发明名称
基于六轴数控定位器的飞机壁板装配变形的数字化校正方法

摘要
本发明公开了一种基于六轴数控定位器的飞机壁板装配变形的数字化校正方法。本发明的数字化校正方法中，通过偏最小二乘回归反演建模方法，建立六轴数控定位器运动参数和检测点的位置误差数据之间的关系得到数字化校正模型，实现了大型飞机壁板装配变形的数字化校正，不仅有效降低了大型飞机壁板因装配变形引起的装配应力，同时保证了机身后部装配中各个壁板的高效、高精度调姿和对接，最终提升了飞机大部件的装配质量。本发明的数字化校正方法通过六轴数控定位器的协调运动，成功解决了大型飞机壁板装配变形校正和准确定位问题，有效降低了大型飞机壁板因装配变形引起的装配应力，提升飞机大部件的装配质量。
1. 一种基于六轴数控定位器的飞机壁板装配变形的数字化校正方法，其特征在于，包括：

(1) 在飞机壁板各个隔框上均匀布置若干个检测点；

(2) 根据六轴数控定位器的数量，以及各个六轴数控定位器在 X、Y、Z 方向的移动量阈值和转动量阈值确定正交表，正交表的每一行表示六轴数控定位器的平移量和转动量；

(3) 将所述正交表中的每一行数据作为载荷样本，将各个载荷样本加载到飞机壁板的理论有限元模型，获得各个载荷样本作用下飞机壁板变形有限元模型；

(4) 针对任意一个载荷样本，利用对应的变形有限元模型计算当前载荷样本作用下各个检测点的位置误差和各个工艺球头球心的位置及转动误差；

(5) 根据所有载荷样本作用下，各个检测点的位置误差和各个工艺球头球心的位置及转动误差，采用偏最小二乘回归反演建模方法，建立飞机壁板装配变形的数字化校正模型；

(6) 获取各个检测点的实际位置误差，并将各个检测点的实际位置误差代入所述的数字化校正模型，计算得到各个六轴数控定位器的校形数据；

(7) 根据所述的校形数据，对六轴数控定位器进行位置调整，完成大型飞机壁板的装配变形校正。

2. 如权利要求 1 所述的基于六轴数控定位器的飞机壁板装配变形的数字化校正方法，其特征在于，所述步骤 (3) 包括以下步骤：

(3-1) 从理论有限元模型获取工艺球头的球心和各个检测点的理论坐标；

(3-2) 将正交表中每一行数据作为一个载荷样本，将各个载荷样本施加至工艺球头的球心，并通过有限元模拟得到壁板装配变形的变形有限元模型。

3. 如权利要求 2 所述的基于六轴数控定位器的飞机壁板装配变形的数字化校正方法，其特征在于，所述步骤 (4) 通过以下步骤计算各个检测点的位置误差和各个工艺球头球心的位置及转动误差：

(4-1) 从变形有限元模型中获取各个检测点和工艺球头的球心的实际坐标；

(4-2) 根据各个检测点的理论坐标和实际坐标计算得到姿态变换矩阵和位置平移向量；

(4-3) 根据姿态变换矩阵和位置平移向量计算各个检测点的位置误差，以及各个工艺球头的球心的位置及转动误差，其中：

第 i 个检测点的位置误差为 e_i，根据公式：

\[e_i = X_i - (RX_i + t) \]

计算得到，其中 \(X_i \) 为第 i 个检测点的实际坐标， \(X_i \) 为第 i 个检测点的理论坐标值，R 为姿态变换矩阵，t 为位置平移向量，i = 1, 2, ..., v, v 为检测点的个数；

第 j 个工艺球头的球心的位置及转动误差 f_j 为：

\[f_j = [f_{j1}, f_{j2}, f_{j3}, f_{j4}, f_{j5}, f_{j6}] \]

其中，\([f_{j1}, f_{j2}, f_{j3}] = X_j - (RX_j + t)\)， \(X_j \) 为第 j 个工艺球头的球心的实际坐标， \(X_j \) 为第 j 个工艺球头的球心的理论坐标值，\([f_{j4}, f_{j5}, f_{j6}]\) 当前载荷样本对应的第 j 个六轴数控定位器的转动量，j = 1, 2, ..., w, w 为六轴数控定位器的个数。

4. 如权利要求 3 所述的基于六轴数控定位器的飞机壁板装配变形的数字化校正方法，
其特征在于，所述步骤 (5) 中包括：

(5-1) 将所有载荷样本作用下的各个检测点的位置误差组合得到检测点误差矩阵，将
所有载荷样本作用下的各个工艺球头的球心的位置及转动误差组合得到球心误差矩阵；

(5-2) 对检测点误差矩阵和球心误差矩阵进行标准化处理，并根据标准处理后的检测
点误差矩阵和球心误差矩阵，采用偏最小二乘回归建模方法得到飞机壁板装配变形的数字
化校正模型：

\[\eta = \Lambda \epsilon + \eta_{\text{const}}, \]

其中，\(\eta \) 为六轴数控定位器的校形数据，\(\epsilon \) 为各个检测点的位置误差，\(\Lambda \) 为系数矩阵，
\(\eta_{\text{const}} \) 为常数项。

5. 如权利要求 4 所述的基于六轴数控定位器的飞机壁板装配变形的数字化校正方法，
其特征在于，所述步骤 (6) 中各个检测点的实际位置误差采用激光跟踪仪测量系统扫描六
轴数控定位器支撑下飞机壁板得到。

6. 如权利要求 5 所述的基于六轴数控定位器的飞机壁板装配变形的数字化校正方法，
其特征在于，所述步骤 (7) 具体如下：

以校形数据为增量，调整六轴数控定位器的位置。

7. 如权利要求 6 所述的基于六轴数控定位器的飞机壁板装配变形的数字化校正方法，
其特征在于，所述的装配变形数字化校正方法在完成大型飞机壁板的装配变形校正后对校
正结果进行检测，具体如下：

获取校正完成后所有检测点的位置误差数据，将各个检测点的位置误差数据与设定的
容差进行比较，若在所有检测点的位置误差数据均在各自的容差内，则装配变形校正接结
束；

否则，重新返回步骤 (6) 重新执行。

8. 如权利要求 7 所述的基于六轴数控定位器的飞机壁板装配变形的数字化校正方法，
其特征在于，所述的容差为 ±0.5mm。
基于六轴数控定位器的飞机壁板装配变形的数字化校正方法

技术领域
[0001] 本发明涉及飞机装配技术领域，尤其涉及一种基于六轴数控定位器的飞机壁板装配变形的数字化校正方法。

背景技术
[0002] 飞机装配作为飞机制造环节中极其重要的一环，在很大程度上决定了飞机的最终质量、制造成本和交货周期，是整个飞机制造过程中的关键和核心技术。大型飞机一般由多个机身段对接装配而成，而各个机身段又由若干壁板组装接拼接而成。壁板作为现代大型飞机的重要组件之一，既是构成飞机气动外形的重要组成部分，同时也是机身、机翼等的主要承力构件。壁板装配是将蒙皮、长桁、隔框、角片等薄壁类零件按照设计和技术要求进行定位、制孔并通过以铆接为主的手段进行连接而成，是飞机装配中极为重要的环节，但零件特性和装配方式往往造成其自身刚度、强度相对不足。
[0003] 虽然航空制造企业正逐步采用整体壁板代替组装壁板，减少壁板所含零件数量，降低壁板整体重量，并在一定程度上提高了壁板的强度和刚度，提升了气动表面与外形的装配质量，但由于大型飞机壁板表面轮廓为复杂的空间自由曲面，面积较大，在装配过程中不利于承受集中载荷，同时加上定位误差、制孔、铆接、插螺栓、强迫装配以及自身重量、残余应力等实际装配因素的影响，往往导致壁板局部刚度过低，变形量超过容差范围，造成部件间交点不协调，使得飞机最终的实际装配外形与理论外形存在较大偏差，影响整机的气动外形，并对后续工序产生不良影响。
[0004] 虽然我国航空制造企业多通过绷带等工具进行强迫装配，或增加修配和完善等工序的方式进行补救，达到总体精度要求，但这样势必会增加企业的生产成本，延长飞机的装配周期。因此，在大型飞机壁板装配过程中如何有效控制和减小壁板装配变形是目前我国航空工业亟需解决和攻克的重要技术难题之一。

发明内容
[0005] 针对当前大型飞机壁板在装配中存在的变形问题，本发明提供了一种基于六轴数控定位器的飞机壁板装配变形的数字化校正方法。
[0006] 一种基于六轴数控定位器的飞机壁板装配变形的数字化校正方法，包括：
[0007] （1）在飞机壁板各个隔框上均匀分布若干个检测点；
[0008] （2）基于六轴数控定位器的数据，以及各个六轴数控定位器在X、Y、Z方向的移动量阈值和转动量阈值确定正交表，正交表的每一行表示六轴数控定位器的平移量和转动量；
[0009] （3）将所述正交表中的每一行数据作为载荷样本，将各个载荷样本加载至飞机壁板的理论有限元模型，获得各个载荷样本作用下飞机壁板变形有限元模型；
[0010] （4）针对任意一个载荷样本，利用对应的变形有限元模型计算当前载荷样本作用
下各个检测点的位置误差和各个工艺球头球心的位置及转动误差；
[0011] (5) 根据所有载荷的成果下，各个检测点的位置误差和各个工艺球头球心的位置及转动误差，采用偏最小二乘回归反演建模方法，建立飞机壁板装配变形的数字化校正模型；
[0012] (6) 获取各个检测点的实际位置误差，将各个检测点的实际位置误差的数字校正模型，计算得到各个六轴数控定位器的校形数据；
[0013] (7) 根据所述的校形数据，对六轴数控定位器进行位置调整，完成大型飞机壁板的装配变形校正。

所述步骤 (1) 中的布点检测点时避免所有检测点位于同一直线上，尽量保证面分布。本发明中在飞机壁板的每个隔框上提取相同数量的检测点，本发明中检测点的个数为 10 ～ 40。

根据六轴数控定位器的数量，以及各个六轴数控定位器在 X、Y、Z 方向的移动量阈值和转动量阈值确定正交表，正交表的每一行表示各个六轴数控定位器的平移量和转动量。

所述步骤 (2) 中各个六轴数控定位器在 X、Y、Z 方向的移动量阈值和转动量阈值取决于六轴数控定位器本身，各个六轴数控定位器的移动量阈值和转动量阈值在制作后就已固定，根据各个六轴数控制器的个数查表确定合适大小的正交表，正交表的列数和行数。行数就是仿真试验样本数，直接取决于六轴数控定位器的个数。对于列数，对于六轴数控定位器，每个六轴数控定位器具有 6 个自由度，因此需要保证正交表的列数大于或等于 6w，w 为六轴数控定位器的个数。

本发明的数字化校正方法中，针对当前大型飞机壁板在装配中存在的变形问题，通过建立六轴数控定位器运动参数（位置及转动误差）和检测点的位置误差数据之间的反演计算得到数字化校正模型，实现了大型飞机壁板装配变形的数字化校正，不仅有效降低了大型飞机壁板因装配变形引起的装配应力，同时保证了机身段装配中各个壁板的高效、高精度调姿和对位，最终提升了飞机大部件的装配质量。

所述步骤 (3) 包括以下步骤；

(3-1) 从理论有限元模型获取工艺球头的球心和各个检测点的理论坐标；
(3-2) 将正交表中每一行数据作为一个载荷样本，将各个载荷样本施加至工艺球头的球心，并通过有限元模拟得到壁板装配变形的变形有限元模型。

所述步骤 (4) 通过以下步骤计算各个检测点的位置误差和各个工艺球头球心的位置及转动误差；

(4-1) 从变形有限元模型中获取各个检测点和工艺球头的球心的实际坐标；
(4-2) 根据各个检测点的理论坐标和实际坐标计算得到姿态变换矩阵和位置平移
向量：

(4.3) 根据姿态变换矩阵和位置平移向量计算各个检测点的位置误差，以及各个工艺球头的球心的位置及转动误差，其中：

第 i 个检测点的位置误差为 e_i，根据公式：

$$ e_i = X'_{ki} - (RX_k + t) $$

计算得到，其中 X'_{ki} 为第 i 个检测点的实际坐标，X_{ki} 为第 i 个检测点的理论坐标值，R 为姿态变换矩阵，t 为位置平移向量，$i = 1, 2, \cdots, v, v$ 为检测点的个数；

第 j 个工艺球头的球心的位置及转动误差 f_j 为：

$$ f_j = [f_{j1}, f_{j2}, f_{j3}, f_{j4}, f_{j5}, f_{j6}] $$

其中，$[f_{j1}, f_{j2}, f_{j3}] = X'_{bij} - (RX_{bij} + t)$，$X'_{bij}$ 为第 j 个工艺球头的球心的理论坐标值，$[f_{j4}, f_{j5}, f_{j6}]$ 当前载荷样本对应的第 j 个六轴数控定位器的转动量，$j = 1, 2, \cdots, w, w$ 为六轴数控定位器的个数。

所述步骤 (5) 中包括：

(5-1) 将所有载荷样本作用下的各个检测点的位置误差组合得到检测点误差矩阵，将所有载荷样本作用下的各个工艺球头的球心的位置及转动误差组合得到球心误差矩阵；

(5-2) 对检测点误差矩阵和球心误差矩阵进行标准化处理，并根据标准处理后的检测点误差矩阵和球心误差矩阵，采用最小二乘回归建模方法得到飞机壁板装配变形的数字校正模型：

$$ n = A \varepsilon + n_{const} $$

其中，n 为六轴数控定位器的校正数据，ε 为各个检测点的位置误差，A 为系数矩阵，n_{const} 为常数项。

以每个载荷样本作用下的各个检测点的位置误差作为检测点位置矩阵中的一行，从而得到检测点矩阵。以每个载荷样本作用下的各个球心的位置转动误差作为球心误差矩阵中的一行，从而得到球心误差矩阵。

步骤 (5-2) 中标准化处理即单位化处理，将检测点矩阵和球心误差矩阵转化为单位矩阵，从而消除单位不同引起的计算误差。

假设正交表的行数为 n（即仿真试验的样本数为 n），列数为 6w，检测点的个数为 v，因此构建的检测点误差矩阵为 $M = \begin{bmatrix} m_1, \cdots, m_p \end{bmatrix}_{n \times p}$（$p = 3v$），球心误差矩阵大小为 $N = \begin{bmatrix} n_1, \cdots, n_q \end{bmatrix}_{n \times q}$（$q = 6w$），检测点误差矩阵记为 $M = [m_1, \cdots, m_p]_{n \times p}$，球心误差矩阵记为 $N = [n_1, \cdots, n_q]_{n \times q}$。

对检测点误差矩阵 M 和球心误差矩阵 N 进行标准化处理，得到标准化处理后的检测点误差矩阵和球心误差矩阵。其中，标准化处理后的检测点误差矩阵为 $E_0 = [E_{01}, \cdots, E_{0w}]_{n \times p}$，标准化处理后球心误差矩阵为 $E_0 = [E_{01}, \cdots, E_{0q}]_{n \times q}$。

在偏最小二乘回归建模过程中，以标准化处理后的检测点误差矩阵 E_0 为自变量，以标准化处理后的球心误差矩阵 F_0 为因变量。记 E_0 和 F_0 的第一个主成分分别为 w_1 和 c_i，而 t_1 和 u_i 分别为 E_0 和 F_0 的第一个主成分，且有 $t_1 = E_0 w_1, u_i = F_0 c_i$，并求解以下优化问题：

$$ \text{maxCov}(t_1, u_i) = (E_0 w_1) \cdot (F_0 c_i) $$

s.t.：

$$ w_i^T w_i = 1, \quad c_i^T c_i = 1 $$

$$ w_i^T c_i = 1, \quad i = 1, 2, \cdots, w $$

$$ c_i^T c_i = 1, \quad i = 1, 2, \cdots, w $$
maxCov(t, u) 表示对 Cov(t, u) 取最大值，s.t. 为 subject to 的缩写，表示后面内容为约束条件。

引入拉格朗日乘子 ρ₁ 和 ρ₂，并记:

\[s = w^T E^T \rho_0 \rho_1 - r_1 (w^T w_1 - 1) - r_2 (c^T c_2 - 1), \]

对 s 分别求关于 w₁, c₁, ρ₁ 和 ρ₂ 的偏导数，可以推得:

\[\theta_1 = 2 \rho_1 = 2 \rho_2 = w^T E^T \rho_0 E_0 w_1, \]

\[E_0^T \rho_0 E_0^T E_0 w_1 = \theta_1^2 w_1, \]

\[F_0^T E_0^T F_0 c_1 = \theta_1^2 c_1, \]

可见，w₁ 是矩阵 E₀ᵀ F₀ E₀ 的特征向量，且对应的特征值为 θ₁²。θ₀ 是目标函数值。

它要求取最大值，所以 w₁ 是对应于矩阵 E₀ᵀ F₀ E₀ 的最大特征值的单位特征向量；同理，c₁ 也应是对应于矩阵 F₀ᵀ E₀ E₀ᵀ F₀ 的最大特征值 θ₁² 的单位特征向量。

求得第一个轴 w₁ 和 c₁ 后，即可得到成分 t₁ 和 u₁，然后，分别求 E₀ 和 F₀ 对 t₁, u₁ 的回归方程:

\[E_0 = t_1 p_1^T = \frac{t_1 E_0 t_1^T}{\| t_1 \|^2} + E_1, \]

\[F_0 = t_1 r_1^T = \frac{t_1 F_0 r_1^T}{\| t_1 \|^2} + F_1, \]

其中，E₁, F₁ 分别是以上两式的残差矩阵。

用残差矩阵 E₁ 和 F₁ 取代 E₀ 和 F₀，然后求它们的第二个轴 w₂ 和 c₂ 以及第二成分 t₂ 和 u₂，如此计算下去，如果检测点误差矩阵 M 的秩为 r，则会有下式成立:

\[E_0 = \sum_{i=1}^{r} t_i p_i^T, \]

\[F_0 = \sum_{i=1}^{r} t_i r_i^T + F_1, \]

令 η₁ = F₀, ε₂ = E₀, 上式可进一步可表示为:

\[\eta = A \varepsilon + \eta_{const}. \]

该式即为壁板装配变形的数字化校正模型。其中 η 表示六轴数控定位器在 X, Y, Z 方向上的校形量（包括平移量和转动量），ε 表示检测点的位置误差，A 为系数矩阵，η_{const} 为常数项。其中，校形量 η 的大小为 p×1，系数矩阵 A 的大小为 q×p，检测点的位置误差 ε 的大小为 q×1，常数项 η_{const} 的大小为 q×1。

所述步骤 (6) 中各个检测点的实际位置误差采用激光跟踪仪测量系统扫描六轴数控定位器支撑下壁板得到。

实际位置误差实际上为装配时，壁板中各个检测点的坐标（位置）相对于理
论模型的位置偏差，直接通过激光跟踪仪测量系统扫描测量得到，简单，且易于实现。

[0062] 所述步骤（7）具体如下：

[0063] 以校形数据为增量，调整六轴数控定位器的位置。

[0064] 为实现飞机壁板装配变形的数模化校正，因此得到校形数据后，用校形数据调整六轴数控定位器的位置，从而消除变形引起的装配误差。

[0065] 所述的装配变形数模化校正方法在完成大型飞机壁板的装配变形校正后对校正结果进行检测，具体如下：

[0066] 获取校正完成后各个检测点的位置误差，将各个检测点的位置误差数据与设定的容差进行比较，若所有检测点的位置误差均在各自的容差内，则装配变形校正加结束；

[0067] 否则，重新返回步骤（6）重新执行。

[0068] 通过验证校正结果，判断校正结果是否正确，提高了该数模化校正方法的可实施性，且有利于提高校正精度。根据检测结果，若校正完成后，存在位置误差超出容差的检测点，则重新进行校正。重新校正后，直接从步骤（6）开始，不需要另建数模化校正模型。校正完成后，再次判断校正完成后各个检测点的位置误差是否在各自的容差内，并根据判断结果进行循环操作，直至所有的检测点的位置误差均在各自的容差内。

[0069] 作为优选，所述的容差为 ±0.5mm。

[0070] 本发明中的容差为 ±0.5mm 应理解为为所有的检测点的容差的上限为 ±0.5mm。由于检测点的位置和类型不同，因此实际应用中各个检测点的容差也是相互独立的。对于不重要的检测点其容差可能较大，可能为 ±0.5mm，对于重要的检测点其容差可能较小，可能为 ±0.05mm。

[0071] 与现有技术相比，本发明的优点在于：

[0072] (a) 采用偏最小二乘回归反演建模方法建立了大型飞机壁板装配变形数与六轴数控定位器各运动参数之间的关系得到飞机壁板装配变形的数模化校正模型，并利用该数模化校正模型，通过六轴数控定位器的协调运动，成功解决了大型飞机壁板装配变形校正和准确定位问题；

[0073] (b) 可有效降低大型飞机壁板因装配变形引起的装配应力，提升飞机大部件的装配质量。

附图说明

[0074] 图 1 为大型飞机壁板整体结构示意图；

[0075] 图 2 为大型飞机壁板的工艺接头结构示意图；

[0076] 图 3 为六轴数控定位器结构示意图；

[0077] 图 4 为大型飞机壁板定位调整系统的示意图；

[0078] 图 5 为基于六轴数控定位器的飞机壁板装配变形的数模化校正方法的流程图；

[0079] 图中：大型飞机壁板 1，蒙皮 2，长桁 3，隔框 4，角片 5，工艺接头 6，工艺球头 7，接头本体 8，六轴数控定位器 9，X 向移动轴 10，Y 向移动轴 11，Z 向移动轴 12，X 向转动轴 13，Y 向转动轴 14，Z 向转动轴 15，大型飞机壁板定位调整系统 16，控制计算机 17，测量系统 18，检测点 19，现场总线 20，TCP/IP 21，激光跟踪仪 22。
具体实施方式
[0080] 下面将结合附图和具体实施例对本发明进行详细说明。
[0081] 如图1所示，大型飞机壁板1主要由蒙皮2、长桁3、隔框4、角片5组成。
[0082] 如图2图所示，大型飞机壁板的工艺接头6主要由工艺球头7和接头本体8组成。
[0083] 如图3所示，六轴数控定位器9包括X向移动轴10，Y向移动轴11，Z向移动轴12，
X向转动轴13，Y向转动轴14，Z向转动轴15，各轴独立运动，并由控制系统计算机17实现
操纵控制。其中，X向移动轴10，Y向移动轴11，Z向移动轴12构成的坐标系如图3所示。
[0084] 工艺球头7球铰于相应的六轴数控定位器9的末端。
[0085] 如图4图所示，大型飞机壁板定位装置系统16包括测量系统计算机18，控制系统
计算机17以及激光跟踪仪22通过TCP/IP21实现网络通信与数据传递。控制系统计算机17
则通过现场总线20实现对六轴数控定位器9的运动控制，测量系统计算机18指令激光
跟踪仪22测得的大型飞机壁板1的检测点19的位置误差数据，并下发至控制系统计算机
17，控制系统计算机17根据检测点19位置误差数据计算六轴数控定位器9校形量，并指令
六轴数控定位器9移动至指定位置，整个系统形成“测量-计算-校形”的闭环反馈回路，
最终实现大型飞机壁板1的装配变形校正。该定位装置系统能够直接获取检测点的位置和
位置误差。
[0086] 本实施例的基于六轴数控定位器的飞机壁板装配变形的数字化校正方法，如图5
所示，包括：
[0087] (1) 在飞机壁板各个隔框上均匀布置若干个检测点。
[0088] 本实施例中为20个，各个检测点均匀分布（面分布），各检测点位于飞机壁板的
各个隔框。
[0089] (2) 根据六轴数控定位器的数量，以及各个六轴数控定位器在X、Y、Z方向的移
动量阈值和转动量阈值确定正交表，正交表的每一行表示六轴数控定位器的平移量和转动
量。
[0090] (3) 将正交表中的每一行数据作为载荷样本，将各个载荷样本加载至飞机壁板的
理论有限元模型，获得飞机壁板在各个载荷样本作用下的变形有限元模型。具体包括以下
步骤：
[0091] (3-1) 从理论有限元模型读取各个工艺球头的球心和各个检测点的理论坐标；
[0092] (3-2) 将正交表中每一行数据作为一个载荷样本，将各个载荷样本施加至工艺球
头的球心，并通过有限元模拟得到壁板装配变形的变形有限元模型。
[0093] (4) 针对每一个载荷样本，利用该载荷样本作用下的变形有限元模型计算当前载
荷样本作用下各个检测点的位置误差和各个工艺球头球心的位置及转动误差。具体如下：
[0094] (4-1) 从变形有限元模型中获取各个检测点和工艺球头的球心的实际坐标；
[0095] (4-2) 根据各个检测点的理论坐标和实际坐标计算得到姿态变换矩阵和位置平移
向量；
[0096] (4-3) 根据姿态变换矩阵和位置平移量计算各个检测点的位置误差，以及各个工
艺球头的球心的位置及转动误差，其中：
[0097] 第i个检测点的位置误差为 e_i，根据公式：
[0098] e_i = X_{ki} - (RX_{ki} + t)
计算得到，其中 X_{ki} 为第 i 个检测点的实际坐标，X_{ki} 为第 i 个检测点的理论坐标值，R 为姿态变换矩阵，t 为位置平移向量，$i = 1, 2, \cdots, v, v$ 为检测点的个数；

第 j 个工艺球头的球心的位置及转动误差 f_j 为：

$$ f_j = [f_{j1}, f_{j2}, f_{j3}, f_{j4}, f_{j5}, f_{j6}] $$

其中，$[f_{j1}, f_{j2}, f_{j3}] = X_{8j} - (RX_{8j}+t), [f_{j4}, f_{j5}, f_{j6}]$ 当前载荷样本对应的第 j 个六轴数控定位器的转动量，$j = 1, 2, \cdots, w, w$ 为六轴数控定位器的个数。

根据所有载荷样本作用下，各个检测点的位置误差和各个工艺球头球心下的位置及转动误差，采用偏最小二乘回归反演建模方法，建立飞机壁板装配变形的数字化校正模型。具体如下：

（5-1）将所有载荷样本作用下的各个检测点的位置误差组合得到检测点误差矩阵，将所有载荷样本作用下的各个工艺球头的球心的位置及转动误差组合得到球心误差矩阵；

（5-2）对检测点误差矩阵和球心误差矩阵进行标准化处理，并根据标准处理后的检测点误差矩阵和球心误差矩阵，采用偏最小二乘回归建模方法得到飞机壁板装配变形的数字化校正模型：

$$ \eta = A \epsilon + \eta_{\text{const}} $$

其中，η 为六轴数控定位器的校形数据，ϵ 为各个检测点的位置误差，A 为系数矩阵，η_{const} 为常数项。

（6）获取各个检测点的实际位置误差，并将各个检测点的实际位置误差代入数字化校正模型，计算得到各个六轴数控定位器的校形数据。

（7）根据所述的校形数据，以校形数据为增量，对六轴数控定位器运动进行位置调整，完成大型飞机壁板的装配变形校正。

（8）完成大型飞机壁板的装配变形校正后对校正结果进行检测，具体如下：

（9）获取校正完成后所有检测点的位置误差数据，将各个检测点的位置误差数据与设定的容差进行比较，若所有检测点的位置误差数据均在各自的容差（本实施例中各个检测点的容差为 $\pm 0.5\text{mm}$）内，则装配变形校正接结束；

（10）否则，重复返回步骤（6）重新执行。

以上所述仅为本发明的优选实施方式，本发明的保护范围并不限于上述实施方式，凡是属于本发明原理的技术方案均属于本发明的保护范围。对于本领域的技术人员而言，在不脱离本发明的原理的前提下进行的若干改进和润饰，这些改进和润饰也应视为本发明的保护范围。
布置检测点

根据六轴数控定位器的数量、移动量阈值和转动量阈值确定正交表

每一行数据作为载荷样本，将各个载荷样本加载至飞机壁板的理论有限元模型，获得各个载荷样本作用下飞机壁板变形有限元模型

利用对应的变形有限元模型计算各个载荷样本作用下各个检测点的位置误差和各个工艺球头球心的位置及转动误差

根据所有载荷样本作用下，各个检测点的位置误差和各个工艺球头球心的位置及转动误差，采用偏最小二乘回归反演建模方法，建立飞机壁板装配变形的数字化校正模型

获取各个检测点的实际位置误差，并将各个检测点的实际位置误差代入所述的数字化校正模型，计算得到各个六轴数控定位器的校形数据

根据所述的校形数据，对六轴数控定位器运动进行位置调整，完成大型飞机壁板装配变形校正