PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: (11) International Publication Number: WO 99/31582
GOGF 9/44 Al : -

(43) International Publication Date: 24 June 1999 (24.06.99)

(21) International Application Number: PCT/US98/27065 | (81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR,

(22) International Filing Date: 18 December 1998 (18.12.98)

(30) Priority Data:

08/993,942 18 December 1997 (18.12.97) US

(71) Applicant: ALCATEL USA SOURCING, L.P. [US/US]; 1000
Coit Road, Plano, TX 75075 (US).

(72) Inventors: WELDON, Richard, S., Jr.; 5700 Caroline Court,
Plano, TX 75093 (US). KENNEY, Robert, E.; 1006 Brian
Way, Garland, TX 75043 (US). MILLER, Daniel, L.;
Apartment 1602, 7650 McCallum Boulevard, Dallas, TX
75252-7510 (US).

(74) Agent: FISH, Charles, S.; Baker & Botts, L.L.P., 2001 Ross
Avenue, Dallas, TX 75201-2980 (US).

BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD,
GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP,
KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK,
MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG,
SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZW,
ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW),
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR,
GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF,
BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN,
TD, TG).

Published
With international search report.
Before the expiration of the time limit for amending the
claims and to be republished in the event of the receipt of
amendments.

(54) Title: OBJECT ORIENTED PROGRAM MEMORY MANAGEMENT SYSTEM AND METHOD USING FIXED SIZED MEMORY

POOLS

(57) Abstract

A method for managing memory in COMPILER INITIALIZATION FILE
an object oriented program that is ca- APPLICATION
pable of using a plurality of fixed pool 201~ 213 214 |— PROGRAMS [| MEMORY 211 | ~202
classes and a plurality of objects belong- 200 POOL [~
ing to those fixed pool classes. A plurality “NEW" “DELETE" DATA
of memory pools each having a predeter-
mined fixed s.ize are constructed, with each I CLASS: MEMORYPOOL
of the plurality of fixed pool classes be- —
ing associated with one of the plurality of o] L ~203
memory pools. New objects belonging to e e e]
a selected one of the fixed pool classes are 225~ ALLOCATE:
instantiated, with the instantiation step in- 226./‘DEALLOCATE:
cluding the step of allocating memory for .
the new object from the associated mem- CLASS: CLASSA CLASS: CLASSB
ory pool. A system for managing memory 204~ = g | ~205
in an object oriented program operating on - —
a computer system is also provided that 20~ gane 220~ pyaine]
includes a memory pool class and a plu- 215_\'“&'{' 215:'””'!:
rality of subclasses of that memory pool -gELE'TE‘ 'ngE-T .
class, where the object oriented program is 2161 ' 216 DELETE:
capable of using and instantiating objects g g
belonging to the subsclasses. The system
alsc;1 il;lclu.des a plur;lity o_f rr(lierrf}lori/i pqols) POOLA POOLB
each having a predetermined fixed size, 08~ 209
where each of the plurality of subclasses 0BJ.A4 g Y 0BJB;
is associated with one of the plurality of 2081 0BJ.A; 206 209/'03J-32 ™-207

memory pools, and wherein memory for
objects of a selected subclass that are in-
stantiated by the object oriented program
is allocated from the associated memory pool.

AL
AM
AT
AU
AZ
BA
BB
BE
BE
BG
BJ
BR
BY
CA
CF
CG
CH
CI
CM
CN
CuU
CZ
DE
DK
EE

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cote d’Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
IE
IL
IS
IT
JP
KE
KG
KP

KR
KZ
LC
LI

LK
LR

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Ireland

Israel

Tceland

Ttaly

Japan

Kenya

Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI

SK
SN
SZ
TD
TG

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

10

15

20

WO 99/31582 PCT/US98/27065

OBJECT ORIENTED PROGRAM MEMORY MANAGEMENT SYSTEM AND
METHOD USING FIXED SIZED MEMORY POOLS

TECHNICAL FIELD OF THE INVENTION

The present invention relates in general to the field
of computer programming. More particularly, the invention
relates to a system and method for managing memory in
object oriented programs in which objects are allocated and
deallocated from fixed size memory pools rather than from

the heap.

BACKGROUND OF THE INVENTION

Object oriented programming is a powerful programming
tool. An object orieﬁted program is one that has as its
basic foundation a set of building blocks called objects,
each of which is a representation or abstraction of a
physical element or a logical concept. An object is
defined by a set of data that represents specific
attributes or properties of the object, and a set of
functions or methods that can be performed on or by the
object. Each object can receive messages instructing it to
perform a particular function, or send such messages to
other objects. Objects are reusable, and can also be
called on by a variety of different application programs.

Objects must reside in memory, and each time an object
is created by an application program memory must be

allocated to store that object. 1In known objected oriented

10

15

20

25

30

WO 99/31582 PCT/US98/27065

2

programs, memory is allocated form a common pool of free
memory that is: - available to all application programs,
commonly known as the heap. Although the act of allocating
memory itself is a relatively simple task if memory is
available, continued allocation of memory for new objects
without also deallocating memory for objects that are no
longer being used will slowly deplete the available memory
space. This slow depletion of memory is referred to as a
“memory leak”, and is a common problem in current object
oriented programs. Further, known object oriented programs
also continue to create new objects while the application
program is running without keeping track of the
availability of memory space in the heap. Consequently,
any memory leaks may reach a critical point at any time.
The obvious consequences of this are program or system
failure, and loss of data. Thus, memory allocation and
deallocation in object oriented programming, otherwise
known as memory management, 1is of great concern and has
traditionally been extremely problematic.

Memory management concerns have previously been
addressed by various types of products or programs that
manage the deletion of objects, such as well known garbage
collection products. .Although somewhat effective in
reducing the danger of memory leaks, allocation of objects
from the heap still proceeds during program execution
without any feedback regarding available memory. Thus, it
is always possible that insufficient memory will result in
program or system failure. Accordingly, programs that
manage the deletion of objects do not address a fundamental
problem; that in known object oriented programs memory
allocation occurs continuously and in ignorance of the
state of available memory. Thus, it can never be
guaranteed that sufficient memory will be available for the

duration of the running time of the application program.

10

15

20

25

30

WO 99/31582 PCT/US98/27065

SUMMARY OF THE INVENTION

Accordingly, a need currently exists for a system and
method of managing memory in object oriented programs that
will ensure that adequate memory will be available at all
times throughout program operation so as to avoid program
failure and eliminate the problems associated with memory
leaks.

In accordance with the present invention, a method is
provided for managing memory in an object oriented program
that is capable of using a plurality of fixed pool classes
and a plurality of objects of those classes. The method
includes the steps of constructing a plurality of memory
pools each of a predetermined fixed size, where each of the
fixed pool classes is associated with one of the plurality
of memory pools; and instantiating a new object belonging
to a selected one of the fixed pool classes, the
instantiating step including the step of allocating memory
for the new object from the associated memory pool.
Further, when an object of a fixed pool class is deleted,
memory i1s deallocated to the associated memory pool.

Further, in accordance with the present invention a
system for managing memory in an object oriented program
operating on a computer system is also provided comprising
a memory pool <class, and a plurality of fixed pool
subclasses of the memory pool class, where the object
oriented program is capable of using and instantiating
objects belonging to the subclasses. The system further
includes a plurality of memory ©pools each of a
predetermined fixed size, where each of the plurality of
fixed pool subclasses has one of the plurality of memory
pools associated therewith, and where the memory for the
objects of a selected subclass that are instantiated by the
object oriented program is allocated from the associated

memory pool. Likewise, when objects of the subclasses are

10

15

20

25

30

35

WO 99/31582 PCT/US98/27065

4

deleted, memory is deallocated to the associated memory

pools.

BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the present
invention and the advantages thereof, reference is now made
to the following description taken in conjunction with the
accompanying drawings in which 1like reference numbers
indicate like features wherein:

FIGURE 1la 1is a simplified diagram illustrating
attributes and methods of a class;

FIGURE 1b is a simplified diagram illustrating objects
of the class shown in Fig. 1la;

FIGURE 2 is a simplified block diagram illustrating
the overall architecture of an exemplary system according
to the present invention;

FIGURE 3 is a simplified flow chart illustrating the
process of constructing fixed size memory pools;

FIGURE 4 is a simplified flow chart illustrating the
process of allocating an object from a fixed size memory
pool;

FIGURE 5 is a simplified illustration of a fixed size
memory pool that contains object “shells”, and a separate
database for storing object data; and

FIGURE 6 is a simplified flow chart illustrating the
process of deallocating an object from a fixed size memory

pool.

DETAILED DESCRIPTION

At the root of object-oriented programming are the
concepts of classes and objects (or instances) of these
classes. A class 1s a generic description of the
attributes or characteristics and of behaviors or methods
that all objects within that class may possess. For

example, as shown in FIGURE 1la, members of the class

10

15

20

25

30

35

WO 99/31582 PCT/US98/27065

5

“Student” 1 may each have as attributes 2 a name, age, and
social security number. The methods 3 that can be
performed on members of the class “Student” include either
to add (addfile) or delete (deletefile) the student
represented by the defined attributes from a file, such as
a file listing the students enrolled in a particular
college course. Each object or instance of the class will
contain specific data values corresponding to each generic
attribute of the class. For example, as shown in FIGURE
1b, for Object X 4 the value of 30 corresponds to the age
attribute, and the value 123-45-6789 corresponds to the
social security number (SS#) attribute. Likewise, for
Object Y 5 the value of 40 corresponds to the age attribute
and the value 234-56-7890 corresponds to the social
security number attribute. Thus, the values taken on by
the object for the various attributes define the state of
the object. The methods defined in the class, however,
remain the same for all objects in that class, and in the
absence of overloading, will also remain the same for all
subclasses of that class due to the well known principle of
inheritance. Finally, objects are <called wupon by
application programs to perform certain functions by
sending messages to the appropriate object. In some
instances, these messages require an object to call upon
other objects by sending messages to those other objects.

As previously indicated, known object oriented
programs create new objects to carry out necessary
functions, and allocate memory for those objects from the
heap as program execution proceeds. The present invention
avoids the disadvantages of these known object oriented
programs by providing a system and method for managing
memory that allocates and deallocates objects from fixed
size memory pools rather than from the heap. The size of
the memory pool is such that it is sufficient to store the

maximum number of objects that could be concurrently

10

15

20

25

30

35

WO 99/31582 PCT/US98/27065

6

allocated by the application program, and the proper size
is set during program initialization. By integrating
memory allocation and program initialization, the system
and method of the present invention ensures that there will
be sufficient memory for object allocation at all times.
Further, because objects are only allocated and deallocated
from a fixed size memory pool, there is never a danger that
memory leaks or like problems will lead to program failure.
As will be described below, the inventive system and method
applies the principles of overloading and inheritance to
ensure that all objects are allocated and deallocated from
the appropriate fixed size memory pool rather than from the
heap, and therefore, is completely transparent to
application programs that call on these objects.

The architecture of the system will now be described
with reference to FIGURE 2. There are multiple application
programs 200 that are each capable of calling on objects
that will be allocated and deallocated from fixed size
memory pools. These application programs 200 operate in a
standard object oriented program environment. In one
embodiment, the application programs use the C++
programming language, and thus are linked to a C++ compiler
201. Application programs 200 are also linked to one or
more initialization files 202 that contain files and data
necessary for program initialization.

Application programs 200 encapsulate a class
“MemoryPool” 203, which itself encapsulates the fixed size
memory pool scheme. Representative classes, ClassA 204
and ClassB 205, are subclasses of MemoryPool 203, and thus
inherit the attributes and methods of the MemoryPool class.
ClassA 204 and ClassB 205 are each linked to a fixed size
memory pool, PoolA 206 and PoolB 207 respectively, from
which all objects within the class are allocated and
deallocated, and are therefore, referred to as fixed pool

classes. For example, it can be seen that all objects that

10

15

20

25

30

35

WO 99/31582 PCT/US98/27065

7

belong to ClassA 204, such as “Obj. A,” and “Obj. A,” 208,
are allocated and deallocated from memory pool PoolA 206;
and all objects belonging to ClassB 205, such as “Obj. B,”
and “Obj. B,” 209, are allocated and deallocated from memory
pool PoolB 207.

Although only two subclasses of MemoryPool 203, and a
separate object pool corresponding to each of these
subclasses is shown in FIGURE 2, one skilled in the art
will understand that various other embodiments could also
be implemented. For example, additional layers of
subclasses could be included, as could additional numbers
of subclasses at each layer. Further, multiple classes may
also allocate and deallocate objects from the same object
pool.

As indicated, all classes encapsulated by MemoryPool
203 will allocate and deallocate objects from a designated
fixed size memory pool rather than from the heap.
According to the present invention, the fixed size memory
pools 206, 207 are constructed during program
initialization, and because all objects are allocated and
deallocated from the pool(s), the size of each memory pool
is critical and must be determined prior to program run
time. The size of the pool must be sufficient to store the
maximum number of objects that could be concurrently
allocated during program operation in order to avoid memory
deficiencies. Thus, both the maximum number of
concurrently allocable objects and the size of the objects
must be accurately determined before the memory pool can be
created. This number can be determined by calculation,
experimental evidence, extrapolation, testing or the like.
Once ascertained, information regarding the size of each
object and the maximum size of the memory pool (the “memory
pool data”) 1is stored in one or more files, such as
initialization files 202, that can be accessed by the

application program that will call on these objects.

10

15

20

25

30

WO 99/31582 PCT/US98/27065

8

Assuming the necessary data has been stored in the
initialization file 202, memory pool initialization will
then proceed as shown in FIGURE 3. On program startup, the
application program 200 will first initialize those classes
that are to be called on during program execution (step
300). As is well known in the art, each class includes a
class specific method “main” (220 in FIGURE 2) that 1is
called on to initialize the class. For classes whose
objects are allocated and deallocated from fixed size
memory pools, “main” will direct the application program to
go to the appropriate initialization file 202, parse
through that file, and extract from that file the memory
pool data corresponding to that class (step 301). Once the
information is obtained, the application program 200 will,
in step 302, construct a memory pool of the appropriate
size by allocating from available memory the amount of
memory for that pool that is specified by the memory pool
data 211 in the initialization file 202.

In one embodiment, the application program will
allocate the memory space, and also perform the additional
step of creating the proper number of “shell” objects
within that allocated space (step 303). A “shell” object
is an object that has been created and is stored within the
allocated memory space, but has not yet been assigned data
values for the various named attributes to define the state
of that object. The creation of "“shell” objects is
advantageous when the number of objects called on at any
one time by an application program is far less than the
number of physical possibilities. Under such circumstances
the data for each object may be stored elsewhere, such as
in a separate database (502 in FIGURE 5). When needed, an
object ™“shell” will be taken from the memory pool and
filled with the appropriate data from the database, as will

be described in further detail below.

10

15

20

25

30

35

WO 99/31582 PCT/US98/27065

9

Accordingly, all fixed size memory pools are
constructed during initialization. For those classes that
allocate and deallocate objects from their own memory
poolsf class initialization will include construction of
such a pool. For those that share a memory pool, as in an
alternative embodiment of the present invention, the method
“main” in these classes will adjust for this by simply not
directing the application program to construct a new and
separate memory pool.

Now that all necessary fixed size memory pools have
been constructed, the manner by which objects are allocated
and deallocated from the appropriate pools rather than from
the heap will now be described with reference to Figs. 2
and 4. As is well known, the C++ operators that manage
memory allocation are “new” and “delete” (213 and 214 in
FIGURE 2). “New”, followed by the appropriate pointer to
a designated class, causes memory to be allocated from the
heap to create a new object of that class, and “delete”
causes a specified object to be deleted from memory,
thereby deallocating memory to the heap. It is also well
known, however, that any C++ operators, including “new” and
“delete”, can be overloaded by a subclass that uses the
same operator name, but redefines the method. For example,
as shown in FIGURE 2, each of subclasses ClassA 204 and
ClassB 205 include methods “new” 215 and “delete” 216. The
methods within subclasses ClassA and ClassB will be
referred to hereinafter as NEW and DELETE only to avoid
confusion, but it is to be understood that these methods
are called by the same name as the C++ operators “new” and
“delete” so as to overload the C++ operators. Although
called on by the same name, NEW and DELETE have been
redefined to contain additional parameters that instruct
that memory allocation for the desired object (or
deallocation for an object to be deleted) is to be from a

specified fixed size memory pool rather than from the heap.

10

15

20

25

30

WO 99/31582 PCT/US98/27065

10

Thus, NEW and DELETE overload the C++ operators “new” and
“delete”, and cause all objects for that class to be
allocated and deallocated from the named object pool.

Referring now to FIGURE 4, the application program
will first send the C++ message “new” to a particular
class, i.e. ClassA (step 400). Because ClassA includes its
own NEW method, receipt of the C++ “new” message from the
application program will be overload by NEW. In one
embodiment, NEW calls on another method “allocate” 402 (see
also 225 in FIGURE 2), which is the method that actually
causes the object to be allocated from the designated pool,
and which is defined by MemoryPool 203 and inherited by
ClassA. To perform the actual allocation, “allocate” will
go to the memory pool named in the parameters of NEW, and
proceed to iterate through the memory space in that memory
pool until it locates a sufficient amount of unallocated
memory 403. It will then allocate that located space for
the new object 404.

As was stated above, in one embodiment object “shells”
may be created within the fixed size memory pool during
program initialization. FIGURE 5 1illustrates multiple
object “shells” 501 within object pool PoolX 500. Under
such circumstances, the data for all objects is stored
elsewhere, such as in a separate database 502. When an
object is allocated from the pool, it is removed from the
pool and the data necessary to define the state of the
object is extracted from database 502 and assigned to the
object. This defined object 503 can then be used by the
application program. If during the use of the object
changes are made to the object’s data, the database will be
updated with the new information. The object will be
“active” while needed to perform a particular function, and
returned to the pool thereafter for use again at a later

time.

10

15

20

25

30

35

WO 99/31582 PCT/US98/27065

11

The C++ operator “delete” is also overloaded by DELETE
in a manner analogous to that by which the C++ operator
“new” 1s overloaded. Referring to FIGURE 6, when the
useful life of an object has expired, the application
program will send the C++ “delete” message to a particular
object of a particular class (step 600). As any class that
encapsulates the fixed size memory pool scheme includes its
own method DELETE (215 in FIGURE 2), the C++ operator
“delete” 1is overloaded by DELETE at the subclass level,
i.e. ClassA 204, in step 601. DELETE differs from “delete”
iﬁ that it contains additional parameters that name the
specific memory pool from which the object is to be
deleted. In one embodiment, DELETE further calls on a
method “deallocate” (226 in FIGURE 2) defined by MemoryPool
203 and inherited by ClassA (602), that will direct the
deletion of the object from the named memory pool in which
it resides in step 603. 1If the memory pool is of the type
that includes object “shells”, the data will be deleted
from the object, and the empty object “shell” returned to
the memory pool.

From the above description it is clear that the
present invention provides a new and superior system and
method for managing memory in object oriented programs. By
allocating and deallocating objects from fixed size memory
pools rather than from the heap, and by constructing these
fixed size memory pools during initialization, the
inventive system and method ensures that memory sufficient
to support a particular object oriented program will be
available throughout the run time of the application
program.

Other modifications of the invention described above
will be obvious to those skilled in the art, and it is
intended that the scope of the invention be limited only as

set forth in the appended claims.

10

15

20

25

WO 99/31582 PCT/US98/27065

12

WHAT IS CLAIMED IS:

1. A method for managing memory in an object
oriented program, said object oriented program being
capable of using a plurality of fixed pool classes and a
plurality of objects belonging to said fixed pool classes,
comprising the steps of:

a) constructing a plurality of memory pools, each of
said plurality of memory pools having a predetermined fixed
size, and each of said plurality of fixed pool classes
being associated with one of said plurality of memory
pools; and

b) instantiating a new object belonging to a
selected one of said fixed pool classes, said instantiating
step including the step of allocating memory for said new

object from said associated memory pool.

2. A method according to claim 1, wherein said
instantiating step further comprises:

a) invoking a first object creation method intended
to allocate memory for said new object from memory other
than that of said associated memory pool, said first object
creation method being inherited by said selected fixed pool
class;

b) overloading said first object creation method
with a second object creation method defined by said
selected fixed pool class, said second object creation
method causing memory for said new object to be allocated

from said associated memory pool.

10

15

20

25

30

WO 99/31582 PCT/US98/27065

13
3. A method according to claim 2, further comprising
the step of:
a) deleting an existing object belonging to one of

said fixed pool <classes, said deletion causing the
deallocation of memory from said existing object to the
memory pool associated with the fixed pool class to which

said existing object belongs.

4. A method according to claim 3, wherein said
deleting step further comprises:

a) invoking a first object deletion method intended
to deallocate memory from said existing object to memory
other than that of said associated memory pool, said first
object deletion method being inherited by the fixed pool
class to which said existing object belongs; and

b) overloading said first object deletion method
with a second object deletion method defined by said fixed
pool class to which said existing object belongs, said
second object deletion method causing memory to be
deallocated from said existing object to said associated

memory pool.

5. A method according to claim 1, wherein said
constructing step further comprises:

a) extracting from an initialization file memory
pool data corresponding to each of said memory pools to be
constructed, said memory pool data including a size of said
memory pool to be constructed, and a size of objects to be
allocated and deallocated from said memory pool;

b) allocating sufficient memory to construct said
plurality of memory pools according to said corresponding

memory pool data.

10

15

20

WO 99/31582 PCT/US98/27065

14

6. A method according to claim 5, wherein prior to
said instantiation step said plurality of fixed pool
classes are initialized, and said constructing step occurs

during said initialization.

7. A method according to c¢laim 6, wherein said
constructing step comprises allocating said predetermined
fixed size of each of said memory pools to be at least
equal to an amount of memory sufficient to store the
maximum number of objects that can be concurrently
allocated from said memory pool by said object oriented

program.

8. A method according to claim 7, wherein said
constructing step comprises associating each of said
plurality of fixed pool classes with a different one of

sald plurality of memory pools.

9. A method according to claim 7, wherein said
constructing step comprises associating at least two of
said plurality of fixed pool classes with a selected one of

said plurality of memory pools.

10

15

20

25

30

WO 99/31582 PCT/US98/27065

15

10. A system for managing memory in an object
oriented program operating on a computer, comprising:

a) a memory pool class;

b) a plurality of fixed pool subclasses of said
memory pool class, said object oriented program being
capable of using and instantiating objects belonging to
said plurality of fixed pool subclasses;

c) a plurality of memory pools each of a
predetermined fixed size, each of said plurality of fixed
pool subclasses having one of said plurality of memory
pools associated therewith;

wherein memory for said objects of each of said fixed
pool subclasses instantiated by said object oriented

program are allocated from said associated memory pool.

11. A system according to claim 10, wherein each of
said plurality fixed pool of subclasses defines an object
creation method that causes memory for said objects
instantiated by said object oriented program to be

allocated from said associated memory pool.

12. A system according to claim 11, wherein said
defined object creation method overloads an inherited
object creation method intended to cause said memory to be
allocated from memory other than that of said associated

memory pool.

13. A system according to claim 12, further
comprising an initialization file for storing memory pool
data for each of said memory pools, said memory pool data
including the predetermined size of each of said memory
pools, and the size of objects to be allocated from each of

said memory pools.

WO 99/31582 PCT/US98/27065

16

14. A system according to claim 13, wherein the
predetermined size of each of said memory pools is at least
an amount of memory sufficient to store the maximum number
of objects belonging to the associated subclass that are

concurrently allocable by the object oriented program.

10

15

20

25

30

WO 99/31582 PCT/US98/27065

17

15. A method for managing memory in an object
oriented program, said object oriented program being
capable of using a plurality of fixed»pool classes and a
plurality of objects belonging to said fixed pool classes,
comprising the steps of:

a) constructing a plurality of memory pools, each of
said memory pools having a predetermined fixed size, and
each of said plurality of fixed pool classes being
associated with one of said plurality of memory pools;

b) constructing a plurality of object shells within
a memory pool associated with a selected fixed pool class,
each of said object shells being capable of becoming a
defined object of said selected fixed pool class by
receiving attribute data, said attribute data being stored
in a database; and

c) instantiating a new object belonging said
selected fixed pool class by retrieving said attribute data
from said database and inserting said attribute data into

one of said object shells of said associated memory pool.

16. A method according to claim 15, wherein said
instantiating step further comprises:

a) invoking a first object creation method intended
to allocate memory for said new object from memory other
than that of said associated memory pool, said first object
creation method being inherited by said selected fixed pool
class; and

b) overloading said first object creation method
with a second object creation method defined by said
selected fixed pool class, said second object creation
method causing memory for said new object to be that of an

object shell within said associated memory pool.

10

15

20

25

30

WO 99/31582 PCT/US98/27065

18

17. A method according to claim 16, further
comprising the steps of:

a) deleting attribute data from an existing object
of a fixed pool class associated with a memory pool that
includes object shells; and

b) returning said object shell to said associated

memory pool.

18. A method according to claim 15, wherein said
deleting step further comprises:

a) invoking a first object deletion method intended
to deallocate memory from said existing object to memory
other than that of said associated fixed memory pool, said
first object deletion method being inherited by the fixed
pool class to which said existing object belongs;

b) overloading said first object deletion method
with a second object deletion method defined by the fixed
pool class to which said existing object belongs, said
second object deletion method causing said attribute data
to be deleted and said object to be returned to said

associated memory pool.

19. A method according to claim 15, wherein said
constructing step further comprises:

a) extracting from an initialization file memory
pool data corresponding to each of said memory pools to be
constructed, said memory pool data including a size of said
memory pool to be constructed, and a size of objects to be
allocated and deallocated from said memory pool;

b) allocating sufficient memory to construct said
plurality of memory pools according to said corresponding

memory pool data.

10

15

20

WO 99/31582 PCT/US98/27065

19

20. A method according to claim 19, wherein prior to
said constructing step said plurality of fixed pool classes
are initialized, and said constructing step occurs during

said initialization.

21. A method according to claim 20, wherein said
constructing step comprises allocating at least a
sufficient amount of memory to store the maximum number of
objects that can be concurrently allocated from said memory

pool by said object oriented program.

22. A method according to claim 21, wherein said
constructing step comprises associating each of said
plurality of fixed pool classes with a different one of

said plurality of memory pools.

23. A method according to claim 21, wherein said
constructing step comprises associating at least two of
said plurality of fixed pool classes with a selected one of

said plurality of memory pools.

WO 99/31582

PCT/US98/27065

201~

1/2
CLASS: STUDENT
AGE:
2] NAME: J]
SS#:
ADDFILE:
3| DELETEFILE: FIG. 1a
OBJECTX OBJECTY
4 AGE: 30 AGE: 40
| NAME: JANE DOE | | NAME: JOHN DOE | _/2
SSf: 123-45-6789| | SSh: 234-56-7890
ADDFILE: ADDFILE:
DELETEFILE: DELETEFILE:
FIG. 1b
COMPILER \oPLICATION INITIALIZATION FILE
213 214 PROGRAMS Mggglr_w 211 202
200 DATA
“NEW" “DELETE"
CLASS: MEMORYPOOL
) L ~203
—
225~[AL OCATE:
CLASS: CLASSA CLASS: CLASSB
204 — —
220~ yAIN: 220~ yan:
215~} NEW: 215~} NEW:
| DELETE: | DELETE:
2167 216" FIG. 2
— —
POOLA POOLB
208~ 0By, 209~ 08y.8,

wO

99/31582

300~

INITIALIZE EACH CLASS
BY INVOKING “MAIN’

301~

3021 MEMORY POOL ACCORDING TO

“MAIN" DIRECTS
THE APPLICATION PROGRAM TO
EXTRACT MEMORY POOL DATA
FROM THE INITIALIZATION FILE

APPLICATION PROGRAM
ALLOCATES MEMORY FOR

MEMORY POOL DATA AND
CONTRUCTS THE MEMORY POOL
T

_______ e e e
™" "CREATE SHELL OBJECTS |

WITHIN CONSTRUCTED I
3031

MEMORY POOL '

2/2

______________ J
FIG. 8
50\3 POOLX
— OE_J_-IX o8ux | [oBuy
902 = =
/
501 [0BJ.Z
—3
5001 —
FIG. 5

PCT/US98/27065

APPLICATION PROGRAM
ISSUES ¢t* “NEW"

~400

ctt “NEW” IS OVERLOADED | 401

BY CLASSA NEW

NEW CALLS ON
“ALLOCATE™ DEFINED BY
MEMORY POOL CLASS

| ~402

ITERATE THROUGH NAMED
MEMORY POOL TO FIND
UNALLOCATED MEMORY

[~-403

ALLOCATE MEMORY FROM
NAMED MEMORY POOL

-404

FIG. 4

APPLICATION PROGRAM
ISSUES Ct* “DELETE"

_~600

ctt “DELETE” IS
OVERRIDDEN BY
CLASSA DELETE

-~ 601

DELETE CALLS ON
“'DEALLOCATE" DEFINED
BY MEMORY POOL CLASS

™-602

DEALLOCATE MEMORY TO
NAMED OBUECT POOL

-603

FIG. 6

INTERNATIONAL SEARCH REPORT

Inte ional Application No

PCT/US 98/27065

A. CLASSIFICATION OF SUBJECT MATTER
IPC 6 GO6F9/44

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 6 GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication, where appropriate, of the relevant passages

A CUNHA A R ET AL: "THE ARCHITECTURE OF A 1-23
MEMORY MANAGEMENT UNIT FOR OBJECT-ORIENTED
SYSTEMS"

COMPUTER ARCHITECTURE NEWS,

vol. 19, no. 4, 1 June 1991, pages
109-116, XP000228941

see page 111, left-hand column, line 33 -
page 114, left-hand column, line 2

A EP 0 633 531 A (NIPPON ELECTRIC CO) 1-23

Relevant to claim No.

11 January 1995

in Common Lisp"

XP002912090
see page 155 - page 163

see column 1, line 1 - coiumn 4, line 15

May 1989 , ADDISON-WESLEY PUB. CO.

A KEENE S.E.: "Object-Oriented Programming 1-23

D Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents :

"A" document defining the general state of the art which is not
considered to be of particular relevance

"E" earlier document but published on or after the international
tiling date

“L" document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

"QO" document referring to an oral disclosure, use, exhibition or
other means

"P" document published prior to the international filing date but
later than the priority date claimed

“T* later document published after the intemational filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

"X" document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

"Y' document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu-
metgts, ;uch combination being obvious to a person skilled
in the art.

“&" document member of the same patent family

Date of the actual completion of the international search

27 May 1999

Date of mailing of the internationali search report

02/06/1999

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,

Fax: (+31-70) 340-3016

Authorized officer

Brandt, J

Form PCT/iSA/210 (second shest) (July 1992)

INTERNATIONAL SEARCH REPORT

information on patent family members

Inte onal Application No

PCT/US 98/27065

Patent document Publication Patent family Publication
cited in search report date member(s) date
EP 0633531 A 11-01-1995 JP 2570969 B 16-01-1997
JP 7021081 A 24-01-1995
us 5682494 A 28-10-1997

Form PCT/ISA/210 (patent family annex) {July 1992)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

