
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2014/0201309 A1

US 201402013 O9A1

Dalal et al. (43) Pub. Date: Jul. 17, 2014

(54) NETWORKOVERLAY SYSTEMAND 61/753,907, filed on Jan. 17, 2013, provisional appli
METHOD USING OFFLOAD PROCESSORS cation No. 61/753,910, filed on Jan. 17, 2013.

(71) Applicant: Xockets IP, LLC, Wilmington, DE (US) Publication Classification

(72) Inventors: Parin Bhadrik Dalal, Milpitas, CA (51) Int. Cl.
(US); Stephen Paul Belair, Santa Cruz, H04L 29/08 (2006.01)
CA (US) (52) U.S. Cl.

CPC H04L 67/2842 (2013.01)
(21) Appl. No.: 13/921,059 USPC .. 709/213

(22) Filed: Jun. 18, 2013 (57) ABSTRACT

Related U.S. Application Data A method for providing network overlay services capable of
(60) Provisional application No. 61/753,892, filed on Jan. processing network packets having associated packet meta

17, 2013, provisional application No. 61/753,895,
filed on Jan. 17, 2013, provisional application No.
61/753,899, filed on Jan. 17, 2013, provisional appli
cation No. 61/753,901, filed on Jan. 17, 2013, provi
sional application No. 61/753,903, filed on Jan. 17,
2013, provisional application No. 61/753,904, filed on
Jan. 17, 2013, provisional application No. 61/753,906,
filed on Jan. 17, 2013, provisional application No.

64.

162

158

154

data is disclosed. The method can include writing packets to
a specific memory location accessible by at least one offload
processor, with packets transported using a memory bus hav
ing a defined memory transport protocol, modifying packet
metadata of the packets written to the specific memory loca
tion with the at least one offload processor, without requiring
modification of the packets by a host processor, and sending
the modified packets to the memory bus.

-e-Ge Y Cloud

150

as as was

(user

160

156

Memory bus connected offload
processor module and processors

Patent Application Publication Jul. 17, 2014 Sheet 1 of 5

Offload
ProceSSOr

125

Memory

127

129

- - - -- we

: Datacenter.
1 Rack, cluster,
Seryers or blades : -'s

Offload
ProceSSOr

OMMU 121

Controller 22

DNA Save

Hardware
Scheduler 123

Host
ProceSSOr

80A

Host

FIG 1-0

124

emory bus

Offload
ProceSSO?

126

Memor

FG. 1-1

Processor

OSt PrOceSSOr

US 2014/02O1309 A1

9

Packets or other I/O data

I/O Device (Physical or
Virtual) 120

At host processor,
disable INT generated by
packet

Patent Application Publication Jul. 17, 2014 Sheet 2 of 5 US 2014/02O1309 A1

Receive data from physical network 100

O

Transport magp1Check for logical
Pass network identifier

match

Use iodical network identifier to arrive at virtual target 106

Translate virtual target to physical memory Space 108

Send to physical memory address space used by offload processor 110

transform packets using offload processor 12

transport packets from offload processor to logical network Over the memory buS 114

FG. 1-2

164

162

158 160

individual
Rack Units

156

F.G. 1-3

Patent Application Publication Jul. 17, 2014 Sheet 3 of 5 US 2014/02O1309 A1

200

s N-NE MODULE

MEM (F
204

OFF
PROCESSING

220-0 220-1

O

O militiitiitii IIHILHILITILITITTimo

222

e se s e e e s
c s
s s s s s s s

O inium Imlind
220-6 FG. 2-3

a

wa

F.G. 2-4

Patent Application Publication Jul. 17, 2014 Sheet 4 of 5 US 2014/02O1309 A1

TO HOST PROCESSOR
228

FIG. 2-5

Patent Application Publication Jul. 17, 2014 Sheet 5 of 5 US 2014/02O1309 A1

Proyisioning
Agent
306d

Notify Sch
3OC

Arbiter

31Of

OS running Apache
308

Scheduler
3O8.

FG. 3

US 2014/020 1309 A1

NETWORK OVERLAY SYSTEMAND
METHOD USING OFFLOAD PROCESSORS

PRIORITY CLAIMS

0001. This application claims the benefit of U.S. Provi
sional Patent Applications 61/753,892 filed on Jan. 17, 2013,
61/753,895 filed on Jan. 17, 2013, 61/753,899 filed on Jan.
17, 2013, 61/753,901 filed on Jan. 17, 2013, 61/753,903 filed
on Jan. 17, 2013, 61/753,904 filed on Jan. 17, 2013, 61/753,
906 filed on Jan. 17, 2013, 61/753,907 filed on Jan. 17, 2013,
and 61/753,910 filed on Jan. 17, 2013, the contents all of
which are incorporated by reference herein.

TECHNICAL FIELD

0002. Described embodiments relate to network overlay
services that are provided by a memory bus connected mod
ule that receives data packets and can route them to general
purpose offload processors for packet encapsulation, decap
Sulation, modification, or data handling.

BACKGROUND

0003 Modern computing systems can support a variety of
intercommunication protocols. In certain instances, comput
ers can connect with each other using one network protocol,
while appearing to outside users to use another network pro
tocol. Commonly termed an “overlay' network, such com
puter networks are effectively built on the top of another
computer network, with nodes in the overlay network being
connected by virtual or logical links to the underlying net
work. For example, Some types of distributed cloud systems,
peer-to-peer networks and client-server applications can be
considered to be overlay networks that run on top of conven
tional Internet TCP/IP protocols. Overlay networks are of
particular use when a virtual local network must be provided
using multiple intermediate physical networks that separate
the multiple computing nodes. The overlay network may be
built by encapsulating communications and embedding Vir
tual network address information for a virtual network in a
larger physical network address space used for a networking
protocol of the one or more intermediate physical networks.
0004 Overlay networks are particularly useful for envi
ronments where different physical network servers, proces
sors, and storage units are used, and network addresses to
Such devices may commonly change. An outside user would
ordinarily prefer to communicate with a particular computing
device using a constant address or link, even when the actual
device might have a frequently changing address. However,
overlay networks do require additional computational pro
cessing power to run, so efficient network translation mecha
nisms are necessary, particularly when large numbers of net
work transactions occur.

SUMMARY

0005. This disclosure describes embodiments of systems,
hardware and methods suitable for high speed and/or energy
efficient processing of packet data that does not necessarily
require access to computing resources of a host processor of
a server, server rack system, or blade server. In certain
embodiments, a network overlay system is capable of pro
cessing network packets having network identifier tags. A
data transport module is configurable to direct network pack
ets based on network identifier tags, while an offload proces
Sor module connected to a memory bus and at least one

Jul. 17, 2014

offload processor is capable of modifying segregated network
packets. A memory bus is connected between the data trans
port module and the at least one offload processor to Support
transport of network packets to the offload processor for
modification.

0006. In other embodiments, the data transport module
includes an address translation module; a network card pro
grammable to identify packets with a network identifier tag:
oran IOMMU to translate virtual addresses to corresponding
physical addresses. Typically the memory bus can Support a
double data rate protocol (e.g., DDR3, its predecessors or
Successors), but in alternative embodiments other memory
protocols are used. In still other embodiments that include a
network overlay for switched networks, data can be processed
if the switched network data is first converted into packets.
0007. In certain other embodiments, a memory bus con
nected module can provide network overlay services using
multiple offload processors connected to the memory bus
connection. In certain embodiments, the memory bus con
nected module can be mounted in a memory bus Socket Such
as a dual in line memory module (DIMM) socket. Each off
load processor can be capable of converting incoming packets
having a first network protocol to outgoing packets having a
second network protocol, with the ordering of network packet
conversion by respective task execution of the multiple off
load processors being determined by Suitable control logic.
Typically, the control logic can include a scheduler that
updates task ordering in response to changes in network
packet data flow. In other embodiments, a memory local to the
module can be connected to a memory controller and acces
sible by the multiple offload processors. An arbiter can be
used to prevent local memory access conflicts, and a Switch
controller can be used to improved performance by providing
efficient context Switching of the general purpose offload
processors as required.
0008. This disclosure also describes methods for process
ing network packets. Network packets can be received from a
first network, and transported over a memory bus to an offload
processor. The packets can be modified using the offload
processor, and transported back over the memory bus to a
second network. For example, packets conforming to a spe
cific protocol such as Internet Protocol version 6 (IPv6) can
be modified to conform to IP version 4 (IPv4) protocols, or
vice versa. Alternatively headers can be modified, packets
encapsulated or decapsulated, or data contained within the
packets can be inspected, copied, or modified.

BRIEF DESCRIPTION OF THE DRAWINGS

0009 FIG. 1-0 shows a system according to an embodi
ment.

0010 FIG. 1-1 shows a system flow according to an
embodiment.

0011 FIG. 1-2 shows a method of providing network
overlay services according to a particular embodiment.
0012 FIG. 1-3 shows a data transport system providing
network overlay services according to an embodiment.
0013 FIGS. 2-0 to 2-3 show processor modules according
to various embodiments.

0014)
module.

0015 FIG. 2-5 shows a system according to another
embodiment.

FIG. 2-4 shows a conventional dual-in-line memory

US 2014/020 1309 A1

0016 FIG. 3 shows one particular implementation of a
memory bus connected offload processor capable of Support
ing packet conversion services for network overlay that can
be included in embodiments.

DETAILED DESCRIPTION

0017 Various embodiments of the present invention will
now be described in detail with reference to a number of
drawings. The embodiments show processing modules, sys
tems, and methods in which offload processors are included
on offload modules that connect to a system memory bus.
Such offload processors are in addition to any host processors
connected to the system memory bus, and can operate on data
transferred over the system memory bus independent of any
host processors. In particular embodiments, offload proces
sors have access to a low latency memory, which can enable
rapid storage and retrieval of context data for rapid context
Switching. In very particular embodiments, processing mod
ules can populate physical slots for connecting in-line
memory modules (e.g., dual in line memory modules
(DIMMs)) to a system memory bus.
0018 FIG. 1-0 is a diagram of a network overlay system
90 according to an embodiment. A system 90 can provide
network overlay services, and can include a data source 10, a
data transport module 20, an input/output (IO) fabric 30, a
memory bus interconnect 40, one or more offload processing
modules 50, and host processor support module 70.
0019. A data source 10 can provide data via any suitable
Source. Such as the Internet, cloud, inter- or intra-data center
networks, cluster computers, rack systems, multiple or indi
vidual servers or personal computers, or the like. Data from
data source 10 can be packet or switch based. In one preferred
embodiment, non-packet data is generally converted or
encapsulated into packets for ease of handling.
0020 Data from data source 10 can be is passed through
data transport module 20. Data transport module 20 can
include a network interface 22, an address translation module
24, and first direct memory address (DMA) module 26. Typi
cally, the data can be packetized or converted into a particular
packet format supported by IO fabric 30 and memory bus
interconnect 40. Both an offload processing module 50 and a
host processor support module 70 (which can include a DMA
controller) can be to the memory bus interconnect 40. Data
transport module 20 can be an integrated or separately
attached Subsystem that includes modules or components
Such as network interface 22, address translation module 24,
and a first DMA module 26.

0021 For packets identified by a logical network identifier
or other suitable indicator of network overlay services,
address translation module 24 can direct such packets to the
offload processing module 50, where offload processors can
add or subtract packet metadata, encapsulate or decapsulate
packets, provide hardware address or location conversions, or
any required network overlay services. Advantageously, little
or no processing is required of any host processor (80A or
80B) within host processor support module 70, to enable such
a module to be free to continue with its own processing
operations.
0022 Referring still to FIG. 1-0, in some embodiments, IO
fabric 30 can be based on conventional input/output busses
such as peripheral component interconnect (PCI), Fibre
Channel, and the like. Memory bus interconnect 40 can be
based on existing standard (e.g., JEDEC standards), on

Jul. 17, 2014

DIMM data transfer protocols, on Hypertransport, or any
other high speed, low latency interconnection system.
(0023 Offload processing Module 50 may include DDR
dynamic RAM (DRAM), reduced latency DRAM
(RLDRAM), embedded DRAM, next generation stacked
memory such as Hybrid Memory Cube (HMC), flash, or other
Suitable memory. Offload processing module can also include
separate logic or bus management chips, programmable units
Such as field programmable gate arrays (FPGAs), custom
designed application specific integrated circuits (ASICs), and
an energy efficient, general purpose processor (60A and 60B)
such as those based on ARM, ARC, Tensilica, MIPS, Strong/
ARM, or RISC architectures, to name a few.
0024 Host processor support module 70 can include one
or more general purpose processors (80A, 80B), including
those based on Intel or AMD x86 architectures, Intel Itanium
architecture, MIPS architecture, or a SPARC architecture, or
the like.
0025 FIG. 1-1 is a system flow diagram of according to
another embodiment. FIG. 1-1 shows a server system with a
memory bus connected an offload processor, able to Support
various network overlay operations on packet or other I/O
data. Packet or other I/O data can be received at an I/O device
120. An I/O device can be physical device, virtual device or
combination thereof. In the particular embodiment shown,
selected interrupt generated from the I/O data intended for a
host processor 124 can be disabled, allowing such I/O data to
be processed without resources of the host processor 124.
0026. An input output memory management unit
(IOMMU) 121 can map received data to physical addresses of
a system address space. ADMA master 125 can transmit such
data to Such memory addresses by operation of a memory
controller 122. Memory controller 122 can execute memory
transfers (e.g., DRAM transfers) over a memory bus with a
DMA Slave 127. Upon receiving transferred I/O data, a hard
ware scheduler 123 can schedule processing of such data with
an offload processor 126. In some embodiments, a type of
processing can be indicated by metadata within the I/O data.
Further, in some embodiments such data can be stored in an
onboard memory 129. According to instructions from hard
ware scheduler 123, one or more offload processors 126 can
execute computing functions in response to the I/O data,
including but not limited to operations on packets redirected
for network overlay. In some embodiments, such computing
functions can operate on the I/O data, and Such data can be
Subsequently read out on memory bus via a read request
processed by DMA slave 127.
0027 Various features, advantages and/or improvements
that can be provided by embodiments herein, can be under
stood with reference to existing computing architectures. Par
allelization of tasks into multiple thread contexts can provide
for increased throughput. Processors architectures such as
MIPS may include deep instruction pipelines to improve the
number of instructions per cycle. Further, the ability to run a
multi-threaded programming environment results in
enhanced usage of existing processor resources. To further
increase parallel execution on the hardware, processor archi
tectures may include multiple processor cores. Multi-core
architectures comprising the same type of cores, referred to as
homogeneous core architectures, provide higher instruction
throughput by parallelizing threads or processes across mul
tiple cores. However, in Such homogeneous core architec
tures, the shared resources, such as memory, are amortized
over a Small number of processors.

US 2014/020 1309 A1

0028. Memory and I/O accesses can incur a high amount
of processor overhead. Further, context switches in conven
tional general purpose processing units can be computation
ally intensive. It is therefore desirable to reduce context
Switch overhead in a networked computing resource handling
a plurality of networked applications in order to increase
processor throughput. Conventional server loads can require
complex transport, high memory bandwidth, extreme
amounts of databandwidth (randomly accessed, parallelized,
and highly available), but often with light touch processing:
HTML, Video, packet-level services, security, and analytics.
Further, idle processors still consume more than 50% of their
peak power consumption.
0029. In contrast to the above, according to embodiments
herein, complex transport, databandwidth intensive, frequent
random access oriented, light touch processing loads can be
handled behind a socket abstraction created on multiple off
load processor cores. At the same time, "heavy touch, com
puting intensive loads can be handled by a socket abstraction
on a host processor core (e.g., x86 processor cores). Such
Software sockets can allow for a natural partitioning of these
loads between offload processor cores and host processor
cores. By usage of new application level sockets, according to
embodiments, server loads can be broken up across the off
load processing cores and the host processing cores.
0030 FIG. 1-2 is a flow chart showing a method of pro
viding network overlay services according to a particular
embodiment. Incoming packets or data can be received from
a physical network 100, which can include, but is not limited
to: a wired, a wireless, an optical, a Switched, or a packet
based networks. Packets without one or more particular logi
cal network identifiers can be transported as required by
protocol (104).
0031 Packets with an appropriate logical network identi

fier can be segregated for further processing (102). Such
processing can include determination of a particular virtual
target (106) on the network, and the appropriate translation
into a physical memory space (108). The packet can then be
sent to a physical memory address space used by an offload
processor (110). Packets can then be transformed (112) in
Some manner by the offload processor, and transported back
onto a logical network over the memory bus (114).
0032 FIG. 1-3 is a diagram showing a data transport sys
tem 150 providing network overlay services for multiple net
works, servers, and devices, according to an embodiment.
The system 150 can include using offload processors con
nected to a memory bus via an offload processor module 152,
as described herein, or equivalents. Such an arrangement can
utilize hardware and logic capable of memory bus mediated
data modification using Such offload processors.
0033. As shown in FIG. 1-3, memory bus connected off
load processor module(s) 152 can reside on individual server
rack units 154 and/or blade server units 156. Such units (154,
156) can, in turn, form part of or reside in, groups of racks 158
or server systems 160. These can be further grouped into
computing clusters 162 or datacenters 164, which can be
spatially located in the same building, in the same city, or even
in different countries. Any grouping level can be connected to
each other, and/or connected to public or private cloud net
works (166-0, 166-1).
0034. In operation, data (e.g., packets) can be received
from a user via a public or private network (166-2). Such data
can be tagged, or otherwise include a particular network
identifier. Servers of system 150 can detect the network iden

Jul. 17, 2014

tifier, and send the packets (or portions thereof) to offload
processor module(s) 152 for modification, as described
herein, or in an equivalent manner.
0035 FIGS. 2-0 to 2-5 show modules and systems that can
be included in the embodiments to provide overlay services as
described herein, or equivalents. In particular embodiments,
such modules and systems can include DIMM mountable
modules to Support offload processing.
0036 FIG. 2-0 is a block diagram of a processing module
200 according to one embodiment. A processing module 200
can include a physical connector 202, a memory interface
204, arbiter logic 206, offload processor(s) 208, local
memory 210, and control logic 212. A connector 202 can
provide a physical connection to system memory bus. This is
in contrast to a host processor which can access a system
memory bus via a memory controller, or the like. In very
particular embodiments, a connector 202 can be compatible
with a dual in-line memory module (DIMM) slot of a com
puting system. Accordingly, a system including multiple
DIMM slots can be populated with one or more processing
modules 200, or a mix of processing modules and DIMM
modules.

0037. A memory interface 204 can detect data transfers on
a system memory bus, and in appropriate cases, enable write
data to be stored in the processing module 200 and/or read
data to be read out from the processing module 200. Such data
transfers can include the receipt of packet data having a
particular network identifier. In some embodiments, a
memory interface 204 can be a slave interface, thus data
transfers are controlled by a master device separate from the
processing module 200. In very particular embodiments, a
memory interface 204 can be a direct memory access (DMA)
slave, to accommodate DMA transfers over a system memory
bus initiated by a DMA master. In some embodiments, a
DMA master can be a device different from a host processor.
In Such configurations, processing module 200 can receive
data for processing (e.g., DMA write), and transfer processed
data out (e.g., DMA read) without consuming host processor
resources. In very particular embodiments, packet data is
received, modified, and then output.
0038 Arbiter logic 206 can arbitrate between conflicting
accesses of data within processing module 200. In some
embodiments, arbiter logic 206 can arbitrate between
accesses by offload processor 208 and accesses external to the
processor module 200. It is understood that a processing
module 200 can include multiple locations that are operated
on at the same time. In addition, accesses arbitrated by arbiter
logic 206 can include accesses to physical system memory
space occupied by the processor module 200, as well as
accesses to other resources (e.g., cache memory of offload or
host processor). Accordingly, arbitration rules for arbiter
logic 206 can vary according to application. In some embodi
ments, such arbitration rules are fixed for a given processor
module 200. In such cases, different applications can be
accommodated by Switching out different processing mod
ules. However, in alternate embodiments, such arbitration
rules can be configurable.
0039 Offload processor 208 can include one or more pro
cessors that can operate on data transferred over the system
memory bus. In some embodiments, offload processors can
run a general operating system or server applications such as
Apache (as but one very particular example), enabling pro
cessor contexts to be saved and retrieved. Computing tasks
executed by offload processor 208 can be handled by the

US 2014/020 1309 A1

hardware scheduler 212. Offload processors 208 can operate
on data buffered in the processor module 200. In addition or
alternatively, offload processors 208 can access data stored
elsewhere in a system memory space. In some embodiments,
offload processors 208 can include a cache memory config
ured to store context information. An offload processor 208
can include multiple cores or one core.
0040. A processor module 200 can be included in a system
having a host processor (not shown). In some embodiments,
offload processors 208 can be a different type of processor as
compared to the host processor. In particular embodiments,
offload processors 208 can consume less power and/or have
less computing power than a host processor. In very particular
embodiments, offload processors 208 can be “wimpy” core
processors, while a host processor can be a "brawny core
processor. However, in alternate embodiments, offload pro
cessors 208 can have equivalent computing power to any host
processor. In very particular embodiments, a host processor
can be an x86 type processor, while an offload processor 208
can include an ARM, ARC, Tensilica, MIPS, Strong/ARM, or
RISC type processor, as but a few examples.
0041 Local memory 210 can be connected to offload pro
cessor 208 to enable the storing of context information.
Accordingly, an offload processor 208 can store current con
text information, and then Switch to a new computing task,
then Subsequently retrieve the context information to resume
the prior task. In very particular embodiments, local memory
210 can be a low latency memory with respect to other memo
ries in a system. In some embodiments, storing of context
information can include copying an offload processor 208.
0042. In some embodiments, a same space within local
memory 210 is accessible by multiple offload processors 208
of the same type. In this way, a context stored by one offload
processor can be resumed by a different offload processor.
0043 Control logic 212 can control processing tasks
executed by offload processor(s). In some embodiments, con
trol logic 212 can be considered a hardware scheduler that can
be conceptualized as including a data evaluator 214, Sched
uler 216 and a switch controller 218. A data evaluator 214 can
extract “metadata from write data transferred over a system
memory bus. “Metadata”, as used herein, can be any infor
mation embedded at one or more predetermined locations of
a block of write data that indicates processing to be performed
on all or a portion of the block of write data and/or indicate a
particular task/process to which the data belongs (e.g., clas
sification data). In some embodiments, metadata can be data
that indicates a higher level organization for the block of write
data. As but one very particular embodiment, metadata can be
header information of one or more network packets (which
may or may not be encapsulated within a higher layer packet
structure).
0044) A scheduler 216 can order computing tasks for off
load processor(s) 208. In some embodiments, scheduler 216
can generate a schedule that is continually updated as write
data for processing is received. In very particular embodi
ments, a scheduler 216 can generate Such a schedule based on
the ability to switch contexts of offload processor(s) 208. In
this way, on-module computing priorities can be adjusted on
the fly. In very particular embodiments, a scheduler 216 can
assign a portion of physical address space (e.g., memory
locations within local memory 210) to an offload processor
208, according to computing tasks. The offload processor 208
can then Switch between such different spaces, saving context

Jul. 17, 2014

information prior to each Switch, and Subsequently restoring
context information when returning to the memory space.
0045 Switch controller 218 can control computing opera
tions of offload processor(s) 208. In particular embodiments,
according to scheduler 216, switch controller 218 can order
offload processor(s) 208 to switch contexts. It is understood
that a context Switch operation can be an "atomic' operation,
executed in response to a single command from Switch con
troller 218. In addition or alternatively, a switch controller
218 can issue an instruction set that stores current context
information, recalls context information, etc.
0046. In some embodiments, processor module 200 can
include a buffer memory (not shown). A buffer memory can
store received write data on board the processor module. A
buffer memory can be implemented on an entirely different
set of memory devices, or can be a memory embedded with
logic and/or the offload processor. In the latter case, arbiter
logic 206 can arbitrate access to the buffer memory. In some
embodiments, a buffer memory can correspond to a portion of
a system physical memory space. The remaining portion of
the system memory space can correspond to other like pro
cessor modules and/or memory modules connected to the
same system memory bus. In some embodiments buffer
memory can be different than local memory 210. For
example, buffer memory can have a slower access time than
local memory 210. However, in other embodiments, buffer
memory and local memory can be implemented with like
memory devices.
0047. In very particular embodiments, write data for pro
cessing can have an expected maximum flow rate. A proces
Sor module 200 can be configured to operate on Such data at,
or faster than, Such a flow rate. In this way, a master device
(not shown) can write data to a processor module without
danger of overwriting data in process.
0048. The various computing elements of a processor
module 200 can be implemented as one or more integrated
circuit devices (ICs). It is understood that the various com
ponents shown in FIG. 2-0 can be formed in the same or
different ICs. For example, control logic 212, memory inter
face 214, and/or arbiter logic 206 can be implemented on one
or more logic ICs, while offload processor(s) 208 and local
memory 210 are separate ICs. Logic ICs can be fixed logic
(e.g., application specific ICs), programmable logic (e.g.,
field programmable gate arrays, FPGAs), or combinations
thereof.

0049 Advantageously, the foregoing hardware and sys
tems can provide improved computational performance as
compared to traditional computing systems. Conventional
systems, including those based on x86 processors, are often
ill-equipped to handle Such high Volume applications. Even
idling, X86 processors use a significant amount of power, and
near continuous operation for high bandwidth packet analysis
or other high Volume processing tasks makes the processor
energy costs one of the dominant price factors.
0050. In addition, conventional systems can have issues
with the high cost of context Switching wherein a host pro
cessor is required to execute instructions which can include
Switching from one thread to another. Such context Switching
can require storing and recalling of context for the thread. If
Such context data is resident in a host cache memory. Such a
context Switch can occur relatively quickly. However, if Such
context data is no longer in cache memory (i.e., a cache miss),
the data must be recalled from system memory, which can

US 2014/020 1309 A1

incur a multi-cycle latency. Continuous cache misses during
context Switching can adversely impact system performance.
0051 FIG. 2-1 shows a processor module 200-1 according

to one very particular embodiment which is capable of reduc
ing issues associated with high Volume processing or context
Switching associated with many conventional server systems.
A processor module 200-1 can include ICs 220-0/1 mounted
to a printed circuit board (PCB) type substrate 222. PCB type
substrate 222 can include in-line module connector 202,
which in one very particular embodiment, can be a DIMM
compatible connector. IC 220-0 can be a system-on-chip
(SoC) type device, integrating multiple functions. In the very
particular embodiment shown, an IC 220-0 can include
embedded processor(s), logic and memory. Such embedded
processor(s) can be offload processor(s) 208 as described
herein, or equivalents. Such logic can be any of controller
logic 212, memory interface 204 and/or arbiter logic 206, as
described herein, or equivalents. Such memory can be any of
local memory 210, cache memory for offload processor(s)
208, or buffer memory, as described herein, or equivalents.
Logic IC 220-1 can provide logic functions not included in IC
220-0.

0052 FIG. 2-2 shows a processor module 200-2 according
to another very particular embodiment. A processor module
200-2 can include ICs 220-2, -3, -4, -5 mounted to a PCB type
substrate 222, like that of FIG.2-1. However, unlike FIG. 2-1,
processor module functions are distributed among single pur
pose type ICs. IC 220-2 can be a processor IC, which can be
an offload processor 208. IC 220-3 can be a memory IC which
can include local memory 210, buffer memory, or combina
tions thereof. IC 220-4 can be a logic IC which can include
control logic 212, and in one very particular embodiment, can
be an FPGA. IC 220-5 can be another logic IC which can
include memory interface 204 and arbiter logic 206, and in
one very particular embodiment, can also be an FPGA.
0053. It is understood that FIGS. 2-1/2 represent but two
of various implementations. The various functions of a pro
cessor module can be distributed over any suitable number of
ICs, including a single SoC type IC.
0054 FIG. 2-3 shows an opposing side of a processor
module 200-1 or 200-2 according to a very particular embodi
ment. Processor module 200-3 can include a number of
memory ICs, one shown as 220-6, mounted to a PCB type
substrate 222, like that of FIG. 2-1. It is understood that
various processing and logic components can be mounted on
an opposing side to that shown. A memory IC 220-6 can be
configured to represent a portion of the physical memory
space of a system. Memory ICs 220-6 can perform any or all
of the following functions: operate independently of other
processor module components, providing system memory
accessed in a conventional fashion; serve as buffer memory,
storing write data that can be processed with other processor
module components, or serve as local memory for storing
processor context information.
0055 FIG. 2-4 shows a conventional DIMM module (i.e.,

it serves only a memory function) that can populate a memory
bus along with processor modules as described herein, or
equivalents.
0056 FIG. 2-5 shows a system 230 according to one
embodiment. A system 230 can include a system memory bus
228 accessible via multiple in-line module slots (one shown
as 226). According to embodiments, any or all of the slots 226
can be occupied by a processor module 200 as described
herein, or an equivalent. In the event all slots 226 are not

Jul. 17, 2014

occupied by a processor module 200, available slots can be
occupied by conventional in-line memory modules 224. In a
very particular embodiment, slots 226 can be DIMM slots.
0057. In some embodiments, a processor module 200 can
occupy one slot. However, in other embodiments, a processor
module can occupy multiple slots.
0058. In some embodiments, a system memory bus 228
can be further interfaced with one or more host processors
and/or input/output device (not shown).
0059 Having described processor modules according to
various embodiments, operations of an offload processor
module capable of interfacing with server or similar system
via a memory bus and according to a particular embodiment
will now be described.
0060 FIG. 3 shows a system 301 according to another
embodiment. A system 301 can transport packet data requir
ing network overlay services to one or more computational
units (one shown as 300) located on a module, which in
particular embodiments, can include a connector compatible
with an existing memory module. In some embodiments, a
computational unit 300 can include a processor module as
described in embodiments herein, or an equivalent. A com
putational unit 300 can be capable of intercepting or other
wise accessing packets sent over a memory bus 316 and
carrying out processing on Such packets, including but not
limited to termination or metadata processing. A system
memory bus 316 can be a system memory bus like those
described herein, or equivalents (e.g., 228).
0061 Referring still to FIG.3, a system301 can includean
I/O device 302 which can receive packet or other I/O data
from an external source. In some embodiments I/O device
302 can include physical or virtual functions generated by the
physical device to receive a packet or other I/O data from the
network or another computer or virtual machine. In the very
particular embodiment shown, an I/O device 302 can include
a network interface card (NIC) having input buffer 302a (e.g.,
DMA ring buffer) and an I/O virtualization function 302b.
0062 According to embodiments, an I/O device 302 can
write a descriptor including details of the necessary memory
operation for the packet (i.e. read/write, source/destination).
Such a descriptor can be assigned a virtual memory location
(e.g., by an operating system of the system 301). I/O device
302 then communicates with an input output memory man
agement unit (IOMMU) 304 which can translate virtual
addresses to corresponding physical addresses with an
IOMMU function 304b. In the particular embodiment shown,
a translation look-aside buffer (TLB) 304a can be used for
such translation. Virtual function reads or writes data between
I/O device and system memory locations can then be
executed with a direct memory transfer (e.g., DMA) via a
memory controller 306b of the system301. An I/O device 302
can be connected to IOMMU 304 by a hostbus 312. In one
very particular embodiment, a hostbus 312 can be a periph
eral interconnect (PCI) type bus. IOMMU 304 can be con
nected to a host processing section 306 at a central processing
unit I/O (CPUIO) 306a. In the embodiment shown, such a
connection 314 can supporta HyperTransport (HT) protocol.
0063. In the embodiment shown, a host processing section
306 can include the CPUIO 306a, memory controller 306b,
processing core 306c and corresponding provisioning agent
306d.
0064. In particular embodiments, a computational unit
300 can interface with the system bus 316 via standard in-line
module connection, which in very particular embodiments

US 2014/020 1309 A1

can include a DIMM type slot. In the embodiment shown, a
memory bus 316 can be a DDR3 type memory bus. Alternate
embodiments can include any suitable system memory bus.
Packet data can be sent by memory controller 306b via
memory bus 316 to a DMA slave interface 310a. DMA slave
interface 310a can be adapted to receive encapsulated read/
write instructions from a DMA write over the memory bus
316.

0065. A hardware scheduler (308b/c/d/e/h) can perform
traffic management on incoming packets by categorizing
them according to flow using session metadata. Packets can
be queued for output in an onboard memory (310b/308a/
308m) based on session priority. When the hardware sched
uler determines that a packet for a particular session is ready
to be processed by the offload processor 308i, the onboard
memory is signaled for a context Switch to that session. Ulti
lizing this method of prioritization, context Switching over
head can be reduced, as compared to conventional
approaches. That is, a hardware scheduler can handle context
Switching decisions and thus optimize the performance of the
downstream resource (e.g., offload processor 308i).
0066. As noted above, in very particular embodiments, an
offload processor 308i can be a “wimpy core type processor.
According to Some embodiments, a host processor 306C can
be a "brawny core type processor (e.g., an x86 or any other
processor capable of handling "heavy touch” computational
operations). While an I/O device 302 can be configured to
trigger host processor interrupts in response to incoming
packets, according to embodiments, such interrupts can be
disabled, thereby reducing processing overhead for the host
processor 306c. In some very particular embodiments, an
offload processor 308i can include an ARM, ARC, Tensilica,
MIPS, Strong/ARM or any other processor capable of han
dling “light touch' operations. Preferably, an offload proces
Sor can run a general purpose operating system for executing
a plurality of sessions, which can be optimized to work in
conjunction with the hardware scheduler in order to reduce
context Switching overhead.
0067. Referring still to FIG.3, in operation, a system 301
can receive packets from an external network over a network
interface. The packets are destined for either a host processor
306c or an offload processor 308i based on the classification
logic and schematics employed by I/O device 302. In particu
lar embodiments, I/O device 302 can operate as a virtualized
NIC, with packets for a particular logical network or to a
certain virtual MAC (VMAC) address can be directed into
separate queues and sent over to the destination logical entity.
Such an arrangement can transfer packets to different entities.
In some embodiments, each Such entity can have a virtual
driver, a virtual device model that it uses to communicate with
connected virtual network.

0068 According to embodiments, multiple devices can be
used to redirect traffic to specific memory addresses. So, each
of the network devices operates as if it is transferring the
packets to the memory location of a logical entity. However,
in reality, such packets are transferred to memory addresses
where they can be handled by one or more offload processors
(e.g., 308i). In particular embodiments such transfers are to
physical memory addresses, thus logical entities can be
removed from the processing, and a host processor can be free
from Such packet handling.
0069. Accordingly, embodiments can be conceptualized
as providing a memory “blackbox” to which specific network

Jul. 17, 2014

data can be fed. Such a memory blackbox can handle the data
(e.g., process it) and respond back when such data is
requested.
0070 Referring still to FIG.3, according to some embodi
ments, I/O device 302 can receive data packets from a net
work or from a computing device. The data packets can have
certain characteristics, including transport protocol number,
Source and destination port numbers, Source and destination
IP addresses, for example. The data packets can further have
metadata that is processed (308d) that helps in their classifi
cation and management.
(0071. I/O device 302 can include, but is not limited to,
peripheral component interconnect (PCI) and/or PCI express
(PCIe) devices connecting with a host motherboard via PCI or
PCIe bus (e.g., 312). Examples of I/O devices include a net
work interface controller (NIC), a host bus adapter, a con
verged network adapter, an ATM network interface, etc.
0072. In order to provide for an abstraction scheme that
allows multiple logical entities to access the same I/O device
302, the I/O device may be virtualized to provide for multiple
virtual devices each of which can perform some of the func
tions of the physical I/O device. The IO virtualization pro
gram (e.g., 302b) according to an embodiment, can redirect
traffic to different memory locations (and thus to different
offload processors attached to modules on a memory bus). To
achieve this, an I/O device 302 (e.g., a network card) may be
partitioned into several function parts; including controlling
function (CF) supporting input/output virtualization (IOV)
architecture (e.g., single-root IOV) and multiple virtual func
tion (VF) interfaces. Each virtual function interface may be
provided with resources during runtime for dedicated usage.
Examples of the CF and VF may include the physical function
and virtual functions under schemes such as Single Root I/O
Virtualization or Multi-Root I/O Virtualization architecture.
The CF acts as the physical resources that sets up and man
ages virtual resources. The CF is also capable of acting as a
full-fledged IO device. The VF is responsible for providing an
abstraction of a virtual device for communication with mul
tiple logical entities/multiple memory regions.
0073. The operating system/the hypervisor any of the vir
tual machines/user code running on a host processor 306c
may be loaded with a device model, a VF driver and a driver
for a CF. The device model may be used to create an emula
tion of a physical device for the host processor 306c to rec
ognize each of the multiple VFs that are created. The device
model may be replicated multiple times to give the impres
sion to a VF driver (a driver that interacts with a virtual IO
device) that it is interacting with a physical device of a par
ticular type.
0074 For example, a certain device module may be used
to emulate a network adapter such as the Intel(R) Ethernet
Converged Network Adapter (CNA) X540-T2, so that the I/O
device 302 believes it is interacting with such an adapter. In
Such a case, each of the virtual functions may have the capa
bility to support the functions of the above said CNA, i.e.,
each of the Physical Functions should be able to support such
functionality. The device model and the VF driver can be run
in either privileged or non-privileged mode. In some embodi
ments, there is no restriction with regard to who hosts/runs the
code corresponding to the device model and the VF driver.
The code, however, has the capability to create multiple cop
ies of device model and VF driver so as to enable multiple
copies of said I/O interface to be created.

US 2014/020 1309 A1

0075 An application or provisioning agent 306d, as part
of an application/user level code running in a kernel, may
create a virtual I/O address space for each VF, during runtime
and allocate part of the physical address space to it. For
example, if an application handling the VF driver instructs it
to read or write packets from or to memory addresses Oxaaaa
to 0xffff, the device driver may write I/O descriptors into a
descriptor queue with a head and tail pointer that are changed
dynamically as queue entries are filled. The data structure
may be of another type as well, including but not limited to a
ring structure 302a or hash table.
0076. The VF can read from or write data to the address
location pointed to by the driver. Further, on completing the
transfer of data to the address space allocated to the driver,
interrupts, which are usually triggered to the host processor to
handle said network packets, can be disabled. Allocating a
specific I/O space to a device can include allocating said IO
space a specific physical memory space occupied.
0077. In another embodiment, the descriptor may com
prise only a write operation, if the descriptor is associated
with a specific data structure for handling incoming packets.
Further, the descriptor for each of the entries in the incoming
data structure may be constant so as to redirect all data write
to a specific memory location. In an alternate embodiment,
the descriptor for consecutive entries may point to consecu
tive entries in memory So as to direct incoming packets to
consecutive memory locations.
0078. Alternatively, said operating system may create a
defined physical address space for an application Supporting
the VF drivers and allocate a virtual memory address space to
the application or provisioning agent 306d, thereby creating a
mapping for each virtual function between said virtual
address and a physical address space. Said mapping between
virtual memory address space and physical memory space
may be stored in IOMMU tables (e.g., a TLB 304a). The
application performing memory reads or writes may supply
virtual addresses to say virtual function, and the host proces
sor OS may allocate a specific part of the physical memory
location to Such an application.
0079 Alternatively, VF may be configured to generate
requests such as read and write which may be part of a direct
memory access (DMA) read or write operation, for example.
The virtual addresses can be translated by the IOMMU304 to
their corresponding physical addresses and the physical
addresses may be provided to the memory controller for
access. That is, the IOMMU 304 may modify the memory
requests sourced by the I/O devices to change the virtual
address in the request to a physical address, and the memory
request may be forwarded to the memory controller for
memory access. The memory request may be forwarded over
a bus 314 that supports a protocol such as HyperTransport
314. The VF may in such cases carry out a direct memory
access by Supplying the virtual memory address to the
IOMMU3O4.

0080. Alternatively, said application may directly code the
physical address into the VF descriptors if the VF allows for
it. If the VF cannot support physical addresses of the form
used by the host processor 306c, an aperture with a hardware
size supported by the VF device may be coded into the
descriptor so that the VF is informed of the target hardware
address of the device. Data that is transferred to an aperture
may be mapped by a translation table to a defined physical
address space in the system memory. The DMA operations

Jul. 17, 2014

may be initiated by software executed by the processors,
programming the I/O devices directly or indirectly to perform
the DMA operations.
I0081 Referring still to FIG.3, in particular embodiments,
parts of computational unit 300 can be implemented with one
or more FPGAs. In the system of FIG. 3, computational unit
300 can include FPGA 310 in which can be formed a DMA
slave device module 310a and arbiter 310?. A DMA slave
module 310a can be any device suitable for attachment to a
memory bus 316 that can respond to DMA read/write
requests. In alternate embodiments, a DMA slave module
310a can be another interface capable of block data transfers
over memory bus 316. The DMA slave module 310a can be
capable of receiving data from a DMA controller (when it
performs a read from a memory or from a peripheral) or
transferring data to a DMA controller (when it performs a
write instruction on the DMA slave module 310a). The DMA
slave module 310a may be adapted to receive DMA read and
write instructions encapsulated over a memory bus, (e.g., in
the form of a DDR data transmission, Such as a packet or data
burst), or any other format that can be sent over the corre
sponding memory bus.
0082 A DMA slave module 310a can reconstruct the
DMA read/write instruction from the memory R/W packet.
The DMA slave module 310a may be adapted to respond to
these instructions in the form of data reads/data writes to the
DMA master, which could either be housed in a peripheral
device, in the case of a PCIe bus, or a system DMA controller
in the case of an ISA bus.

I0083 I/O data that is received by the DMA device 310a
can then queued for arbitration. Arbitration can include the
process of scheduling packets of different flows, such that
they are provided access to available bandwidth based on a
number of parameters. In general, an arbiter 310fprovides
resource access to one or more requestors. If multiple request
ors request access, an arbiter 310f can determine which
requestor becomes the accessor and then passes data from the
accessor to the resource interface, and the downstream
resource can begin execution on the data. After the data has
been completely transferred to a resource, and the resource
has competed execution, the arbiter 310fcan transfer control
to a different requestor and this cycle repeats for all available
requestors. In the embodiment of FIG. 3, arbiter 310f can
notify other portions of computational unit 300 (e.g., 308) of
incoming data.
I0084. Alternatively, a computation unit 300 can utilize an
arbitration scheme shown in U.S. Pat. No. 7,813,283, issued
to Dalal on Oct. 12, 2010, the contents of which are incorpo
rated herein by reference. Other suitable arbitration schemes
known in art could be implemented in embodiments herein.
Alternatively, the arbitration scheme of the current invention
might be implemented using an OpenFlow Switch and an
OpenFlow controller.
I0085. In the very particular embodiment of FIG. 3, com
putational unit 300 can further include notify/prefetch cir
cuits 310c which can prefetch data stored in a buffer memory
310b in response to DMA slave module 310a, and as arbi
trated by arbiter 310?. Further, arbiter 310fcan access other
portions of the computational unit 300 via a memory mapped
I/O ingress path 310e and egress path 310g.
I0086 Referring to FIG. 3, a hardware scheduler can
include a scheduling circuit 308b/n to implement traffic man
agement of incoming packets. Packets from a certain source,
relating to a certain traffic class, pertaining to a specific appli

US 2014/020 1309 A1

cation or flowing to a certain Socket are referred to as part of
a session flow and are classified using session metadata. Such
classification can be performed by classifier 308e.
0087. In some embodiments, session metadata 308d can
serve as the criterion by which packets are prioritized and
scheduled and as such, incoming packets can be reordered
based on their session metadata. This reordering of packets
can occur in one or more buffers and can modify the traffic
shape of these flows. The scheduling discipline chosen for
this prioritization, or traffic management (TM), can affect the
traffic shape of flows and micro-flows through delay (buffer
ing), bursting of traffic (buffering and bursting), Smoothing of
traffic (buffering and rate-limiting flows), dropping traffic
(choosing data to discard so as to avoid exhausting the buffer),
delay jitter (temporally shifting cells of a flow by different
amounts) and by not admitting a connection (e.g., cannot
simultaneously guarantee existing service level agreements
(SLAB) with an additional flows SLA).
0088 According to embodiments, computational unit 300
can serve as part of a Switch fabric, and provide traffic man
agement with depth-limited output queues, the access to
which is arbitrated by a scheduling circuit 308b/n. Such out
put queues are managed using a scheduling discipline to
provide traffic management for incoming flows. The session
flows queued in each of these queues can be sent out through
an output port to a downstream network element.
0089. It is noted that conventional traffic management do
not take into account the handling and management of data by
downstream elements except for meeting the SLA agree
ments it already has with said downstream elements.
0090. In contrast, according to embodiments a scheduler
circuit 308b/n can allocate a priority to each of the output
queues and carry out reordering of incoming packets to main
tain persistence of session flows in these queues. A scheduler
circuit 308b/n can be used to control the scheduling of each of
these persistent sessions into a general purpose operating
system (OS) 308i, executed on an offload processor 308i.
Packets of a particular session flow, as defined above, can
belong to a particular queue. The scheduler circuit 308b/n
may control the prioritization of these queues such that they
are arbitrated for handling by a general purpose (GP) process
ing resource (e.g., offload processor 308i) located down
stream. An OS 3.08i running on a downstream processor 308i
can allocate execution resources such as processor cycles and
memory to a particular queue it is currently handling. The OS
308i may further allocate a thread or a group of threads for
that particular queue, so that it is handled distinctly by the
general purpose (GP) processing element 308i as a separate
entity. The fact that there can be multiple sessions running on
a GP processing resource, each handling data from a particu
lar session flow resident in a queue established by the sched
uler circuit, tightly integrates the scheduler and the down
stream resource (e.g., 308i). This can bring about persistence
of Session information across the traffic management and
scheduling circuit and the general purpose processing
resource 308i.

0091 Dedicated computing resources (e.g., 308i),
memory space and session context information for each of the
sessions can provide a way of handling, processing and/or
terminating each of the session flows at the general purpose
processor 308i. The scheduler circuit 308b/n can exploit this
functionality of the execution resource to queue Session flows
for scheduling downstream. The scheduler circuit 308b/n can
be informed of the state of the execution resource(s) (e.g.,

Jul. 17, 2014

308i), the current session that is run on the execution
resource; the memory space allocated to it, the location of the
session context in the processor cache.
0092. According to embodiments, a scheduler circuit
308b/n can further include switching circuits to change
execution resources from one state to another. The scheduler
circuit 308b/n can use such a capability to arbitrate between
the queues that are ready to be switched into the downstream
execution resource. Further, the downstream execution
resource can be optimized to reduce the penalty and overhead
associated with context switch between resources. This is
further exploited by the scheduler circuit 308b/n to carry out
seamless Switching between queues, and consequently their
execution as different sessions by the execution resource.
0093. According to embodiments, a scheduler circuit
308b/n can schedule different sessions on a downstream pro
cessing resource, wherein the two are operated in coordina
tion to reduce the overhead during context Switches. An
important factor in decreasing the latency of services and
engineering computational availability can be hardware con
text Switching synchronized with network queuing. In
embodiments, when a queue is selected by a traffic manager,
a pipeline coordinates Swapping in of the cache (e.g., L2
cache) of the corresponding resource (e.g., 308i) and transfers
the reassembled I/O data into the memory space of the execut
ing process. In certain cases, no packets are pending in the
queue, but computation is still pending to service previous
packets. Once this process makes a memory reference outside
of the data swapped, the scheduler circuit (308b/n) can enable
queued data from an I/O device 302 to continue scheduling
the thread.
0094. In some embodiments, to provide fair queuing to a
process not having data, a maximum context size can be
assumed as data processed. In this way, a queue can be pro
visioned as the greater of computational resource and net
work bandwidth resource. As but one very particular
example, a computation resource can be an ARMA9 proces
sor running at 800 MHz, while a network bandwidth can be 3
Gbps of bandwidth. Given the lopsided nature of this ratio,
embodiments can utilize computation having many parallel
sessions (such that the hardware's prefetching of Session
specific data offloads a large portion of the host processor
load) and having minimal general purpose processing of data.
0.095 Accordingly, in some embodiments, a scheduler cir
cuit 308b/n can be conceptualized as arbitrating, not between
outgoing queues at line rate speeds, but arbitrating between
terminated sessions at very high speeds. The Stickiness of
sessions across a pipeline of stages, including a general pur
pose OS, can be a scheduler circuit optimizing any or all Such
stages of Such a pipeline.
0096. Alternatively, a scheduling scheme can be used as
shown in U.S. Pat. No. 7,760,715 issued to Dalal on Jul. 20,
2010, incorporated herein by reference. This scheme can be
useful when it is desirable to rate limit the flows for prevent
ing the downstream congestion of another resource specific to
the over-selected flow, or for enforcing service contracts for
particular flows. Embodiments can include arbitration
scheme that allows for service contracts of downstream
resources, such as general purpose OS that can be enforced
seamlessly.
(0097. Referring still to FIG. 3, a hardware scheduler
according to embodiments herein, or equivalents, can provide
for the classification of incoming packet data into session
flows based on session metadata. It can further provide for

US 2014/020 1309 A1

traffic management of these flows before they are arbitrated
and queued as distinct processing entities on the offload pro
CSSOS.

0098. In some embodiments, offload processors (e.g.,
308i) can be general purpose processing units capable of
handling packets of different application or transport ses
sions. Such offload processors can be low power processors
capable of executing general purpose instructions. The off
load processors could be any suitable processor, including but
not limited to: ARM, ARC, Tensilica, MIPS, StrongARM or
any other processor that serves the functions described
herein. Such offload processors have a general purpose OS
running on them, wherein the general purpose OS is opti
mized to reduce the penalty associated with context Switching
between different threads or group of threads.
0099. In contrast, context switches on host processors can
be computationally intensive processes that require the reg
ister save area, process context in the cache and TLB entries
to be restored if they are invalidated or overwritten. Instruc
tion Cache misses in host processing systems can lead to
pipeline stalls and data cache misses lead to operation stall
and Such cache misses reduce processor efficiency and
increase processor overhead.
0100. In contrast, an OS 3.08i running on the offload pro
cessors 308i in association with a scheduler circuit 308b/n,
can operate together to reduce the context Switch overhead
incurred between different processing entities running on it.
Embodiments can include a cooperative mechanism between
a scheduler circuit and the OS on the offload processor 308i,
wherein the OS sets up session context to be physically con
tiguous (physically colored allocator for session heap and
stack) in the cache; then communicates the session color, size,
and starting physical address to the scheduler circuit upon
session initialization. During an actual context Switch, a
scheduler circuit can identify the session context in the cache
by using these parameters and initiate a bulk transfer of these
contents to an external low latency memory (e.g., 308g). In
addition, the scheduler circuit can manage the prefetch of the
old session if its context was saved to a local memory 308g. In
particular embodiments, a local memory 308g can be low
latency memory, Such as a reduced latency dynamic random
access memory (RLDRAM), as but one very particular
embodiment. Thus, in embodiments, session context can be
identified distinctly in the cache.
0101. In some embodiments, context size can be limited to
ensure fast Switching speeds. In addition or alternatively,
embodiments can include a bulk transfer mechanism to trans
fer out session context to a local memory 308g. The cache
contents stored therein can then be retrieved and prefetched
during context Switch back to a previous session. Different
context session data can be tagged and/or identified within the
local memory 308g for fast retrieval. As noted above, context
stored by one offload processor may be recalled by a different
offload processor.
0102. In the very particular embodiment of FIG. 3, mul

tiple offload processing cores can be integrated into a com
putation FPGA 308. Multiple computational FPGAs can be
arbitrated by arbitrator circuits in another FPGA 310. The
combination of computational FPGAs (e.g., 308) and arbiter
FPGAs (e.g., 310) are referred to as “XIMM modules or
“Xockets DIMM modules” (e.g., computation unit 300). In
particular applications, these XIMM modules can provide
integrated traffic and thread management circuits that broker
execution of multiple sessions on the offload processors.

Jul. 17, 2014

0103 FIG.3 also shows an offload processor tunnel con
nection 308K, as well as a memory interface 308m and port
3.081 (which can be an accelerator coherency port (ACP)).
Memory interface 308m can access buffer memory 308a.
0104 Having described various embodiments suitable for
network overlay operations, several examples of Such opera
tions will now be described.

Example 1

IPV4 to IPV6 Conversion

0105 Internet Protocol version 6 (IPv6) is the latest ver
sion of Internet Protocol (IP), the communications protocol
that identifies computers on networks and allows for routing
ofpacket traffic across the Internet. Since every device on the
Internet must have a uniquely assigned IP address in order to
communicate with other devices, the increasing number of
new devices being connected to the Internet requires more
addresses than the current Internet protocol IPv4 can support.
IPv6 uses a 128-bit address, permitting approximately 3.4x
10 addresses, far more than the approximately 4.3 billion
addresses available under the 32-bit address system of IPv4.
Unfortunately, the two protocols are not designed to be
interoperable, requiring special procedures for handling
packets that must be converted between the protocols.
0106. In this example, instead of using a host or server
processor to perform protocol translations as part of a net
work overlay, one or more offload processor modules can be
used. Both encapsulation and decapsulation of packet data
can be provided, with IPv6 (which cannot be transported over
an IPv4 network) being converted (encapsulated) into IPv4
packets so that they could be transported over a network. Such
a conversion includes segmenting packets (if they are too
large) and adding any required IPv4 headers and packet iden
tifiers. Once a packet is in IPv4 format, it can be tunneled over
a memory bus (e.g., DDR) to a network interface card for
transfer over a network. Similarly, decapsulation can be pro
vided by converting IPv4 packets (that contain IPv6 protocol
packets as payload) into protocols of IPv6 so that they could
be transported to a host processor that has a IPv6 address. The
conversion comprises of reassembling packets (if they were
segmented) and removing IPv4 headers and any packet iden
tifiers. Once the final packet is in IPv6 format it can be
tunneled over DDR or other memory bus to a host processor.

Example 2

VXLan Support
0107 Virtual network equipment presentation such as
customer network routers and customer network firewalls can
also be achieved using overlay networking technology. For
example, Virtual Extensible LAN (VXLAN) based systems
are a widely used virtualization scheme that requires specific
encapsulation and decapsulation network overlay services.
Typically, MAC-based layer 2 Ethernet frames are incorpo
rated within layer3 UDP packets. In this example, instead of
specialized network cards, interface units, or server Sup
ported Software implementations, an offload processing mod
ule can be used for required encapsulation and decapsulation
of data.
0108. It should be appreciated that in the foregoing
description of exemplary embodiments of the invention, Vari
ous features of the invention are sometimes grouped together
in a single embodiment, figure, or description thereof for the

US 2014/020 1309 A1

purpose of streamlining the disclosure aiding in the under
standing of one or more of the various inventive aspects. This
method of disclosure, however, is not to be interpreted as
reflecting an intention that the claimed invention requires
more features than are expressly recited in each claim. Rather,
as the following claims reflect, inventive aspects lie in less
than all features of a single foregoing disclosed embodiment.
Thus, the claims following the detailed description are hereby
expressly incorporated into this detailed description, with
each claim standing on its own as a separate embodiment of
this invention.

0109. It is also understood that the embodiments of the
invention may be practiced in the absence of an element
and/or step not specifically disclosed. That is, an inventive
feature of the invention may be elimination of an element.
0110. Accordingly, while the various aspects of the par

ticular embodiments set forth herein have been described in
detail, the present invention could be subject to various
changes, Substitutions, and alterations without departing
from the spirit and scope of the invention.
What is claimed is:
1. A method for providing network overlay services

capable of processing network packets having associated
packet metadata, comprising the steps of:

writing packets to a specific memory location accessible by
at least one offload processor, with packets transported
using a memory bus having a defined memory transport
protocol,

modifying packet metadata of the packets written to the
specific memory location with the at least one offload
processor, without requiring modification of the packets
by a host processor, and

sending the modified packets to the memory bus.
2. The method of claim 1, further comprising the step of

generating an address of the specific memory location using
packet metadata.

Jul. 17, 2014

3. The method of claim 1, further comprising the step of
scheduling processing of packet data on the at least one off
load processor.

4. The method of claim 1, wherein the at least one offload
processor further comprises multiple general purpose offload
processors.

5. The system of claim 4 further comprising the step of
scheduling parallel processing of packet data using the mul
tiple general purpose offload processors.

6. The system of claim 4 further comprising the step of
providing for context Switching of the multiple general pur
pose offload processors, including storing context informa
tion of at least one general purpose offload processor in a
memory.

7. A method for processing network packets, comprising
the steps of

receiving network packets from a first network,
transporting the packets over a memory bus to an offload

processor,
modifying the packets using the offload processor, and
transporting the modified packets over the memory bus to

a second network.
8. The method of claim 7, wherein the received packets are

Internet Protocol version 6 (IPv6) packets, and the modified
packets are Internet Protocol version 4 (IPv4) packets.

9. The method of claim 7, wherein the received packets are
Internet Protocol version 4 (IPv4) packets, and the modified
packets are Internet Protocol version 6 (IPv6) packets.

10. The method of claim 7, wherein modifying the packets
includes modification of a header of the packets.

11. The method of claim 7, wherein modifying the packets
includes at least one of:

encapsulation and decapsulation of the packet data.
12. The method of claim 7, further comprising the step of

providing virtualization services, wherein modifying the
packets includes at least one of encapsulation and decapsu
lation of the packet data to Support virtual addressing.

k k k k k

