DEUTSCHE DEMOKRATISCHE REPUBLIK

PATENTSCHRIFT

Ausschliessungspatent

Erteilt gemaeß § 5 Absatz 1 des Aenderungsgesetzes

ISSN 0433-6461

·(11)

204 841

Int.Cl.3

3(51) A 24 C 5/34

MT FUER ERFINDUNGS- UND PATENTWESEN

In der vom Anmelder eingereichten Fassung veroeffentlicht

AP A 24 C/ 2451 662 P3146506.4

23.11.82 24.11.81

14.12.83 DE

siehe (73) LANG, GUENTER;DE; MASCHINENFABRIK ALFRED SCHMERMUND GMBH U. CO., GEVELSBERG, DE IPB (INTERNATIONALES PATENTBUERO BERLIN) 61634/16/39 1020 BERLIN WALLSTR. 23/24

VERFAHREN UND PRUEFGERAET DES FUELLUNGSGRADES VON ZIGARETTENENDEN 54)

57) Die Erfindung betrifft ein Verfahren und ein Gerät zum Prüfen des Füllungsgrades von Ligarettenenden mittels Reflexionslichtschranken (41), wobei eine Fremdlichtkompensation pezüglich des von der Reflexionslichtschranke (41) erzeugten Meßwertes bei jeder Messung, eine Belbstüberprüfung jeweils zwischen zwei Messungen unter Ausnutzung einer Grundreflexion ınd ferner eine Mittelwertbildung übr die Meßwerte derjenigen Zigaretten (43) vorgenommen vird, die als gut erkannt werden. Der Mittelwert wird dann zur Bildung des Schwellwertes verwendet, den die Meßwerte überschreiten müssen, damit die Zigaretten (43) als gut erkannt verden. Es können sowohl Zigarettenblocks (44) als auch Einzelzigaretten (43) geprüft werden. Fig. 2

Verfahren und Prüfgerät zum Prüfen des Füllungsgrades von Zigarettenenden

Anwendungsgebiet der Erfindung

Die Erfindung dient zum Prüfen des Füllungsgrades von Zigarettenen-5 den bei der Herstellung und Verpackung von Zigaretten, um nicht ordnungsgemäß gefüllte Zigaretten festzustellen, damit diese eliminiert werden können.

Charakteristik der bekannten technischen Lösungen

Aus der deutschen Offenlegungsschrift 28 13 866 ist eine Vorrichtung 10 zum Prüfen des Füllungsgrades von Zigarettenenden bekannt, bei der die Lichtaustritts- und -eintrittsfläche von Lichtsender bzw. -empfänger queraxial zur Zigarettenachse und durch eine neutrale Zone voneinander getrennt angeordnet sind und gemeinsam innerhalb der Stirnfläche einer Faseroptikplatte liegen, an die das zu prüfende

- 15 Zigarettenende zur Anlage gebracht wird. Hierbei gelangt das Licht durch Vielfachreflexion im Bereich des Zigarettenendes vom Lichtsender zum -empfänger, wodurch die Lichtintensität stark reduziert wird. Je schwächer das empfangene Signal ist, desto mehr Tabakfasern sind vorhanden. Wird ein voreingestellter Schwellwert für die Lichtinten-
- 20 sität überschritten, so gilt die betreffende Zigarette als Ausschuß.

 Nachteilig ist hierbei die komplexe Bauweise und der insbesondere

 komplizierte Aufbau der Reflexionslichtschranken, die Verwendung

 eines kleinen Signals als Anzeige für intakte Zigaretten, mögliche

 Fremdlichtbeeinflussung und mögliche Verschmutzungen der Anlagefläche
- 25 der Faseroptikplatte für die Zigarettenenden, wodurch das empfangene Signal beeinflußt werden kann.

Ein weiterer Nachteil besteht darin, daß diese Vorrichtung im anstei-

genden Ast der Beleuchtungskurve der Reflexionslichtschranke arbeitet. Dadurch wird ein zweideutiger Meßwert möglich: Wenn eine Zigarette durch Bruch oder starke Beschädigung einen relativ großen Abstand vom Prüfkopf hat, kann das reflektierte Signal auf dem abfallenden Ast der Kurve gleich groß sein wie bei einer guten Zigarette.

Ziel der Erfindung

Das Ziel der Erfindung besteht darin, ein sicheres Erkennen von nicht ordnungsgemäß gefüllten Zigaretten bei einfachem Aufbau des Prüfge10 räts zu gewährleisten.

Darlegung des Wesens der Erfindung

Aufgabe der Erfindung ist es, ein Verfahren und ein Prüfgerät zu schaffen, bei denen eine Verfälschung der Signale ausgeschaltet bzw. überprüft wird, wobei ein einfacher Aufbau des Prüfgeräts ermöglicht 15 wird.

Gegenstand der Erfindung ist daher ein Verfahren zum Prüfen des Füllungsgrades von Zigarettenenden mit Hilfe von Reflexionslichtschranken, wobei ein Schwellwert vorgegeben wird, der mit dem von der Reflexionslichtschranke erzeugten Signal verglichen wird und bei Unter-

- 20 schreiten des Schwellwertes ein Verwerfen der Zigaretten auslöst,das dadurch gekennzeichnet ist, daß eine Fremdlichtkompensation bezüglich des von der Reflexionslichtschranke erzeugten Signals durchgeführt wird, indem das auf die Reflexionslichtschranke fallende Fremdlicht bei ausgeschaltetem Lichtsender gemessen und von dem Signal der Re-
- 25 flexionslichtschranke von der Messung des Füllungsgrades abgezogen wird, und zwischen zwei Messungen des Füllungsgrades eine Selbstüberprüfung der Meßeinrichtung vorgenommen wird.

Hierdurch wird nicht nur die Verwendung handelsüblicher Reflexionslichtschranken- bestehend aus einer Leuchtdiede und einem Fototran-

- 30 sistor, die in einer Ebene nebeneinander angeordnet sind ermöglicht, sondern auch Fremdlichteinfall kompensiert und Verschmutzungen überprüft, um gegebenenfalls die Zigarettentransporteinrichtung, in der Regel eine Zigarettenverpackungsmaschine, anzuhalten und die festgestellten Fehler zu beseitigen.
- 35 Hierbei kann ein zweiter Schwellwert, der niedriger als der erste

liegt, vorgegeben werden, dessen Unterschreiten fehlende oder abgebrochene Zigaretten anzeigt.

Bei Anordnung einer lichtdurchlässigen Platte vor der Reflexionslichtschranke kann zwischen zwei Messungen des Füllungsgrades die Grundreflexion an der Platte bei eingeschaltetem Lichtsender gemessen

- 5 und mit zwei ein Fenster definierenden Schwellwerten verglichen werden, webei ein Stop-Signal erzeugt wird, wenn die Grundreflexion außerhalb des Fensters liegt. Die Fremdlichtmessung kann mit einem Grenzwert verglichen werden, bei dessen überschreiten ein Stop-Signal erzeugt wird.
- 10 Aus einer vorgegebenen Anzahl von Messungen des Füllungsgrades kann ein Mittelwert gebildet werden, der zur Bildung des Schwellwertes für den Füllungsgrad verwendet wird.

Der Mittelwert kann durch jede neue Messung des Füllungsgrades eines Zigarettenendes oberhalb des Schwellwertes in einem Maß entsprechend 15 der vorgegebenen Anzahl von Messungen zur Mittelwertbildung verändert werden.

Der Mittelwert kann durch jede neue Messung des Füllungsgrades eines Zigarettenendes unterhalb des Schwellwertes für den Füllungsgrad und oberhalb des Schwellwertes für fehlende oder abgebrochene Zigaretten 20 verändert werden.

Der Mittelwert kann jeweils um einen konstanten Betrag erniedrigt werden, der einem Füllungsgrad unterhalb des Schwellwertes für den Füllungsgrad und oberhalb des Schwellwertes für fehlende oder abgebrochene Zigaretten entspricht.

- 25 Gegenstand der Erfindung ist ferner ein Prüfgerät für den Füllungsgrad von Zigarettenenden mit einer oder mehreren Reflexionslichtschranken, die jeweils aus einem Lichtsender, der das zu prüfende
 Zigarettenende bestrahlt, und einem Lichtempfänger, der das vom Zigarettenende reflektierte Licht empfängt, bestehen und an eine Aus-
- 30 werteschaltung angeschlossen sind, in der das vom Lichtempfänger erzeugte Signal mit einem Schwellwert verglichen wird, das dadurch gekennzeichnet ist, daß die Auswerteschaltung eine Einrichtung zur Fremdlichtkompensation, in der ein Meßwert entsprechend dem empfangenen Licht bei ausgeschaltetem Lichtsender gespeichert und von einem
- 35 nachfolgenden Meßwert bei eingeschaltetem Lichtsender subtrahiert und der fremdlichtkorrigierte Meßwert einem Prüfkreis zum Vergleichen

mit dem Schwellwert zugeführt wird, und eine Einrichtung zur Selbstüberprüfung zwischen zwei aufeinanderfolgenden Messungen sowie ein Taktgeber zum zeitlich aufeinanderfolgenden Schalten des Lichtsenders aufweist.

5 Die Einrichtung zur Fremdlichtkompensation kann einen Kondensator aufweisen, der über einen während einer Phase, während der der Lichtsender ausgeschaltet ist, leitenden Analogschalter aufladbar ist und dem ein Spannungsfolger nachgeschaltet ist, wobei der Kondensator und der Spannungsfolger in der Leitung vom Lichtempfänger angeordnet 10 sind.

Die Einrichtung zur Selbstüberprüfung kann eine transparente Platte vor der oder den Reflexionslichtschranken sowie zwei Prüfkreise aufweisen, in denen der fremdlichtkorrigierte Meßwert mit einem oberen und einem unteren Schwellwert verglichen werden.

- 15 Ein Prüfkreis kann vorgesehen sein, in dem der fremdlichtkorrigierte Meßwert mit einem Schwellwert verglichen wird, dessen Unterschreiten fehlende oder abgebrochene Zigaretten anzeigt.
 - Ein Mittelwertbildungskreis kann vorgesehen sein, in dem aus einer vorgegebenen Anzahl von Messungen ein Mittelwert gebildet wird.
- 20 Der Mittelwertbildungskreis kann einen Kondensator aufweisen, dessen Ladung den Mittelwert repräsentiert und in einem Bruchteil entsprechend der vorgegebenen Anzahl von Messungen entsprechend der Abweichung vom Mittelwert bei jeder neuen Messung veränderbar ist. Ein zweiter Kondensator kann vorgesehen sein, dessen Ladung der je-
- 25 weiligen Messung entspricht und der mit dem ersten Kondensator während eines Zeitraums in Verbindung steht, der dem Bruchteil entsprechend der vorgegebenen Anzahl von Messungen entspricht.

 Der zweite Kondensator wird zweckmäßigerweise nur dann mit dem ersten Kondensator nach der jeweiligen Messung in Verbindung gebracht,
- 30 wenn der Meßwert den Schwellwert des Prüfkreises überschritten hat.

 Eine Konstantstromquelle kann vorgesehen sein, die bei Unterschreiten des Schwellwertes des Prüfkreises und überschreiten des Schwellwertes des Prüfkreises die Ladung des Kondensators um einen vorbestimmten Betrag verringert.
- 35 Der erste Kondensator kann mit einem R-2R-Netzwerk eines D/A-Wand-

lers, der von einem Zähler gesteuert wird, ein RC-Glied bilden.
Bei Verwendung mehrerer Reflexionslichtschranken kann ein Zweifach-

Multiplexer, der synchron für Lichtsender und Lichtempfänger arbeitet, vorgesehen sein zum Zweck der kontinuierlichen Mittelwertan-

5 passung beim Durchlauf der ersten Zigaretten bis zu der Anzahl, über der der Mittelwert gebildet werden soll, beim Start der Maschine. Der Zweifach-Multiplexer kann die Lichtsender im stromlosen Zustand mit einer Konstantstromquelle verbinden.

Die Platte vor der oder den Reflexionslichtschranken kann derart an10 geordnet sein, daß die zu prüfenden Zigarettenenden bei Anlage an
der Platte sich in einem Abstand im Bereich des abfallenden Teils
der Kurve der Beleuchtungsstärke des reflektierenden Lichts aufgetragen gegenüber dem Abstand des Zigarettenendes von dem Lichtempfänger befindet.

15 Ausführungsbeispiele

25

30

Die Erfindung wird nachstehend anhand der in den beigefügten Abbildungen dargestellten Ausführungsformen näher erläutert.

- Fig. 1 zeigt ein Blockschaltbild für ein Zigarettenblock-Prüfgerät.
- 20 Fig. 2 zeigt eine Ausführungsform eines optischen Blockprüfkopfes für das Gerät von Fig. 1
 - Fig. 3 zeigt die Beleuchtungsstärke B des reflektierten Lichts von einem Zigarettenende aufgetragen gegenüber dem Abstand d des Zigarettenendes von dem Lichtempfänger einer Reflexionslichtschranke.
 - Fig. 4 zeigt eine Schaltbild (schematisch) für einen Fremdlichtunterdrückungskreis.
 - Fig. 5 zeigt den zeitlichen Ablauf der Fremdlichtunterdrückung.
 - Fig. 6 zeigt eine Ausführungsform für einen Mittelwertbildungskreis.
 - Fig. 7 zeigt eine weitere Ausführungsform für einen Mittelwertbildungskreis.

Fig. 8 zeigt ein Diagramm betreffend die statistische Verteilung der Zigarettenqualität aufgetragen gegenüber der Zahl der Zigaretten in %.

Gemäß dem in Fig. 1 dargestellten Blockschaltbild besteht das Zigarettenblockprüfgerät aus einem optischen Blockprüfkopf 10, der mit einem 5 Zweifach-Multiplexer 11 verbunden ist. Die vom Blockprüfkopf 10 erzeugten Signale werden über eine Leitung 12 einem Fremdlichtunterdrückungskreis 13 zugeführt, von dem aus eine Leitung 14 zu vier parallelgeschalteten Prüfkreisen 15, 16, 17 und 18 zur Prüfung auf fehlende Zigaretten, zur Prüfung auf schlechte Zigaretten, zur Prüfung, ob die Grundreflexion 10 eine obere Grenze überschreitet, sowie zur Prüfung, ob die Grundreflexion eine untere Grenze unterschreitet, führt. Die Prüfkreise 15 bis 18 besitzen jeweils einen Schwellwerteingang 19. Die Ausgänge der Prüfkreise 15 bis 18 sind an einen digitalen Auswertekreis 20 angeschlossen.

Der Auswertekreis 20 empfängt ferner Signale von einem Fremdlichtprüf – 15 kreis 21, dessen Eingang an die Leitung 12 angeschlossen ist und der ferner einen Grenzwerteingang 22 besitzt. Zur Steuerung des Fremdlichtunterdrückungskreises 13 gibt der Auswertekreis 20 Signale über eine Leitung 23 an den Fremdlichtunterdrückungskreis 13.

Der Auswertekreis 20 besitzt ferner Eingänge 24 für Signale von einer 20 Maschine, etwa einer Zigarettenverpackungsmaschine, mit der die zu prüfenden Zigaretten am optischen Blockprüfkopf 10 entlang transportiert werden. Bei einer Revolver aufweisenden Verpackungsmaschine, bei der die Zigarettenblocks von Zellen eines Revolvers aufgenommen werden, handelt es sich bei diesen Signalen um solche, die die Winkelstellung der Zellen 25 betreffen.

Der Auswertekreis 20 besitzt ferner einen Ausgang 25 zum Anhalten der Maschine, einen Ausgang 26 zum Auswerfen des geprüften Zigarettenblocks sowie einen Ausgang 27, der eine gepulste Konstantstromquelle 28 für den Blockprüfkopf 10 ansteuert, der seinerseits über den Zweifach-Multiplexer 30 11 mit dem Blockprüfkopf 10 verbunden ist. Ein weiterer Ausgang 29 des Auswertekreises 20 steuert den Zweifach-Multiplexer 11 an.

Zusätzlich ist ein Mittelwertbildungskreis 30 vorgesehen, der über Leitungen 31 von Ausgangssignalen des Auswertekreises 20 sowie von den Sig-

nalen der Leitung 14 angesteuert wird. Ferner besitzt der Mittelwertbildungskreis 30 einen Eingang 32, über den etwa mit Hilfe eines Potentiometers 33 die zur Mittelbildung heranzuziehende Anzahl von Zigaretten
vorgegeben wird, sowie einen Eingang 34, über den etwa mit Hilfe eines
5 Potentiometers 35 die Auswurfrate vorgegeben wird. Der Ausgang 36 des
Mittelwertbildungskreises 30 ist über einen Analogschalter 37 mit dem
Schwellwerteingang 19 des Prüfkreises 16 zur Prüfung auf schlechte Zigaretten verbunden. Der Schalter 37 besitzt einen Eingang 38, auf den er
umschaltbar ost imd der einen festen, etwa durch ein Potentiometer 39
10 vorgegebenen Wert als Schwellwert liefert.

Eine Ausführungsform für einen Blockprüfkopf 10 ist in Fig. 2 dargestellt, er umfaßt eine Montageplatte 40, die mit einer Reihe von Aufnahmeöffnungen versehen ist, in die eine entsprechende Anzahl von Reflexions-lichtschranken 41 eingesetzt sind, bei denen es sich um Bauteile bestenend aus einer Leuchtdicde als Lichtsender und einem Fototransistor als Lichtempfänger handelt, die in einer Ebene nebeneinander angeordnet sind.

Vor der Montageplatte 40 ist eine planparallele transparente Platte 42 etwa aus Glas befestigt, die die Reflexionslichtschranken 41 nach außen abdeckt. Die Stärke der Platte 42 ist derart getroffen, daß bei Anlage der 20 zu prüfenden Zigarettenenden von Zigaretten 43 eines Zigarettenblocks 44, der sich beispielsweise in einer Zelle 45 eines Revolvers 46 einer Zigarettenverpackungsmaschine befindet, der Abstand d der Zigarettenenden von den jeweiligen Fototransistoren der Reflexionslichtschranken 41 größer als M, vgl. Fig. 3, ist, d.h. daß bei Anlage der Zigarettenenden 25 an der Platte 42 in jedem Fall das größte Signal (natürlich in Abhängigkeit vom Füllungsgrad des Zigarettenendes) erzeugt wird, und man sich bei größer werdendem Abstand d auf dem abfallenden Ast Kab der Kurve K von Fig. 3 bewegt. Die Platte 42 verhindert, daß man in den aufsteigenden Bereich Kauf der Kurve K gelangt, so daß Zweideutigkeiten ausgeschaltet 30 werden.

Die Reflexionslichtschranken 41 sind über ein schematisch angedeutetes Interface 47 mit einer Auswerteschaltung 48 verbunden, wie sie als Blockschaltbild in Fig. 1 dargestellt ist.

Die Fremdlichtunterdrückung wird nachstehend anhand der Fig.4 und 5 er-

läutert.

Die Abtastung jeder Reflexionslichtschranke 41 erfolgt in drei Phasen Ph1, Ph2 und Ph3. In der ersten Phase Ph1 bleibt der Lichtsender 41a ausgeschaltet. Das dabei vom Lichtempfänger 41b empfangene Signal SF wird gemessen und analog abgespeichert. Dieses Signal SF entspricht dem Fremdlichtanteil. Während der zweiten Phase Ph2 ist der Lichtsender 41a eingeschaltet. Von dem dabei gemessenen Signal SL wird das erste gespeicherte Signal SF abgezogen, das resultierende Signal SR ent spricht dann dem vom zu prüfenden Zigarettenende reflektierten Licht 10 ohne jeden Fremdlichtanteil. Am Anfang der dritten Phase Ph3 werden die Ausgänge der Prüfkreise 15 bis 18 abgefragt und digital ausgewertet. Während der dritten Phase Ph3 ist der Lichtsender 41a wieder ausgeschaltet, damit an deren Ende der Eingangsmultiplexer des Zweifach-Multiplexers 11 stromlos umgeschaltet werden kann.

- 15 Gemäß Fig. 4 gelangt das von der Reflexionslichtschranke 41 empfangene Signal über den Zweifach-Multiplexer 11 an einen Eingangsverstärker 50, der das Signal auf den richtigen Pegel, richtige Polarität und ausreichende Leistung verstärkt, um einen nachfolgenden Kondensator 51 laden zu können. Hinter dem Kondensator 51 befindet sich ein Analogschalter
- 20 52, der während der ersten Phase Ph1 leitend geschaltet ist, so daß sich der Kondensator 51 auf den vom Fremdlicht erzeugten Pegel SF aufladen muß. Während der zweiten Phase Ph2, in der die eigentliche Messung mit eingeschaltetem Lichtsender 41a erfolgt, ist der Analogschalter 52 wieder hochohmig. Der Kondensator 51 kann jetzt während dieses
- 25 Zeitraums seine Ladespannung SF nur unwesentlich verändern, zumal auch ein nachfolgender Verstärker 53 als Spannungsfolger geschaltet sehr hochohmig ist. Am Anfang der zweiten Phase Ph2 ist die Spannung am Verstärker 53 immer Null, während gleichzeitig die Spannung am Ausgang des Eingangsverstärkers 50 bereits dem Fremdlicht SF entspricht.
- 30 Bis zum Ende der zweiten Phase Ph2 erhöht sich jetzt die Spannung nur um den Betrag, der dem aufgrund des eingeschalteten Lichtsenders 41a mehr empfangenen Licht entspricht. Weil am Anfang der zweiten Phase Ph2 die Spannung am Verstärker 53 Null war, liegt jetzt an ihm eine Spannung SR an, die nur dem vom Lichtsender 41a zum Lichtempfänger

41b reflektierten Licht entspricht. Die dem Fremdlicht entsprechende Kondensatorspannung SF ist jetzt von der empfangenen und verstärkten Gesamtspannung SL abgezogen. Die zweite Phase Ph2 muß genügend lang andauern, um die Verzögerungszeiten von Lichtsender 41a und Lichtem-5 pfänger 41b zu überbrücken.

Fig. 5 zeigt die Zeitfunktionen bei der Fremdlichtunterdrückung, und zwar die Multiplexkanalbreite S für eine Messung, die Spannung am Ausgang des Eingangsverstärkers 50 (I), die Spannung am Eingang des Verstärkers 53 (II), die Kondensatorladung (III), den Zustand des Schalters 52 (IV), den Zustand des Lichtsenders 41a (V), die Auswertung (VI) und die Phasen (VII).

Während das Fremdlicht in der beschriebenen Weise unterdrückt wird, dient der Fremdlichtprüfkreis 21 dazu, das von der Leitung 12 kommende Fremdlichtsignal mit einem beispielsweise über ein Potentiometer einstellbaren vorgegebenen Grenzwert, der am Grenzwerteingang 22 anliegt, zu vergleichen. Wenn das Fremdlicht so groß wird, daß es die Lichtempfänger 41b zu übersteuern droht, liefert der Auswertekreis 20, der mit dem Ausgang des Fremdlichtprüfkreises 21 verbunden ist, auf seinem Ausgang 25 ein Stop-Signal.

20 Die fremdlichtkorrigierten Signale auf der Leitung 14werden im Prüfkreis 16 mit einem vorgegebenen Schwellwert verglichen. Bei Unterschreiten dieses Schwellwertes durch eine oder mehrere Zigaretten eines Zigarettenblocks bewirkt der Ausgang des Prüfkreises 16, daß der Auswertekreis 20 auf seinem Ausgang 26 ein Auswerfsignal zum Auswerfen des Zigarettenblocks als Ausschuß erzeugt.

Fehlen in einem Zigarettenblock eine oder mehrere Zigaretten, dann sind die von den entsprechenden Lichtempfängern 41b empfangenen Signale wesentlich geringer als bei einer schlechten Zigarette, selbst wenn Nachbarzigaretten den leeren Platz durch Verschiebung im Block zu Teil be30 decken. Ein wesentlich niedrigerer Schwellwert am Eingang 19 des Prüfkreises 15 im Vergleich zum Schwellwert für den Prüfkreis 16 wird mit den Signalen auf der Leitung 14 verglichen, so daß alle Plätze innerhalb eines Zigarettenblocks erkannt werden, an denen Zigaretten fehlen.

Wenn eine vorgebbare Anzahl an Zigaretten in einem Block fehlt, die von dem Auswertekreis 20 festgestellt wird, erzeugt dieser auf seinem Ausgang 25 ein Stop-Signal und zugleich auf dem Ausgang 26 ein Auswerfsignal.

5 Die Prüfkreise 17 und 18 dienen zur Selbstüberwachung. Hierbei wird die Grundreflexion ausgenutzt, die an der transparenten Platte 42, die vor den Reflexionslichtschranken 41 angeordnet ist, auftritt, wenn keine reflektierenden Objekte (Zigaretten) sich vor der Platte 42 befinden. Diese Grundreflexion ist an sich gering, kann sich aber je nach Art 10 einer auf der Platte 42 vorhandenen Verschmutzung, die während des Betriebs entsteht, zu geringeren oder höheren Werten ändern.

Wenn die Grundreflexion über einen oberen vorgegebenen Schwellwert, der am Eingang 19 des Prüfkreises 17 anliegt, ansteigt und damit Zigaretten als zu gut erkannt würden, oder unter einen unteren vorgegebenen Schwell15 wert, der am Eingang 19 des Prüfkreises 18 anliegt, absinkt (Verschmutzung oder Teile des Geräts ausgefallen), erzeugen die als Komparatoren wirkenden Prüfkreise 17 bzw. 18 ein Ausgangssignal, das bewirkt, daß der Auswertekreis 20 ein Stop-Signal auf seinem Ausgang 25 erzeugt.

Diese Selbstüberwachung wird in den Zeiten vorgenommen, in denen keine 20 Zigaretten vor dem Blockprüfkopf 10 angeordnet sind. Hierdurch werden außerdem alle Reflexionslichtschranken 41 nach jeder Messung auf verschiedene Ausfallarten hin überprüft.

Da der Auswertekreis 20 Stop-Signale aus verschiedenen Gründen erzeugen kann, ist es zweckmäßig, eine Anzeige vorzusehen, die die Ursache des 25 jeweiligen Stops speichert und anzeigt. Vor jedem neuen Start der Maschine müssen diese Stopanzeigen über einen Reseteingang 24a gelöscht werden.

Bei der in Fig. 1 dargestellten Ausführungsform ist ein Zweifach-Multiplexer 11, d.h. jeweils ein Multiplexer für die Lichtsender 41a und
30 einer für die Lichtempfänger 41b, die synchron arbeiten, vorgesehen,
jedoch läßt sich auch ein einfacher Multiplexer verwenden, der dann
jede Reflexionslichtschranke 41 (Versorgungsspannung von Sender 41a
und Empfänger 41b) mit einem Schalter schaltet. Bei der dargestellten

Ausführungsform ist es besonders vorteilhaft, daß der Multiplexer 11 in der dritten Phase Ph3 der Abtastung stromlos umgeschaltet werden kann.

In Fig. 6 ist eine Ausführungsform für den Mittelwertbildungskreis 30 dargestellt. Dieser besteht aus einem Analogschalter 60 mit zwei Ein-5 gängen, nämlich der Leitung 14, über die ein analoger Spannungswert A der Zigarette, die gerade gemessen wird, angelegt wird, und eine der Leitungen 31, über die ein digitales Steuersignal C von dem Auswertekreis 20 angelegt wird, das bewirkt, daß der Analogschalter 60 beispielsweise während der letzten 3/5 der Sendezeit einer jeden Reflexionslichtschranke 10 41 geöffnet wird. Hinter dem Analogschalter 60 befindet sich eine Kondensator C_1 und ein weiterer Analogschalter 62 mit einem weiteren Eingang, dem über eine der Leitungen 31 ein digitales Steuersignal D vom Auswertekreis 20 zugeführt wird, das bewirkt, daß der Analogschalter 62 immer dann für eine konstante Zeit geöffnet wird, wenn die Prüfung einer Zi-15 garette beendet ist und diese Zigarette vom Prüfkreis 16 als gut befunden wurde. Dem Analogschalter 62 folgt ein RC-Glied 63 mit einem Kondensator C_2 und einem Widerstand R, wobei der Ausgang des RC-Gliedes 63 mit einem Eingnag eines als Spannungsfolger geschalteten Operationsverstärkers 64 ist.

20 Ferner ist ein Analogschalter 65 vorgesehen, von dem ein Eingang durch einen analogen Spannungswert H beaufschlagt wird, der beim Einschalten des Geräts als Mittelwert vorgegeben wird, während ein zweiter Eingang über eine der Leitungen 31 mit einem digitalen Steuersignal E versorgt wird, das von dem Auswertekreis 20 erzeugt wird und den Analogschalter 25 65 für eine kurze Zeit nach dem Anlegen der Betriebsspannung durch einen Master-Reset-Impuls öffnet.

Ein weiterer Analogschalter 66 ist einerseits mit einer Konstantstromquelle 67 und andererseits mit einer der Leitungen 31 verbunden, über die er ein digitales Steuersignal F vom Auswertekreis 20 empfängt,wo30 durch er immer dann für eine konstante Zeit geöffnet wird, wenn eine Zigarette vom Prüfkreis 16 als schlecht befunden wurde. Die Ausgänge der Analogschalter 65, 66 sind mit dem Kondensator C2 verbunden, so daß der Kondensator C2 durch das Öffnen des Analogschalters 66 bei Vorhandensein einer schlechten Zigarette durch die Konstantstromquelle 67 jeweils

um einen geringen, aber konstanten Betrag entladen wird.

Der Mittelwertbildungskreis 30 erzeugt ein Signal G, das den Schwellwert für den Eingang 19 des Prüfkreises 16 darstellt und aus einem Mittelwert und einer Auswurfrate gebildet wird.

5 Die Mittelwertbildung erfolgt folgendermaßen: Während des letzten Teils einer jeden Messung (während ein Lichtsender 41a an ist), liegt der Kondensator C₁ über den Analogschalter 60 am Ausgang der Verstärkerschaltung (am Ausgang des Spannungsfolgers 53) und wird auf den Spannungswert geladen, der der Qualität der gerade geprüften Zigarette entspricht. Die 10 Spannung am Kondensator C₂ entspricht dem Mittelwert und wurde zu Beginn durch das Signal H vorgegeben. Wenn nach der Auswertung der Messung die Zigarette als gut befunden wird, öffnet der dazwischen liegende Analogschalter 62 für eine konstante Zeit. Während dieser konstanten Zeit wird der Mittelwert um einen kleinen Teil der Spannungsdifferenz der Kontähert. Mit diesem einstellbaren Bruchteil der Spannung wird der Anteil festgelegt, mit dem jeder einzelne als gut befundene Wert den Mittelwert aktualisieren kann.

Das Verhältnis, mit dem ein einzelner Meßwert in den Mittelwert eingeht, 20 ist folgendes:

$$\frac{\Delta U_2}{U_1 - U_{2alt}} = \frac{C_1}{C_1 + C_2} \left(1 - e \cdot R \frac{C_1 \cdot C_2}{C_1 + C_2} \right)$$

wobei U₁ der Meßwert, U_{2alt} der alte Mittelwert vor Änderung durch U₁,

\[\Delta \text{U}_2 \] der Bruchteil, um den sich der Mittelwert an dem Meßwert U₁ an gleicht, und U₁ - U_{2alt} die Differenz zwischen Mittelwert und Meßwert ist.

25 Um einen annähernd linearen Zusammenhang zwischen dem Verhältnis, mit dem
der Meßwert den Mittelwert verändert und einer Veränderung des Widerstande- R zu bekommen, muß die Öffnungszeit T viel kleiner sein als die resultierende Zeitkonstante Z_{res}.

$$\frac{\Delta \quad U_2}{U_1 - U_{2alt}} \sim \approx \frac{1}{R}$$

30 für Tage. Diese Mittelwertbildung entspricht einer arithmetischen Mit-

immer noch den Wert O Ohm. Dadurch wird am Kondensator ${\rm C}_2$ ein Mittelwert gebildet, der den beiden ersten Messungen entspricht.

$$U_{2(2)} = U_{2(1)} + \frac{U_{1(2)} - U_{2(1)}}{2}$$

Der in Klammern stehende Index bedeutet die Zahl der Messung. Bei der 5 ersten Messung war $U_{1(1)} = U_{2(1)}$. Bei der zweiten Messung ist der Faktor

$$\frac{\Delta^{U_{2(2)}}}{U_{1(2)}^{U_{2(1)}}} = \frac{1}{2}$$

Bei der Mittelwertbildung mit dem dritten Meßwert wird erstmals das R-2R-Netzwerk mit dem kleinsten Wert zugeschaltet. Der kleinste Widerstandswert muß nun mit dem Kondensatoren den Mittelwertfaktor auf 1/3 reduzie - 10 ren, so daß sich nach n Messungen folgendes ergibt:

$$U_{2(n)} = U_{2(n-1)} + \frac{U_{1(n)} - U_{2(n-1)}}{n}$$

Die Mittelwertbildung ist auf eine gewünschte Zahl n zu begrenzen, da es keinen Sinn macht, einen Mittelwert über beliebig viele Messungen zu bilden. Wenn man beispielsweise einen Mittelwert über hundert Zigaretten vorsieht, läßt man den Zähler bis 98 zählen und hält von da an den Widerstand konstant. Für den Mittelwertfaktor bedeutet dies, daß er wich von 1/1, 1/2,.... auf 1/100 während der ersten hundert Messungen ändert und dadurch immer den aktuellen Mittelwert bildet (wenn man von dem Fehler absieht,der dadurch zustande kommt, daß bei kleinen Verhältniszahlen die Funktion \(\Delta U_2 \) 20 =f (t) weniger linear ist, weil sie über einen größeren Teil der e-Funktion läuft). Alle weiteren Messungen als die 101. haben einen konstanten Mittelwertfaktor von 1/100.

Wenn als schlecht erkannte Zigaretten die Mittelwertbildung nicht beeinflussen, stellt sich in der statistischen Verteilung der Meßwerte der

25 Mittelwert rechts vom Maximum ein, wie in Fig. 8 dargestellt ist, wobei
der Mittelwert auch von der Einstellung des Potentiometers 35 für die
Auswurfrate beeinflußt wird (unter der Voraussetzung, daß die Auswurfrate größer Null eingestellt ist).

Dieser Betriebszustand ist normalerweise zufriedenstellend. Jedoch kann 30 der Fall eintreten, daß bei hoch eingestellter Auswurfrate und plötz - licher Änderung der Tabakfarbe zum Dunklen hin alle Zigaretten wegen der zu geringen Reflexion als schlecht erkannt werden. Dann würde kein Meßwert den Mittelwert mehr beeinflussen, so daß dieser sich nicht an die neue Farbe des Tabaks anpassen kann. Um eine derartige Fehlreaktion zu 5 verhindern, kann man vorsehen, daß auch die als schlecht erkannten Zigaretten den Mittelwert beeinflussen. Dies kann in der Weise geschehen, daß bei der Ausführungsform der Fig. 7 die Konstantstromquelle 67 und der durch das Signal F gesteuerte Analogschalter 66 verwendet werden.

Hierbei wird immer dann, wenn eine Zigarette vom Prüfkreis 16 als schlecht 10 erkannt wird, der Analogschalter 66 durch das Signal F für eine konstante, sehr kurze Zeit geöffnet. Während dieser Zeit fließt ein konstanter Strom in den Kondensator C₂ in einer Richtung, daß der Mittelwert geringfügig abgesenkt wird. Jede schlechte Zigarette (aber keine fehlende oder abgebrochene) verkleinert den Mittelwert um einen geringen (einstellbaren) 15 konstanten Betrag, gleichgültig, wie schlecht sie ist.

Hierdurch wird das Gerät befähigt, sich auf eine so dunkle Tabakfarbe einzustellen, bei der die Zigaretten anfangs als schlecht bewertet werden, ohne die Meßwerte der als schlecht erkannten Zigaretten zur Mittelwertbildung heranziehen zu müssen. Den konstanten Betrag, um den der Mittelwert 20 jeweils verringert wird, läßt sich an der Konstantstromquelle 67 einstellen. Da der Wert des konstanten Betrages mit dem Mittelwert in Beziehung steht, ist zur Vermeidung einer verstärkten Mittelwertbeeinflussung durch schlechte Zigaretten dieser konstante Betrag nicht zu groß zu wählen, sondern beispielsweise entsprechend der Beeinflussung des Mittelwertes durch 25 eine etwasunter dem Mittelwert liegende gute Zigarette.

Das Gerät eignet sich auch zum Prüfen von Einzelzigaretten, wobei dann der Zweifach-Multiplexer 11 entfällt und durch eine einfache Schaltung für den einen Eingangs- und Ausgangskanal ersetzt werden kann.

Damit es nicht zu einer zweifachen Grundreflexion an der Platte 42 30 kommt, was zu einem ungünstigen Verhältnis von Signal zu Grundreflexion führen könnte, ist die Platte 42 unmittelbar vor den Reflexionslichtschranken 41 anzuordnen. In dem Falle, daß dann die Grundreflexion doch noch zu groß ist, kann man eine Platte 42 verwenden, die auf der den Re-

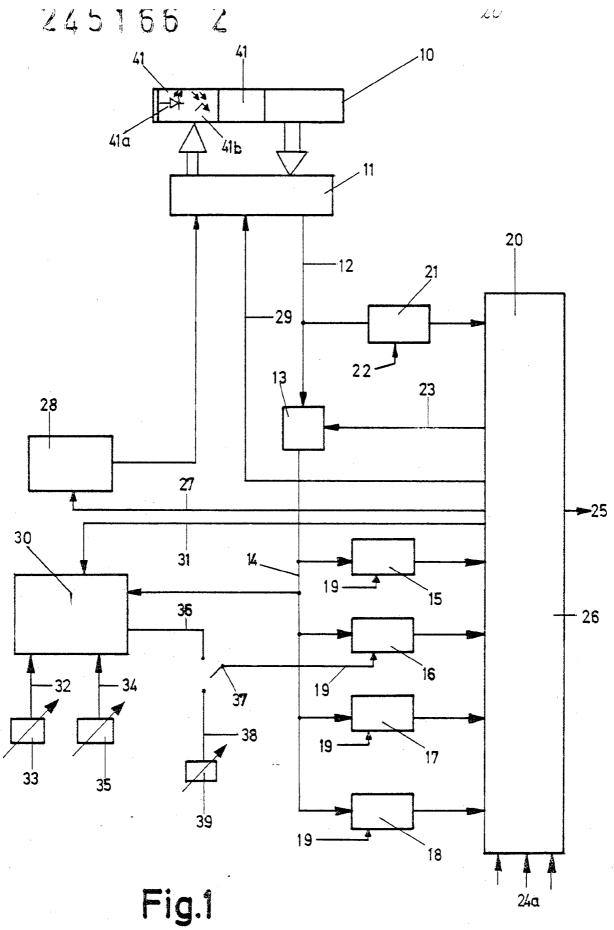
flexionslichtschranken 41 abgewandten Seite eine diffuse Reflexion erzeugt, so daß der von der Glasoberfläche reflektierte Lichtanteil, der die Grundreflexion bildet, verringert wird. Die Platte 42 kann dort beispielsweise milchig sein, jedoch darf sie zur Vermeidung von Verschmut-5zungen keine rauhe Oberfläche aufweisen, da dort die Zigarettenenden anliegen.

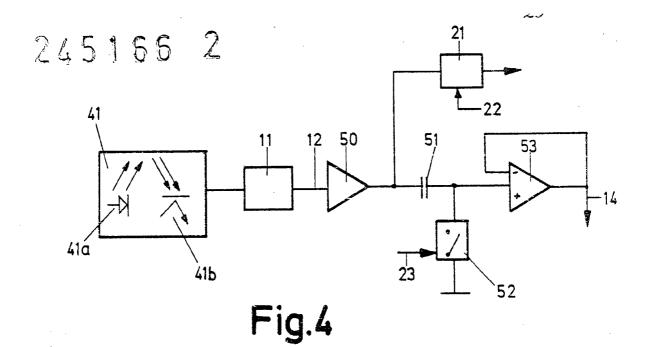
Erfindungsanspruch

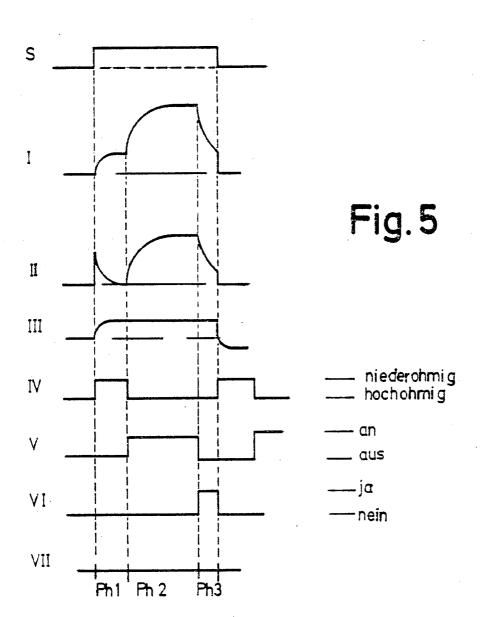
- 1. Verfahren zum Prüfen des Füllungsgrades von Zigarettenenden mit Hilfe von Reflexionslichtschranken (41), wobei ein Schwellwert vorgegeben wird, der mit dem von der Reflexionslichtschranke (41) erzeugten Signal verglichen wird und bei Unterschreiten des Schwell-
- 5 wertes ein Verwerfen der Zigaretten (43) auslöst, dadurch gekennzeichnet, daß eine Fremdlichtkompensation bezüglich des von der Reflexionslichtschranke (41) erzeugten Signals durchgeführt wird, indem
 das auf die Reflexionslichtschranke (41) fallende Fremdlicht bei ausgeschaltetem Lichtsender (41a) gemessen und von dem Signal der Re-
- 10 flexionslichtschranke (41) von der Messung des Füllungsgrades abgezogen wird, und zwischen zwei Messungen des Füllungsgrades eine Selbstüberprüfung der Meßeinrichtung vorgenommen wird.
 - 2. Verfahren nach Punkt 1, dadurch gekennzeichnet, daß ein zweiter Schwellwert, der niedriger als der erste liegt, vorgegeben wird,
- 15 dessen Unterschreiten fehlende oder abgebrochene Zigaretten (43) anzeigt.
 - 3. Verfahren nach Punkt 1 oder 2, dadurch gekennzeichnet, daß bei Anordnung einer lichtdurchlässigen Platte (42) vor der Reflexionslichtschranke (41) zwischen zwei Messungen des Füllungsgrades die
- 20 Grundreflexion an der Platte (42) bei eingeschaltetem Lichtsender (41a) gemessen und mit zwei ein Fenster definierenden Schwellwerten verglichen wird, wobei ein Stop-Signal erzeugt wird, wenn die Grundreflexion außerhalb des Fensters liegt.
- 4. Verfahren nach einem der Punkte 1 bis 3, dadurch gekennzeichnet, 25 daß die Fremdlichtmessung mit einem Grenzwert verglichen wird, bei dessen überschreiten ein Stop-Signal erzeugt wird.
- 5. Verfahren nach einem der Punkte 1 bis 4, dadurch gekennzeichnet, daß aus einer vorgegebenen Anzahl von Messungen des Füllungsgrades ein Mittelwert gebildet wird, der zur Bildung des Schwellwertes 30 für den Füllungsgrad verwendet wird.
 - 6. Verfahren nach Punkt 5, dadurch gekennzeichnet, daß der Mittelwert durch jede neue Messung des Füllungsgrades eines Zigarettenendes oberhalb des Schwellwertes in einem Maß entsprechend der vorgegebenen Anzahl von Messungen zur Mittelwertbildung verändert wird.

- 7. Verfahren nach Punkt 6, dadurch gekennzeichnet, daß der Mittelwert durch jede neue Messung des Füllungsgrades eines Zigarettenendes unterhalb des Schwellwertes für den Füllungsgrad und oberhalb des Schwellwertes für fehlende oder abgebrochene Zigaretten
 5 verändert wird.
- 8. Verfahren nach Punkt 7, dadurch gekennzeichnet, daß der Mittelwert jeweils um einen konstanten Betrag erniedrigt wird, der einem Füllungsgrad unterhalb des Schwellwertes für den Füllungsgrad und oberhalb des Schwellwertes für fehlende oder abgebrochene Zi10 garetten (43) entspricht.
 - 9. Prüfgerät für den Füllungsgrad von Zigarettenenden mit einer oder mehreren Reflexionslichtschranken, die jeweils aus einem Lichtsender, der das zu prüfende Zigarettenende bestrahlt, und einem Lichtempfänger, der das vom Zigarettenende reflektierte Licht em-
- 15 pfängt, bestehen und an eine Auswerteschaltung angeschlossen sind, in der das vom Lichtempfänger erzeugte Signal mit einem Schwellwert verglichen wird, dadurch gekennzeichnet, daß die Auswerteschaltung eine Einrichtung zur Fremdlichtkompensation (13), in der ein Meßwert entsprechend dem empfangenen Licht bei ausgeschaltetem Licht-
- 20 sender (41a) gespeichert und von einem nachfolgenden Meßwert bei eingeschaltetem Lichtsender (41a) subtrahiert und der fremdlicht-korrigierte Meßwert einem Prüfkreis (16) zum Vergleichen mit dem Schwellwert zugeführt wird, und eine Einrichtung (17, 18, 42) zur Selbstüberprüfung zwischen zwei aufeinanderfolgenden Messungen so-
- 25 wie ein Taktgeber (20) zum zeitlich aufeinanderfolgenden Schalten des Lichtsenders (41a) aufweist.
 - 10. Prüfgerät nach Punkt 9, dadurch gekennzeichnet, daß die Einrichtung (13) zur Fremdlichtkompensation einen Kondensator (51) aufweist, der über einen während einer Phase (Ph1), während der
- 30 der Lichtsender (41a) ausgeschaltet ist, leitenden Analogschalter (52) auflachar ist und dem ein Spannungsfolger (53) nachgeschaltet ist, webei der Kondensator (51) und der Spannungsfolger (53) in der Leitung (12) vom Lichtempfänger (41b) angeordnet sind.
- 11. Prüfgerät nach Punkt 9 oder 10, dadurch gekennzeichnet, daß 35 die Einrichtung (17, 18, 42) zur Selbstüberprüfung eine transparente Platte (42) vor der oder den Reflexionslichtschranken (41) sowie zwei Prüfkreise (17, 18) aufweist, in denen der fremdlichtkorrigierte Meßwert mit einem oberen und einem unteren Schwellwert

verglichen werden.


- 12. Prüfgerät nach einem der Punkte 9 bis 11, dadurch gekennzeichnet, daß ein Prüfkreis (15) vorgesehen ist, in dem der fremdlichtkorrigierte Meßwert mit einem Schwellwert verglichen wird, dessen 5 Unterschreiten fehlende oder abgebrochene Zigaretten anzeigt.
 - 13. Prüfgerät nach einem der Punkte 9 bis 12, dadurch gekennzeichnet, daß ein Mittelwertbildungskreis (30) vorgesehen ist, in dem aus einer vorgegebenen Anzahl von Messungen ein Mittelwert gebildet wird.
- 10 14. Prüfgerät nach Punkt 13, dadurch gekennzeichnet, daß der Mittelwertbildungskreis (30) einen Kondensator (C₂) aufweist, dessen Ladung den Mittelwert repräsentiert und in einem Bruchteil entsprechend der vorgegebenen Anzahl von Messungen entsprechend der Abweichung vom Mittelwert bei jeder neuen Messung veränderbar ist.
- 15 15. Prüfgerät nach Punkt 14, dadurch gekennzeichnet, daß ein zweiter Kondensator (C_1) vorgesehen ist, dessen Ladung der jeweiligen Messung entspricht und der mit dem ersten Kondensator (C_2) während eines Zeitraums in Verbindung steht, der dem Bruchteil entsprechend der vorgegebenen Anzahl von Messungen entspricht.
- 20 16. Prüfgerät nach Punkt 15, dadurch gekennzeichnet, daß der Kondensator (C_1) nur dann (in Ph3) mit dem Kondensator (C_2) nach der jeweiligen Messung in Verbindung gebracht wird, wenn der Meßwert den Schwellwert des Prüfkreises (16) überschritten hat.
- 17. Prüfgerät nach einem der Punkte 14 bis 16, dadurch gekennzeich- 25 net, daß eine Konstantstromquelle (67) vorgesehen ist, die bei Unterschreiten des Schwellwertes des Prüfkreises (16) und Überschreiten des Schwellwertes des Prüfkreises (15) die Ladung des Kondensators (C_2) um einen vorbestimmten Betrag verringert.
- 18. Prüfgerät nach einem der Punkte 14 bis 17, dadurch gekennzeich30 net, daß der Kondensator (C₂) mit einem R-2R-Netzwerk eines D/AWandlers (70), der von einem Zähler (71) gesteuert wird, ein RCGlied bildet.
- 19. Prüfgerät nach einem der Punkte 9 bis 18, dadurch gekennzeichnet, daß bei Verwendung mehrerer Reflexionslichtschranken (41) ein 35 Zweifach-Multiplexer (11), der synchron für Lichtsender (41a) und Lichtempfänger (41b) arbeitet, vorgesehen ist zum Zweck der konti-


445166 4 - 19 -


nuierlichen Mittelwertanpassung beim Durchlauf der ersten Zigaretten bis zu der Anzahl, über der der Mittelwert gebildet werden soll, beim Start der Maschine.

- 20. Prüfgerät nach Punkt 19, dadurch gekennzeichnet, daß der Zwei-5 fach-Multiplexer (11) die Lichtsender (41a) im stromlosen Zustand mit einer Konstantstromquelle (28) verbindet.
 - 21. Prüfgerät nach einem der Punkte 11 bis 20, dadurch gekennzeichnet, daß die Platte (42) vor der oder den Reflexionslichtschranken
 - (41) derart angeordnet ist, daß die zu prüfenden Zigarettenenden
- 10 bei Anlage an der Platte (42) sich in einem Abstand im Bereich des abfallenden Teils (K_{ab}) der Kurve (K) der Beleuchtungsstärke des reflektierenden Lichts aufgetragen gegenüber dem Abstand (d) des Zigarettenendes von dem Lichtempfänger (41b) befindet.

Dazu sechs Seiten Zeichnungen

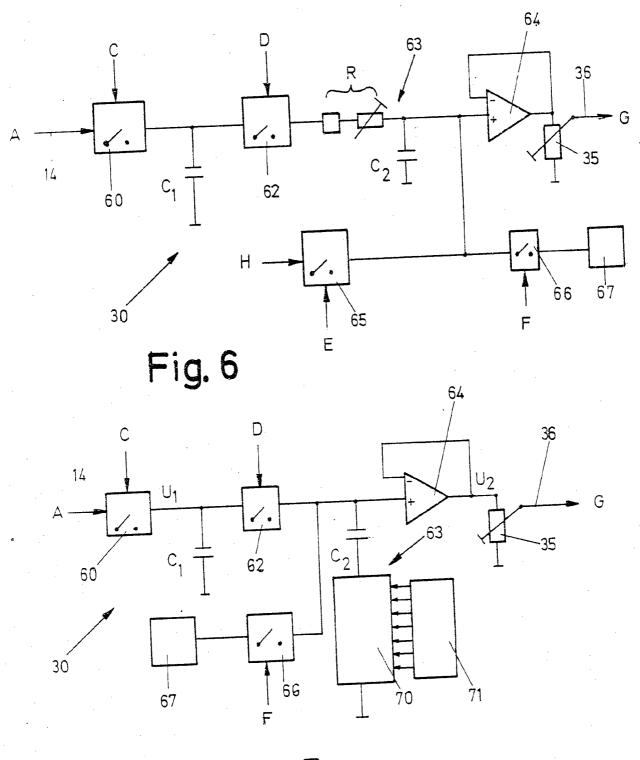
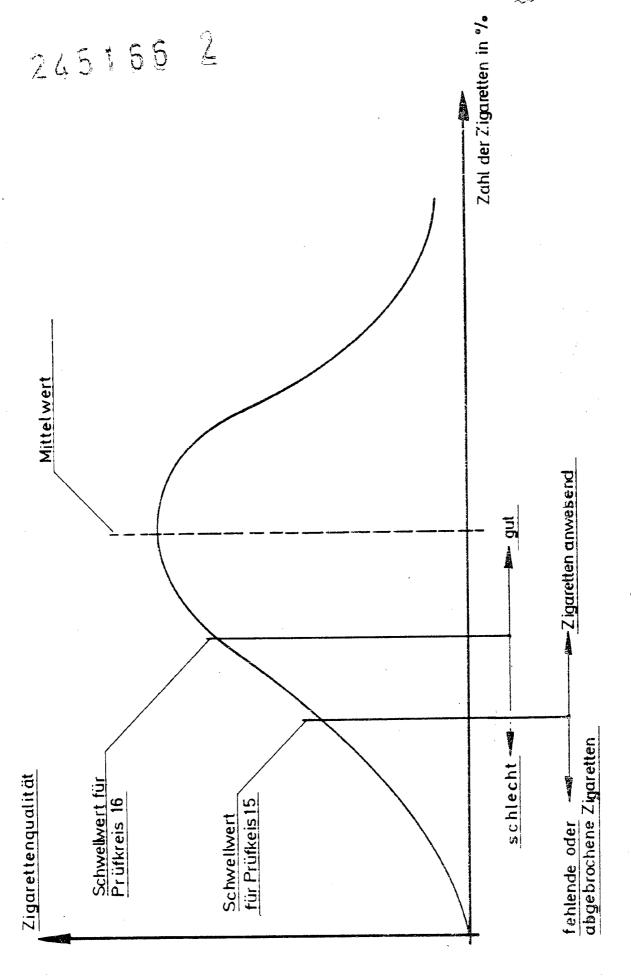



Fig.7

