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data is disclosed. The method can include writing packets to 
a specific memory location accessible by at least one offload 
processor, with packets transported using a memory bus hav 
ing a defined memory transport protocol, modifying packet 
metadata of the packets written to the specific memory loca 
tion with the at least one offload processor, without requiring 
modification of the packets by a host processor, and sending 
the modified packets to the memory bus. 
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NETWORK OVERLAY SYSTEMAND 
METHOD USING OFFLOAD PROCESSORS 

PRIORITY CLAIMS 

0001. This application claims the benefit of U.S. Provi 
sional Patent Applications 61/753,892 filed on Jan. 17, 2013, 
61/753,895 filed on Jan. 17, 2013, 61/753,899 filed on Jan. 
17, 2013, 61/753,901 filed on Jan. 17, 2013, 61/753,903 filed 
on Jan. 17, 2013, 61/753,904 filed on Jan. 17, 2013, 61/753, 
906 filed on Jan. 17, 2013, 61/753,907 filed on Jan. 17, 2013, 
and 61/753,910 filed on Jan. 17, 2013, the contents all of 
which are incorporated by reference herein. 

TECHNICAL FIELD 

0002. Described embodiments relate to network overlay 
services that are provided by a memory bus connected mod 
ule that receives data packets and can route them to general 
purpose offload processors for packet encapsulation, decap 
Sulation, modification, or data handling. 

BACKGROUND 

0003 Modern computing systems can support a variety of 
intercommunication protocols. In certain instances, comput 
ers can connect with each other using one network protocol, 
while appearing to outside users to use another network pro 
tocol. Commonly termed an “overlay' network, such com 
puter networks are effectively built on the top of another 
computer network, with nodes in the overlay network being 
connected by virtual or logical links to the underlying net 
work. For example, Some types of distributed cloud systems, 
peer-to-peer networks and client-server applications can be 
considered to be overlay networks that run on top of conven 
tional Internet TCP/IP protocols. Overlay networks are of 
particular use when a virtual local network must be provided 
using multiple intermediate physical networks that separate 
the multiple computing nodes. The overlay network may be 
built by encapsulating communications and embedding Vir 
tual network address information for a virtual network in a 
larger physical network address space used for a networking 
protocol of the one or more intermediate physical networks. 
0004 Overlay networks are particularly useful for envi 
ronments where different physical network servers, proces 
sors, and storage units are used, and network addresses to 
Such devices may commonly change. An outside user would 
ordinarily prefer to communicate with a particular computing 
device using a constant address or link, even when the actual 
device might have a frequently changing address. However, 
overlay networks do require additional computational pro 
cessing power to run, so efficient network translation mecha 
nisms are necessary, particularly when large numbers of net 
work transactions occur. 

SUMMARY 

0005. This disclosure describes embodiments of systems, 
hardware and methods suitable for high speed and/or energy 
efficient processing of packet data that does not necessarily 
require access to computing resources of a host processor of 
a server, server rack system, or blade server. In certain 
embodiments, a network overlay system is capable of pro 
cessing network packets having network identifier tags. A 
data transport module is configurable to direct network pack 
ets based on network identifier tags, while an offload proces 
Sor module connected to a memory bus and at least one 
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offload processor is capable of modifying segregated network 
packets. A memory bus is connected between the data trans 
port module and the at least one offload processor to Support 
transport of network packets to the offload processor for 
modification. 

0006. In other embodiments, the data transport module 
includes an address translation module; a network card pro 
grammable to identify packets with a network identifier tag: 
oran IOMMU to translate virtual addresses to corresponding 
physical addresses. Typically the memory bus can Support a 
double data rate protocol (e.g., DDR3, its predecessors or 
Successors), but in alternative embodiments other memory 
protocols are used. In still other embodiments that include a 
network overlay for switched networks, data can be processed 
if the switched network data is first converted into packets. 
0007. In certain other embodiments, a memory bus con 
nected module can provide network overlay services using 
multiple offload processors connected to the memory bus 
connection. In certain embodiments, the memory bus con 
nected module can be mounted in a memory bus Socket Such 
as a dual in line memory module (DIMM) socket. Each off 
load processor can be capable of converting incoming packets 
having a first network protocol to outgoing packets having a 
second network protocol, with the ordering of network packet 
conversion by respective task execution of the multiple off 
load processors being determined by Suitable control logic. 
Typically, the control logic can include a scheduler that 
updates task ordering in response to changes in network 
packet data flow. In other embodiments, a memory local to the 
module can be connected to a memory controller and acces 
sible by the multiple offload processors. An arbiter can be 
used to prevent local memory access conflicts, and a Switch 
controller can be used to improved performance by providing 
efficient context Switching of the general purpose offload 
processors as required. 
0008. This disclosure also describes methods for process 
ing network packets. Network packets can be received from a 
first network, and transported over a memory bus to an offload 
processor. The packets can be modified using the offload 
processor, and transported back over the memory bus to a 
second network. For example, packets conforming to a spe 
cific protocol such as Internet Protocol version 6 (IPv6) can 
be modified to conform to IP version 4 (IPv4) protocols, or 
vice versa. Alternatively headers can be modified, packets 
encapsulated or decapsulated, or data contained within the 
packets can be inspected, copied, or modified. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0009 FIG. 1-0 shows a system according to an embodi 
ment. 

0010 FIG. 1-1 shows a system flow according to an 
embodiment. 

0011 FIG. 1-2 shows a method of providing network 
overlay services according to a particular embodiment. 
0012 FIG. 1-3 shows a data transport system providing 
network overlay services according to an embodiment. 
0013 FIGS. 2-0 to 2-3 show processor modules according 
to various embodiments. 

0014) 
module. 

0015 FIG. 2-5 shows a system according to another 
embodiment. 

FIG. 2-4 shows a conventional dual-in-line memory 
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0016 FIG. 3 shows one particular implementation of a 
memory bus connected offload processor capable of Support 
ing packet conversion services for network overlay that can 
be included in embodiments. 

DETAILED DESCRIPTION 

0017 Various embodiments of the present invention will 
now be described in detail with reference to a number of 
drawings. The embodiments show processing modules, sys 
tems, and methods in which offload processors are included 
on offload modules that connect to a system memory bus. 
Such offload processors are in addition to any host processors 
connected to the system memory bus, and can operate on data 
transferred over the system memory bus independent of any 
host processors. In particular embodiments, offload proces 
sors have access to a low latency memory, which can enable 
rapid storage and retrieval of context data for rapid context 
Switching. In very particular embodiments, processing mod 
ules can populate physical slots for connecting in-line 
memory modules (e.g., dual in line memory modules 
(DIMMs)) to a system memory bus. 
0018 FIG. 1-0 is a diagram of a network overlay system 
90 according to an embodiment. A system 90 can provide 
network overlay services, and can include a data source 10, a 
data transport module 20, an input/output (IO) fabric 30, a 
memory bus interconnect 40, one or more offload processing 
modules 50, and host processor support module 70. 
0019. A data source 10 can provide data via any suitable 
Source. Such as the Internet, cloud, inter- or intra-data center 
networks, cluster computers, rack systems, multiple or indi 
vidual servers or personal computers, or the like. Data from 
data source 10 can be packet or switch based. In one preferred 
embodiment, non-packet data is generally converted or 
encapsulated into packets for ease of handling. 
0020 Data from data source 10 can be is passed through 
data transport module 20. Data transport module 20 can 
include a network interface 22, an address translation module 
24, and first direct memory address (DMA) module 26. Typi 
cally, the data can be packetized or converted into a particular 
packet format supported by IO fabric 30 and memory bus 
interconnect 40. Both an offload processing module 50 and a 
host processor support module 70 (which can include a DMA 
controller) can be to the memory bus interconnect 40. Data 
transport module 20 can be an integrated or separately 
attached Subsystem that includes modules or components 
Such as network interface 22, address translation module 24, 
and a first DMA module 26. 

0021 For packets identified by a logical network identifier 
or other suitable indicator of network overlay services, 
address translation module 24 can direct such packets to the 
offload processing module 50, where offload processors can 
add or subtract packet metadata, encapsulate or decapsulate 
packets, provide hardware address or location conversions, or 
any required network overlay services. Advantageously, little 
or no processing is required of any host processor (80A or 
80B) within host processor support module 70, to enable such 
a module to be free to continue with its own processing 
operations. 
0022 Referring still to FIG. 1-0, in some embodiments, IO 
fabric 30 can be based on conventional input/output busses 
such as peripheral component interconnect (PCI), Fibre 
Channel, and the like. Memory bus interconnect 40 can be 
based on existing standard (e.g., JEDEC standards), on 
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DIMM data transfer protocols, on Hypertransport, or any 
other high speed, low latency interconnection system. 
(0023 Offload processing Module 50 may include DDR 
dynamic RAM (DRAM), reduced latency DRAM 
(RLDRAM), embedded DRAM, next generation stacked 
memory such as Hybrid Memory Cube (HMC), flash, or other 
Suitable memory. Offload processing module can also include 
separate logic or bus management chips, programmable units 
Such as field programmable gate arrays (FPGAs), custom 
designed application specific integrated circuits (ASICs), and 
an energy efficient, general purpose processor (60A and 60B) 
such as those based on ARM, ARC, Tensilica, MIPS, Strong/ 
ARM, or RISC architectures, to name a few. 
0024 Host processor support module 70 can include one 
or more general purpose processors (80A, 80B), including 
those based on Intel or AMD x86 architectures, Intel Itanium 
architecture, MIPS architecture, or a SPARC architecture, or 
the like. 
0025 FIG. 1-1 is a system flow diagram of according to 
another embodiment. FIG. 1-1 shows a server system with a 
memory bus connected an offload processor, able to Support 
various network overlay operations on packet or other I/O 
data. Packet or other I/O data can be received at an I/O device 
120. An I/O device can be physical device, virtual device or 
combination thereof. In the particular embodiment shown, 
selected interrupt generated from the I/O data intended for a 
host processor 124 can be disabled, allowing such I/O data to 
be processed without resources of the host processor 124. 
0026. An input output memory management unit 
(IOMMU) 121 can map received data to physical addresses of 
a system address space. ADMA master 125 can transmit such 
data to Such memory addresses by operation of a memory 
controller 122. Memory controller 122 can execute memory 
transfers (e.g., DRAM transfers) over a memory bus with a 
DMA Slave 127. Upon receiving transferred I/O data, a hard 
ware scheduler 123 can schedule processing of such data with 
an offload processor 126. In some embodiments, a type of 
processing can be indicated by metadata within the I/O data. 
Further, in some embodiments such data can be stored in an 
onboard memory 129. According to instructions from hard 
ware scheduler 123, one or more offload processors 126 can 
execute computing functions in response to the I/O data, 
including but not limited to operations on packets redirected 
for network overlay. In some embodiments, such computing 
functions can operate on the I/O data, and Such data can be 
Subsequently read out on memory bus via a read request 
processed by DMA slave 127. 
0027 Various features, advantages and/or improvements 
that can be provided by embodiments herein, can be under 
stood with reference to existing computing architectures. Par 
allelization of tasks into multiple thread contexts can provide 
for increased throughput. Processors architectures such as 
MIPS may include deep instruction pipelines to improve the 
number of instructions per cycle. Further, the ability to run a 
multi-threaded programming environment results in 
enhanced usage of existing processor resources. To further 
increase parallel execution on the hardware, processor archi 
tectures may include multiple processor cores. Multi-core 
architectures comprising the same type of cores, referred to as 
homogeneous core architectures, provide higher instruction 
throughput by parallelizing threads or processes across mul 
tiple cores. However, in Such homogeneous core architec 
tures, the shared resources, such as memory, are amortized 
over a Small number of processors. 
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0028. Memory and I/O accesses can incur a high amount 
of processor overhead. Further, context switches in conven 
tional general purpose processing units can be computation 
ally intensive. It is therefore desirable to reduce context 
Switch overhead in a networked computing resource handling 
a plurality of networked applications in order to increase 
processor throughput. Conventional server loads can require 
complex transport, high memory bandwidth, extreme 
amounts of databandwidth (randomly accessed, parallelized, 
and highly available), but often with light touch processing: 
HTML, Video, packet-level services, security, and analytics. 
Further, idle processors still consume more than 50% of their 
peak power consumption. 
0029. In contrast to the above, according to embodiments 
herein, complex transport, databandwidth intensive, frequent 
random access oriented, light touch processing loads can be 
handled behind a socket abstraction created on multiple off 
load processor cores. At the same time, "heavy touch, com 
puting intensive loads can be handled by a socket abstraction 
on a host processor core (e.g., x86 processor cores). Such 
Software sockets can allow for a natural partitioning of these 
loads between offload processor cores and host processor 
cores. By usage of new application level sockets, according to 
embodiments, server loads can be broken up across the off 
load processing cores and the host processing cores. 
0030 FIG. 1-2 is a flow chart showing a method of pro 
viding network overlay services according to a particular 
embodiment. Incoming packets or data can be received from 
a physical network 100, which can include, but is not limited 
to: a wired, a wireless, an optical, a Switched, or a packet 
based networks. Packets without one or more particular logi 
cal network identifiers can be transported as required by 
protocol (104). 
0031 Packets with an appropriate logical network identi 

fier can be segregated for further processing (102). Such 
processing can include determination of a particular virtual 
target (106) on the network, and the appropriate translation 
into a physical memory space (108). The packet can then be 
sent to a physical memory address space used by an offload 
processor (110). Packets can then be transformed (112) in 
Some manner by the offload processor, and transported back 
onto a logical network over the memory bus (114). 
0032 FIG. 1-3 is a diagram showing a data transport sys 
tem 150 providing network overlay services for multiple net 
works, servers, and devices, according to an embodiment. 
The system 150 can include using offload processors con 
nected to a memory bus via an offload processor module 152, 
as described herein, or equivalents. Such an arrangement can 
utilize hardware and logic capable of memory bus mediated 
data modification using Such offload processors. 
0033. As shown in FIG. 1-3, memory bus connected off 
load processor module(s) 152 can reside on individual server 
rack units 154 and/or blade server units 156. Such units (154, 
156) can, in turn, form part of or reside in, groups of racks 158 
or server systems 160. These can be further grouped into 
computing clusters 162 or datacenters 164, which can be 
spatially located in the same building, in the same city, or even 
in different countries. Any grouping level can be connected to 
each other, and/or connected to public or private cloud net 
works (166-0, 166-1). 
0034. In operation, data (e.g., packets) can be received 
from a user via a public or private network (166-2). Such data 
can be tagged, or otherwise include a particular network 
identifier. Servers of system 150 can detect the network iden 
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tifier, and send the packets (or portions thereof) to offload 
processor module(s) 152 for modification, as described 
herein, or in an equivalent manner. 
0035 FIGS. 2-0 to 2-5 show modules and systems that can 
be included in the embodiments to provide overlay services as 
described herein, or equivalents. In particular embodiments, 
such modules and systems can include DIMM mountable 
modules to Support offload processing. 
0036 FIG. 2-0 is a block diagram of a processing module 
200 according to one embodiment. A processing module 200 
can include a physical connector 202, a memory interface 
204, arbiter logic 206, offload processor(s) 208, local 
memory 210, and control logic 212. A connector 202 can 
provide a physical connection to system memory bus. This is 
in contrast to a host processor which can access a system 
memory bus via a memory controller, or the like. In very 
particular embodiments, a connector 202 can be compatible 
with a dual in-line memory module (DIMM) slot of a com 
puting system. Accordingly, a system including multiple 
DIMM slots can be populated with one or more processing 
modules 200, or a mix of processing modules and DIMM 
modules. 

0037. A memory interface 204 can detect data transfers on 
a system memory bus, and in appropriate cases, enable write 
data to be stored in the processing module 200 and/or read 
data to be read out from the processing module 200. Such data 
transfers can include the receipt of packet data having a 
particular network identifier. In some embodiments, a 
memory interface 204 can be a slave interface, thus data 
transfers are controlled by a master device separate from the 
processing module 200. In very particular embodiments, a 
memory interface 204 can be a direct memory access (DMA) 
slave, to accommodate DMA transfers over a system memory 
bus initiated by a DMA master. In some embodiments, a 
DMA master can be a device different from a host processor. 
In Such configurations, processing module 200 can receive 
data for processing (e.g., DMA write), and transfer processed 
data out (e.g., DMA read) without consuming host processor 
resources. In very particular embodiments, packet data is 
received, modified, and then output. 
0038 Arbiter logic 206 can arbitrate between conflicting 
accesses of data within processing module 200. In some 
embodiments, arbiter logic 206 can arbitrate between 
accesses by offload processor 208 and accesses external to the 
processor module 200. It is understood that a processing 
module 200 can include multiple locations that are operated 
on at the same time. In addition, accesses arbitrated by arbiter 
logic 206 can include accesses to physical system memory 
space occupied by the processor module 200, as well as 
accesses to other resources (e.g., cache memory of offload or 
host processor). Accordingly, arbitration rules for arbiter 
logic 206 can vary according to application. In some embodi 
ments, such arbitration rules are fixed for a given processor 
module 200. In such cases, different applications can be 
accommodated by Switching out different processing mod 
ules. However, in alternate embodiments, such arbitration 
rules can be configurable. 
0039 Offload processor 208 can include one or more pro 
cessors that can operate on data transferred over the system 
memory bus. In some embodiments, offload processors can 
run a general operating system or server applications such as 
Apache (as but one very particular example), enabling pro 
cessor contexts to be saved and retrieved. Computing tasks 
executed by offload processor 208 can be handled by the 
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hardware scheduler 212. Offload processors 208 can operate 
on data buffered in the processor module 200. In addition or 
alternatively, offload processors 208 can access data stored 
elsewhere in a system memory space. In some embodiments, 
offload processors 208 can include a cache memory config 
ured to store context information. An offload processor 208 
can include multiple cores or one core. 
0040. A processor module 200 can be included in a system 
having a host processor (not shown). In some embodiments, 
offload processors 208 can be a different type of processor as 
compared to the host processor. In particular embodiments, 
offload processors 208 can consume less power and/or have 
less computing power than a host processor. In very particular 
embodiments, offload processors 208 can be “wimpy” core 
processors, while a host processor can be a "brawny core 
processor. However, in alternate embodiments, offload pro 
cessors 208 can have equivalent computing power to any host 
processor. In very particular embodiments, a host processor 
can be an x86 type processor, while an offload processor 208 
can include an ARM, ARC, Tensilica, MIPS, Strong/ARM, or 
RISC type processor, as but a few examples. 
0041 Local memory 210 can be connected to offload pro 
cessor 208 to enable the storing of context information. 
Accordingly, an offload processor 208 can store current con 
text information, and then Switch to a new computing task, 
then Subsequently retrieve the context information to resume 
the prior task. In very particular embodiments, local memory 
210 can be a low latency memory with respect to other memo 
ries in a system. In some embodiments, storing of context 
information can include copying an offload processor 208. 
0042. In some embodiments, a same space within local 
memory 210 is accessible by multiple offload processors 208 
of the same type. In this way, a context stored by one offload 
processor can be resumed by a different offload processor. 
0043 Control logic 212 can control processing tasks 
executed by offload processor(s). In some embodiments, con 
trol logic 212 can be considered a hardware scheduler that can 
be conceptualized as including a data evaluator 214, Sched 
uler 216 and a switch controller 218. A data evaluator 214 can 
extract “metadata from write data transferred over a system 
memory bus. “Metadata”, as used herein, can be any infor 
mation embedded at one or more predetermined locations of 
a block of write data that indicates processing to be performed 
on all or a portion of the block of write data and/or indicate a 
particular task/process to which the data belongs (e.g., clas 
sification data). In some embodiments, metadata can be data 
that indicates a higher level organization for the block of write 
data. As but one very particular embodiment, metadata can be 
header information of one or more network packets (which 
may or may not be encapsulated within a higher layer packet 
structure). 
0044) A scheduler 216 can order computing tasks for off 
load processor(s) 208. In some embodiments, scheduler 216 
can generate a schedule that is continually updated as write 
data for processing is received. In very particular embodi 
ments, a scheduler 216 can generate Such a schedule based on 
the ability to switch contexts of offload processor(s) 208. In 
this way, on-module computing priorities can be adjusted on 
the fly. In very particular embodiments, a scheduler 216 can 
assign a portion of physical address space (e.g., memory 
locations within local memory 210) to an offload processor 
208, according to computing tasks. The offload processor 208 
can then Switch between such different spaces, saving context 
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information prior to each Switch, and Subsequently restoring 
context information when returning to the memory space. 
0045 Switch controller 218 can control computing opera 
tions of offload processor(s) 208. In particular embodiments, 
according to scheduler 216, switch controller 218 can order 
offload processor(s) 208 to switch contexts. It is understood 
that a context Switch operation can be an "atomic' operation, 
executed in response to a single command from Switch con 
troller 218. In addition or alternatively, a switch controller 
218 can issue an instruction set that stores current context 
information, recalls context information, etc. 
0046. In some embodiments, processor module 200 can 
include a buffer memory (not shown). A buffer memory can 
store received write data on board the processor module. A 
buffer memory can be implemented on an entirely different 
set of memory devices, or can be a memory embedded with 
logic and/or the offload processor. In the latter case, arbiter 
logic 206 can arbitrate access to the buffer memory. In some 
embodiments, a buffer memory can correspond to a portion of 
a system physical memory space. The remaining portion of 
the system memory space can correspond to other like pro 
cessor modules and/or memory modules connected to the 
same system memory bus. In some embodiments buffer 
memory can be different than local memory 210. For 
example, buffer memory can have a slower access time than 
local memory 210. However, in other embodiments, buffer 
memory and local memory can be implemented with like 
memory devices. 
0047. In very particular embodiments, write data for pro 
cessing can have an expected maximum flow rate. A proces 
Sor module 200 can be configured to operate on Such data at, 
or faster than, Such a flow rate. In this way, a master device 
(not shown) can write data to a processor module without 
danger of overwriting data in process. 
0048. The various computing elements of a processor 
module 200 can be implemented as one or more integrated 
circuit devices (ICs). It is understood that the various com 
ponents shown in FIG. 2-0 can be formed in the same or 
different ICs. For example, control logic 212, memory inter 
face 214, and/or arbiter logic 206 can be implemented on one 
or more logic ICs, while offload processor(s) 208 and local 
memory 210 are separate ICs. Logic ICs can be fixed logic 
(e.g., application specific ICs), programmable logic (e.g., 
field programmable gate arrays, FPGAs), or combinations 
thereof. 

0049 Advantageously, the foregoing hardware and sys 
tems can provide improved computational performance as 
compared to traditional computing systems. Conventional 
systems, including those based on x86 processors, are often 
ill-equipped to handle Such high Volume applications. Even 
idling, X86 processors use a significant amount of power, and 
near continuous operation for high bandwidth packet analysis 
or other high Volume processing tasks makes the processor 
energy costs one of the dominant price factors. 
0050. In addition, conventional systems can have issues 
with the high cost of context Switching wherein a host pro 
cessor is required to execute instructions which can include 
Switching from one thread to another. Such context Switching 
can require storing and recalling of context for the thread. If 
Such context data is resident in a host cache memory. Such a 
context Switch can occur relatively quickly. However, if Such 
context data is no longer in cache memory (i.e., a cache miss), 
the data must be recalled from system memory, which can 
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incur a multi-cycle latency. Continuous cache misses during 
context Switching can adversely impact system performance. 
0051 FIG. 2-1 shows a processor module 200-1 according 

to one very particular embodiment which is capable of reduc 
ing issues associated with high Volume processing or context 
Switching associated with many conventional server systems. 
A processor module 200-1 can include ICs 220-0/1 mounted 
to a printed circuit board (PCB) type substrate 222. PCB type 
substrate 222 can include in-line module connector 202, 
which in one very particular embodiment, can be a DIMM 
compatible connector. IC 220-0 can be a system-on-chip 
(SoC) type device, integrating multiple functions. In the very 
particular embodiment shown, an IC 220-0 can include 
embedded processor(s), logic and memory. Such embedded 
processor(s) can be offload processor(s) 208 as described 
herein, or equivalents. Such logic can be any of controller 
logic 212, memory interface 204 and/or arbiter logic 206, as 
described herein, or equivalents. Such memory can be any of 
local memory 210, cache memory for offload processor(s) 
208, or buffer memory, as described herein, or equivalents. 
Logic IC 220-1 can provide logic functions not included in IC 
220-0. 

0052 FIG. 2-2 shows a processor module 200-2 according 
to another very particular embodiment. A processor module 
200-2 can include ICs 220-2, -3, -4, -5 mounted to a PCB type 
substrate 222, like that of FIG.2-1. However, unlike FIG. 2-1, 
processor module functions are distributed among single pur 
pose type ICs. IC 220-2 can be a processor IC, which can be 
an offload processor 208. IC 220-3 can be a memory IC which 
can include local memory 210, buffer memory, or combina 
tions thereof. IC 220-4 can be a logic IC which can include 
control logic 212, and in one very particular embodiment, can 
be an FPGA. IC 220-5 can be another logic IC which can 
include memory interface 204 and arbiter logic 206, and in 
one very particular embodiment, can also be an FPGA. 
0053. It is understood that FIGS. 2-1/2 represent but two 
of various implementations. The various functions of a pro 
cessor module can be distributed over any suitable number of 
ICs, including a single SoC type IC. 
0054 FIG. 2-3 shows an opposing side of a processor 
module 200-1 or 200-2 according to a very particular embodi 
ment. Processor module 200-3 can include a number of 
memory ICs, one shown as 220-6, mounted to a PCB type 
substrate 222, like that of FIG. 2-1. It is understood that 
various processing and logic components can be mounted on 
an opposing side to that shown. A memory IC 220-6 can be 
configured to represent a portion of the physical memory 
space of a system. Memory ICs 220-6 can perform any or all 
of the following functions: operate independently of other 
processor module components, providing system memory 
accessed in a conventional fashion; serve as buffer memory, 
storing write data that can be processed with other processor 
module components, or serve as local memory for storing 
processor context information. 
0055 FIG. 2-4 shows a conventional DIMM module (i.e., 

it serves only a memory function) that can populate a memory 
bus along with processor modules as described herein, or 
equivalents. 
0056 FIG. 2-5 shows a system 230 according to one 
embodiment. A system 230 can include a system memory bus 
228 accessible via multiple in-line module slots (one shown 
as 226). According to embodiments, any or all of the slots 226 
can be occupied by a processor module 200 as described 
herein, or an equivalent. In the event all slots 226 are not 
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occupied by a processor module 200, available slots can be 
occupied by conventional in-line memory modules 224. In a 
very particular embodiment, slots 226 can be DIMM slots. 
0057. In some embodiments, a processor module 200 can 
occupy one slot. However, in other embodiments, a processor 
module can occupy multiple slots. 
0058. In some embodiments, a system memory bus 228 
can be further interfaced with one or more host processors 
and/or input/output device (not shown). 
0059 Having described processor modules according to 
various embodiments, operations of an offload processor 
module capable of interfacing with server or similar system 
via a memory bus and according to a particular embodiment 
will now be described. 
0060 FIG. 3 shows a system 301 according to another 
embodiment. A system 301 can transport packet data requir 
ing network overlay services to one or more computational 
units (one shown as 300) located on a module, which in 
particular embodiments, can include a connector compatible 
with an existing memory module. In some embodiments, a 
computational unit 300 can include a processor module as 
described in embodiments herein, or an equivalent. A com 
putational unit 300 can be capable of intercepting or other 
wise accessing packets sent over a memory bus 316 and 
carrying out processing on Such packets, including but not 
limited to termination or metadata processing. A system 
memory bus 316 can be a system memory bus like those 
described herein, or equivalents (e.g., 228). 
0061 Referring still to FIG.3, a system301 can includean 
I/O device 302 which can receive packet or other I/O data 
from an external source. In some embodiments I/O device 
302 can include physical or virtual functions generated by the 
physical device to receive a packet or other I/O data from the 
network or another computer or virtual machine. In the very 
particular embodiment shown, an I/O device 302 can include 
a network interface card (NIC) having input buffer 302a (e.g., 
DMA ring buffer) and an I/O virtualization function 302b. 
0062 According to embodiments, an I/O device 302 can 
write a descriptor including details of the necessary memory 
operation for the packet (i.e. read/write, source/destination). 
Such a descriptor can be assigned a virtual memory location 
(e.g., by an operating system of the system 301). I/O device 
302 then communicates with an input output memory man 
agement unit (IOMMU) 304 which can translate virtual 
addresses to corresponding physical addresses with an 
IOMMU function 304b. In the particular embodiment shown, 
a translation look-aside buffer (TLB) 304a can be used for 
such translation. Virtual function reads or writes data between 
I/O device and system memory locations can then be 
executed with a direct memory transfer (e.g., DMA) via a 
memory controller 306b of the system301. An I/O device 302 
can be connected to IOMMU 304 by a hostbus 312. In one 
very particular embodiment, a hostbus 312 can be a periph 
eral interconnect (PCI) type bus. IOMMU 304 can be con 
nected to a host processing section 306 at a central processing 
unit I/O (CPUIO) 306a. In the embodiment shown, such a 
connection 314 can supporta HyperTransport (HT) protocol. 
0063. In the embodiment shown, a host processing section 
306 can include the CPUIO 306a, memory controller 306b, 
processing core 306c and corresponding provisioning agent 
306d. 
0064. In particular embodiments, a computational unit 
300 can interface with the system bus 316 via standard in-line 
module connection, which in very particular embodiments 
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can include a DIMM type slot. In the embodiment shown, a 
memory bus 316 can be a DDR3 type memory bus. Alternate 
embodiments can include any suitable system memory bus. 
Packet data can be sent by memory controller 306b via 
memory bus 316 to a DMA slave interface 310a. DMA slave 
interface 310a can be adapted to receive encapsulated read/ 
write instructions from a DMA write over the memory bus 
316. 

0065. A hardware scheduler (308b/c/d/e/h) can perform 
traffic management on incoming packets by categorizing 
them according to flow using session metadata. Packets can 
be queued for output in an onboard memory (310b/308a/ 
308m) based on session priority. When the hardware sched 
uler determines that a packet for a particular session is ready 
to be processed by the offload processor 308i, the onboard 
memory is signaled for a context Switch to that session. Ulti 
lizing this method of prioritization, context Switching over 
head can be reduced, as compared to conventional 
approaches. That is, a hardware scheduler can handle context 
Switching decisions and thus optimize the performance of the 
downstream resource (e.g., offload processor 308i). 
0066. As noted above, in very particular embodiments, an 
offload processor 308i can be a “wimpy core type processor. 
According to Some embodiments, a host processor 306C can 
be a "brawny core type processor (e.g., an x86 or any other 
processor capable of handling "heavy touch” computational 
operations). While an I/O device 302 can be configured to 
trigger host processor interrupts in response to incoming 
packets, according to embodiments, such interrupts can be 
disabled, thereby reducing processing overhead for the host 
processor 306c. In some very particular embodiments, an 
offload processor 308i can include an ARM, ARC, Tensilica, 
MIPS, Strong/ARM or any other processor capable of han 
dling “light touch' operations. Preferably, an offload proces 
Sor can run a general purpose operating system for executing 
a plurality of sessions, which can be optimized to work in 
conjunction with the hardware scheduler in order to reduce 
context Switching overhead. 
0067. Referring still to FIG.3, in operation, a system 301 
can receive packets from an external network over a network 
interface. The packets are destined for either a host processor 
306c or an offload processor 308i based on the classification 
logic and schematics employed by I/O device 302. In particu 
lar embodiments, I/O device 302 can operate as a virtualized 
NIC, with packets for a particular logical network or to a 
certain virtual MAC (VMAC) address can be directed into 
separate queues and sent over to the destination logical entity. 
Such an arrangement can transfer packets to different entities. 
In some embodiments, each Such entity can have a virtual 
driver, a virtual device model that it uses to communicate with 
connected virtual network. 

0068 According to embodiments, multiple devices can be 
used to redirect traffic to specific memory addresses. So, each 
of the network devices operates as if it is transferring the 
packets to the memory location of a logical entity. However, 
in reality, such packets are transferred to memory addresses 
where they can be handled by one or more offload processors 
(e.g., 308i). In particular embodiments such transfers are to 
physical memory addresses, thus logical entities can be 
removed from the processing, and a host processor can be free 
from Such packet handling. 
0069. Accordingly, embodiments can be conceptualized 
as providing a memory “blackbox” to which specific network 
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data can be fed. Such a memory blackbox can handle the data 
(e.g., process it) and respond back when such data is 
requested. 
0070 Referring still to FIG.3, according to some embodi 
ments, I/O device 302 can receive data packets from a net 
work or from a computing device. The data packets can have 
certain characteristics, including transport protocol number, 
Source and destination port numbers, Source and destination 
IP addresses, for example. The data packets can further have 
metadata that is processed (308d) that helps in their classifi 
cation and management. 
(0071. I/O device 302 can include, but is not limited to, 
peripheral component interconnect (PCI) and/or PCI express 
(PCIe) devices connecting with a host motherboard via PCI or 
PCIe bus (e.g., 312). Examples of I/O devices include a net 
work interface controller (NIC), a host bus adapter, a con 
verged network adapter, an ATM network interface, etc. 
0072. In order to provide for an abstraction scheme that 
allows multiple logical entities to access the same I/O device 
302, the I/O device may be virtualized to provide for multiple 
virtual devices each of which can perform some of the func 
tions of the physical I/O device. The IO virtualization pro 
gram (e.g., 302b) according to an embodiment, can redirect 
traffic to different memory locations (and thus to different 
offload processors attached to modules on a memory bus). To 
achieve this, an I/O device 302 (e.g., a network card) may be 
partitioned into several function parts; including controlling 
function (CF) supporting input/output virtualization (IOV) 
architecture (e.g., single-root IOV) and multiple virtual func 
tion (VF) interfaces. Each virtual function interface may be 
provided with resources during runtime for dedicated usage. 
Examples of the CF and VF may include the physical function 
and virtual functions under schemes such as Single Root I/O 
Virtualization or Multi-Root I/O Virtualization architecture. 
The CF acts as the physical resources that sets up and man 
ages virtual resources. The CF is also capable of acting as a 
full-fledged IO device. The VF is responsible for providing an 
abstraction of a virtual device for communication with mul 
tiple logical entities/multiple memory regions. 
0073. The operating system/the hypervisor any of the vir 
tual machines/user code running on a host processor 306c 
may be loaded with a device model, a VF driver and a driver 
for a CF. The device model may be used to create an emula 
tion of a physical device for the host processor 306c to rec 
ognize each of the multiple VFs that are created. The device 
model may be replicated multiple times to give the impres 
sion to a VF driver (a driver that interacts with a virtual IO 
device) that it is interacting with a physical device of a par 
ticular type. 
0074 For example, a certain device module may be used 
to emulate a network adapter such as the Intel(R) Ethernet 
Converged Network Adapter (CNA) X540-T2, so that the I/O 
device 302 believes it is interacting with such an adapter. In 
Such a case, each of the virtual functions may have the capa 
bility to support the functions of the above said CNA, i.e., 
each of the Physical Functions should be able to support such 
functionality. The device model and the VF driver can be run 
in either privileged or non-privileged mode. In some embodi 
ments, there is no restriction with regard to who hosts/runs the 
code corresponding to the device model and the VF driver. 
The code, however, has the capability to create multiple cop 
ies of device model and VF driver so as to enable multiple 
copies of said I/O interface to be created. 
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0075 An application or provisioning agent 306d, as part 
of an application/user level code running in a kernel, may 
create a virtual I/O address space for each VF, during runtime 
and allocate part of the physical address space to it. For 
example, if an application handling the VF driver instructs it 
to read or write packets from or to memory addresses Oxaaaa 
to 0xffff, the device driver may write I/O descriptors into a 
descriptor queue with a head and tail pointer that are changed 
dynamically as queue entries are filled. The data structure 
may be of another type as well, including but not limited to a 
ring structure 302a or hash table. 
0076. The VF can read from or write data to the address 
location pointed to by the driver. Further, on completing the 
transfer of data to the address space allocated to the driver, 
interrupts, which are usually triggered to the host processor to 
handle said network packets, can be disabled. Allocating a 
specific I/O space to a device can include allocating said IO 
space a specific physical memory space occupied. 
0077. In another embodiment, the descriptor may com 
prise only a write operation, if the descriptor is associated 
with a specific data structure for handling incoming packets. 
Further, the descriptor for each of the entries in the incoming 
data structure may be constant so as to redirect all data write 
to a specific memory location. In an alternate embodiment, 
the descriptor for consecutive entries may point to consecu 
tive entries in memory So as to direct incoming packets to 
consecutive memory locations. 
0078. Alternatively, said operating system may create a 
defined physical address space for an application Supporting 
the VF drivers and allocate a virtual memory address space to 
the application or provisioning agent 306d, thereby creating a 
mapping for each virtual function between said virtual 
address and a physical address space. Said mapping between 
virtual memory address space and physical memory space 
may be stored in IOMMU tables (e.g., a TLB 304a). The 
application performing memory reads or writes may supply 
virtual addresses to say virtual function, and the host proces 
sor OS may allocate a specific part of the physical memory 
location to Such an application. 
0079 Alternatively, VF may be configured to generate 
requests such as read and write which may be part of a direct 
memory access (DMA) read or write operation, for example. 
The virtual addresses can be translated by the IOMMU304 to 
their corresponding physical addresses and the physical 
addresses may be provided to the memory controller for 
access. That is, the IOMMU 304 may modify the memory 
requests sourced by the I/O devices to change the virtual 
address in the request to a physical address, and the memory 
request may be forwarded to the memory controller for 
memory access. The memory request may be forwarded over 
a bus 314 that supports a protocol such as HyperTransport 
314. The VF may in such cases carry out a direct memory 
access by Supplying the virtual memory address to the 
IOMMU3O4. 

0080. Alternatively, said application may directly code the 
physical address into the VF descriptors if the VF allows for 
it. If the VF cannot support physical addresses of the form 
used by the host processor 306c, an aperture with a hardware 
size supported by the VF device may be coded into the 
descriptor so that the VF is informed of the target hardware 
address of the device. Data that is transferred to an aperture 
may be mapped by a translation table to a defined physical 
address space in the system memory. The DMA operations 
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may be initiated by software executed by the processors, 
programming the I/O devices directly or indirectly to perform 
the DMA operations. 
I0081 Referring still to FIG.3, in particular embodiments, 
parts of computational unit 300 can be implemented with one 
or more FPGAs. In the system of FIG. 3, computational unit 
300 can include FPGA 310 in which can be formed a DMA 
slave device module 310a and arbiter 310?. A DMA slave 
module 310a can be any device suitable for attachment to a 
memory bus 316 that can respond to DMA read/write 
requests. In alternate embodiments, a DMA slave module 
310a can be another interface capable of block data transfers 
over memory bus 316. The DMA slave module 310a can be 
capable of receiving data from a DMA controller (when it 
performs a read from a memory or from a peripheral) or 
transferring data to a DMA controller (when it performs a 
write instruction on the DMA slave module 310a). The DMA 
slave module 310a may be adapted to receive DMA read and 
write instructions encapsulated over a memory bus, (e.g., in 
the form of a DDR data transmission, Such as a packet or data 
burst), or any other format that can be sent over the corre 
sponding memory bus. 
0082 A DMA slave module 310a can reconstruct the 
DMA read/write instruction from the memory R/W packet. 
The DMA slave module 310a may be adapted to respond to 
these instructions in the form of data reads/data writes to the 
DMA master, which could either be housed in a peripheral 
device, in the case of a PCIe bus, or a system DMA controller 
in the case of an ISA bus. 

I0083 I/O data that is received by the DMA device 310a 
can then queued for arbitration. Arbitration can include the 
process of scheduling packets of different flows, such that 
they are provided access to available bandwidth based on a 
number of parameters. In general, an arbiter 310fprovides 
resource access to one or more requestors. If multiple request 
ors request access, an arbiter 310f can determine which 
requestor becomes the accessor and then passes data from the 
accessor to the resource interface, and the downstream 
resource can begin execution on the data. After the data has 
been completely transferred to a resource, and the resource 
has competed execution, the arbiter 310fcan transfer control 
to a different requestor and this cycle repeats for all available 
requestors. In the embodiment of FIG. 3, arbiter 310f can 
notify other portions of computational unit 300 (e.g., 308) of 
incoming data. 
I0084. Alternatively, a computation unit 300 can utilize an 
arbitration scheme shown in U.S. Pat. No. 7,813,283, issued 
to Dalal on Oct. 12, 2010, the contents of which are incorpo 
rated herein by reference. Other suitable arbitration schemes 
known in art could be implemented in embodiments herein. 
Alternatively, the arbitration scheme of the current invention 
might be implemented using an OpenFlow Switch and an 
OpenFlow controller. 
I0085. In the very particular embodiment of FIG. 3, com 
putational unit 300 can further include notify/prefetch cir 
cuits 310c which can prefetch data stored in a buffer memory 
310b in response to DMA slave module 310a, and as arbi 
trated by arbiter 310?. Further, arbiter 310fcan access other 
portions of the computational unit 300 via a memory mapped 
I/O ingress path 310e and egress path 310g. 
I0086 Referring to FIG. 3, a hardware scheduler can 
include a scheduling circuit 308b/n to implement traffic man 
agement of incoming packets. Packets from a certain source, 
relating to a certain traffic class, pertaining to a specific appli 
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cation or flowing to a certain Socket are referred to as part of 
a session flow and are classified using session metadata. Such 
classification can be performed by classifier 308e. 
0087. In some embodiments, session metadata 308d can 
serve as the criterion by which packets are prioritized and 
scheduled and as such, incoming packets can be reordered 
based on their session metadata. This reordering of packets 
can occur in one or more buffers and can modify the traffic 
shape of these flows. The scheduling discipline chosen for 
this prioritization, or traffic management (TM), can affect the 
traffic shape of flows and micro-flows through delay (buffer 
ing), bursting of traffic (buffering and bursting), Smoothing of 
traffic (buffering and rate-limiting flows), dropping traffic 
(choosing data to discard so as to avoid exhausting the buffer), 
delay jitter (temporally shifting cells of a flow by different 
amounts) and by not admitting a connection (e.g., cannot 
simultaneously guarantee existing service level agreements 
(SLAB) with an additional flows SLA). 
0088 According to embodiments, computational unit 300 
can serve as part of a Switch fabric, and provide traffic man 
agement with depth-limited output queues, the access to 
which is arbitrated by a scheduling circuit 308b/n. Such out 
put queues are managed using a scheduling discipline to 
provide traffic management for incoming flows. The session 
flows queued in each of these queues can be sent out through 
an output port to a downstream network element. 
0089. It is noted that conventional traffic management do 
not take into account the handling and management of data by 
downstream elements except for meeting the SLA agree 
ments it already has with said downstream elements. 
0090. In contrast, according to embodiments a scheduler 
circuit 308b/n can allocate a priority to each of the output 
queues and carry out reordering of incoming packets to main 
tain persistence of session flows in these queues. A scheduler 
circuit 308b/n can be used to control the scheduling of each of 
these persistent sessions into a general purpose operating 
system (OS) 308i, executed on an offload processor 308i. 
Packets of a particular session flow, as defined above, can 
belong to a particular queue. The scheduler circuit 308b/n 
may control the prioritization of these queues such that they 
are arbitrated for handling by a general purpose (GP) process 
ing resource (e.g., offload processor 308i) located down 
stream. An OS 3.08i running on a downstream processor 308i 
can allocate execution resources such as processor cycles and 
memory to a particular queue it is currently handling. The OS 
308i may further allocate a thread or a group of threads for 
that particular queue, so that it is handled distinctly by the 
general purpose (GP) processing element 308i as a separate 
entity. The fact that there can be multiple sessions running on 
a GP processing resource, each handling data from a particu 
lar session flow resident in a queue established by the sched 
uler circuit, tightly integrates the scheduler and the down 
stream resource (e.g., 308i). This can bring about persistence 
of Session information across the traffic management and 
scheduling circuit and the general purpose processing 
resource 308i. 

0091 Dedicated computing resources (e.g., 308i), 
memory space and session context information for each of the 
sessions can provide a way of handling, processing and/or 
terminating each of the session flows at the general purpose 
processor 308i. The scheduler circuit 308b/n can exploit this 
functionality of the execution resource to queue Session flows 
for scheduling downstream. The scheduler circuit 308b/n can 
be informed of the state of the execution resource(s) (e.g., 
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308i), the current session that is run on the execution 
resource; the memory space allocated to it, the location of the 
session context in the processor cache. 
0092. According to embodiments, a scheduler circuit 
308b/n can further include switching circuits to change 
execution resources from one state to another. The scheduler 
circuit 308b/n can use such a capability to arbitrate between 
the queues that are ready to be switched into the downstream 
execution resource. Further, the downstream execution 
resource can be optimized to reduce the penalty and overhead 
associated with context switch between resources. This is 
further exploited by the scheduler circuit 308b/n to carry out 
seamless Switching between queues, and consequently their 
execution as different sessions by the execution resource. 
0093. According to embodiments, a scheduler circuit 
308b/n can schedule different sessions on a downstream pro 
cessing resource, wherein the two are operated in coordina 
tion to reduce the overhead during context Switches. An 
important factor in decreasing the latency of services and 
engineering computational availability can be hardware con 
text Switching synchronized with network queuing. In 
embodiments, when a queue is selected by a traffic manager, 
a pipeline coordinates Swapping in of the cache (e.g., L2 
cache) of the corresponding resource (e.g., 308i) and transfers 
the reassembled I/O data into the memory space of the execut 
ing process. In certain cases, no packets are pending in the 
queue, but computation is still pending to service previous 
packets. Once this process makes a memory reference outside 
of the data swapped, the scheduler circuit (308b/n) can enable 
queued data from an I/O device 302 to continue scheduling 
the thread. 
0094. In some embodiments, to provide fair queuing to a 
process not having data, a maximum context size can be 
assumed as data processed. In this way, a queue can be pro 
visioned as the greater of computational resource and net 
work bandwidth resource. As but one very particular 
example, a computation resource can be an ARMA9 proces 
sor running at 800 MHz, while a network bandwidth can be 3 
Gbps of bandwidth. Given the lopsided nature of this ratio, 
embodiments can utilize computation having many parallel 
sessions (such that the hardware's prefetching of Session 
specific data offloads a large portion of the host processor 
load) and having minimal general purpose processing of data. 
0.095 Accordingly, in some embodiments, a scheduler cir 
cuit 308b/n can be conceptualized as arbitrating, not between 
outgoing queues at line rate speeds, but arbitrating between 
terminated sessions at very high speeds. The Stickiness of 
sessions across a pipeline of stages, including a general pur 
pose OS, can be a scheduler circuit optimizing any or all Such 
stages of Such a pipeline. 
0096. Alternatively, a scheduling scheme can be used as 
shown in U.S. Pat. No. 7,760,715 issued to Dalal on Jul. 20, 
2010, incorporated herein by reference. This scheme can be 
useful when it is desirable to rate limit the flows for prevent 
ing the downstream congestion of another resource specific to 
the over-selected flow, or for enforcing service contracts for 
particular flows. Embodiments can include arbitration 
scheme that allows for service contracts of downstream 
resources, such as general purpose OS that can be enforced 
seamlessly. 
(0097. Referring still to FIG. 3, a hardware scheduler 
according to embodiments herein, or equivalents, can provide 
for the classification of incoming packet data into session 
flows based on session metadata. It can further provide for 
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traffic management of these flows before they are arbitrated 
and queued as distinct processing entities on the offload pro 
CSSOS. 

0098. In some embodiments, offload processors (e.g., 
308i) can be general purpose processing units capable of 
handling packets of different application or transport ses 
sions. Such offload processors can be low power processors 
capable of executing general purpose instructions. The off 
load processors could be any suitable processor, including but 
not limited to: ARM, ARC, Tensilica, MIPS, StrongARM or 
any other processor that serves the functions described 
herein. Such offload processors have a general purpose OS 
running on them, wherein the general purpose OS is opti 
mized to reduce the penalty associated with context Switching 
between different threads or group of threads. 
0099. In contrast, context switches on host processors can 
be computationally intensive processes that require the reg 
ister save area, process context in the cache and TLB entries 
to be restored if they are invalidated or overwritten. Instruc 
tion Cache misses in host processing systems can lead to 
pipeline stalls and data cache misses lead to operation stall 
and Such cache misses reduce processor efficiency and 
increase processor overhead. 
0100. In contrast, an OS 3.08i running on the offload pro 
cessors 308i in association with a scheduler circuit 308b/n, 
can operate together to reduce the context Switch overhead 
incurred between different processing entities running on it. 
Embodiments can include a cooperative mechanism between 
a scheduler circuit and the OS on the offload processor 308i, 
wherein the OS sets up session context to be physically con 
tiguous (physically colored allocator for session heap and 
stack) in the cache; then communicates the session color, size, 
and starting physical address to the scheduler circuit upon 
session initialization. During an actual context Switch, a 
scheduler circuit can identify the session context in the cache 
by using these parameters and initiate a bulk transfer of these 
contents to an external low latency memory (e.g., 308g). In 
addition, the scheduler circuit can manage the prefetch of the 
old session if its context was saved to a local memory 308g. In 
particular embodiments, a local memory 308g can be low 
latency memory, Such as a reduced latency dynamic random 
access memory (RLDRAM), as but one very particular 
embodiment. Thus, in embodiments, session context can be 
identified distinctly in the cache. 
0101. In some embodiments, context size can be limited to 
ensure fast Switching speeds. In addition or alternatively, 
embodiments can include a bulk transfer mechanism to trans 
fer out session context to a local memory 308g. The cache 
contents stored therein can then be retrieved and prefetched 
during context Switch back to a previous session. Different 
context session data can be tagged and/or identified within the 
local memory 308g for fast retrieval. As noted above, context 
stored by one offload processor may be recalled by a different 
offload processor. 
0102. In the very particular embodiment of FIG. 3, mul 

tiple offload processing cores can be integrated into a com 
putation FPGA 308. Multiple computational FPGAs can be 
arbitrated by arbitrator circuits in another FPGA 310. The 
combination of computational FPGAs (e.g., 308) and arbiter 
FPGAs (e.g., 310) are referred to as “XIMM modules or 
“Xockets DIMM modules” (e.g., computation unit 300). In 
particular applications, these XIMM modules can provide 
integrated traffic and thread management circuits that broker 
execution of multiple sessions on the offload processors. 
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0103 FIG.3 also shows an offload processor tunnel con 
nection 308K, as well as a memory interface 308m and port 
3.081 (which can be an accelerator coherency port (ACP)). 
Memory interface 308m can access buffer memory 308a. 
0104 Having described various embodiments suitable for 
network overlay operations, several examples of Such opera 
tions will now be described. 

Example 1 

IPV4 to IPV6 Conversion 

0105 Internet Protocol version 6 (IPv6) is the latest ver 
sion of Internet Protocol (IP), the communications protocol 
that identifies computers on networks and allows for routing 
ofpacket traffic across the Internet. Since every device on the 
Internet must have a uniquely assigned IP address in order to 
communicate with other devices, the increasing number of 
new devices being connected to the Internet requires more 
addresses than the current Internet protocol IPv4 can support. 
IPv6 uses a 128-bit address, permitting approximately 3.4x 
10 addresses, far more than the approximately 4.3 billion 
addresses available under the 32-bit address system of IPv4. 
Unfortunately, the two protocols are not designed to be 
interoperable, requiring special procedures for handling 
packets that must be converted between the protocols. 
0106. In this example, instead of using a host or server 
processor to perform protocol translations as part of a net 
work overlay, one or more offload processor modules can be 
used. Both encapsulation and decapsulation of packet data 
can be provided, with IPv6 (which cannot be transported over 
an IPv4 network) being converted (encapsulated) into IPv4 
packets so that they could be transported over a network. Such 
a conversion includes segmenting packets (if they are too 
large) and adding any required IPv4 headers and packet iden 
tifiers. Once a packet is in IPv4 format, it can be tunneled over 
a memory bus (e.g., DDR) to a network interface card for 
transfer over a network. Similarly, decapsulation can be pro 
vided by converting IPv4 packets (that contain IPv6 protocol 
packets as payload) into protocols of IPv6 so that they could 
be transported to a host processor that has a IPv6 address. The 
conversion comprises of reassembling packets (if they were 
segmented) and removing IPv4 headers and any packet iden 
tifiers. Once the final packet is in IPv6 format it can be 
tunneled over DDR or other memory bus to a host processor. 

Example 2 

VXLan Support 
0107 Virtual network equipment presentation such as 
customer network routers and customer network firewalls can 
also be achieved using overlay networking technology. For 
example, Virtual Extensible LAN (VXLAN) based systems 
are a widely used virtualization scheme that requires specific 
encapsulation and decapsulation network overlay services. 
Typically, MAC-based layer 2 Ethernet frames are incorpo 
rated within layer3 UDP packets. In this example, instead of 
specialized network cards, interface units, or server Sup 
ported Software implementations, an offload processing mod 
ule can be used for required encapsulation and decapsulation 
of data. 
0108. It should be appreciated that in the foregoing 
description of exemplary embodiments of the invention, Vari 
ous features of the invention are sometimes grouped together 
in a single embodiment, figure, or description thereof for the 
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purpose of streamlining the disclosure aiding in the under 
standing of one or more of the various inventive aspects. This 
method of disclosure, however, is not to be interpreted as 
reflecting an intention that the claimed invention requires 
more features than are expressly recited in each claim. Rather, 
as the following claims reflect, inventive aspects lie in less 
than all features of a single foregoing disclosed embodiment. 
Thus, the claims following the detailed description are hereby 
expressly incorporated into this detailed description, with 
each claim standing on its own as a separate embodiment of 
this invention. 

0109. It is also understood that the embodiments of the 
invention may be practiced in the absence of an element 
and/or step not specifically disclosed. That is, an inventive 
feature of the invention may be elimination of an element. 
0110. Accordingly, while the various aspects of the par 

ticular embodiments set forth herein have been described in 
detail, the present invention could be subject to various 
changes, Substitutions, and alterations without departing 
from the spirit and scope of the invention. 
What is claimed is: 
1. A method for providing network overlay services 

capable of processing network packets having associated 
packet metadata, comprising the steps of: 

writing packets to a specific memory location accessible by 
at least one offload processor, with packets transported 
using a memory bus having a defined memory transport 
protocol, 

modifying packet metadata of the packets written to the 
specific memory location with the at least one offload 
processor, without requiring modification of the packets 
by a host processor, and 

sending the modified packets to the memory bus. 
2. The method of claim 1, further comprising the step of 

generating an address of the specific memory location using 
packet metadata. 
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3. The method of claim 1, further comprising the step of 
scheduling processing of packet data on the at least one off 
load processor. 

4. The method of claim 1, wherein the at least one offload 
processor further comprises multiple general purpose offload 
processors. 

5. The system of claim 4 further comprising the step of 
scheduling parallel processing of packet data using the mul 
tiple general purpose offload processors. 

6. The system of claim 4 further comprising the step of 
providing for context Switching of the multiple general pur 
pose offload processors, including storing context informa 
tion of at least one general purpose offload processor in a 
memory. 

7. A method for processing network packets, comprising 
the steps of 

receiving network packets from a first network, 
transporting the packets over a memory bus to an offload 

processor, 
modifying the packets using the offload processor, and 
transporting the modified packets over the memory bus to 

a second network. 
8. The method of claim 7, wherein the received packets are 

Internet Protocol version 6 (IPv6) packets, and the modified 
packets are Internet Protocol version 4 (IPv4) packets. 

9. The method of claim 7, wherein the received packets are 
Internet Protocol version 4 (IPv4) packets, and the modified 
packets are Internet Protocol version 6 (IPv6) packets. 

10. The method of claim 7, wherein modifying the packets 
includes modification of a header of the packets. 

11. The method of claim 7, wherein modifying the packets 
includes at least one of: 

encapsulation and decapsulation of the packet data. 
12. The method of claim 7, further comprising the step of 

providing virtualization services, wherein modifying the 
packets includes at least one of encapsulation and decapsu 
lation of the packet data to Support virtual addressing. 

k k k k k 


