wo 2012/141996 A1 || W00 T OO O 0 A

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(43) International Publication Date

(19) World Intellectual Property

Organization
International Bureau

—~
é

=

\

(10) International Publication Number

WO 2012/141996 A1

(51

eay)

(22)

(25)
(26)
(30)

1

(72)
(73)

18 October 2012 (18.10.2012) WIPOIPCT
International Patent Classification:
GO6F 9/44 (2006.01)
International Application Number:
PCT/US2012/032764

International Filing Date:
9 April 2012 (09.04.2012)

Filing Language: English
Publication Language: English
Priority Data:

61/473,787 10 April 2011 (10.04.2011) US
Applicant (for all designated States except US): RE-

QUIREMENTSLIVE LLC [US/US]; 4180 La Jolla Vil-
lage Drive, Suite 125, La Jolla, California 92037 (US).

Inventors; and
Inventors/Applicants (for US ornly): DUDDLES, Paul
[US/US]; 4180 La Jolla Village Drive, Suite 125, La Jolla,

(74

(8D

California 92037 (US). BODROYV, Serge [RU/US]J; 4180
La Jolla Village Drive, Suite 125, La Jolla, California
92037 (US). TOHSAKUL, Ben [US/US]; 4180 La Jolla
Village Drive, Suite 125, La Jolla, California 92037 (US).
BELYSHEV, Andrey [RU/US]; 4180 La Jolla Village
Drive, Suite 125, La Jolla, California 92037 (US).

Agent: NEUGEBOREN O'DOWD PC; Craig Neuge-
boren, 1227 Spruce Street, Suite 200, Boulder, Colorado
80302 (US).

Designated States (uniess otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD,

[Continued on next page]

(54) Title: PORTABLE BUSINESS LANGUAGE AND AUTOMATED SOFTWARE APPLICATION DEVELOPMENT SYS-

htr? Requirements
Developer
Memory ooy
a—t
Inputs
licafion Engi
1165 —L| Machine-Readabis Application Engine
Code (Data Input) g
Machine-Readable Gre or
1ée Cade {Data Flow) J More Web Browser
Servers
= S P .
116d— (108)

1160 —

116f—

10—1]

118

1207

1227

Interpreted Platform-
Specific Executable
Targeted Web-Based
Application Data Set

‘Application Engine

‘Command Input
Component

Compiling

Application

Final
Application

Internet
135

Gomponent

Preparation
Gomponent

Final
Application

A1z

Final Application

122 | Final Application PJJ Final Applicaton
Pl ¥

1120

Web Browser

User

Interaction
Device 2

{platiorm 3)

Web Browser
114n

Web Browser

1142 114p

Application User 1

O

- user
Interaction
Device 2
{platform 2)

User
Interaction
Device 1
{platform 1)

&

Application User 2 Application User 3

Figure 1

Memory Mémoire

1186a
116b
116¢c
116d

116e Exé

116f

Ensemble d'entrées d'exigence
Code lisible par machine (entrée de données)
Code lisible par machine {flux de données)
Exécutable spécifique a une plateforme natif

écifi aune interprété
de données d ion Web ciblées

110 Moteur d'application
118 Composant d'entrée d'instruction
120 Composant de compilation

122 Composant de préparation

de moteur d

ion Engine

102 Développeur d'exigence
106 Un ou plusieurs serveurs
Web Browser Navigateur Web

108,104 S
130a,

User
User

User

dentrées d'exig
130h, 130¢, 112a, 112h, 112n Application finale

ion Device 1 1) Dispositif d'i ion d'utili 1 (plateforme 1)
ion Device 2 2) Dispositif d'i ion d'utili 2 (plateforme 2)
ion Device 2 3) Dispositif d'i ion d'utili 2 (plateforme 3)

ion User Utili

(57) Abstract: A portable business language and automated software devel-
opment system comprises one or more servers containing a set of require-
ment inputs and an application engine residing on at least one of the one or
more servers. The application engine comprises a requirements input com-
ponent receiving a subset of the set of requirement inputs, a compiler trans-
forming the subset of the set of requirement inputs into one or more ma-
chine-readable codes, and a preparation component. The preparation com-
ponent uses one of the one or more machine-readable codes to prepare a user
interaction device to execute a tinal application, prepare a memory of the one
or more servers to store data that may be provided by a user of the user inter-
action device, and transform the one or more machine-readable codes into an
interpreted platform-specific code having additional parameters that custom-
ize the interpreted platform-specific code for the platform.

wO 2012/141996 A1 WK 00NN O A0 EREAR AR

84)

SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (unless otherwise indicated, for every

kind of regional protection available): ARTIPO (BW, GH,

GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD,

RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ,

DE, DK, EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT,
LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS,
SE, SL SK, SM, TR), OAPI (BF, BJ, CF, CG, CL CM,
GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
— with international search report (Art. 21(3))

WO 2012/141996 PCT/US2012/032764

PORTABLE BUSINESS LANGUAGE AND
AUTOMATED SOFTWARE APPLICATION DEVELOPMENT SYSTEM

PRIORITY AND RELATED APPLICATIONS

[0001] This application claims priority to U.S. Provisional Patent Application No.
61/473,787 filed on April 10, 2011 which is incorporated by reference into the present

application in its entirety and for all proper purposes.

FIELD OF THE INVENTION

[0002] Aspects of the present invention relates to software development. In particular,
but not by way of limitation, aspects of the present invention relate to apparatus and
methods for automatically transforming a set of user-selected requirements inputs into
executable code or web applications that are executable on a variety of computing

platforms, software environments and browser interfaces.

BACKGROUND OF THE INVENTION

[0003] Enterprise or business software development usually involves considerable
programming time and expertise. Either an experienced programmer inside a
company or an external consultant is typically required. Either way, the programmer
typically stands between those actually developing the application and the details of

the program itself.

[0004] Additionally, applications have to be tailored to different platforms (e.g., PC,
LINUX, MAC, JAVA, smartphone, IPAD, etc.). For instance, an application’s
particular executable code may run on a WINDOWS operating system, but not on a
MAC. Similarly, a web-based application may operate as desired on a desktop PC,
but may not be as functional if accessed via smartphone. Nor do platforms remain
constant over time. Updates are a constant plague of any computer user, and are even

more troublesome for application developers, since updates can render applications

WO 2012/141996 PCT/US2012/032764

partially or fully inoperable. At the same time, there may be a desire to take
advantage of new features and capabilities that updated platforms enable. Thus,
application development is further complicated by the need to tailor applications to

various platforms and repeatedly update code every time a platform updates.

[0005] The lack of direct control over application development and the expense and
time associated with developing and maintaining applications, leaves many

companies unwilling to invest in this traditional model of application development.

SUMMARY OF THE INVENTION

[0006] Exemplary embodiments of the present invention that are shown in the
drawings are summarized below. These and other embodiments are more fully
described in the Detailed Description section. It is to be understood, however, that
there is no intention to limit the invention to the forms described in this Summary of
the Invention or in the Detailed Description. One skilled in the art can recognize that
there are numerous modifications, equivalents and alternative constructions that fall

within the spirit and scope of the invention as expressed in the claims.

[0007] In accordance with one aspect, a portable business language and automated
software development system comprises one or more servers containing a set of
requirement inputs and an application engine residing on at least one of the one or
more servers. The application engine comprises a requirements input component
receiving a subset of the set of requirement inputs, a compiler component
transforming the subset of the set of requirement inputs into one or more machine-
readable codes, and a preparation component. The preparation component uses one of
the one or more machine-readable codes to prepare a user interaction device to

execute a final application, prepare a memory of the one or more servers to store data

WO 2012/141996 PCT/US2012/032764

that may be provided by a user of the user interaction device, and transform the one or
more machine-readable codes into an interpreted platform-specific code having
additional parameters that customize the interpreted platform-specific code for the

platform.

[0008] In accordance with another aspect, a method of software development
comprises receiving a plurality of requirement inputs selected from a set of text and
visual requirement inputs, transforming the plurality of requirement inputs into one or
more machine-readable codes, passing the one or more machine-readable codes to a
user interaction device and a memory of the one or more servers, preparing the user
interaction device to execute an interpreted platform-specific executable based on at
least one of the one or more machine-readable codes, preparing the memory to store
inputs from the user interaction device based on at least one of the one or more
machine-readable codes, generating an interpreted platform-specific code from the
one or more machine-readable codes, and executing the interpreted platform-specific

code on the user interaction device.

BRIEF DESCRIPTION OF THE DRAWING FIGURES

[0009] Various objects and advantages and a more complete understanding of the
present invention are apparent and more readily appreciated by referring to the
following detailed description and to the appended claims when taken in conjunction

with the accompanying drawings:

[0010] Figure. 1 is an application engine constructed in accordance with aspects of

the present invention;

[0011] Figure 2 is a embodiment of a method in accordance with aspects of the

present invention;

WO 2012/141996 PCT/US2012/032764

[0012] Figure 3 shows an exemplary set of requirement inputs in accordance with

aspects of the present invention;

[0013] Figure 4 shows a diagrammatic overview of aspects of the present invention;

and

[0014] Figure 5 is a diagrammatic representation of one embodiment of a machine in
the exemplary form of a computer system that may be used in connection with aspects

of the present invention.

DETAILED DESCRIPTION

[0015] This disclosure describes, among other aspects and embodiments, apparatus
and methods for using a server-based application “agnostic” development engine to
receive user commands selected from a simplified description-oriented code or
portable business language, and automatically convert the overall desires embodied in
those commands into executable code, custom web applications or other custom
software applications that run on various platforms. More particularly, aspects of the
present invention allow a simplified set of software instructions to be presented to a
person responsible for developing software or applications for the corporation, but
who does not need to have the technical expertise of a typical programmer
(sometimes referred to herein as a “requirements developer”). These instructions, or
as sometimes referred to herein as ‘“requirements inputs” (or portable business
language), may number in the dozens or a few hundred, for example. The number of
instructions and complexity is such that a requirements developer can learn the entire
language in a much shorter time (e.g., days versus weeks or even months). The
requirement inputs roughly represent a form and function that the requirements

developer desires in a final executable application. The requirements developer thus

WO 2012/141996 PCT/US2012/032764

uses the set of requirement inputs to broadly describe the function and appearance of

the final executable application.

[0016] In one example, an application engine residing on one or more remote servers
takes the requirements inputs (for example a text and tag based declarative language)
provided by the requirements developer via the Internet, or some other network, and
transforms them into one or more machine-readable codes (or an input control
document). The machine-readable code or input control document can be represented
in any number of structured formats (e.g., XML). The computer-readable codes are
platform and hardware agnostic, meaning the one or more servers build the final
application specific code from the computer-readable codes. The application engine
can then pass the one or more machine-readable codes to a user interaction device
coupled to the Internet and to a memory of the one or more servers. The one or more
machine-readable codes can be used to prepare the user interaction device to execute
the final application. The one or more machine-readable codes can also be stored in
the memory and used to prepare the memory to store inputs that a user of the final

application may provide in the future via the user interaction device.

[0017] The application engine can then generate a final executable application from
the one or more machine-readable codes. This generation process has two aspects:
(1) generation of an interpreted platform-specific executable for each of a plurality of
platforms; and (2) addition of parameters to the executable that allow each interpreted
platform-specific executable to achieve the goals of the requirements developer as
well as taking advantage of unique aspects of each platform. In other words, the final
executable application can execute on a variety of platforms, and will have a form and

function adapted for each platform. The interpreted platform-specific executable can

WO 2012/141996 PCT/US2012/032764

then execute on the user interaction device and allow an application user to use the

final application regardless of the platform that the user interaction device uses.

[0018] Previously, an application might have to be updated whenever a platform was
updated or when an application had to run on a new platform. This process is costly
in terms of time and money, because an experienced programmer has to work on code
for a plurality of businesses. This disclosure overcomes this resource drain by making
all such changes and updates in the application engine rather than at the requirements
developer level. In other words, the requirement inputs do not change, while the final
applications adapt to various platforms and platform updates.

[0019] Thus, rather than each business having to update or rewrite its code for every
platform update or new platform, such updates and new code can be dealt with one
time in the application engine. The updates and new code can then be applied in mass
to all business users of the application engine via one-time updates within the
application engine.

[0020] This is possible because of an agnostic abstraction at the requirements
developer input level. The requirement inputs specify what the final application
should do, but not how (see e.g., FIG. 4). If a requirements developer wants an
inventory management form in its application, then it will specify this general desire
with the requirement inputs. The application engine figures out how to implement
this general desire in executable code. The end product or final application will have
an inventory management form, but the form will be slightly different for each
platform and may change over time as platforms are updated. These updates to the
final application can come without any action by the requirements developer. Rather,
it is the few programmers who can keep the application engine updated that enable

these updates simultaneously for all business clients using the application engine.

WO 2012/141996 PCT/US2012/032764

[0021] This disclosure thus simplifies application development for the business client,
provides an inexpensive and timely means for creating applications that can run on
any of a variety of platforms, and provides application longevity by preventing an
application from becoming inoperable as platforms are updated and new platforms are
introduced.

[0022] In one embodiment, the application engine is a set of software components
configured to receive the subset of requirement inputs, and transform them into a final
application (comprising one or more interpreted platform-specific executables).

[0023] FIG. 1 illustrates an embodiment of an application engine 100 constructed in
accordance with aspects of the present invention. In the illustrated embodiment, a
requirements developer 102 selects a subset of requirement inputs 104 describing a
form and function of a final application, but without specifying details (e.g., button
locations, background colors, style of textbox, etc.). One or more servers 106 can
receive a subset of requirement inputs, and an application engine 110 on the one or
more servers 106 can convert the subset of requirement inputs into a plurality of final
applications 112a, 112b through 112n that are passed to a plurality of one or more
user interaction devices 114a, 114b through 114n. While the final application can
have roughly the same form and function no matter what user interaction device it
runs on, details may differ slightly since the application engine produces a unique
code (interpreted platform-specific executable) for each platform. In the illustrated
embodiment, the final application runs on three different platforms, and thus three
different codes will be executing on the one or more servers. However, it is
contemplated that the application engine 110 is capable of producing “n” number of

unique platform-specific executable codes.

WO 2012/141996 PCT/US2012/032764

[0024] In the illustrated embodiment, the requirements developer uses a web browser
(e.g., a WIKI or other web editor) to select a subset of requirement inputs describing a
general form and function of a desired final application. The requirements developer
need not have knowledge in any coding language or software development other than
an understanding of the set of requirement inputs. Requirement inputs can be textual
tags (words or phrases) or visual inputs (e.g., a textbox movable via mouse, a
resizable button) that describe form or function of an application. The full set of
requirement inputs can be stored in a memory 116 of the one or more servers, where
the servers are coupled to the requirements developer’s web browser via the Internet
or some other network. The memory 116 is adapted to include the ability to store
information relating to a set of requirement inputs 116a, machine readable code
embodied as data input 116b, machine readable code embodied as data flow 116c, a
native platform-specific executable 116d, an interpreted platform-specific executable
116e, and a targeted web-based application data set 116f.

[0025] Each requirement input can be associated with a plurality of machine-readable
code. For instance, a requirement input, with the designation of “textbox” can be
transformed into dozens of lines of XML or other code that when executed displays a
text box on an application user’s computer screen. In another embodiment, rather
than each requirement input being associated with a specific set of machine-readable
code, a combination of requirement inputs may be associated with a specific set of
machine-readable code. In this way a final application will vary depending on the
combination of requirement inputs used, not just which individual requirement inputs
are used. For instance, the requirement inputs “textbox” and “entry form”™ may be
transformed into code that when executed displays a textbox for data entry. In

contrast, when “textbox” and “document title” are used together, the resulting

WO 2012/141996 PCT/US2012/032764

executable may merely display a document title as defined by the requirements
developer, but without any user input capability.

[0026] Requirement inputs can be selected, for instance, via an Internet editing
interface such as a WIKI editor or other known plain language editor. One advantage
of an editor such as a WIKI editor is to enable collaboration between one or more
requirements developers since each requirements developer can suggest changes, and
in one embodiment, changes will not be implemented unless approved by a threshold
portion of all requirements developers within a development group (e.g., a company).
Other editing environments are contemplated by aspects of the present invention, such
as one or more of the following:

[0027] An online web-based IDE that provides version control, PBL syntax help, and
other development tools. A wiki editor would be one example that exposes these
features in collaborative environment.

[0028] A desktop-based IDE that provides online or offline development, version
control, PBL. syntax help, and other development tools. Eclipse is one example that
exposes these features.

[0029] A developer API interface that exposes similar functionality as an IDE but
through a programmatic interface rather than a viusual or text editor. An example
would be a web service that exposes various functions to enable application
development.

[0030] In another embodiment, requirement inputs give the requirements developer
control over such features such as content, data, business logic, workflow, events,
presentation, and graphics. However, control over persistence (or data storage), data
retrieval, and exports are taken out of the hands of the requirements developer and are

reserved for the application engine 110. This creates separation between the

WO 2012/141996 PCT/US2012/032764

application and data layers and insulates the requirements developer from the
complexities of typical database-driven applications.

[0031] Memory 116 can reside on a single server or be distributed amongst one or
more servers. The application engine 110 may be indifferent to the form of memory
and the method used to store data to the memory. This isolation from the memory
further enables the application engine to be portable from one set of servers to
another. In other words, the application engine is agnostic with regards to the
hardware on which it runs.

[0032] The selected subset of requirement inputs can pass through the Internet to one
or more servers in which the application engine 110 and memory 116 reside. A
command input component 118 of the application engine 110 can receive the subset
of requirement inputs, and a compiling component 120, can transform the subset of
requirement inputs into one or more machine-readable codes. For instance, the
requirement inputs can be transformed into a machine-readable code representing data
inputs of the final application and a machine-readable code representing data flow of
the final application. In other words, the functions of data intake and data flow within
the final application can be separated into two separate machine-readable codes.
[0033] The application engine, via a preparation component 122 using the one or
more machine-readable codes, prepares one or more user interaction devices to run
the final application. The preparation component 122 can also use the one or more
machine-readable codes to prepare the memory on the servers to store inputs that may
be provided by users using the final application. The one or more machine-readable
codes may also be stored in the memory.

[0034] The application engine 110 generates a final application (e.g. 112a, 112b

through 112n) from the one or more machine-readable codes, which can be done at

10

WO 2012/141996 PCT/US2012/032764

runtime in an embodiment. By use of the term “final application”, it is meant to
describe the general look and feel of the program running on a computing device or
user interaction device. The code that executes behind the scenes on the one or more
servers 106 may vary depending on the platform on which the application runs. For
instance, in the illustrated embodiment, application user 1 and application user 2 are
using hardware running two different platforms—platform 1 and platform 2 (e.g.,
WINDOWS versus MAC or FIREFOX 3.0 versus FIREFOX 4.0 or a PC versus a
smartphone). Although the application users will experience nearly identical final
applications, the code that is being executed for user interaction device 1 is an
interpreted executable specifically tailored for platform 1, while the code that is being
executed for user interaction device 2 is an interpreted executable specifically tailored
for platform 2.

[0035] In generating the final application, the application engine can add platform-
specific code associated with form and function that is commeon to all applications.
For instance, unless otherwise specific, all buttons may have gray and black shaded
borders regardless of what type of button is called for or what the function of the
button is. At the same time, the application engine can tailor buttons for a specified
user if, for instance, the requirements developer requests a unique color scheme for
the entire application.

[0036] The one or more interpreted platform-specific executables can execute on the
one or more servers 106, The final application(s) 130a, 130b and 130c, which can
vary for each platform, can pass over the Internet 135, or another network, to one or
more user interaction devices where application users can utilize the final

application(s).

11

WO 2012/141996 PCT/US2012/032764

[0037] In another embodiment, a user interaction device can run a final application
whether or not the user interaction device is online or not (e.g., connected to the
Internet or another network). This is because the application engine 110 is able to
produce a single interpreted platform-specific executable for each platform, and such
an executable can run when user interaction device is online or offline. In one
embodiment, the application running offline can use limited resources so that it can
run on web-based servers or on lower-computing-power standalone computers (e.g.,
personal computer). Also, the application running offline can be formed so that it
duplicates all or substantially all functionality of the webserver onto the standalone
computer and transfers all webserver files to the standalone computer before the
standalone computer goes into offline mode.

[0038] One or more application engine programmers can monitor and update the
application engine. These programmers can have knowledge of the numerous
platforms in existence as well as updates to each platform. They can update the
application engine to enable it to produce interpreted platform-specific executables for
any number of platforms as well as updating the application engine to produce
interpreted platform-specific executables that take advantage of new features of
updated platforms and avoid inoperability due to those updates. In this way, actual
changes to code for a slew of business clients can occur once, at the application
engine level, rather than individually for each requirements developer. In contrast,
current methods of updating code can involve programmers working individually with
every business client to update and modify the client’s unique code.

[0039] In another embodiment, the application engine 110 can transform the subset of
requirement inputs into a native platform-specific executable rather than first creating

machine-readable code and then transforming the machine-readable code into an

12

WO 2012/141996 PCT/US2012/032764

interpreted platform-specific executable. The native platform-specific executable can
be created before runtime, another contrast with the creation of interpreted platform-
specific executables. Native platform-specific executables are written, compiled, or
assembled to run on a particular platform.

[0040] In another embodiment, the application engine can add compliance-specific
features to the machine-readable code or the interpretable platform-specific
executables that it generates. Such compliance-specific features can include findings,
corrective actions, preventative actions, status-driven workflows, and automatic audit-
trails for use in systems that operate in process workflow environments such as
business process automation, Supply Chain Management, Business Planning and
Franchisee management, etc.

[0041] FIG. 2 illustrates an embodiment of a method 200 for using an application
engine to convert a subset of requirement inputs into one or more interpreted
platform-specific executables. The method 200 includes a receive operation 202 in
which a plurality of requirement inputs are received in one or more remote servers.
The requirement inputs are selected from a set of text and visual requirement inputs
residing on a memory of the one or more servers. The text and visual requirement
inputs represent desired form and function of a final application.

[0042] The method 200 further includes a transform operation 204 in which the
plurality of requirement inputs are transformed into one or more machine-readable
codes (e.g., XML). In an embodiment, one machine-readable code represents desired
data input functionality, and another machine-readable code represents desired data
flow functionality.

[0043] The method 200 further includes a pass operation 206 in which the one or

more machine-readable codes are passed to a user interaction device (e.g., a

13

WO 2012/141996 PCT/US2012/032764

smartphone, PC, Web, iPAD, Tablet PC, etc.) and the memory of the one or more
Servers.

[0044] The method 200 further includes a first prepare operation 208, which prepares
one or more user interaction devices to run a final application that will run based on
the one or more machine-readable codes. While there is one final application, the
final application may appear and function differently on different platforms. This is
because the code executing on the one or more servers in order for the final
application to run, can differ depending on the platform. This code, which is specific
to different platforms, is called an interpreted platform-specific executable.

[0045] The method 200 includes a second prepare operation 210, which can prepare
the memory of the one or more servers to store data inputs that may be received from
the one or more user interaction devices as application users utilize the final
application. This preparation operation 210 can be based on at least one of the
machine-readable codes.

[0046] The method 200 further includes a generate operation 212 in which one or
more interpreted platform-specific executables (e.g., in HTML or Java) can be
generated from the one or more machine-readable codes. This generation can take
place at runtime.

[0047] The method 200 also includes an execute operation 214, The execute
operation 214 can execute the one or more interpreted platform-specific executables
on the one or more user interaction devices.

[0048] FIG. 3 illustrates an exemplary set of requirement inputs for capturing, editing,
storing, and retrieving information for one embodiment of a customer account. The
arrows represent the relationships and hierarchy between different requirement inputs

files.

14

WO 2012/141996

PCT/US2012/032764

[0049] The Table 1 illustrates a set of exemplary requirement inputs (or a portable

business language) that are neither exclusive nor intended to limit the scope of the

requirement inputs described in this disclosure. Requirement inputs are displayed in

the left-hand column, and a description of the requirement inputs in the right-hand

column. As described above, the use of this type of agnostic requirements input

allows the generation of a user application that may be output to a variety of

executable operating environments (e.g. PC, Mac, Linux, etc.) or web based interfaces

(e.g. browser environments).

Table 1

Requirement Input

Description

action

Defines an action or multiple actions or options for a user to
choose from or confirm or deny.

action “DrillDown”

A toggle action option that allows a user to hide or display
items interactively.

app

Creates an application (wiki) that will be called
"Application_Name". What this application does will be
defined by the PBL tags in its Contents, Views, and Queues.

app Template

Basic template used to establish a new application. @app
"Application_Name" names the application; @title "Name"
is the name/title of the application that will actually display
as the application namettitle.

app-ui-style Defines the style of the application user interface.
Designates a block of text or paragraph of information set
off by a line break before and after (e.g., 'H1' in HTML).
Display or not display block using @block-visible-when
block "Choice = 'Yes' | 'No""

block-container

Use to display an @block of information or paragraph
enclosed in a banner.

block-navigate

Use to navigate to a block of information or paragraph
located at/in "AppName.QueueName"; that is, located in the
named gqueue in the named application.

button

Creates a button in a user interface with purpose and
functionality determined by subordinate tags.

button will cause navigation to home

Determines that clicking button will take the user to the
application Home page.

button will cause page reload/refresh

Determines that clicking the button will reload or refresh the
current application page.

button will cause validation

Determines that clicking the button will cause validation of
the form (required fields, text box validation, etc.)

button will close the form

Determines that clicking the button will close the form.

15

WO 2012/141996

PCT/US2012/032764

Requirement Input

Description

button-image

Determines the visual display or design of the button
according to the .jpg file inserted in the @button-image
"[[Image:Imagel.jpgl]" double brackets.

button-style

Determines the style of button that displays in the Ul. See
Examples below for style samples.

checkbox

Creates a text box and determines the checkbox header, if
applicable, and the text that will display adjacent to the
checkbox.

choice "RadioButtonList"

Defines a field that will provide choices for the user in a
radio button list.

choice "Yes/No Question”

Defines a choice option that will prompt the user for a yes or
no answer.

choice “CheckBoxList”

Defines a field that will provide choices for the user in a
check box list.

choice “DropDownList”

Defines a field that will provide choices for the user in a
drop-down list.

choice-access-tag

Defines a choice option that will take the user to named Tag.

choice-columns

Defines the number of columns within an @choice tag
string.

choice-default-expression

Defines which choice will display when creating a new entity.

choice-direction

Determines if the choice options display vertically or
horizontally in the UI.

choice-header "name"

Defines the name of an @choice field or list.

choice-option

Names one of the options in an @choice list, such as an
option in an @choice-style "DropDownlList".

choice-optional

Determines whether an @choice field in a form or dialog box
is required or optional to be filled out by the user. If no, user
will not be able to exit/save without filling out this field.

choice-rows Defines the number of rows within an @choice tag string.
Defines the style of an @choice field, such as a drop-down
choice-style list, check box list, or radio button list.
Creates or adds a new column. Serves as a parent tag with
specifications of the column determined by subordinate
column child tags.

column-aggregate

Designates the column aggregate operation to be
performed.

column-aggregate-format

Enter the specifications for column aggregation using
standard numeric format.

column-empty-value

Designates the display of "n/a" in a column field when no
value has been entered.

column-filter-values

Determines the value(s) which filters data in a column.

column-format

Specifies the alphanumeric format for column information.

column-header

Determines the actual text that displays as the header of a
column. Nests underneath the @column "Column_Name"
tag.

column-hidden

Toggles the option to hide or display a column.

column-select

Provides for an XPath expression to be used to define the
column.

column-size

Specifies the width of a column.

16

WO 2012/141996

PCT/US2012/032764

Requirement Input

Description

Determines the type of information that will display in a

column-type column. See options in Template below.
Insert explanatory or query comments within language
comment string. Does not display or affect tag specifications.
Defines the workbook name to be used to display an entity.
data Used when sending entities to other sites.
Places a name or title above a dialog box, field, or other Ul
description element.
display Choose whether to display or not (Yes | No).
Creates a queue named "Queue_Name". The actual name
that displays for the queue is determined by the tag,
@queue-header "Queue Header Text". The @queue tagis a
parent tag with the properties of the queue defined by the
gqueue child tags below.

gueue-advanced-search

Creates the ability to perform an Advanced Search on a
queue.

gueue-allow-new

Defines whether new entities can be created when viewing
this queue.

queue-filter

Filters and displays all fields/columns/rows that fit the
condition specified.

gueue-footer

Defines the displayable footer [“Queue footer name”] .

gueue-header

Determines the text that displays as the title of the queue.

queue-new-text

Names the option for creating a new queue entry. For
example, in this PBL Dictionary, see Home page button
under Actions: "Create new tag".

gueue-row-ui-style

Determines the style of row that display in a queue.

gueue-sort Defines the criteria by which the queue data is sorted.
gueue-test Performs a test against the designated user application.
gqueue-width Defines the width of a queue in pixels.

Create a new table. Customize columns, rows, fonts,
table formatting, titles, etc.
text Create a text box.
title Names the title of an application or wiki.

view-read-only

Determines whether changes can be made to the respective
@View.

[0050] FIG. 4 shows a diagrammatic overview of how a server-based application

agnostic development system 400 constructed in accordance with aspects of the

present invention is formatted and constructed. The system 400 is generally divided

into two components, a functional business requirements component 402 and an

implementation component 404. The business requirements component 402 generally

17

WO 2012/141996 PCT/US2012/032764

captures and defines the “what” of the desired application and the implementation
component 404 generally determines and implements the “how” of the desired
application.

[0051] Functional Business Requirements component 402 includes a module 406 that
defines the specifications of the software requirements and transforms these
specifications to a module 408 that converts these requirements to input control
documents such as xml, csv or txt documents and files.

[0052] Implementation component 404 includes a server module 410 that ingests the
input control documents from module 408 and adds functional aspects such as a data
layer 414 and a user experience feature 416 before finalizing the information and
generating a specific application at module 412.

[0053] FIG. 5 shows a diagrammatic representation of one embodiment of a machine
in the exemplary form of a computer system 500 within which a set of instructions for
causing the device to perform any one or more of the aspects and/or methodologies of
the present disclosure may be executed. Computer system 500 includes a processor
505 and a memory 510 that communicate with each other, and with other
components, via a bus 515. Bus 515 may include any of several types of bus
structures including, but not limited to, a memory bus, a memory controller, a
peripheral bus, a local bus, and any combinations thereof, using any of a variety of
bus architectures.

[0054] Memory 510 may include various components (e.g., machine readable media)
including, but not limited to, a random access memory component (e.g., a static RAM
"SRAM", a dynamic RAM "DRAM, etc.), a read only component, and any
combinations thereof. In one example, a basic input/output system 520 (BIOS),

including basic routines that help to transfer information between elements within

18

WO 2012/141996 PCT/US2012/032764

computer system 500, such as during start-up, may be stored in memory 510. Memory
510 may also include (e.g., stored on one or more machine-readable media)
instructions (e.g., software) 525 embodying any one or more of the aspects and/or
methodologies of the present disclosure. In another example, memory 510 may
further include any number of program modules including, but not limited to, an
operating system, one or more application programs, other program modules, program
data, and any combinations thereof.

[0055] Computer system 500 may also include a storage device 530. Examples of a
storage device (e.g., storage device 530) include, but are not limited to, a hard disk
drive for reading from and/or writing to a hard disk, a magnetic disk drive for reading
from and/or writing to a removable magnetic disk, an optical disk drive for reading
from and/or writing to an optical media (e.g., a CD, a DVD, etc.), a solid-state
memory device, and any combinations thereof. Storage device 530 may be connected
to bus 515 by an appropriate interface (not shown). Example interfaces include, but
are not limited to, SCSI, advanced technology attachment (ATA), serial ATA,
universal serial bus (USB), IEEE 1394 (FIREWIRE), and any combinations thereof.
In one example, storage device 530 may be removably interfaced with computer
system 500 (e.g., via an external port connector (not shown)). Particularly, storage
device 530 and an associated machine-readable medium 535 may provide nonvolatile
and/or volatile storage of machine-readable instructions, data structures, program
modules, and/or other data for computer system 500. In one example, software 525
may reside, completely or partially, within machine-readable medium 535. In another
example, software 525 may reside, completely or partially, within processor 505.
Computer system 500 may also include an input device 540. In one example, a user of

computer system 500 may enter commands and/or other information into computer

19

WO 2012/141996 PCT/US2012/032764

system 500 via input device 540. Examples of an input device 540 include, but are not
limited to, an alpha-numeric input device (e.g., a keyboard), a pointing device, a
joystick, a gamepad, an audio input device (e.g., a microphone, a voice response
system, etc.), a cursor control device (e.g., a mouse), a touchpad, an optical scanner, a
video capture device (e.g., a still camera, a video camera), touchscreen, and any
combinations thereof. Input device 540 may be interfaced to bus 515 via any of a
variety of interfaces (not shown) including, but not limited to, a serial interface, a
parallel interface, a game port, a USB interface, a FIREWIRE interface, a direct
interface to bus 515, and any combinations thereof.

[0056] A user may also input commands and/or other information to computer system
500 via storage device 530 (e.g., a removable disk drive, a flash drive, etc.) and/or a
network interface device 545. A network interface device, such as network interface
device 545 may be utilized for connecting computer system 500 to one or more of a
variety of networks, such as network 550, and one or more remote devices 555
connected thereto. Examples of a network interface device include, but are not limited
to, a network interface card, a modem, and any combination thereof. Examples of a
network or network segment include, but are not limited to, a wide area network (e.g.,
the Internet, an enterprise network), a local area network (e.g., a network associated
with an office, a building, a campus or other relatively small geographic space), a
telephone network, a direct connection between two computing devices, and any
combinations thereof. A network, such as network 550, may employ a wired and/or a
wireless mode of communication. In general, any network topology may be used.
Information (e.g., data, software 525, etc.) may be communicated to and/or from

computer system 500 via network interface device 545.

20

WO 2012/141996 PCT/US2012/032764

[0057] Computer system 500 may further include a video display adapter 560 for
communicating a displayable image to a display device, such as display device 565. A
display device may be utilized to display any number and/or variety of indicators
related to pollution impact and/or pollution offset attributable to a consumer, as
discussed above. Examples of a display device include, but are not limited to, a liquid
crystal display (LCD), a cathode ray tube (CRT), a plasma display, and any
combinations thereof. In addition to a display device, a computer system 500 may
include one or more other peripheral output devices including, but not limited to, an
audio speaker, a printer, and any combinations thereof. Such peripheral output devices
may be connected to bus 515 via a peripheral interface 570. Examples of a peripheral
interface include, but are not limited to, a serial port, a USB connection, a FIREWIRE
connection, a parallel connection, and any combinations thereof. In one example an
audio device may provide audio related to data of computer system 500 (e.g., data
representing an indicator related to pollution impact and/or pollution offset
attributable to a consumer).

[0058] A digitizer (not shown) and an accompanying stylus, if needed, may be
included in order to digitally capture frechand input. A pen digitizer may be
separately configured or coextensive with a display area of display device 565.
Accordingly, a digitizer may be integrated with display device 565, or may exist as a
separate device overlaying or otherwise appended to display device 565.

[0059] Those skilled in the art can readily recognize that numerous variations and
substitutions may be made in the invention, its use, and its configuration to achieve
substantially the same results as achieved by the embodiments described herein.

Accordingly, there is no intention to limit the invention to the disclosed exemplary

21

WO 2012/141996 PCT/US2012/032764

forms. Many variations, modifications, and alternative constructions fall within the

scope and spirit of the disclosed invention.

22

WO 2012/141996 PCT/US2012/032764

What is claimed is:

1. A method comprising:

receiving a plurality of requirement inputs selected from a set of text
and visual requirement inputs, wherein each requirement input represents one of a
computer application user interface object and a computer application function;

transforming the plurality of requirement inputs into one or more
machine-readable codes;

passing the one or more machine-readable codes to a user interaction
device and a memory of the one or more servers, wherein the user interaction device
is coupled to the one or more servers via the Internet;

preparing the user interaction device to execute an interpreted
platform-specific executable based on at least one of the one or more machine-
readable codes;

preparing the memory to store inputs from the user interaction device
based on at least one of the one or more machine-readable codes;

generating an interpreted platform-specific code from the one or more
machine-readable codes, wherein the generating includes addition of parameters to
the interpreted platform-specific code that customize the interpreted platform-specific
code for the platform;

executing the interpreted platform-specific code on the user interaction

device.

2. The method of claim 1, wherein the one or more machine-readable codes each

comprise a data collection portion and a data flow portion.

3. The method of claim 1, wherein the interpreted platform-specific code is an

executable code.

4. The method of claim 1, wherein the interpreted platform-specific code is a

web application code.

5. The method of claim 3, wherein the executable code is adapted to run on one

of a plurality of computer operating systems.

23

WO 2012/141996 PCT/US2012/032764

6. The method of claim 5, wherein the computer operating systems are selected
from the group consisting of UNIX, Windows, Mac OSX, Google Chrome, and

Linux.
7. The method of claim 4, wherein the web application code is selected from the
group consisting of XML, Java, JavaScript, HIML, mySQL, Flash, ActiveX, CSS,

and PHP.

8. The method of claim 1, wherein the web application code is adapted to run on

a mobile device.

9. The method of claim 1, wherein the one or more machine-readable codes are

functionally agnostic to the user interaction device.

10. The method of claim 1, wherein the interpreted platform-specific code is

particular to the user interaction device.

24

WO 2012/141996 PCT/US2012/032764

11. A system comprising:
One or more servers containing a set of requirement inputs;
an application engine residing on at least one of the one or more
servers, the application engine comprising:
a requirements input component receiving a subset of the set of
requirement inputs;
a compiler component transforming the subset of the set of
requirement inputs into one or more machine-readable codes; and
a preparation component that uses one of the one or more
machine-readable codes to:
prepare a user interaction device to execute a final
application;
prepare a memory of the one or more servers to store
data that may be provided by a user of the user interaction device; and
transform the one or more machine-readable codes into
an interpreted platform-specific code having additional parameters that

customize the interpreted platform-specific code for the platform.
12. The system of Claim 11, wherein the interpreted platform-specific executable
is executed by a user interaction device that is either coupled or decoupled to the

Internet.

13. The system of Claim 11, wherein the application engine generates a native

platform-specific executable from the subset of the set of requirement inputs.

14. The system of Claim 11, wherein the application engine is modified to

generate the interpreted platform-specific executable for a newly-developed platform.

15. The method of claim 11, wherein the interpreted platform-specific code is an

executable code.

16. The method of claim 11, wherein the interpreted platform-specific code is a

web application code.

25

WO 2012/141996 PCT/US2012/032764

17. The method of claim 15, wherein the executable code is adapted to run on one

of a plurality of computer operating systems.

18. The method of claim 17, wherein the computer operating systems are selected
from the group consisting of UNIX, Windows, Mac OSX, Google Chrome, and

Linux.

19. The method of claim 16, wherein the web application code is selected from the
group consisting of XML, Java, JavaScript, HIML, mySQL, Flash, ActiveX, CSS,
and PHP.

20). The method of claim 16, wherein the web application code is adapted to run

on a mobile device.

26

WO 2012/141996 PCT/US2012/032764

1/5
100 ’} Requirements
Developer
Memory 102 \
116a_f] Set of Requirement
Inputs
ochrs-Readahi Application Engine
A achine-Readable
116b Code (Data Input) Programmer
H Machine-Readable One or
U
116¢ Code (Data Flow) More Web Browser
_________ Servers
116d __,—|r Native Platform- .: (106)
| Specific Executable |
11 Interpreted Platform- \ 108 Subset of
116e Specific Executable Subset of Ve Re:uirement
Requirement Vaun Inputs
116f— Targeted Web-Based Inputs 104
Application Data Set
110—1T Application Engine Final -
Application
118—] Command Input
Component Final —
100 Compiling Application
Component r 130c
122 —T Preparation Application >
Component
Final Application 112a Final Application |-.-4 Final Application
~ t1zn Y
User
Interaction
Web Browser Web Browser Device 2 Web Browser
114a 114b (platform 3) 114n
~—
\ User \ User
Interaction Interaction
Device 1 Device 2
(platform 1) (platform 2)
Application User 1 Application User 2 Application User 3
Figure 1

SUBSTITUTE SHEET (RULE 26)

WO 2012/141996 PCT/US2012/032764

2/5

Receive a plurality of requirement inputs selected from a set of text and visual
requirement inputs, wherein each requirement input represents a computer application
user interface object or a computer application function

202

Transform the plurality of requirement inputs into one or more machine-readable codes

204

Pass the one or more machine-readable codes to a user interaction device and a memory
of one or more servers

206

Prepare the user interaction device to execute an interpreted platform-specific
executable based on at least one of the one or more machine-readable codes

208

Prepare the memory to store inputs from the user interaction device based on at least
one of the one or more machine-readable codes

210

Generate an interpreted platform-specific executable from the one or more machine-
readable codes

212

Execute the interpreted platform-specific executable on the user interaction device

214

Figure 2

SUBSTITUTE SHEET (RULE 26)

WO 2012/141996 PCT/US2012/032764

3/5

Top-Level “Application” petailed Functional Requirements

@app"Account” @title "Account Information”

@title"Account" _ .
@choice "Account_Status" Describes a one page,
Account.Content yd @choice-style "DropDownList" single record form

L @choice-header " " with two input fields
Account. Views @choice-default-expression " 'Lead" " put

Account.Queves — @choice-option "Lead"

@choice-option "Active Prospect”
@choice-option "Active Client"
@choice-option "Inactive Client"
@choice-option "Deleted Client"
@choice-optional "true"

@text "Account_Name"
@text-header " "
@text-columns "50"
@text-rows "1"

This is the top-level PBL
file which defines a
generic “application”
called “Account”. All
child files are contained
within this container or
application.

@display "No"
@print "No"

—1 | Describes a single form
H n 1) . .
@view "Account view which can be

@view-type "Form" seen by a user with the
@view-activator "Account” role “Super”

@view-sequence "10"
@view-test "user()/System_Role = 'Super'"

@view-read-only "Yes"

k @title "All Account Queues"

@display "No" —1 | Describes a list which
@print "No" contains multiple

0 U records of Accounts
queue "List"

@queue-header "Accounts”
@queue-sequence "10"

@queue-sort "Account_Name"
@queue-test "User()/System_Role = 'Super’
@queue-activator "Accounts"

@column "Account_Name"
@column-header "Account Name"
@column "Account_Status"
@column-header "Status"
@end-queue

Figure 3

SUBSTITUTE SHEET (RULE 26)

PCT/US2012/032764

WO 2012/141996

4/5

 ainbi4

Bu
/ 159

434
\ Py o:\/
_ |
m m m Jafe eleq Kojdaq
/_ Piing
A Jaadioju
_@) UL ™ e, 0| 1sebu
oly
. uonesijddy JETVETS
MOH
co_HmeEm_o_E_
14114

80y 90
/ \
/EBBCE 1 sononnd
SMAIND
. >.wo Jusjuon®
IXLTAX
$9|14 924n0S 194D
sjuUaWNI0(Q :o_ﬂmo_h_o_wo_w
[043u09 Indu] sjusauwInbay
9lem}jos

00¥

1VHM

sjuswINbay ssauisng [euonoun

/

c0y

SUBSTITUTE SHEET (RULE 26)

WO 2012/141996 PCT/US2012/032764

5/5
SOO\C‘omputer System
565
Display
530
535\ — Storage Device /560
T~ Medium . 540
525__ Display /
17T Instructions Adapter
Input Device
515\
570 545
. / /520 /
Peripheral L Network
Instructions Interface L Vo | Interface
T
Processor 525 [Instructions |
505/ Memory \\525
5107 |

Remote =5 /-
Device

/ 550

955

Figure 5

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US 12/32764

A. CLASSIFICATION OF SUBJECT MATTER
IPC(8) - GO6F 9/44 (2012.01)
USPC - 717/106

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

IPC (8) - GO6F 9/44 (2012.01)
USPC - 717/106

Minimum documentation searched (classification system followed by classification symbols)

USPC -717/100; 717/140; 706/922 (See Keywords Below)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

PubWEST (PGPB,USPT,USOC,EPAB,JPAB), Google Scholar

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

Search terms: Automatic, develop, build, create, programming, software, application, apps, app, input, enter, select, provide,
requirement, demand, specification, spec, visual, graph, interface, GUI, operation, functional, convert, transform, send, transmit, pass....

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
Y US 2008/0275910 A1 (MOLINA-MORENO et al.), 06 November 2008 (06.11.2008), entire 1-20
document, especially Abstract; para (0022}, {0025], {0027], [0062], [0255], [0259}-[0261)]
Y US 2010/0011338 A1 (LEWIS et al.), 14 January 2010 (14.01.2010), entire document, 1-20
especially para [0009], [0011], [(0022]-{0025], {0040]-[0043], [0072}-{0074]
A US 7,137,100 B2 (IBORRA et al.), 14 November 2006 (14.11.2006), entire document 1-20
A US 2002/0091990 A1 (LITTLE et al.), 11 July 2002 (11.07.2002), entire document 1-20
A US 6,520,410 B2 (PUTMAN et al.), 18 February 2003 (18.02.2003), entire document 1-20
A US 2010/0287530 A1 (MACLEAN et al.), 11 November 2010 (11.11.2010), entire document 1-20
A US 2009/0183140 A9 {PECK et al.), 16 July 2009 (16.07.2009), entire document 1-20

D Further documents are listed in the continuation of Box C.

[

* Special categories of cited documents:

“A” document defining the general state of the art which is not considered
to be of particular relevance

“E” earlier application or patent but published on or after the international
filing date

“L” document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

“0O” document referring to an oral disclosure, use, exhibition or other
means

“P” document published prior to the international filing date but later than

the priority date claimed

“T” later document published after the international filing date or priority
date and not in conflict with the a;:ﬁlicaﬁon but cited to understand
the principle or theory underlying the invention

“X document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

“Y” document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

“&” document member of the same patent family

Date of the actual completion of the international search

16 July 2012 (16.07.2012)

Date of mailing of the international search report

23 JUL 20%2

Name and mailing address of the ISA/US

Mail Stop PCT, Attn: ISA/US, Commissioner for Patents
P.O. Box 1450, Alexandria, Virginia 22313-1450

Facsimile No. 571-273-3201

Authorized officer:)
Lee W. Young

PCT Helpdesk: 571-272-4300
PCT OSP: 571-272-7774

Form PCT/ISA/210 (second sheet) (July 2009)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - claims
	Page 26 - claims
	Page 27 - claims
	Page 28 - claims
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - wo-search-report

