后迅速通入蒸汽至汽爆罐内压力为 1.0~1.5MPa，蒸汽爆破处理 0.5~5 分钟。
(3) 本发明的生产工艺中生物复合酶制备过程如下：经检测合格的原料按上述重量百分比进入各项投料口；纤维素酶15–30％，α-淀粉酶20–35％，木聚糖酶10–25％，漆酶10–25％。经自动混合机复配，然后通测定酶活，定量包装，成为产品。

(4) 本发明的生产工艺中生物复合酶使用方法如下：作用温度：15–60℃（或室温）；pH：5.0–7.0；作用时间：1–6h；添加量：500g–5000g/吨物料。

(5) 本发明的生产工艺中生物复合酶使用方法如下：作用温度：15–60℃（或室温）；pH：5.0–7.0；作用时间：1–6h；添加量：500g–5000g/吨物料。

(6) 实验数据：以生晒参为原料，以37℃水中有效成分浸出率为指标，对不同生产工艺进行评价。

| 处理工艺 | 无处理 | 空气、蒸汽汽爆 | 复合酶处理 | 空气、蒸汽汽爆
+复合酶处理 |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>人参皂苷溶出率（%）</td>
<td>1h</td>
<td>1.25</td>
<td>1.39</td>
<td>1.33</td>
</tr>
<tr>
<td></td>
<td>3h</td>
<td>1.75</td>
<td>1.91</td>
<td>1.86</td>
</tr>
<tr>
<td></td>
<td>6h</td>
<td>2.03</td>
<td>2.24</td>
<td>2.13</td>
</tr>
<tr>
<td>人参多糖溶出率（%）</td>
<td>1h</td>
<td>8.51</td>
<td>9.61</td>
<td>9.32</td>
</tr>
<tr>
<td></td>
<td>3h</td>
<td>12.15</td>
<td>14.02</td>
<td>13.89</td>
</tr>
<tr>
<td></td>
<td>6h</td>
<td>14.33</td>
<td>16.83</td>
<td>15.78</td>
</tr>
<tr>
<td>人参蛋白溶出率（%）</td>
<td>1h</td>
<td>3.26</td>
<td>3.61</td>
<td>3.53</td>
</tr>
<tr>
<td></td>
<td>3h</td>
<td>4.75</td>
<td>5.29</td>
<td>5.16</td>
</tr>
<tr>
<td></td>
<td>6h</td>
<td>5.53</td>
<td>6.39</td>
<td>6.15</td>
</tr>
</tbody>
</table>

(7) 实验结论

由以上数据可以得出，在以人参、西洋参和人参茎叶、西洋参茎叶（以人参生晒参为例）为材料，以汽爆联用生物复合酶进行加工得到的参粉原料，与单用空气蒸汽汽爆生产的参粉原料、单用复合酶处理生产的参粉原料、及无辅助处理生产的参粉原料相比，在进行模拟生物体内溶出实验中，无论是小分子的人参皂苷，还是大分子的人参多糖、人参蛋白，其溶出率及溶出速度都要高出很多。

具体实施例

(1) 实施例1：

(2) 实施例2：将经过前处理的人参置于汽爆锅内，先通入空气至汽爆锅内压力为1.0MPa，破破处理10分钟；然后迅速通入蒸汽至汽爆锅内压力为1.5MPa，蒸汽破破处理2分钟。

(3) 生物复合酶处理：将汽爆后原料以水润湿，含水量30%，按物料比为0.5%
量加入生物复合酶制剂（包含纤维素酶30％，α-淀粉酶35％，木聚糖酶15％，漆酶20％），混合均匀，在pH7.30℃条件下水解5h；

【0034】（4）干燥灭菌：将经（3）处理得到的反应体系，冷冻干燥，微波灭菌；
【0035】（5）检测：取样参粉原料进行批检验，检测样品中人参皂苷、人参多糖、人参蛋白含量；
【0036】（6）包装：经检验合格的参粉按每箱25kg包装，封存。

【0037】实施例2：
【0038】（1）原料前处理：将西洋参地上部分水洗去泥沙等杂质后粉碎，过20目筛；
【0039】（2）蒸汽处理：将经过前处理的西洋参地上部分粉末置于蒸汽罐内，先通入空气至蒸汽罐内压力为0.8MPa，爆破处理8分钟；然后迅速通入蒸汽至蒸汽罐内压力为1.5MPa，蒸汽爆破处理1分钟；
【0040】（3）生物复合酶处理：将蒸汽后原料以水润湿，含水量30％，按物料比为0.5％的量加入生物复合酶制剂（包含纤维素酶25％，α-淀粉酶30％，木聚糖酶20％，漆酶25％），混合均匀，在pH7.40℃条件下水解3h；
【0041】（4）干燥灭菌：将经（3）处理得到的反应体系，减压干燥，60Co辐照灭菌；
【0042】（5）检测：取样参粉原料进行批检验，检测样品中人参皂苷、人参多糖、人参蛋白含量；
【0043】（6）包装：经检验合格的参粉按每箱10kg包装，封存。