(12) STANDARD PATENT

(11) Application No. AU 2004200043 B2

(19) AUSTRALIAN PATENT OFFICE

(54)

(51)

(74)

(56)

Title

Systems and methods for providing time- and weight-based flexibly tolerant hardware
ID

International Patent Classification(s)
GOG6F 21/22 (2006.01) GOG6F 17/00 (2006.01)
B0O3B 9/02 (2006.01) GOG6F 17/30 (2006.01)

CO2F 1/26 (2006.01)
GOG6F 1/00 (2006.01)
GO6F 9/00 (2006.01)

GO6F 21/00 (2006.01)
GO6K 5/00 (2006.01)
G11B 20/00 (2006.01)

GOG6F 12/14 (2006.01)

Application No: 2004200043 (22) Date of Filing: 2004.01.06
Priority Data

Number (32) Date (33) Country

10/337064 2003.01.06 us

Publication Date: 2004.07.22

2004.07.22
2009.07.16

Publication Journal Date:
Accepted Journal Date:

Applicant(s)
Microsoft Corporation

Inventor(s)
Gunyaki, Caglar;Dublish, Pratul;Hughes, Aiden T.

Agent / Attorney
Davies Collison Cave, 1 Nicholson Street, Melbourne, VIC, 3000

Related Art
us 6148407

10

15

Abstract
Systems and methods for implementing a hardware ID with time- and weight-based

flexibility use a hardware ID (HWID) including identifying information about hardware
components. When software is run, a current HWID is generated. When the current HWID
is compared to a stored HWID to determine if the two HWIDs match, a time vector and a
weight vector are used in the comparison. A running matching score is kept of matches. For
each hardware component, the weight vector indicates the weight given to a correct match of
the hashed value for the hardware component. For example, if the weight value for the
hardware component is three and there is a match, then the running total is increased by three.

For each hardware component, the time vector may indicate an expiration period after which
a change in the component may be allowed. For example, if the expiration period for the
component is one year, and one year has passed since activation, the running total may be
increased even though the component’s information in the verification HWID does not match

the current component information.

3/4

Obtain current identity information for components
of each component type
310

Compare current component identity information to
stored component identity information for
components of each component type
320

Calculate matching score by, for each component
type, adding value in weight vector for component
type if component identities matched
330

Compare matching score to threshold score to
determine if current computer system matches
computer system corresponding to stored
component identities
340

FIG. 3

AUSTRALIA
PATENTS ACT 1990
COMPLETE SPECIFICATION

NAME OF APPLICANT(S)::

Microsoft Corporation

ADDRESS FOR SERVICE:
DAVIES COLLISON CAVE

Patent Attorneys
1 Nicholson Street,Melbourne, 3000, Australia

INVENTION TITLE:

Systems and methods for providing time- and weight-based flexibly tolerant hardware ID

The following statement is a full description of this invention, including the best method of performing it
known to me/us:-

5102

10

15

20

25

30

la

Field of the Invention:

The present invention is directed to systems and methods for providing identifying
information for a computer system and evaluating whether the computer system matches a

saved version of identifying information. More particularly, the present invention relates to

systems and methods for providing a hardware ID for a computer system based on

' identiﬁying information from the computer system that is flexible and tolerant to normal

changes that occur while using the computer system.

Background of the Invention:

Use of software is often governed by a software license. Because software can be
easily copied after being sold, uses of software without an associated license is difficult to
prevent. Such uses include piracy, where the software is illicitly replicated and pirated copies
are installed for use on non-licensed computer systems. Additionally, a purchaser of a non-
pirated copy mighf improperly use software outside of the scope of the associated license.
For example, a user may install the software on more computer systems than are allowed
under the license.

While licenses provide a legal avenue for recourse against such practices, they can be
difficult to enforce in practice. Accordingly, there is a need for other means to reduce the

amount of use of software outside of license terms. One such method is based on creating an

~identifier for the computer system of a user who has been licensed to use software. U.S.

Patent Number 6,243,468 entitled “Software Anti-Piracy System That Adapts to Hardware
Upgrades” and published U.S. Patent Application Number 20010044782 detail this method.
Computer systems typically include various pieces of hardware, including disk drives,
CDROM drives, and processors. These hardware components each have identifiers (serial
numbers or names) that can be accessed by the system, for example by executing a plug-and-
play (PnP) call. These component identifiers can be combined in a pre-determined manner to
create a hardware identifier (HWID), which may be used to identify a particular computer

system.

04 Jun 2009

2004200043

15

20

25

30

PAOPER\SEWA2(19\unc | 2394680 amended pages 151 5pa doc—$/06/2009

Significantly, the HWID may be employed as part of or in combination with a
software license to ensure that software that was licensed for use on a specific computer
system is used only on that computer system. In particular, software with a license
specifying a HWID will only run on a computer system if; at runtime, the HWID computed
for the computer system matches the HWID specified in the software license.

However, when the user of a computer system adds, subtracts, or exchanges
components of the system, for example, for repair or upgrade purposes, the HWID
changes. Each new or exchanged component will have a new component identifier. Thus,
when the HWID for the system is computed, a new component identifier will cause the
HWID to change. This causes problems when the user has received a license for software
that specifies the HWID for a prior version of their computer system.

Accordingly, it is known to accept a stored HWID as a substantial match when
compared to a newly calculated HWID and allow the user to run the software. For
example, the abovementioned U.S. Patent No. 6,243,468 discloses an instance in which
five component identifiers are included in the HWID, and if any four of them are found to
match, the software product is enabled to operate on the computer system.

Not addressed in the prior art is the fact that certain components may be exchanged
more frequently than others. Also not addressed is the utility of having less stringent
computer-system matching requirements for the license as time elapses, since the value of
the software may decrease as time progresses. A HWID-based licensing system that
addresses these facts would provide increased security and allow for dynamic security over
time.

In view of the aforementioned situation, there is a need for a system that allows a
HWID to be used for identifying and linking a licensed instantiation of software to one
computer system, while tolerating changes in the computer system of a legitimate user
with the flexibility required to accommodate hardware system changes and adapt to the

passage of time.

Summary of the Invention:

According to the present invention, there is provided a method for enabling

enforcement of software licensing terms for a software product for use with a computer

04 Jun 2009

2004200043

10

15

20

25

30

PAOPERISEWA(NWUunel 1 2394680 amended pages 15t spa doc-36/2t019

system comprising one or more components, each component having a component identity
obtainable from the computer system and identifying the component, and a component
type from among a set of component types, the method comprising:

retrieving license data corresponding to the licensing terms;

for each component type from among said set of component types, obtaining an
associated current component identity of a corresponding component from said computer
system;

for each component type from among said set of component types, comparing said
obtained associated current component identity to an associated stored component identity
from the retrieved license data;

calculating a matching score for each component type from among said set of
component types, if the result of said comparison is positive as a match, by incrementing
the matching score by adding a stored associated component type weight corresponding to
each component type from among said set of component types from the retrieved license
data to said matching score;

comparing said matching score to a threshold matching score from the retrieved
license data; and

honoring a right granted by the licensing terms with respect to the software product
if the matching score exceeds the threshold matching score.

The present invention also provides a method for enabling enforcement of software
licensing terms for a software product for use with a computer system comprising one or
more components, each component having a component identity obtainable from the
computer system and identifying the component, and a component type from among a set
of component types, the method comprising:

retrieving license data corresponding to the licensing terms;

for each component type from among said set of component types, obtaining an
associated current component identity of a corresponding component from said computer
system;

for each component type from among said set of component types, comparing said
obtained associated current component identity to an associated stored component identity

from the retrieved license data;

PMOPER\SEWA2069Uunct 1 2394680 amended pages |51 5pa.doc~H06/2009

N
o |
8 3a |
5
— calculating a matching score for each component type from among said set of
g component types, if the result of said comparison is positive as a match or if an associated
' expiration period corresponding to at least one component type from among said set of
@ component types from the retrieved license data has passed, by incrementing said matching
- :
S S score;
8 comparing said matching score to a threshold matching score from the retrieved
§ license data; and
N honoring a right granted by the licensing terms with respect to the software product

if the matching score exceeds the threshold matching score.

10 The present invention further provides a computer-readable medium for enabling
enforcement of software licensing terms for a software product for use with a computer
system comprising one or more components, each component having a component identity
obtainable from the computer system and identifying the component, and a component
type from among a set of component types, the medium having stored thereon at least one

15 computer-executable module comprising computer executable instructions for performing
a method, the method comprising:

retrieving license data corresponding to the licensing terms;
for each component type from among said set of component types, obtaining an
associated current component identity of a corresponding component from said computer

20 system; \

for each component type from among said set of component types, comparing said
obtained associated current component identity to an associated stored component identity
from the retrieved license data;

calculating a matching score for each component type from among said set of

25 component types, if the result of said comparison is positive as a match, by incrementing
the matching score by adding a stored associated component type weight corresponding to
each component type from among said set of component types from the retrieved license

data to said matching score;

comparing said matching score to a threshold matching score from the retrieved

30 license data; and

honoring a right granted by the licensing terms with respect to the software product

04 Jun 2009

2004200043

10

15

20

25

30

P AOPERSEWA2009Uunc\ 12394680 amended miges 151 spa doc~4/16/209

3b

if the matching score exceeds the threshold matching score.

The present invention also provides a computer-readable medium for enabling
enforcement of software licensing terms for a software product for use with a computer
system comprising one or more components, each component having a component identity
obtainable from the computer system and identifying the component, and a component
type from among a set of component types, the medium having stored thereon at least one
computer-executable module comprising computer executable instructions for performing
a method, the method comprising;

retrieving license data corresponding to the licensing terms;

for each component type from among said set of component types, obtaining an
associated current component identity of a corresponding component from said computer
system,;

for each component type from among said set of component types, comparing said
obtained associated current component identity to an associated stored component identity
from the retrieved license data;

calculating a matching score for each component type from among said set of
component types, if the result of said comparison is positive as a match or if an associated
expiration period corresponding to at least one component type from among said set of
component types from the retrieved license data has passed, by incrementing said matching

score;

comparing said matching score to a threshold matching score from the retrieved
license data; and

honoring a right granted by the licensing terms with respect to the software product
if the matching score exceeds the threshold matching score.

In view of the foregoing, preferred embodiments of the present invention provide
systems and methods for providing a HWID that will remain valid even if the system
cbnﬁguration is changed.

In one embodiment, when software is activated, the HWID of the system is
calculated. Product activation code in the software or elsewhere in the system queries
existing hardware components to obtain information regarding those components. For

example, the network card may be queried to determine the MAC (media access control)

04 Jun 2009

2004200043

10

15

20

25

PAOPER\SEWR2009\unc1 2394680 amendcd pages 151 5pa doc-3/06/2009

3c

address. The information regarding hardware components of each hardware component
type is hashed. The hashed values are concatenated into a HWID.

The HWID calculated at activation is included in a license data file. Also included
with the activation HWID are a time and a weight vector, containing a time and weight
value for each hardware component. A threshold score is also included in the license data
file. This license data file must be evaluated each time the software is used. When the
license requires verification of the computer system, the HWID of the system is
reevaluated and the newly calculated HWID is compared to the activation HWID.

When the newly calculated HWID is compared to the activation HWID to
determine if the two HWIDs match, a time vector and a weight vector are used in the
comparison. The time vector value for a component determines whether the component
will be considered in determining if the newly calculated HWID substantially matches the
activation HWID. The weight vector value for a component determines what weight a
match for that component will be given in determining if the newly calculated HWID

substantially matches the activation HWID.

Other features and embodiments of the present invention are described below.

Brief Description of the Drawings:

Embodiments of the present invention are hereinafter described, by way of example
only, with reference to the accompanying drawings, whereiﬁ:

Figure 1 is a block diagram representing an exemplary non-limiting computing
system in which the present invention may be implemented,;

Figure 2 is a block diagram representing license data in one embodiment of the
invention;

Figure 3 is a block diagram representing a method of comparing each stored

component identity with a current component identity, using a weight vector; and

10

15

20

25

30

4

Figure 4 is a block diagram representing a method of comparing each stored

component identity with a current component identity, using a time vector.

Detailed Description of the Invention:

Overview

In one embodiment, a current hardware ID (HWID) is calculated. For each
component type from among a set of component types to be considered, components of that

type are queried. In one embodiment, each result is hashed. The resulting values comprise

‘the current HWID.

In one embodiment, a license file associated with software stores an activation HWID,
a time vector, a weight vector, and a threshold score. In order to allow the use of the
software, the current HWID for the computer system must substantially match the activation
HWID. The time vector , the weight vector, and the threshold score are used in determining
whether a substantial match occurs.

" In order to determine whether the current HWID substantially matches the activation
HWID, for each cdmponent type, each stored hashed value for components of that type is
compared to a hashed value for each current component of that type. In one embodiment, a
matching score is calculated for the overall comparison. Any match indicates that a
component that existed in the system at the time the stored HWID was calculated still exists
in the system. When such a match is found, the matching score for the comparison is
incremented. If the matching score is greater than or equal to the threshold score, the current
HWID substantially matches the activation HWID.

For each component type, the weight vector indicates the weight that a match of that
component type should be accorded. When the matching score is incremented due to a match
for a component type, the matching score is incremented by the weight value for that
component type.

A time vector is also associated with the stored HWID. For each component type, the
time vector may indicate an expiration period. After the expiration period has elapsed, even

if no match is found for a component, the matching score is incremented by the weight value.

10

15

20

25

30

In this way, a HWID system is provided which can give different weights to different
components and which is increasingly flexibly tolerant of hardware changes in a computer
system. In an alternate embodiment, only the time vector is used. In another alternate

embodiment, only the weight vector is used.

Exemplary Computing Device

FIG. 1 and the following discussion are intended to provide a brief general description

of a suitable computing environment in which the invention may be implemented. It should

be understood, however, that handheld, portable and other computing devices and computing

objects of all kinds are contemplated for use in connection with the present invention, as
described above. Thus, while a general purpose computer is described below, this is but one
example, and the present invention may be implemented with other computing devices, such
as a thin client having network/bus interoperability and interaction. Thus, the present
invention may be implemented in an environment of networked hosted services in which very
little or minimal client resources are implicated, e.g., a networked environment in which the
client device serves merely as an interface to the network/bus, such as an object placed in an
appliance, or other computing devices and objects as well. In essence, anywhere that data
may be stored or from which data may be retrieved is a desirable, or suitable, environment for
operation according to the invention.

Although not required, the invention can be implemented via an operating system, for
use by a developer of services for a device or object, and/or included within application
software that operates according to the invention. Software may be described in the general
context of computer-executable instructions, such as program modules, being executed by
one or more computers, such as client workstations, servers or other devices. Generally,
program modules include routines, programs, objects, components, data structures and the
like that perform particular tasks or implement particular abstract data types. Typically, the
functionality of the program modules may be combined or distributed as desired in various
embodiments. Moreover, those skilled in the art will appreciate that the invention may be
practiced with other computer configurations. Other well known computing systems,
environments, and/or configurations that may be suitable for use with the invention include,

but are not limited to, personal computers (PCs), automated teller machines, server

10

15

20

25

30

6
computers, hand-held or laptop devices, multi-processor systems, microprocessor-based

systems, programmable consumer electronics, network PCs, appliances, lights, environmental

control elements, minicomputers, mainframe computers and the like. The invention may also

be practiced in distributed computing environments where tasks are performed by remote

processing devices that are linked through a communications network/bus or other data
transmission medium. In a distributed computing environment, program modules may be
located in both local and remote computer storage media including memory storage devices,
and client nodes may in turn behave as server nodes.

Fig. 1 thus illustrates an example of a suitable computing system environment 100 in
which the invention may be implemented, although as made clear above, the computing
system environment 100 is only one example of a suitable computing environment and is not
intended to suggest any limitation as to the scope of use or functionality of the invention.
Neither should the computing environment 100 be interpreted as having any dependency or
requirement relating to any one or combination of components illustrated in the exemplary
operating environment 100.

With reference to Fig. 1, an exemplary system for implementing the invention
includes a general purpose computing device in the form of a computer system 110.
Components of computer system 110 may include, but are not limited to, a processing unit
120, a system memory 130, and a system bus 121 that couples various system components
including the system memory to the processing unit 120. The system bus 121 may be any of
several types of bus structures including a memory bus or memory controller, a peripheral
bus, and a local bus using any of a variety of bus architectures. By way of example, and not
limitation, such architectures include Industry Standard Architecture (ISA) bus, Micro
Channel Architecture (MCA) bus, Enhanced ISA (EISA) bus, Video Electronics Standards
Association (VESA) local bus, and Peripheral Component Interconnect (PCI) bus (also
known as Mezzanine bus).

Computer system 110 typically includes a variety of computer readable media.
Computer readable media can be any available media that can be accessed by computer
system 110 and includes both volatile and nonvolatile media, removable and non-removable
media. By way of example, and not limitation, computer readable media may comprise

computer storage media and communication media. Computer storage media includes

10

15

20

25

30

7

volatile and nonvolatile, removable and non-removable media implemented in any method or
technology for storage of information such as computer readable instructions, data structures,
program modules or other data. Computer storage media includes, but 1s not limited to,
Random Access Memory (RAM), Read Only Memory (ROM), Electrically Erasable
Programmable Read Only Memory (EEPROM), flash memory or other memory technology,
Compact Disk Read Only Memory (CDROM)), digital versatile disks (DVD) or other optical
disk storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic
storage devices, or any other medium which can be used to store the desired information and
which can accessed by computer system 110. Communication media typically embodies
computer readable instructions, data structures, program modules or other data in a modulated
data signal such as a carrier wave or other transport mechanism and includes any information
delivery media. The term “modulated data signal” means a signal that has one or more of its
characteristics set or changed in such a manner as to encode information in the signal. By
way of example, and not limitation, communication media includes wired media such as a
wired network or direct-wired connection, and wireless media such as acoustic, RF, infrared
and other wireless media. Combinations of any of the above should also be included within
the scope of computer readable media. ‘

The system memory 130 includes computer storage media in the form of volatile
and/or nonvolatile memory such as read only memory (ROM) 131 and random access
memory (RAM) 132. A basic input/output system 133 (BIOS), containing the basic routines
that help to transfer information between elements within computer system 110, such as
during start-up, is typically stored in ROM 131. RAM 132 typically contains data and/or
program modules that are immediately accessible to and/or presently being operated on by
processing unit 120. By way of example, and not limitation, Fig. 1 illustrates operating
system 134, application programs 135, other program modules 136, and program data 137.

The computer system 110 may also include other removable/non-removable,
volatile/nonvolatile computer storage media. By way of example only, Fig. 1 illustrates a
hard disk drive 141 that reads from or writes to non-removable, nonvolatile magnetic media,
a magnetic disk drive 151 that reads from or writes to a removable, nonvolatile magnetic disk
152, and an optical disk drive 155 that reads from or writes to a removable, nonvolatile

optical disk 156, such as a CD ROM or other optical media. Other removable/non-

10

15

20

25

30

8

removable, volatile/nonvolatile computer storage media that can be used in the exemplary
operating environment include, but are not limited to, magnetic tape cassettes, flash memory
cards, digital versatile disks, digital video tape, solid state RAM, solid state ROM, and the
like. The hard disk drive 141 is typically connected to the system bus 121 through an non-
removable memory interface such as interface 140, and magnetic disk drive 151 and optical
disk drive 155 are typically connected to the system bus 121 by a removable memory
interface, such as interface 150.

The drives and their associated computer storage media discussed above and
illustrated in Fig. 1 provide storage of computer readable instructions, data structures,
program modules and other data for the computer system 110. In Fig. 1, for example, hard
disk drnive 141 is illustrated as storing operating system 144, application programs 145, other
program modules 146, and program data 147. Note that these components can either be the
same as or different from operating system 134, application programs 135, other program
modules 136, and program data 137. Operating system 144, application programs 145, other
program modules 146, and program data 147 are given different numbers here to illustrate
that, at a minimum, they are different copies. A user may enter commands and information
into the computer system 110 through input devices such as a keyboard 162 and pointing
device 161, commonly referred to as a mouse, trackball or touch pad. Other input devices
(not shown) may include a microphone, joystick, game pad, satellite dish, scaﬁner, or the like.
These and other input devices are often connected to the processing unit 120 through a user
input interface 160 that is coupled to the system bus 121, but may be connected by other
interface and bus structures, such as a parallel port, game port or a universal serial bus (USB).
A graphics interface 182, such as Northbridge, may also be connected to the system bus 121.
Northbridge is a chipset that communicates with the CPU, or host processing unit 120, and
assumes responsibility for accelerated graphics port (AGP) communications. One or more
graphics processing units (GPUs) 184 may communicate with graphics interface 182. In this
regard, GPUs 184 génerally include on-chip memory storage, such as register storage and
GPUs 184 communicate with a video memory 186. GPUs 184, however, are but one example
of a coprocessor and thus a variety of coprocessing devices may be included in computer
system 110. A monitor 191 or other type of display device is also connected to the system bus

121 via an interface, such as a video interface 190, which may in turn communicate with

10

15

20

25

30

9
video memory 186. In addition to monitor 191, computer systems may also include other
peripheral output devices such as speakers 197 and printer 196, which may be connected
through an output peripheral interface 195.

The computer system 110 may operate in a networked or distributed environment
using logical connections to one or more remote computers, such as a remote computer 180.
The remote computer 180 may be a personal computer, a server, a router, a network PC, a
peer device or other common network node, and typically includes many or all of the
elements described above relative to the computer system 110, although only a memory
storage device 181 has been illustrated in Fig. 1. The logical connections depicted in Fig. 1
include a local area network (LAN) 171 and a wide area network (WAN) 173, but may also
include other networks/buses. Such networking environments are commonplace in homes,
offices, enterprise-wide computer networks, intranets and the Internet.

When used in a LAN networking environment, the computer system 110 is connected
to the LAN 171 through a network interface or adapter 170. When used in a WAN
networking environment, the computer system 110 typically includes a modem 172 or other
means for establishing communications over the WAN 173, such as the Internet. The modem
172, which may be internal or external, may be connected to the system bus 121 via the user
input interface 160, or other appropriate mechanism. In a networked environment, program
modules depicted relative to the computer system 110, or portions thereof, may be stored in
the remote memory storage device. By way of example, and not limitation, Fig. 1 illustrates
remote application programs 185 as residing on memory device 181. It will be appreciated
that the network connections shown are exemplary and other means of establishing a
communications link betweenz the computers may be used.

Various distributed computing frameworks have been and are being developed in light '
of the convergence of personal computing and the Internet. Individuals and business users
alike are provided with a seamlessly interoperable and Web-enabled interface for applications
and computing devices, making computing activities increasingly Web browser or network-
oriented.

For example, MICROSOFT®’s .NET platform includes servers, building-block
services, such as Web-based data storage and downloadable device software. While

exemplary embodiments herein are described in connection with software residing on a

10

15

20

25

30

10

computing device, one or more portions of the invention may also be implemented via an
operating system, application programming interface (API) or a “middie man” object between
any of a coprocessor, a display device and requesting object, such that operation according to
the invention may be performed by, supported in or accessed via all of NET’s languages and

services, and in other distributed computing frameworks as well.

Licensing Transaction

A licensing transaction occurs at or after a time when a user purchases a software
product for running on a computer system 110. The software product, for example, may be a
shrink-wrapped product having a software program stored on a transportable computer-
readable medium, such as a DVD, CDROM, or floppy diskette. The software product may
also be delivered electronically over a network. The user loads the software product onto
computer system 110. However, the software may not be operable without license data. In
order to receive this license data, the user must ‘activate’ the software by contacting an entity
trusted by the licensor of the software, such as a license clearinghouse. This clearinghouse,
for example, is the product manufacturer or an authorized third party. The activation process
allows the customer to activate the software product for installation and use on a specific
computer system by providing the customer with the necessary license data.

Contact with the clearinghouse may be from computer system 110 over a network
such as the Internet or via a dial-up connection to a clearinghouse computer, which, if
activation is successful, will send the license data to the computer system 110. Alternatively,
the software product supports an activation with a graphical user interface (Ul) dialog
window asking the user to call a service representative at the clearinghouse. The Ul window
lists information which the user communicates to the service representative, and includes an
entry box to enter license information as obtained from the service representative which is

used to create the license data to enable use of the software.

Providing Time- and Weight-Based Flexibly Tolerant Hardware 1D

In one embodiment, a license file associated with software includes an activation
HWID, a time vector, a weight vector and a threshold score. When the license is to be

checked, a current hardware ID (HWID) is calculated. For each component type from among

10

15

20

25

30

11

a set of component types to be considered, components of that type are queried. Each result
1s hashed. The resulting values comprise the current HWID. In order to allow the use of the
software, the current HWID for the computer system must substantially match the activation
HWID. The time vector, the weight vector, and the threshold score are used in determining

whether a substantial match occurs.

In one embodiment, the license data 200 includes an activation HWID 210, a weight
vector 220, a time vector 230, and a threshold score 240 as shown in FIG. 2. This
infonnatiqn is used to determine at runtime whether the HWID of the current system
indicates that it is acceptable to allow the use of the software on the current system.

In one embodiment, with reference to FIG. 1, the component types used to calculate a
HWID are: the soundcard (located in the output peripheral interface 195); the network card
(located in network interface 170), the BIOS 133 ; the CDROM drive 155, the display adapter
(comprising the GPU 184); the disk device 151, the SCSI adapter, the disk adapter, the
processor 120, and the RAM 132. Of course, other components may be emp]oyed without
departing from the spirit and scope of the present invention, and any combination of one or
more of these components may be used.

When a HWID is calculated, plug and play (PnP) queries or other queries are executed
to determine the identifiers for these components. Some, such as the processor 120, may be
identified by serial number. .Others, such as the BIOS 133 may be identified by a portion of
BIO 133, e.g. the first two kilobytes of the BIOS stored in ROM 131. The RAM 132, for
example, may be identified by the total storage capacity thereof.

As a further example, the network card may be identified by a MAC address. The
MAC (Media Access Control) address is a unique address that identifies the network card.
On a local area network (LAN) or other network, the MAC address is used as the computer
system's unique hardware number. When the computer system is connected to the Internet,
this number is used to index the correct IP address for the computer system. The MAC
address of a network card is a unique number that is bumt into the network card by its
manufacturer. Blocks of addresses are assigned to each network-card manufacturer, and they
are hard-coded into the chips on their network cards.

As shown, activation HWID 210 includes, for each component type, the number of

components of that type that existed at activation. Activation HWID 210 also includes a

10

15

20

25

30

12

value for each component. In one embodiment, the hardware identifiers are hashed to
produce a hashed value, which is included in the HWID. For example, as shoivn in Fig. 2,
four CDROMs were installed at the time of activation. In one embodiment, the hashed value
for each component is stored in the HWID. For example, cdrom1, cdrom2, cdrom3, and
cdrom4 are the hashed 1dentifiers for the four CDROMs in exemplary activation HWID 210.

In one embodiment, the hash function used to hash the component identifiers is a
modulus function. For example, the hashed value BIOS|1 representing the BIOS component
in HWID 210 might be the first two kilobytes of the BIOS, modulo 8. Of course, any other
hash function may also be employed without departing from the spirit and scope of the
present invention.

In one embodiment, also included in license data 200 is a weight vector 220 and a
threshold score 240. When a newly calculated HWID is compared to an activation HWID
210 so that the determination can be made whether the computer system will be allowed to
run the software corresponding to the license data 200, each component of a specific
component type present in the system is queried. For each component present of a specific
component type, the query is hashed to create a hashed component identifier. These hashed
component identifiers are included in the newly calculated HWID.

The activation HWID and the newly-calculated HWID are compared. A running
matching score total is kept. For each component type, if any of these hashed values for aA
component of that type in the newly calculated HWID matches any of the hashed values for
that component type in activation HWID 210, then the matching score is incremented. After
the matching score is computed, if the matching score is greater than or equal to the threshold
score, the current HWID substantially matches the activation HWID. In another embodiment,
the HWIDs must match exactly for the matching scoré to be incremented. In another
embodiment, each component of a given type present in the activation HWID must be present
in the newly calculated HWID for the matching score to be incremented for that component
type. Other means for determining a match between the HWIDs for a component type are
also contemplated, and may be employed without departing from the spirit and scope of the
invention.

Weight vector 220 governs the amount of the increment. For example, a matching

BIOS identifier will increment the matching score by three, whereas a matching CDROM

10

15

20

25

30

13

identifier will only increment the matching score by one.

Additionally, in one embodiment, time vector 230 may be employed when calculating
the matching score. For any component, if time vector 230 contains a value for that
component, that is the expiration for the use of that component in comparing the two HWIDs.

For example, in exemplary license data 200, as seen in Fig. 2, a time period is stored for
some components. In the exemplarly license data 200, two years is the stored time period for
the CDROM components. Thus, if two years have passed since licensing, a mismatched
value corresponding to the CDROMs currently present on the computer system should not
negatively affect the matching score. Therefore the matching score will be incremented by
one (the value in weight vector 220) regardless of whether a CDROM is found on the
computer system whose identifier matches the values stored in activation HWID 210 (viz.
cdrom], cdrom2, cdrom3, and cdrom4). In another embodiment, the matching score is
incremented by a prespecified value (regardless of the weight vector 220 value) when the
matching score is being incremented due to expiration rather than due to a match.

In order to allow expiration to occur, a license date may be included in license data
200. Altemnatively, each time vector 230 value may be expressed as a set date. Additionally,
security measures may be implemented to ensure that the resetting of a system clock does not
foil the date comparison. Where no valid data exists in time vector 230 for a component type
(in one embodiment, when the value is set to zero) the component is always used to
determine the matching score. For example, time vector 230 indicates that only MAC,
CDROM, and Display components expire. Other components do not.

In one embodiment, only a weight vector but no time vector is included in the license
data. In this embodiment, in order to compare two HWIDs, each component is considered,
and the matching écore is incremented only if there is a match. As shown in Fig. 3, in step
310, the current identity information for each of the relevant components of the system are
obtained. In step 320, the current identity information is compared to the stored component
identity information from the activation HWID. If a hash function is used, the identity
information is hashed and compared to stored component identity information, which has also
been hashed. In step 330, when there is a match for a given component type, a matching
score is incremented by the value in the weight vector associated with that component type.

And in step 340, after all components are considered, the matching score is compared to the

10

15

20

25

30

14

threshold matching score to determine whether the match was successful. This test can be
used in a number of ways. For example, if the comparison is being made to determine if a
system is licensed to run software, if the match is successful, the computer system is
permitted to run the software.

In another embodiment, only a time vector, but no weight vector is included in the
license data 200. In this embodiment, when a component match is found, the same value 1s
added to the matching score, regardless of component type being compared. However, if the
time value specified for the component type has elapsed, even if no match is found, the
matching score will be incremented. As shown in Fig. 4, in step 410, the components of the
HWID, the current identity information for eaéh of the relevant components of the system are
obtained. In step 420, the current identity information is compared to the stored component
identity information from the activation HWID 210 In step 430, when there is a match for a
given component type or where the expiration period has elapsed for that component type, the
matching score is incremented. As before, in step 440, the matching score is compared to the
threshold matching score to determine whether the match was successful.

In one embodiment, a matching score is included in the license data 200. In another
embodiment, a matching score is hardcoded into the computation of whether a substantial
match is present. Thus, license data 200 may include just a time vector, just a weight vector,
or both a time and weight vector, and in any of these combinations may include a matching
score or, alternatively, may rely on a matching score hard-coded into the computation of
whether a substantial match is present.

Using a time vector, a weight vector, or both, the license is no longer passive data,
but plays a role in license comparison data. The licensor or clearinghouse can have more
control over the user experience. For example, the licensor may survey users and find that a
significant percentage of them will change video cards every two years. This may cause the
licensor to set the time value for video cards in new licenses to two years. Later, it may be
determined that new video cards will be arriving in the marketplace in six months, and that
most users will be changing their video card then. The licensor may set the time value to six
months in new licenses. It may be determined that there is a wide variance in when users
change CDROM drives, but other time values are very accurate in describing user behavior.

This may cause the licensor to set the weight value for CDROM drives lower than the weight

10

15

20

25

30

15

values for other components.

In one embodiment, a weight vector is used to react to changes in information
regarding a user. A user gets a first license for software. Then, for example, when an
evaluation period has expired, the user gets a second license for software. The first activation
HWID is compared to the second activation HWID, and weight values for components are
appropriately adjusted. In one such embodiment, the components that have been changed are
given increased weight relative to components that have not been changed. This reflects an
assumption that a recently changed component will not be changed again. In another such
embodiment, the components that have been changed are given decreased weight relative to
components that have not been changed. This reflects an assumption that the user is likely to

be testing or changing components that the user has historically changed.

Conclusion

As mentioned above, while exemplary embodiments of the present invention have
been described in connection with various computing devices and network architectures, the
underlying concepts may be applied to any computing device or system n which it is
desirable to implement a hardware ID. Thus, the methods and systems of the present
invention may be applied to a variety of applications and devices. For instance, the
algorithm(s) of thé invention may be applied to the operating system of a computing device,
provided as a separate object on the device, as part of another object, as a downloadable
object from a server, as a “middle man” between a device or object and the network, as a
distributed object, etc. While exemplary programming languages, names and examples are
chosen herein as representative of various choices, these languages, names and examples are
not intended to be limiting. One of ordinary skill in the art will appreciate that there are
numerous ways of providing object code that achieves the same, similar or equivalent
systems and methods achieved by the invention.

The various techniques described herein may be implemented in connection with
hardware or software or, where appropriate, with a combination of both. Thus, the methods
and apparatus of the present invention, or certain aspects or portions thereof, may take the
form of program code (i.e., instructions) embodied in tangible media, such as floppy

diskettes, CD-ROMs, hard drives, or any other machine-readable storage medium, wherein,

10

15

20

25

30

16

when the program code is loaded into and executed by a machine, such as a computer, the
machine becomes an apparatus for practicing the invention. In the case of program code
execution on programmable computers, the computing device will generally include a
processor, a storage medium readable by the processor (including volatile and non-volatile
memory and/or storage elements), at least one input device, and at least one output device.
One or more programs that may utilize the signal processing services of the present invention,
e.g., through the use of a data processing API or the like, are preferably implemented in a
high level procedural or object oriented programming language to communicate with a
computer. However, the program(s) can be implemented in assembly or machine language, if
desired. In any case, the language may be a compiled or interpreted language, and combined
with hardware implementations.

The methods and apparatus of the present invention may also be practiced via
communications embodied in the form of program code that is transmitted over some
transmission medium, such as over electrical wiring or cabling, through fiber optics, or via
any other form of transmission, wherein, when the program code is received and loaded into
aﬂd executed by a machine, such as an EPROM, a gate array, a programmable logic device
(PLD), a client computer, a video recorder or the like, or a receiving machine having the
signal processing capabilities as described in exemplary embodiments above becomes an
apparatus for practicing the invention. When implemented on a general-purpose processor,
the program code combines with the processor to provide a unique apparatus that operates to
invoke the functionality of the present invention. Additionally, any storage techniques used
in connection with the present invention may invariably be a combination of hardware and
software.

While the present invention has been described in connection with the preferred
embodiments of the various figures, it is to be understood that other similar embodiments
may'be used or modifications and additions may be made to the described embodiment for
performing the same function of the present invention without deviating therefrom.
Furthermore, it should be emphasized that a variety of computer platforms, including
handheld device operating systems and other application specific operating systems are
contemplated, especially as the number of wireless networked devices continues to

proliferate. Still further, the present invention may be implemented in or across a plurality of

17

processing chips or devices, and storage may similarly be effected across a plurality of
devices. Therefore, the present invention should not be limited to any single embodiment,

but rather should be construed in breadth and scope in accordance with the appended claims.

Throughout this specification and the claims which follow,
unless the context requires otherwise, the word 'comprise",
and variations such as '"comprises" and "comprising', will
be understood to imply the inclusion of a stated integer or
step or group of integers or steps but not the exclusion of
any other integer or step or group of integers or steps.

The reference to any prior art in this specification is not,
and should not be taken as, an acknowledgement or any form
of suggestion that that prior art forms part of the common
general knowledge in Australia.

04 Jun 2009

2004200043

10

15

20

25

30

PAOPER\SEW2009Uunc!1 2394680 amended pages 15t spa doc-4/06/2009

18
THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. A method for enabling enforcement of software licensing terms for a software
product for use with a computer system comprising one or more components, each
component having a component identity obtainable from the computer system and
identifying the component, and a component type from among a set of component types,
the method comprising:

retrieving license data corresponding to the licensing terms;

for each component type from among said set of component types, obtaining an
associated current component identity of a corresponding component from said computer
system;

for each component type from among said set of component types, comparing said
obtained associated current component identity to an associated stored component identity
from the retrieved license data;

calculating a matching score for each component type from among said set of
component types, if the result of said comparison is positive as a match, by incrementing
the matching score by adding a stored associated component type weight corresponding to
each component type from among said set of component types from the retrieved license
data to said matching score;

comparing said matching score to a threshold matching score from the retrieved
license data; and

honoring a right granted by the licensing terms with respect to the software product

if the matching score exceeds the threshold matching score.

2. The method of claim 1, where said step of, for each component type from among

said set of component types, obtaining an associated current component identity

comprises:

obtaining an associated individual current component identity for every component

of that component type.

04 Jun 2009

2004200043

10

15

20

25

30

PAOPER\SE WAZ009\une\ 12394680 amended poges 15t spa doc=3/6/2009

19

3. The method of claim 2, where for at least one component type from among said set
of hardware component types, said associated stored component identity comprises one or
more associated individual stored component identities, and where said step of, for each
hardware component type from among said set of hardware component types, comparing
said associated existing component identity to an associated stored component identity
comprises:

returning a positive result if any of said associated individual stored component

identities matches any of said associated individual current component identities.

4. The method of claim 2, where for at least one component type from among said set
of hardware component types, said associated stored component identity comprises one or
more associated individual stored component identities, and where said step of, for each
hardware component type from among said set of hardware component types, comparing
said associated existing component identity to an associated stored component identity
comprises:

returning a positive result if all of said associated individual stored component

identities matches any of said associated individual current component identities.

5. The method of claim 1, where said step of, for each hardware component type from
among a set of hardware component types, obtaining an associated existing component
identity comprises:

querying a hardware component of the hardware component type for a query result;
and

hashing the query result.

6. The method of claim 1, where said step of calculating a matching score by, for each
component type from among said set of component types, if the result of said comparison
is positive, incrementing a matching score by adding a stored associated component type
weight comprises:

for each component type, determining if an associated expiration period has passed;

and

04 Jun 2009

2004200043

10

15

20

25

30

PAOPER\SEWAZDIYJunc\ 12394680 amended pages §st spa doc=406/200%

20

for each component type, if said expiration period has passed, adding said stored
associated component type weight.
7. The method of claim 1, where said step of calculating a matching score by, for each
component type from among said set of component types, adding a stored associated
component type weight comprises:

for each component type, determining if an associated expiration period has passed,;
and

for each component type, if said expiration period has passed, adding a prespecified

expired-period increment.

8. The method of claim 1, where said set of component types comprises one or more
selected from among the following:

soundcard, network card, BIOS, CDROM drive, display adapter, disk device, SCSI
adapter, disk adapter, processor, and RAM.

9. A method for enabling enforcement of software licensing terms for a software
product for use with a computer system comprising one or more components, each
component having a component identity obtainable from the computer system and
identifying the component, and a component type from among a set of component types,
the method comprising:

retrieving license data corresponding to the licensing terms;

for each component type from among said set of component types, obtaining an
associated current component identity of a corresponding component from said computer
system;

for each component type from among said set of component types, comparing said
obtained associated current component identity to an associated stored component identity
from the retrieved license data;

calculating a matching score for each component type from among said set of
component types, if the result of said comparison is positive as a match or if an associated
expiration period corresponding to at least one component type from among said set of

component types from the retrieved license data has passed, by incrementing said matching

04 Jun 2009

2004200043

10

15

20

25

30

PAOPERISEWA2009unel 1 2394680 amended pages 15t sp doc-4/06/2000

21

score;

comparing said matching score to a threshold matching score from the retrieved
license data; and

honoring a right granted by the licensing terms with respect to the software product

if the matching score exceeds the threshold matching score.

10. The method of claim 9, where said step of, for each component type from among
said set of component types, obtaining an associated current component identity
comprises:

obtaining an associated individual current component identity for every component

of that component type.

11. The method of claim 10, where for at least one component type from among said
set of hardware component types, said associated stored component identity comprises one
or more associated individual stored component identities, and where said step of, for each
hardware component type from among said set of hardware component types, comparing
said associated existing component identity to an associated stored component identity
comprises:

returning a positive result if any of said associated individual stored component

identities matches any of said associated individual current component identities.

12. The method of claim 10, where for at least one component type from among said
set of hardware component types, said associated stored component identity comprises one
or more associated individual stored component identities, and where said step of, for each
hardware component type from among said set of hardware component types, comparing
said associated existing component identity to an associated stored component identity
comprises:

returning a positive result if all of said associated individual stored component

identities matches any of said associated individual current component identities.

13. The method of claim 9, where said step of, for each hardware component type from

A
-
-
@\

=
'
Y
-

2004200043

10

15

20

25

30

P AOPER\SEWA2009\unc\123946K0 amcnded pages)t spa doc-4A16/2009

22

among a set of hardware component types, obtaining an associated existing component
identity comprises:

querying a hardware component of the hardware component type for a query result;
and

hashing the query result.

14. The method of claim 9, where said set of component types comprises one or more
selected from among the following:

soundcard, network card, BIOS, CDROM drive, display adapter, disk device, SCSI
adapter, disk adapter, processor, and RAM.

15. A computer-readable medium for enabling enforcement of software licensing terms
for a software product for use with a computer system comprising one or more
components, each component having a component identity obtainable from the computer
system and identifying the component, and a component type from among a set of
component types, the medium having stored thereon at least one computer-executable
module comprising computer executable instructions for performing a method, the method
comprising:

retrieving license data corresponding to the licensing terms;

for each component type from among said set of component types, obtaining an
associated current component identity of a corresponding component from said computer
system;

for each component type from among said set of component types, comparing said
obtained associated current component identity to an associated stored component identity
from the retrieved license data;

calculating a matching score for each component type from among said set of
component types, if the result of said comparison is positive as a match, by incrementing
the matching score by adding a stored associated component type weight corresponding to
each component type from among said set of component types from the retrieved license

data to said matching score;

comparing said matching score to a threshold matching score from the retrieved

04 Jun 2009

2004200043

10

15

20

25

30

PAMOPER\SEWR2009Uune\ 12394680 amended pages 15t spi doc—46/20009

23

license data; and
honoring a right granted by the licensing terms with respect to the software product

if the matching score exceeds the threshold matching score.

16. The computer-readable medium of claim 15, where said step of, for each
component type from among said set of component types, obtaining an associated current
component identity comprises:

obtaining an associated individual current component identity for every component

of that component type.

17. The computer-readable medium of claim 16, where for at least one component type
from among said set of hardware component types, said associated stored component
identity comprises one or more associated individual stored component identities, and
where said step of, for each hardware component type from among said set of hardware
component types, comparing said associated existing component identity to an associated
stored component identity comprises:

returning a positive result if any of said associated individual stored component

identities matches any of said associated individual current component identities.

18. The computer-readable medium of claim 16, where for at least one component type
from among said set of hardware component types, said associated stored component
identity comprises one or more associated individual stored component identities, and
where said step of, for each hardware component type from among said set of hardware
component types, comparing said associated existing component identity to an associated

stored component identity comprises:

returning a positive result if all of said associated individual stored component

identities matches any of said associated individual current component identities.

19. The computer-readable medium of claim 15, where said step of, for each hardware
component type from among a set of hardware component types, obtaining an associated

existing component identity comprises:

04 Jun 2009

2004200043

10

15

20

25

30

PAOPER\SEWA2009\une\ 12394680 amendcd pages 15t spa doc-4/06/20019

24

querying a hardware component of the hardware component type for a query result;

and

hashing the query result.

20. The computer-readable medium of claim 15, where said step of calculating a
matching score by, for each component type from among said set of component types, if
the result of said comparison is positive, incrementing a matching score by adding a stored
associated component type weight comprises:

for each component type, determining if an associated expiration period has passed;
and

for each component type, if said expiration period has passed, adding said stored

associated component type weight.

21. The computer-readable medium of claim 15, where said step of calculating a
matching score by, for each component type from among said set of component types, if
the result of said comparison is positive, incrementing a matching score by adding a stored
associated component type weight comprises:

for each component type, determining if an associated expiration period has passed,

and

for each component type, if said expiration period has passed, adding a prespecified

expired-period increment.

22. The computer-readable medium of claim 15, where said set of component types
comprises one or more selected from among the following:

soundcard; network card, BIOS, CDROM drive, display adapter, disk device, SCSI
adapter, disk adapter, processor, and RAM.

23. A computer-readable medium for enabling enforcement of software licensing terms
for a software product for use with a computer system comprising one or more
components, each component having a component identity obtainable from the computer

system and identifying the component, and a component type from among a set of

04 Jun 2009

2004200043

10

15

20

25

30

PADPERISEWA2009\unet 1 21946K0 amended pages 151 spa doc—406/2009

25

component types, the medium having stored thereon at least one computer-executable
module comprising computer executable instructions for performing a method, the method
comprising:

retrieving license data corresponding to the licensing terms;

for each component type from among said set of component types, obtaining an
associated current component identity of a corresponding component from said computer
system;

for each component type from among said set of component types, comparing said
obtained associated current component identity to an associated stored component identity
from the retrieved license data;

calculating a matching score for each component type from among said set of
component types, if the result of said comparison is positive as a match or if an associated
expiration period corresponding to at least one component type from among said set of
component types from the retrieved license data has passed, by incrementing said matching

score;

comparing said matching score to a threshold matching score from the retrieved
license data; and
honoring a right granted by the licensing terms with respect to the software product

if the matching score exceeds the threshold matching score.

24, The computer-readable medium of claim 23, where said step of, for each
component type from among said set of component types, obtaining an associated current
component identity comprises:

obtaining an associated individual current component identity for every component

of that component type.

25. The computer-readable medium of claim 24, where for at least one component type
from among said set of hardware component types, said associated stored component
identity comprises one or more.associated individual stored component identities, and
where said step of, for each hardware component type from among said set of hardware

component types, comparing said associated existing component identity to an associated

04 Jun 2009

2004200043

10

15

20

25

30

PAOPERISEWR009\Junel 1 2394680 amended pages 151 spa doc~4/0672009

26

stored component identity comprises:
returning a positive result if any of said associated individual stored component

identities matches any of said associated individual current component identities.

26. The computer-readable medium of claim 24, where for at least one component type
from among said set of hardware component types, said associated stored component
identity comprises one or more associated individual stored component identities, and
where said step of, for each hardware component type from among said set of hardware
component types, comparing said associated existing component identity to an associated

stored component identity comprises:
returning a positive result if all of said associated individual stored component

identities matches any of said associated individual current component identities.

27. The computer-readable medium of claim 23, where said step of, for each hardware
component type from among a set of hardware component types, obtaining an associated

existing component identity comprises:

querying a hardware component of the hardware component type for a query result;

and

hashing the query result.

28. The computer-readable medium of claim 23, where said set of component types

comprises one or more selected from among the following:

soundcard; network card, BIOS, CDROM drive, display adapter, disk device, SCSI
adapter, disk adapter, processor, and RAM.

29. A method substantially as hereinbefore described with reference to the

accompanying drawings.

30. A computer-readable medium substantially as hereinbefore described with

reference to the accompanying drawings.

1/4

|00} [000000] Tqu._

S8l SWVY90¥d

]
Ty P NOILVOIIlddV F G—m
9 J1ON3Y 191
— ad1AaQg e el = =
8 : iyl ci4t Shl 144"
omm 1NdWO5 Z91 pieoqhay Bunuioy viva s_<wmo%%_ g | Swvuooud W3LSAS
310N3Y WVH9O0¥d H3IHLO NOILVOIlddV | ONILVY3dO
[9X"
A r s \]MN—.
WompNessyspmM LT I°] | T yosbCQ o~ T
A _ {oo] {ooooco] [o]
(X2% -
b "] IET ®eg
L | — — — 3 weiboid
1 {0ZY 091 051 asepajul Ov1 asepaju|
NIOMION _r asepaju| aoepdjuj Kowapy Aowapyy 9E1 sajnpow
ealy |ed0 | NI0M]BN induj sasn 8]lje]OA-UON 3|1I_JOA-UON weiboid 19410
“ a|qeAoway 3|geAocway-uoN
A A y —
" | 1S€} swesboay
Llsiopeads f¢—I) | vevsna wajsAsg g uoges)ddy
— 4
“ 561 \ 06t 28t oct ver waysk
_ _ adeldu| adeuaju| adeuady| el ISAS
96! joyung < > jesayduag 0apIA salydesg nun bunesado
_ inding y y Y Buissasoig Zer (Wvy)
t \ 4 —_—]
161 10)UOW | 58T Vet €€l soig _
oL Vel _
C————— |
— " Kiowayy ndo e T tnon)
| |

2/4

¢ 9Ol

"001d

ove -
13¥09S A1OHSIHHL 02 v1va 3ISN30IT
0€Z JO0103A JNIL
| _ “ _ | 1eap | | sieap g | | 1eap) | |
WvY ~ adAj wisid ISOS ¥sia Aeldsig wodad soig OVWN punog
0014
¢Z HOL1D3A 1HOIAM
oLz v v T T Ty T e T Ty
WvY adA) wisig 1SOS ¥sia Aeidsig WOHAD SOIg OVIN punog
0014
9isip LZ AIMH NOILVYAILDY
GYsIp
pSIp pWIoIpO
e)sIp €woJpo
Z!sos | isIp] Zwoipo
LNVY | LAooud | Leysip | 11sos | Lysip Aeidsip | LWOIPd | 1SOIF | LOVIN | Lpunos
L L] Z 9 L v Lo | e sjunodednsp
Wvyd adAL wisia 1SOS w¥sia Aeidsig WOMAD SOI9 OVIN punog

3/4

Obtain current identity information for components
of each component type
310

Compare current component identity information to
stored component identity information for
components of each component type
320

Calculate matching score by, for each component
type, adding value in weight vector for component
type if component identities matched
330

Compare matching score to threshold score to
determine if current computer system matches
computer system corresponding to stored
component identities
340

FIG. 3

4/4

Obtain current identity information for components
of each component type
410

Compare current component identity information to
stored component identity information for
components of each component type
420

Calculate matching score by, for each component
type, incrementing matching score if component
identities match or if expiration period has elapsed
430

Compare matching score to threshold score to
determine if current computer system matches
computer system corresponding to stored
component identities
440

FIG. 4

	Bibliographic Page
	Abstract
	Description
	Claims
	Drawings

