含有阳离子活性成分和季化糖衍生的表面活性剂的抗微生物组合物

摘要

本发明的抗微生物组合物包含阳离子活性成分；季化糖衍生的表面活性剂；和任选的泡沫促进表面活性剂。这些配方在短短的时间段内具有高的杀灭活性，且提供丰富的泡沫。本发明的配方还显示出通过体外整体毒性评估方法确定的提高的组织（例如皮肤）相容性。
1. 一种抗微生物的硬表面清洁剂组合物，它包含：
 (a) 0.5wt% - 20wt%的非离子活性成分；
 (b) 0.2wt% - 50wt%的季铵化合物的表面活性剂；
 (c) 水或其他合适的稀释剂和
 (d) 泡沫促进表面活性剂。
2. 权利要求 1 的组合物，其中所述组合物包含 50ppm - 5000ppm 阳离子活性成分。
3. 权利要求 1 的组合物，其中所述组合物包含 50ppm - 5000ppm 阳离子活性成分，取自：
 (a) 季铵化合物的有机盐或季铵化合物的无机盐；
 (b) 季铵化合物的有机盐或季铵化合物的无机盐。
4. 权利要求 1 的组合物，其中季铵化合物的表面活性剂是季铵基聚糖或季铵基聚糖盐。
5. 权利要求 1 的组合物，其中组合物包含最多 18wt% 的泡沫促进表面活性剂。
6. 权利要求 1 的组合物，其中组合物包含最多 3500ppm 泡沫促进表面活性剂。
7. 权利要求 1 的组合物，其中泡沫促进表面活性剂选自非离子表面活性剂，两性表面活性剂，
 阴离子表面活性剂或阳离子表面活性剂。
8. 权利要求 7 的组合物，其中非离子表面活性剂包括烷基胺氧化物，烷基醚胺氧化物，
 烷基醇烷氧化物，芳基醇烷氧化物；嵌段非离子聚合物，嵌段非离子聚合物，烷醇酰胺或聚
 乙烯氧化甘油酯。
9. 权利要求 7 的组合物，其中两性表面活性剂包括咪唑啉和咪唑啉衍生物，羟乙磺酸
 盐，甜菜碱衍生物或两性琥珀酸盐衍生物。
10. 权利要求 7 的组合物，其中阴离子表面活性剂包括肌氨酸衍生物，琥珀酸衍生物，
 羧化酯，烷基磺酸盐和烷基醚硫酸盐，磺酸衍生物，或二苯基磺酸盐衍生物。
11. 权利要求 7 的组合物，其中阳离子表面活性剂包括季铵多糖，烷基多糖，烷氧化胺，
 烷氧化醚胺，磷脂和磷脂衍生物。
12. 权利要求 1 的组合物，其中用水或其他合适的稀释剂稀释组合物，形成使用溶液。
13. 权利要求 1 的组合物，其中组合物的 pH 范围为 7.0 - 12.0。
14. 权利要求 1 的组合物，其中组合物进一步包含最多 40wt% 助剂。
15. 权利要求 14 的组合物，其中所述助剂是螯合剂和 pH 添加剂。
16. 权利要求 1 的组合物，其中组合物进一步包含 50ppm - 10,000ppm 助剂。
17. 权利要求 16 的组合物，其中所述助剂是螯合剂和 pH 添加剂。
18. 权利要求 1 的组合物，其中组合物显示出高的杀灭活性。
19. 权利要求 1 的组合物，其中组合物提供丰富的泡沫和泡沫稳定性。
20. 权利要求 1 的组合物，其中组合物显示出降低的组织刺激潜力。
21. 权利要求 1 的组合物，其中组合物不含三氯生，即 2,4,4”- 三氯 -2”- 羟基 - 二苯
 醛。
22. 权利要求 1 的组合物，其中阳离子活性成分与季铵化合物表面活性剂与泡沫促进表面
 活性剂的相对重量比为 1:0.2:0.2 到 1:3:8。
23. 一种由表面去污物的方法，该方法包括：
 (a) 用水或其他合适的稀释剂稀释权利要求 1 的组合物，形成使用溶液，和
 (b) 向所述硬表面与使用溶液接触。
24. 一种降低硬表面上微生物或病毒的方法，该方法包括：
 (a) 用水或其他合适的稀释剂稀释权利要求1的组合物，形成使用溶液；和
 (b) 使所述硬表面与使用溶液接触足够的时间，以提供显著的微生物或病毒下降。

25. 一种降低硬表面上微生物或病毒的方法，该方法包括使所述硬表面与抗微生物组合物接触充足的时间，以提供显著的微生物或病毒下降，所述抗微生物组合物包含：
 (a) 0.5wt%～20wt%的阳离子活性成分；
 (b) 0.2wt%～50wt%的季铵化表面活性剂；
 (c) 水或其他合适的稀释剂；和
 (d) 泡沫促进表面活性剂。

26. 权利要求25的方法，其中所述组合物包含50ppm～5000ppm阳离子活性成分。

27. 权利要求25的方法，其中阳离子活性成分选自双胍的盐，取代的双胍衍生物，含季铵的化合物的有机盐或含季铵的化合物的无机盐。

28. 权利要求25的方法，其中季铵化衍生物的表面活性剂是季化的烷基聚糖苷或聚季化烷基聚糖苷。

29. 权利要求25的方法，其中组合物包含0.2wt%～18wt%的泡沫促进表面活性剂。

30. 权利要求25的方法，其中组合物包含最多3500ppm的泡沫促进表面活性剂。

31. 权利要求25的方法，其中泡沫促进表面活性剂选自非离子表面活性剂，两性表面活性剂，阴离子表面活性剂或阳离子表面活性剂。

32. 权利要求31的方法，其中非离子表面活性剂包括烷基胺氧化物，烷基醚胺氧化物，烷基醇烷氧化物，芳基醇烷氧化物，嵌段非离子共聚物，混嵌非离子共聚物，烷胺酰胺或聚乙氧化甘油酯。

33. 权利要求31的方法，其中两性表面活性剂包括咪唑啉和咪唑啉衍生物，羟基磺酸盐，甜菜碱衍生物或两性酰酸盐衍生物。

34. 权利要求31的方法，其中阴离子表面活性剂包括肌氨酸衍生物，琥珀酸衍生物，羧化醇，烷基磷酸盐，烷基酰胺硫酸盐，磺酸衍生物，或二基基磷酸盐衍生物。

35. 权利要求31的方法，其中阳离子表面活性剂包括季化糖，烷基糖，烷氧化胺，烷氧化酰胺，磷脂和磷脂衍生物。

36. 权利要求25的方法，其中用水或其他合适的稀释剂稀释组合物，形成使用溶液。

37. 权利要求25的方法，其中组合物的pH范围为6.0～12.0。

38. 权利要求25的方法，其中组合物进一步包含最多40wt%助剂。

39. 权利要求38的方法，其中所述助剂是螯合剂和pH添加剂。

40. 权利要求25的方法，其中组合物进一步包含50ppm～10,000ppm助剂。

41. 权利要求40的方法，其中所述助剂是螯合剂和pH添加剂。

42. 权利要求25的方法，其中组合物显示出高的灭活活性。

43. 权利要求25的方法，其中组合物提供丰富的泡沫和泡沫稳定性。

44. 权利要求25的方法，其中组合物显示出降低的组织刺激潜力。

45. 权利要求25的方法，其中组合物不含三氯生，即2,4,4”-三氯-2”-羟基-二苯醚。

46. 权利要求25的方法，其中阳离子活性成分与季化糖表面活性剂与泡沫促进表面活
性剂的相对重量比为 1:0.2:0.8 到 1:3:8。
含有阳离子活性成分和季化糖衍生的表面活性剂的抗微生物组合物

发明领域
[0001] 本发明涉及抗微生物组合物，例如硬表面组合物，它具有改进的抗微生物效果和高的起泡特性。更特别地，本发明涉及一种抗微生物组合物，它显示出阳离子活性成分和季化糖衍生的表面活性剂和高发泡和降低的对哺乳动物组织刺激性能。

背景技术
[0002] 抗微生物的个人护理组合物是本领域已知的，特别有用的是抗微生物的清洁组合物，它典型地用于清洁硬表面和破坏该表面上存在的细菌和其他微生物。
[0003] 例如在健康护理工业，长期护理，招待和健康/训练设施，食品行业，肉类加工工业中和在个人消费者的私密部位中，使用抗微生物组合物。广泛使用抗微生物组合物表明消费者把控制皮肤上的细菌和其他微生物菌落放在重要位置，然而，重要的是，抗微生物群快速地提供微生物菌落的显著和广谱下降，且没有与毒性和皮肤刺激有关的问题。
[0004] 在硬表面抗微生物组合物中使用了数种不同组的抗微生物剂。这些包括选自下述组中的活性成分：酚类化合物，N-碳酰胺胺化合物，低级醇，表面活性剂和氧化剂，卤素和类似物。这些组中的每一种具有它们自己独特的优势与挑战。具体的抗微生物剂的实例包括三氯生，季铵化合物(QAC)，碘和碘的络合物，卤素，酚类衍生物-o-苯基苯酚，过氧化物和过氧化物，和双ключи。
[0005] 高度起泡的消毒剂/抗微生物组合具有特定的应用以供在公众和公共卫生领域中使用，其中它在表面处理过的场所留下痕迹，且可任选地接着用水漂洗。用量足以提供显著的泡沫在起泡的表面活性剂常常使季铵化合物失活。本发明提供允许高度泡沫体系的配制同时对抗微生物活性不显示出有害性能的独特组合。在诸如浴室和淋浴清洁和消毒或者优选高泡沫体系的任何地方的这类产品中，它具有特别的效用。
[0006] 通过本发明的实施方案，提供抗微生物组合物，且通过阅读和研究下述说明来得到理解。以下概述部分作为实例，而绝不是限制。它仅仅被提供为辅助读者理解本发明的一些方面。

发明概述
[0007] 本发明的概述拟介绍给读者本发明的各个例举的方面。在本发明以下的其他部分中示出了本发明的特别的方面，和在单独划定本发明保护范围的所附权利要求书中列出了本发明。
[0008] 根据本发明的例举实施方案，提供显示出快速高效和高起泡特征的抗微生物组合物。该抗微生物组合物包含阳离子活性成分，季化糖衍生的表面活性剂，泡沫促进表面活性剂（它可包括非离子表面活性剂，两性表面活性剂，阳离子表面活性剂，阴离子表面活性剂）和水或其他合适的稀释剂。
[0009] 因此，本发明的一个方面是提供抗微生物的硬表面组合物，可稀释的浓缩抗微生物
物组合物，它包含（a）约 0.5wt%~约 20wt% 的阳离子活性成分；（b）约 0.2wt%~约 50wt% 的季化糖衍生的表面活性剂；（c）约 0.2wt%~约 18wt% 的任选的泡沫促进表面活性剂；（d）任选的助剂；和（e）水或其他合适的稀释剂。

【0011】本发明的另一方面是提供抗微生物的硬表面组合物，其中该使用溶液抗微生物组合物包含：（a）约 30ppm~约 5000ppm 重量的阳离子活性成分；（b）约 50ppm~约 2500ppm 重量的季化糖衍生的表面活性剂；（c）约 50ppm~约 10,000ppm 重量的任选的泡沫促进表面活性剂；（d）任选的助剂；和（e）水或其他合适的稀释剂。

【0012】另外，本发明的一个方面是提供硬表面抗菌生物组合物，其中所述组合物中阳离子活性成分与季化糖表面活性剂与泡沫促进表面活性剂的相对重量比为约 1:0.2:0.2~约 1:3:8。

【0013】本发明的另一方面是提供基于本发明的抗菌生物组合物的硬表面消毒产品，例如高度起泡的硬表面消毒清洁剂，高度起泡的硬表面杀菌清洁剂，浴盆和瓷砖清洁剂和类似物。

【0014】本发明进一步的方面是提供降低硬表面上包括革兰氏阳性菌和/或革兰氏阴性细菌，病毒，和真菌菌落在内的微生物菌落的方法，该方法包括通过使硬表面与本发明的组合物接触充足的时间，例如约 30 秒 -10 分钟，以降低细菌量到所需水平。

【0015】尽管公开了多个实施方案，但根据下述详细说明（它显示并描述了部分的例举实施方案），本发明的仍然其他实施方案对本领域的技术人员来说是显而易见的。因此，详细说明被视为本质上是例举而不是限制性的。

【0016】附图简述

【0017】图 1 阐述了在 30 秒暴露时间之后，在代表性表面活性剂体系内三种不同的阳离子活性成分，具体地，0.5%Quat（氯苄烷铵），2%CHG（葡萄酸氢必泰），和 1%PHMB（聚乙亚甲基双胍）的功效。

【0018】图 2 阐述了随着季化糖衍生的表面活性剂，具体地，聚（三甲胺羟丙基椰油葡糖苷氯化物（Trimoniumhydroxypropyl Cocoglucoosides Chloride））的浓度增加，对金黄色葡萄球菌（S. aureus）和大肠杆菌（E. coli）细菌的效果。阳离子活性成分（0.5%ADBA Quat）和泡沫促进表面活性剂（1.95%烷基二甲基胺氧化物）的类型和用量保持恒定。

【0019】图 3 阐述了随着泡沫促进表面活性剂（具体地氨基氧化物）的浓度增加的功效。阳离子活性成分（0.5%ADBA Quat）和季化糖衍生的表面活性剂（1.25%聚三甲胺羟丙基椰油葡糖苷氯化物）的类型和用量保持恒定。

【0020】图 4 阐述了本发明的硬表面中性消毒剂组合物的对比泡沫体积。

【0021】图 5 阐述了本发明的硬表面浴盆和瓷砖消毒剂组合物的对比泡沫体积。

【0022】图 6 阐述了含有阳离子活性成分和本发明的季化糖衍生的表面活性剂的硬表面化学品作为关键有机物消毒剂的抗微生物功效。

【0023】图 7 阐述了当季化糖衍生的表面活性剂与阳离子活性成分结合使用时，中性消毒剂的改进的皮肤相容性。

【0024】图 8 阐述了当季化糖衍生的表面活性剂与阳离子活性成分结合使用时，浴盆和瓷砖消毒剂的改进的皮肤相容性。

【0025】优选实施方案的详细说明
[0026] 除了在操作例中以外，或者除非另有说明，表达本发明所使用的各成分的用量或反应条件的所有数值要理解为在所有情况下用术语“约”改性。

[0027] 此处所使用的重量％，重量百分数，wt％，和类似术语同义，是指该物质重量除以组合物的总重量乘以100形的物质浓度。

[0028] 此处所使用的改性本发明组合物中或者在本发明方法中使用的充分用量的术语“约”是指可例如在现在现实世界中通过典型的测量和制备浓缩物或使用溶液所使用的液体处理程序，通过这些程序中的无理的误差，并通过制备组合物或进行该方法所使用的各成分的制备，来源或纯度的差别等可出现的数值量的变化。术语“约”还包括由特定起始混合物得到的组合物的不同平衡条件导致的用量差别。不管是否通过术语“约”改性，权利要求书包括这些用量的等同范围。

[0029] 此处所使用的术语“阳离子活性成分”是指提供抗微生物的杀灭(cidal)活性的化合物。

[0030] 术语“烷基”是指具有特定碳原子数的直链或支链的单价烃基。此处所使用的“烷基”是指直链或支链的取代或未取代的Cn-C18碳链。

[0031] 术语“微生物”或“微生物菌落”是指实验室或自然环境中的细菌，真菌，酵母，或病毒菌落群或其组合，或者其任何混合物。

[0032] 术语“表面活性剂”或“表面活性试剂”是指可加入到液体中时改变表面或界面处液体性能的有机化学品。

[0033] “清洁”是指执行或辅助除污，漂白，微生物菌落减少，漂洗，或其组合。

[0034] 此处所使用的术语“基本上不含”是指组合物完全不含该组分或者具有如此小含量的该组分以至于该组分不影响组合物的功效。该组分可以以杂质形式或者以污染物形式存在，且应当小于0.5wt％。在另一实施方案中，该组分的用量小于0.1wt％，在再一实施方案中，该组分的用量小于0.01wt％。

[0035] 此处所使用的术语“硬表面”包括任何环境表面或结构表面，其中包括淋浴器，水槽，厕所，浴缸，厨房工作台面，窗户，镜子，运输车辆，地板，和类似物。这些表面可以是典型地作为“硬表面”的那些（例如，墙壁，地板，便盆等）。

[0036] 此处所使用的术语“可稀释的浓缩物”是指水或其他稀释剂可加入其中的溶液；该溶液在可稀释的浓缩形式可以是基本上不含水或其他合适的稀释剂，或者可以不是基本上不含水或其他合适的稀释剂。

[0037] 此处所使用的术语“使用溶液”是指在打算使用的浓度下发现的具有各成分的组合物。使用溶液可以以“现成使用”形式提供，且不需要事先稀释或者由稀释浓缩物生成。

[0038] 应当注意，在本说明书和所附权利要求书中所使用的单数形式“一个”，“一种”和“该”（“a”，“an”，和“the”）包括多个提到物，除非该内容另外清楚地指示。因此，例如，提到含有“一种化合物”的组合物包含两种或更多种化合物的混合物。还应当注意术语“或”通常以包括“和/or”的意义使用，除非该内容另外清楚地指示。

[0039] 术语“活性成分百分数”或“活性成分%”或“活性成分浓度”此处可互换使用，且是指在清洁中涉及的那些成分的浓度，它以减去惰性成分，例如水或盐的百分数形式表达。

[0040] 含有阳离子活性化合物和季胺碱衍生的表面活性剂的抗微生物组合物

[0041] 本发明涉及抗微生物组合物，它显示出快速的功效和高的起泡特性。该抗微生物
组合物包含阳离子活性成分，季化糖衍生物的表面活性剂，泡沫促进表面活性剂（所述泡沫促进表面活性剂包括非离子表面活性剂，两性表面活性剂，选择的阴离子表面活性剂，或阳离子表面活性剂），和水或其他合适的稀释剂。

[0042] 在一个实施方案中，抗微生物的硬表面可稀释的浓缩组合物包含 (a) 约 0.5 wt%—约 20 wt% 的阳离子活性成分；(b) 约 0.2 wt%—约 50 wt% 的季化糖衍生物的表面活性剂；(c) 约 0.2 wt%—约 18 wt% 的任选的泡沫促进表面活性剂；(d) 任选的助剂，和 (e) 水或其他合适的稀释剂。阳离子活性成分与季化糖表面活性剂与泡沫促进表面活性剂的相对重量比为约 1:0.2—0.2—约 1:3:8。

[0043] 在进一步的实施方案中，硬表面的抗微生物使用溶液组合物包含：(a) 约 50 ppm—约 5000 ppm 重量的阳离子活性成分 (b) 约 50 ppm—约 2500 ppm 重量的季化糖衍生物的表面活性剂；(c) 约 50 ppm—约 10,000 ppm 重量的任选的泡沫促进表面活性剂；(d) 任选的助剂，和 (e) 水或其他合适的稀释剂。

[0044] 本发明的另一方面是提供抗微生物的硬表面组合物，且稳定，且 pH 为约 7.0—约 12.0。本发明的组合物可任选地显示出额外的性能，例如丰富的泡沫和泡沫稳定性，且可显示出降低的组织刺激潜力。

[0045] 本发明的另一方面是提供基于本发明的抗微生物组合物的硬表面消毒产品，例如高度起泡的硬表面消毒清洁剂，高度起泡的硬表面杀菌清洁剂，浴盆和瓷砖清洁剂和类似物。

[0046] 以下阐述了本发明的非限定性实施方案。

[0047] A. 阳离子活性成分

[0048] 阳离子活性成分存在于抗微生物浓缩组合物中用以降低本发明硬表面上的微生物菌落，其用量为组合物重量的约 0.5 wt%—约 20 wt%，和优选约 2 wt%—约 18 wt%。

[0049] 另外，阳离子活性成分以约 50 ppm—约 5000 ppm，和优选约 100 ppm—约 2500 ppm 的用量存在于抗微生物的使用溶液组合物内，用以降低本发明硬表面上的微生物菌落。

[0050] 在组合物中的抗微生物剂的用量与组合物的最终用途，组合物内季化糖衍生物的表面活性剂和泡沫促进表面活性剂的用量，和组合物内存在的任选的成分有关。抗微生物剂的用量足以实现在短接触时间，例如 15—30 秒内的微生物杀灭。

[0051] 阳离子活性成分是可用于本发明的抗微生物剂。阳离子或阳离子—活性的成分是基于具有正电荷的以氮为中心的阳离子部分的物质。阳离子或阳离子—活性的成分优选选自具有至少一个阳离子或阳离子—活性的基团的阳离子聚合物，阳离子表面活性剂，阳离子单体，和醋酸盐。

[0052] 合适的阳离子活性成分含有季铵基。合适的阳离子活性成分特别地包括下述通式的那些：

[0053] \[\text{N}^{+}(R^1)^{+}(R^2)^{+}(R^3)^{+}(R^4)^{+} \]

[0054] 其中 R^1, R^2, R^3 和 R^4 彼此独立地表示烷基，脂族基团，芳族基团，烷氧基，烷基酰胺基，羟烷基，芳基，R^+ 离子，其中各自具有 1—22 个碳原子，条件是 R^1, R^2, R^3 和 R^4 基团中的至少一个具有至少 8 个碳原子，和其中 X^{–} 表示阴离子，例如卤离子，醋酸根，磷酸根，硝酸根，或烷基磷酸根，优选氯离子。脂族基团除了含有碳和氢原子以外，也可含有交联或其他基团，例如额外的氨基。
[0055] 阳离子活性成分可包括但不限于正烷基二甲基苄基氯化铵，烷基二甲基乙基苄基氯化铵，二烷基二甲基季铵化合物，例如双癸基二甲基氯化铵，双辛基双癸基氯化铵，还包括季铵化合物，例如氯化苄乙铵和具有无机或有机抗衡离子例如溴，碳酸根或其他部分的季铵化合物，其中包括二烷基二甲基碳酸铵，以及抗微生物的胺，例如 N，N- 双 (3- 氨丙基) 十二烷基胺，其他烷基胺，葡萄糖酸洗必泰，PMB (聚己亚甲基双胍)，双胍盐，取代的双胍衍生物，含季铵化合物的有机盐，或者含季铵化合物的无机盐，或其混合物。

[0056] B. 季铵化的表面活性剂

[0057] 另外，本发明的抗微生物硬表面组合物含有用量为可稀释浓缩组合物重量约 0.2% ~ 约 50%，和优选约 0.5~约 12% 的季铵化合物的表面活性剂。

[0058] 而且，本发明的抗微生物的硬表面组合物含有用量为使用溶液组合物的约 50ppm ~ 约 2500ppm，和优选约 50ppm ~ 约 500ppm 的季铵化的表面活性剂。

[0059] 在组合物中存在的季铵化的表面活性剂的用量与组合物内阳离子活性成分的用量、季铵化的表面活性剂的性质和组合物的最终用途有关。

[0060] 季铵化的表面活性剂是季铵化的烷基聚糖苷或聚季铵的烷基聚糖苷和类似物。

[0061] 在一个实施方案中，本发明的抗微生物组合物包含聚季铵化烷基聚糖苷，烷基活性成分，水或其他合适的稀释剂，和任选的泡沫促进表面活性剂。季铵化烷基聚糖苷是由烷基聚糖苷自然衍生且具有糖主链的阳离子表面活性剂。季铵化烷基聚糖苷具有下述代表性化学式：

![化学结构式]

[0063] 其中 R 是具有约 6~约 12 个碳原子的烷基，和 n 是范围为 4~6 的整数。可在本发明的清洁组合物中使用的合适的聚季铵化烷基聚糖苷组合实例包括其中 R 烷基部分含有约 8~约 12 个碳原子的那些。在优选的实施方案中，季铵化烷基聚糖苷主要含有约 10~12 个碳原子。可用于本发明的清洁组合物中的商业合适的聚季铵化烷基聚糖苷的实例包括但不限于：Poly Suga® Quat 系列季铵化烷基聚糖苷，其获自位于 South Pittsburg, TN 的 Colonial Chemical, Inc.

[0064] 在另一实施方案中，本发明的抗微生物组合物包含季铵化烷基聚糖苷，阳离子活性成分，水或其他合适的稀释剂，和任选的泡沫促进表面活性剂。季铵化烷基聚糖苷是由烷基聚糖苷自然衍生且具有糖主链的阳离子表面活性剂。季铵化烷基聚糖苷具有下述代表性化学式：

[0065]
其中 R_1 是具有约 6-约 22 个碳原子的烷基，和 R_2 是 $CH_3(CH_2)_n'$，其中 n' 是范围为 0-21 的整数。可在本发明的清洁组合物中使用的合适的季侓化烷基聚糖基组分的实例包括其中 R_1 烷基部分主要含有约 10-12 个碳原子，R_2 是 CH_3 和 n 是聚合度 1-2 的那些。合适的季侓化烷基聚糖基的进一步的实例包括但不限于在美国专利 No. 7, 084, 129 和 7, 507, 399 中描述的抗微生物和抗真菌的季侓化烷基聚糖基，其公开内容在此通过参考引入。可用于本发明清洁组合物的商业上合適的季侓化烷基聚糖基的实例包括但不限于获得自位于 South Pittsburg, TN 的 Colonial Chemical, Inc. 的 Suga Quat TM1212（主要 C12 季侓化烷基聚糖基），Suga Quat L1210（主要 C12 季侓化烷基聚糖基），和 Suga Quat S1218（主要 C12 季侓化烷基聚糖基）。

C. 泡沫促进助表面活性剂

另外，本发明的抗微生物的硬表面组合物可任选地含有用量为组合物重量的 0%-约 18%，和优选约 0%-约 9% 的泡沫促进助表面活性剂。

而且，本发明的抗微生物硬表面组合物可任选地含有用量为约 50ppm-约 3500ppm，和优选约 50ppm-约 500ppm 的泡沫促进助表面活性剂。

在组合物内存在的泡沫促进助表面活性剂的用量与组合物内阳离子活性成分的用量、组合物内季侓化衍生物的表面活性剂的用量，泡沫促进助表面活性剂的特性，和组合物的最终用途有关。

泡沫促进助表面活性剂可以是 (a) 非离子表面活性剂，(b) 两性表面活性剂，(c) 选择的阴离子表面活性剂，(d) 阳离子表面活性剂和类似物，或 (e) 其混合物。

非离子泡沫促进助表面活性剂

非离子泡沫促进助表面活性剂的实例包括但不限于烷基胺氧化物，烷基醚胺氧化物，烷基醚二胺，烷基醇烷氧化物，芳基醇烷氧化物，取代的醇烷氧化物，嵌段非离子共聚物：混嵌 (heteric) 非离子共聚物，烷醇酰胺，或聚乙氧基甘油酯。

抗微生物组合物可含有非离子表面活性剂组分，所述非离子表面活性剂组分包括清洁量的非离子表面活性剂或非离子表面活性剂的混合物。典型地，非离子表面活性剂具有疏水区域，例如长链烃基或烷化芳基，和含乙氧基和 / 或其他亲水部分的亲水基团。此处定义的“非离子泡沫促进助表面活性剂”具有带含 6-18 个碳原子的烷基和平均 1-约 20 个乙氧基和 / 或丙氧基部分的疏水区域。非离子泡沫促进助表面活性剂的实例包括但不限于烷基胺氧化物，烷基醚胺氧化物，烷基醇烷氧化物，芳基醇烷氧化物，取代的醇烷氧化物，嵌段非离子共聚物，混嵌非离子共聚物，烷醇酰胺，或聚乙氧基甘油酯，及其混合物。

在 McCutcheon Division, MC Publishing Co., Glen Rock, N.J. 出版的

[0076] 本发明基本上不含烷基苯酚乙氧基化物。此处所使用的术语“不含烷基苯酚乙氧基化物”或“不含 NP 基”是指不含烷基苯酚乙氧基化物或含苯酚化合物或不向其中添加它们的组合物，混合物或各成分。若烷基苯酚乙氧基化物或含有烷基苯酚乙氧基化物的化合物因组合物、混合物或各成分污染而存在，则含量小于 0.5wt%。若在其他实施方案中，该含量小于 0.1wt%，和在再一实施方案中，含量小于 0.01wt%。

[0077] 二性泡沫促进表面活性剂

[0078] 本发明所使用的术语“二性泡沫促进表面活性剂”包括但不限于米唑啉和咪唑啉衍生物，羟乙磺酸盐，甜菜碱衍生物，二性醚酸盐衍生物，及其混合物。

[0079] 阴离子泡沫促进表面活性剂

[0080] 本发明所使用的术语“阴离子泡沫促进表面活性剂”包括但不限于米唑啉和咪唑啉衍生物，羟乙磺酸盐，甜菜碱衍生物，二性醚酸盐衍生物，及其混合物。

[0081] 阳离子泡沫促进表面活性剂

[0082] 本发明所使用的术语“阳离子泡沫促进表面活性剂”包括但不限于米唑啉和咪唑啉衍生物，羟乙磺酸盐，甜菜碱衍生物，二性醚酸盐衍生物，及其混合物。

[0083] D. 载体

[0084] 本发明的抗微生物组合物中的载体包括水或其他合适的稀释剂，丙二醇，甘油，醇或其混合物。应理解，水可以以去离子水或以软化水形式提供。以浓缩物的一部分形式提供的水可相对不具有硬度。认为水可被去离子化，以除去一部分溶解的固体。也就是说，可采用含溶解的固体的水配制浓缩物，且可采用可表征为硬水的水，配制浓缩物。

[0085] 本发明的抗微生物组合物不依赖于低 pH 或高 pH 来提供微生物菌落的快速下降。本发明的微生物菌落的 pH 为约 5.0-约 12.0。在这一 pH 范围内，本发明的组合物有效地减少微生物菌落，且是消费者可接受的，即对皮肤温和，相稳定，且生成丰富的稳定泡沫。

[0086] E. 额外的功能物质

[0087] 所述微生物组合物可包括额外的组分或试剂，例如额外的功能物质。因此，在一些实施方案中，含阳离子活性成分和季铵产物的表面活性剂的抗微生物组合物可提供大量
或者甚至全部的抗微生物组合物总重量，例如在具有很少或者不具有额外功能物质安排在
其内的实施方案中。功能物质提供给抗微生物组合物所需的性能和功能。对于本申请的目
的来说，术语“功能物质”包括当分散或溶解在使用和/或浓缩溶液中时，在
特定用途中提供有益性能的物质。含有阳离子活性成分和季化硫衍生的表面活性剂的抗微
生物组合物可选择地含有其他消毒剂，消毒杀菌剂，染料，增稠或胶凝剂，和香料。以下更
详细地讨论了功能物质的一些特定实例，但本领域和其他领域的技术人员应当理解，所讨论
的特定物质仅仅以实例形式给出，和可使用广泛的各种其他功能物质。例如，以下讨论的许
多功能物质涉及在消毒和/或清洁应用中使用的物质，但应当理解，其他实施方案可包括
在其他应用中使用的功能物质。

[0088] 染料和香料

[0089] 与本发明的化学相容的各种染料，香味剂（其中包括香料），和其他美学加强剂也
可包括在抗微生物组合物内。可包括在组合物内的芳香剂或香料包括例如酯类，例如香茅
醇，醛类，例如戊基肉桂醛，茉莉，例如CIS-茉莉或乙酸苄酯，香草醛和类似物。

[0090] 聚合剂 - 整合剂和多价聚合物

[0091] 在一些实施方案中，所述抗微生物组合物可任选地包括聚合剂。聚合剂促成水调
节和二价离子从污物中除去。聚合剂可包括无机聚合物，有机聚合物，及其混合物。无机
聚合物包括但不限于以下所述的化合物：焦磷酸钠和三聚磷酸钠。有机聚合物包括但不限于
聚合物和小分子聚合剂这二者。小分子有机聚合剂包括氨基羧酸盐，例如下述酸或
盐：乙二胺四乙酸（EDTA）和羟基乙二胺四乙酸（HEDTA），二亚乙基三胺五乙酸（DTPA），次氮
基三乙酸（NTA），甲基甘氨酸二乙酸（MGDA），谷氨酸-N，N-二乙酸，乙二胺琥珀酸（EDDA），
2-羟基乙酰氨基二乙酸（HEIDA），亚氨基二琥珀酸（IDS），3-羟基-2，2'-亚氨基二琥珀酸
（HIDS），二乙胺四丙酸盐，三亚乙基四胺六乙酸，及其代表性碱金属盐，铵盐和取代的铵盐。
膦酸盐也适合于在本发明组合物中用作聚合剂且包括但不限于乙二胺四（亚甲基膦酸盐），次氮基三亚甲基膦酸盐，二亚乙基三胺五（亚甲基膦酸盐），羟基偏亚乙基二膦酸盐（HEDP），异丙基甲基膦酸（IMPA）和2-膦酰基丁烷-1,2,4-三
甲酸（PBTC）。

[0092] 助剂

[0093] 本发明也可包括任何数量的助剂。在一个实施方案中，助剂的存在量为组合物重
量的约0%-约40%，优选约0.2%-约20%。具体地，尤其在可加入到抗微生物组合物中的
任何数量的其他成分当中，抗微生物组合物可包括溶剂和渗透剂，甘油，山梨醇，酯，聚季铵
（polyquats），二元醇，防腐剂，聚合物，pH添加剂，颜料或染料。这些助剂可与本发明的组
合物一起预配制，或者在添加本发明组合物的同时或者甚至之后加入到体系中。抗微生物
组合物也可含有应用所需的任何数量的其他成分，这些成分是已知的且可有助于本发明的
活性。

[0094] 本发明的实施方案

[0095] 本发明的抗微生物组合物具有高度宽谱的抗微生物功效，高的泡沫和降低的对哺
乳动物组织的刺激性。下表中提供了例举的组合物。

[0096] 抗微生物硬表面清洁剂

[0097] 表1-中性的消毒清洁剂例举组合物（重量百分数）
<table>
<thead>
<tr>
<th>成分</th>
<th>实例</th>
<th>最宽范围(%w/w)</th>
<th>最窄范围(%w/w)</th>
<th>使用范围(消毒到杀菌)(ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>下限 下限</td>
<td>上限 上限</td>
<td>下限 上限</td>
</tr>
<tr>
<td>阳离子活性成分</td>
<td>双癸基氯化铵；烷基二甲基苄基氯化铵</td>
<td>1.0 20.0</td>
<td>3.0 18.0</td>
<td>50.0 2000.0</td>
</tr>
<tr>
<td>季化糖衍生的表面活性剂</td>
<td>季官能化烷基聚糖苷或聚季官能化烷基聚糖苷</td>
<td>0.2 50.0</td>
<td>0.9 12.0</td>
<td>50.0 500.0</td>
</tr>
<tr>
<td>泡沫促进表面活性剂</td>
<td>辛基胺氧化物</td>
<td>0.0 18.0</td>
<td>0.0 9.0</td>
<td>100.0 500.0</td>
</tr>
<tr>
<td>助剂</td>
<td>镁合剂，pH 增加剂，染料，香料</td>
<td>0.0 12.0</td>
<td>0.2 12.0</td>
<td>100.0 1000.0</td>
</tr>
</tbody>
</table>

表 2 可稀释的中性消毒清洁剂的例举组合物（重量比）
表 3- 碱性消毒清洁剂的例举组合物（重量百分数）

<table>
<thead>
<tr>
<th>成分</th>
<th>实例</th>
<th>浓缩物(在 0.5~2oz/gal 下可稀释)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>最宽范围(%w/w)</td>
</tr>
<tr>
<td>阳离子活性成分</td>
<td>烷基二甲基苄基氯化铵；烷基二甲基乙基苄基氯化铵</td>
<td>1.0</td>
</tr>
<tr>
<td>季化糖衍生的表面活性剂</td>
<td>季官能化烷基聚糖苷或聚季官能化烷基聚糖苷</td>
<td>0.2</td>
</tr>
<tr>
<td>泡沫促进表面活性剂</td>
<td>两性醇乙氧化物</td>
<td>0.0</td>
</tr>
<tr>
<td>助剂</td>
<td>髦合剂，pH添加剂，染料，香料</td>
<td>0.0</td>
</tr>
</tbody>
</table>

表 4- 可稀释的碱性消毒清洁剂的例举组合物（重量比）

<table>
<thead>
<tr>
<th>成分</th>
<th>实例</th>
<th>最宽范围(重量比)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>最窄范围(重量比)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>下限</td>
</tr>
<tr>
<td>阳离子活性成分</td>
<td>烷基二甲基苄基氯化铵；烷基二甲基乙基苄基氯化铵</td>
<td>1.0</td>
</tr>
<tr>
<td>季化糖衍生的表面活性剂</td>
<td>季官能化烷基聚糖苷或聚季官能化烷基聚糖苷</td>
<td>0.2</td>
</tr>
<tr>
<td>泡沫促进表面活性剂</td>
<td>两性醇乙氧化物</td>
<td>0.0</td>
</tr>
<tr>
<td>助剂</td>
<td>髞合剂，pH添加剂，染料，香料</td>
<td>0.0</td>
</tr>
</tbody>
</table>

表 5- 浴盆和瓷砖清洁剂的例举组合物（重量百分数）
<table>
<thead>
<tr>
<th>成分</th>
<th>实例</th>
<th>最宽范围(%w/w)</th>
<th>最窄范围(%w/w)</th>
<th>使用范围(消毒到杀菌)(ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>下限 上限</td>
<td>下限 上限</td>
<td>下限 上限</td>
</tr>
<tr>
<td>阳离子活性成分</td>
<td>双癸基氯化铵和烷基二甲基苄基氯化铵</td>
<td>0.5 7.0</td>
<td>2.0 7.0</td>
<td>50.0 5000.0</td>
</tr>
<tr>
<td>季化糖衍生的表面活性剂</td>
<td>季官能化烷基聚糖苷或聚季官能化烷基聚糖苷</td>
<td>0.2 17.5</td>
<td>0.5 5.0</td>
<td>50.0 2500.0</td>
</tr>
<tr>
<td>泡沫促进表面活性剂</td>
<td>醇乙氧化合物，烷基聚糖苷，胺氧化合物</td>
<td>0.0 7.0</td>
<td>0.0 3.5</td>
<td>0.0 3500.0</td>
</tr>
<tr>
<td>助剂</td>
<td>整合剂，pH添加剂，染料，香料</td>
<td>0.0 40.0</td>
<td>0.0 20.0</td>
<td>50.0 10000.0</td>
</tr>
</tbody>
</table>

[0107] 表6-可稀释的浴盆和瓷砖清洁剂的例举组合物（重量比）

[0108]

<table>
<thead>
<tr>
<th>成分</th>
<th>实例</th>
<th>最宽范围(重量比)</th>
<th>最窄范围(重量比)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>下限 上限</td>
<td>下限 上限</td>
</tr>
<tr>
<td>阳离子活性成分</td>
<td>双癸基氯化铵和烷基二甲基苄基氯化铵</td>
<td>1.0 1.0</td>
<td>1.0 1.0</td>
</tr>
<tr>
<td>季化糖衍生的表面活性剂</td>
<td>季官能化烷基聚糖苷或聚季官能化烷基聚糖苷</td>
<td>0.2 2.5</td>
<td>0.25 0.7</td>
</tr>
<tr>
<td>泡沫促进表面活性剂</td>
<td>醇乙氧化合物，烷基聚糖苷，胺氧化合物</td>
<td>0.0 1.0</td>
<td>0.0 0.5</td>
</tr>
<tr>
<td>助剂</td>
<td>整合剂，pH添加剂，染料，香料</td>
<td>0.0 5.7</td>
<td>0.0 2.8</td>
</tr>
</tbody>
</table>

[0109] 可以以固体，液体或凝胶，其组合形式提供本发明的浓缩物组合物。在一个实施方案中，可以以浓缩物形式提供清洁组合物，以便该清洁组合物基本上不含任何添加的水。
或其他合适的稀释剂，或者浓缩物可含有标称量的水或其他合适的稀释剂。可在没有任何水或其他合适的稀释剂的情况下，配制该浓缩物，或者可与相对小量的水或其他合适的稀释剂一起提供，以便降低浓缩物的运输成本。例如，可以以或者被水溶性材料容纳或者没有被水溶性材料容纳的压缩粉末、固体或松散粉末的胶囊或颗粒形式提供组合物浓缩物。在材料内提供组合物的胶囊或颗粒情况下，该胶囊或颗粒可引入到一定体积的水或其他合适的稀释剂中，若存在的话，水溶性材料可溶化，溶解或分散，以允许组合物浓缩物与水接触。对于本发明公开内容的目的来说，术语“胶囊”和“粒料”以示例目的使用且不打算限制本发明的递交模式到特定形状上。

[0110] 当以液体浓缩物组合物形式提供时，可使用吸器、蠕动泵、齿轮泵、质量流量计
和类似物，通过分配设备稀释该浓缩物。这一液体浓缩物实施方案也可以在瓶子，罐，计量
瓶，具有计量盖的瓶子和类似物内递送。可将液体浓缩物组合物填充到多腔室的操作盒插件内，然后将上述多腔室的操作盒插件置于用预测量量的水或其他合适的稀释剂填充的喷
雾瓶或其他递送装置内。

[0111] 在再一实施方案中，可以以固体形式提供浓缩物组合物，所述固体形式抗碎或者
其他降解，直到置于容器内。这一容器可以用水或其他合适的稀释剂填充，之后将组合物
浓缩物置于容器内，或者在组合物浓缩物置于容器内之后，所述容器可用水或其他合适的
稀释剂填充。在任何一种情况下，一旦与水或其它合适的稀释剂接触，则固体浓缩物组合
物溶解，增溶，或者崩解。在特定的实施方案中，固体浓缩物组合物快速溶解，从而允许浓
缩物组合物变为使用组合物，和进一步允许最终用户施加该使用组合物到需要清洁的表面上。当固体形式提供清洁组合物时，可以通过本领域已知的任何措施硬化清洁组合物的方式，改变此处提供的组合物。例如，水或其他合适的稀释剂的用量可下降或者可添加额外的成分例如硬化剂到清洁组合物中。

[0112] 在另一实施方案中，可通过分配设备，稀释固体浓缩物组合物，从而在固体块形成
使用溶液时喷洒水或其他合适的稀释剂。使用机械，电子或液压控制和类似方式，以相对恒
定的速度递送稀释剂流。也可通过分配设备稀释固体浓缩物组合物，从而稀释剂在固体块
周围流动，当固体浓缩物溶解时产生使用溶液。也可通过粒料，片剂，粉末和糊剂分配器和
类似物，稀释固体浓缩物组合物。

[0113] 认为可用水或其他合适的稀释剂稀释浓缩物，提供具有所需清洁性能水平的使用
溶液。若要求使用溶液除去顽固或厚重的污物，则认为可用稀释水以至少1:1到最多1:32
或1:64的重量比稀释浓缩物。若想要轻垢清洁的使用溶液，则认为可在浓缩物与稀释水的
重量比为最多约1:256下稀释浓缩物。

[0114] 液体形式的浓缩物可含有充足相溶的稀释剂，以使得该液体浓缩物能容易地转化
成使用溶液。这可能是克服了稀释变量，例如低体积的分配，或浓缩物粘度以及在稀释剂内
的分散和混合。当以液体形式提供浓缩物时，可期望以可流动形式提供它，以便它可被泵送
或者抽吸。已发现，通常难以精确地泵送小量液体。通常更加有效的是泵送较大的液体。因
此，尽管期望提供具有尽可能少的稀释剂的浓缩物以便降低运输成本，但还期望提供可精
确地分配的浓缩物。在液体浓缩物的情况下，预期稀释剂的存在量为最多约90wt%，尤其
约20wt%约85wt%，更尤其约30wt%约80wt%，和最尤其约50wt%约80wt%。

[0115] 本发明的组合物可用于清洁各种硬表面。硬表面包括但不限于陶瓷，陶瓷砖，水泥...
浆，花岗岩，混凝土，镜子，上釉的表面，金属，其中包括铝，黄铜，不锈钢和类似物。因此，本发明的组合物可用于配置硬表面抗微生物消毒剂或消毒杀菌剂以供在教育设施，健康护理设施等的硬表面杀菌和消毒使用，釉面砖，水泥浆，瓷器，不锈钢，黄铜，抛光木材和上漆表面，聚合物表面，玻璃和塑料的硬表面消毒。

实施例

[0116] 在下述实施例中具体地描述了本发明，所述实施例仅仅说明实施本发明，这是因为在本发明范围内的许多改性和发展对本领域技术人员来说是显而易见的。除非另有说明，在下述实施例中报道的所有份，百分数，和比值均以重量为基础，和在实施例中所使用的试剂获得或者可获自以下所述的供应商。或者可通过常规技术合成。

[0117] 在所述实施例中使用的材料包括但不限于硬脂基二甲铵-羟基丙基月桂基葡糖苷氯化物，椰油葡糖苷羟基丙基三甲基氯化铵，月桂基葡糖苷羟基丙基-三甲基氯化铵，聚（月桂基二甲铵-羟基丙基癸基葡萄糖苷氯化物），聚（硬脂基二甲铵-羟基丙基癸基葡萄糖苷氯化物），聚（硬脂基二甲铵-羟基丙基月桂基葡萄糖苷氯化物），聚（三甲铵-羟基丙基椰油葡糖苷氯化物）。

[0118] 在实施例的制备和测试中，使用下述方法：

[0119] 抗微生物和微生物功效：

[0120] (1) 测定时间杀菌活性：

[0121] (a) 通过时间杀菌方法 [ASTM E 2315 Standard Guide for Assessment of Antimicrobial Activity Using a Time Kill Procedure]，测量抗微生物组合物的活性，于是作为时间的函数，阻止暴露于抗微生物试验组合物下的挑战有机物的存活。在这一试验中，稀释的等分组合物与试验细菌的已知菌落在规定的温度下接触规定的时间段。在该时间段最后，中和试验组合物，所述中和会抑制组合物的抗微生物活性。计算从起始的细菌菌落起下降的百分数或 log 下降。一般地，时间杀菌方法是本领域技术人员已知的。另外，示出了在代表性体系的泡沫概念的对比数据。

[0122] (b) 可在 0.01-100% 的任何浓度下，测试组合物。使用浓度的选择任凭研究者处理，和本领域的技术人员容易确定合适的浓度。若进行三次试验，则结合所有测试的结果，并报道平均 log 下降（对数下降）。

[0123] (c) 接触时间段的选择任凭研究者处理。可选择任何接触时间段。典型的接触时间范围为 15 秒 -5 分钟，且 30 秒-1 分钟是典型的接触时间。接触温度也可以是任何温度，典型的室温，或者约 25℃。

[0124] (d) 通过在任何合适的固体介质（例如，琼脂）上生长微生物培养物，制备微生物悬浮液或试验接种体。然后用灭菌生理盐水从琼脂中洗涤微生物菌落，并调节微生物悬浮液的菌落为约 10^6 菌落形成单位 /ml (cfu/ml)。

[0125] (e) 下表列出了在下述试验中所使用的试验微生物培养物，且包括细菌名，ATCC (American Type Culture Collection) 标识号，和之后所使用的有机物名称的缩写。
金黄色葡萄球菌 | 6538 | S. aureus
大肠杆菌 | 11229 | E. coli

[0127] 金黄色葡萄球菌是革兰氏阳性细菌，而大肠杆菌是革兰氏阴性细菌。
[0128] 使用下式，计算对数下降：
[0129] \[\log \text{下降} = \log_{10}(\text{对照物数量}) \] - \[\log_{10}(\text{试样存活者}) \]。
[0130] 下表将微生物菌落的下降百分率与对数下降相关联：

<table>
<thead>
<tr>
<th>下降百分率</th>
<th>对数下降</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>1</td>
</tr>
<tr>
<td>99</td>
<td>2</td>
</tr>
<tr>
<td>99.9</td>
<td>3</td>
</tr>
<tr>
<td>99.99</td>
<td>4</td>
</tr>
<tr>
<td>99.999</td>
<td>5</td>
</tr>
</tbody>
</table>

[0132] (2) 通过 AOAC Germicidal Spray Test，测定消毒：
[0133] (a) 使用 AO AC961.2Germicidal Spray Products as Disinfectants 试验，评价消毒的测定。在许多清洁、灭菌的玻璃表面（例如，显微镜载片）上，干燥细菌培养物。在施加到试验表面上之前，培养物可以用或者可以不用有机土改良。
[0134] (b) 将干燥、污染的试验表面置于辅助容器（例如培养皿）内，并用试验产品独立地喷洒。可用消毒剂试验产品处理 10 个或者 60 个污染的表面。
[0135] (c) 将污染的试验表面暴露于消毒剂下规定的接触时间。
[0136] (d) 紧跟在该接触时间之后，将处理过的试验表面独立地转移到灭菌试验管中，所述灭菌试验管含有包含合适中和剂的生长介质。
[0137] (e) 在中和介质内，培养处理过的试验表面 48 小时。
[0138] (f) 与没有显示出生长的那些相比，在培养之后记录显示出目标有机物生长的试管数。

[0139] 泡沫高度测定
[0140] 采用下述工序步骤，测定泡沫高度：
[0141] 1. 在 5g 水中制备 1% 的产物溶液。
[0142] 2. 倾倒 150mL 该溶液到密闭器内。
[0143] 3. 中速混合 10 秒。
[0144] 4. 倾倒在 1000mL 烧杯内并测量泡沫高度。
[0145] 5. 在 3 和 5 分钟时测量泡沫高度。
[0146] 泡沫稳定性测定
[0147] 在倾倒 1% 溶液到 1000mL 烧杯内之后 5 分钟，通过利用泡沫 / 空气界面和泡沫 /
水溶液界面之间的差别，测定泡沫稳定性。

【0148】 体外刺激性测定

【0149】 使用Matek Corporation的“EpiDerm MTT ET-50 Protocol (EPI-200)”，通过外部测试设施，评估体外刺激性。

【0150】 该试验由纯试验化学晶局部暴露于重构人类表皮（RhE）模型下，接着进行细胞存活试验组成。通过在细胞线粒体内存在的MTT [(3-4,5-二甲基噻唑-2-基)2,5-二苯基四唑锆溴化物] 的脱氢酶转化成蓝色甲臁的盐，在从组织中提取之后定量地测量所述盐，从而测量细胞存活率。与阴性对照物（水处理过）相比，使用暴露于化学晶下的组织的存活率下降来预测皮肤的刺激潜力。

【0151】 通过培育释放运输 - 应力有关的化合物和碎片 (debris) 过夜，调节EpiDerm组织。在预培育之后，将组织局部暴露于试验化学晶下 60 分钟。优选地，针对每一试验化学晶 (TC)，和对于阳性对照物 (PC) 和阴性对照物 (NC)，使用三个组织。然后待照漂洗组织，吸干以除去试验物质，并转移到新鲜介质中。培育组织 42 小时。之后，在3hr MTT 培育之后，通过将组织转移到含有 MTT 介质 (1mg/ml) 的 24-孔板中，进行 MTT 分析。用 2.0ml/组织的异丙醇提取由细胞线粒体形成的蓝色甲臁盐，并使用分光光度计，在 570nm 下测定提取的甲臁的光学密度。对于每一组织来说，发%阴性对照组织的平均值形式，计算相对细胞存活率。若其余相对细胞存活率低于 50%，则预测试验材料的皮肤刺激潜力。

【0152】 下述附图证明了使用各种阳离子活性成分，季化糖衍生的表面活性剂和任选的泡沫促进表面活性剂，本发明的抗微生物组合物的功效数据。表 7 和图 1（阳离子活性成分的对数下降）。

【0154】 表 7 和图 1 阐述了在 30 秒暴露时间之后，在代表性表面活性剂体系内的三种不同的阳离子活性成分，具体地，0.5%Quat (氯苯烷铵)，2%CHG (葡萄酸洗必泰)，和 1%PHMB (聚六亚甲基双胍) 的功效。

【0155】 表 7 阐述了所测试的三种阳离子活性成分体系的配方。季化糖衍生的表面活性剂和泡沫促进表面活性剂二者均保持恒定，和仅仅阳离子活性成分在所进行的三个试验之间变化。图 1 中阐述了结果。
说明书

<table>
<thead>
<tr>
<th>活性成分体系</th>
<th>成分</th>
<th>含量(％w/w)</th>
</tr>
</thead>
<tbody>
<tr>
<td>季铵化合物(Quat)</td>
<td>活性成分</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>季化糖衍生的表面活性剂</td>
<td>1.25</td>
</tr>
<tr>
<td></td>
<td>泡沫促进剂</td>
<td>1.95</td>
</tr>
<tr>
<td>葡糖酸洗必泰(CHG)</td>
<td>活性成分</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>季化糖衍生的表面活性剂</td>
<td>1.25</td>
</tr>
<tr>
<td></td>
<td>泡沫促进剂</td>
<td>1.95</td>
</tr>
<tr>
<td>聚六亚甲基双胍 (PHMB)</td>
<td>活性成分</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>季化糖衍生的表面活性剂</td>
<td>1.25</td>
</tr>
<tr>
<td></td>
<td>泡沫促进剂</td>
<td>1.95</td>
</tr>
</tbody>
</table>

[0157] 表 7

[0158] 如图 1 所示, 在 30 秒的暴露时间内, 所有三种阳离子活性成分对金黄色葡萄球菌和大肠杆菌具有高的杀灭活性。

[0159] 表 8 和图 2 (季化糖衍生的表面活性剂的对数下降)：

[0160] 下表 8 阐述了这一试验的定量结果和图 2 阐述了图形结果。

表 8

<table>
<thead>
<tr>
<th>季化糖衍生的表面活性剂(％w/w)</th>
<th>活 性 成 分(％w/w)</th>
<th>泡沫促进剂(％w/w)</th>
<th>金黄色葡萄球菌的对数下降</th>
<th>大肠杆菌的对数下降</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3</td>
<td>0.5</td>
<td>1.95</td>
<td>>5.0</td>
<td>>5.0</td>
</tr>
<tr>
<td>1.3</td>
<td>0.5</td>
<td>1.95</td>
<td>>5.0</td>
<td>>5.0</td>
</tr>
<tr>
<td>2.5</td>
<td>0.5</td>
<td>1.95</td>
<td>3.2</td>
<td>>5.0</td>
</tr>
</tbody>
</table>

[0162] 表 8

[0163] 如表 8 和图 2 阐述的, 在仅仅暴露 30 秒之后, 季化糖衍生的表面活性剂对金黄色葡萄球菌和大肠杆菌细菌具有高的杀灭活性。此外, 显示出季化糖衍生的表面活性剂对细菌的耐受性。此外, 清楚地阐述了季化糖衍生的表面活性剂的浓度增加维持显著且非但不到地高的细菌对数下降, 直到季化糖衍生的表面活性剂与阳离子活性成分之比为 1 比 4。

[0164] 表 9 和图 3 (泡沫促进表面活性剂的对数下降)：

[0165] 表 9 和图 3 阐述了随着泡沫促进表面活性剂(具体地胺氧化物)的浓度增加的功
泡沫促进剂的活性成分对金黄色葡萄球菌的对数下降和大肠杆菌的对数下降。

表 9

<table>
<thead>
<tr>
<th>泡沫促进剂 (%)w/w</th>
<th>活性成分 (%)w/w</th>
<th>季化糖衍生的表面活性剂 (%)w/w</th>
<th>金黄色葡萄球菌的对数下降</th>
<th>大肠杆菌的对数下降</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.95</td>
<td>0.5</td>
<td>1.25</td>
<td>>5.5</td>
<td>>5.5</td>
</tr>
<tr>
<td>3.0</td>
<td>0.5</td>
<td>1.25</td>
<td>>5.5</td>
<td>>5.5</td>
</tr>
<tr>
<td>4.2</td>
<td>0.5</td>
<td>1.25</td>
<td>>5.5</td>
<td>>5.5</td>
</tr>
</tbody>
</table>

表 10（阳离子活性成分与季化糖衍生的表面活性剂和烷基二甲基胺氧化物结合的功效）

<table>
<thead>
<tr>
<th>季化糖衍生的表面活性剂 (1.25%w/w)</th>
<th>活性成分 (%)w/w</th>
<th>泡沫促进表面活性剂 (%)w/w</th>
<th>金黄色葡萄球菌的对数下降</th>
<th>大肠杆菌的对数下降</th>
</tr>
</thead>
<tbody>
<tr>
<td>(L8610)月桂基二甲铵羟丙基椰油葡萄糖苷氯化物</td>
<td>0.5</td>
<td>1.95</td>
<td>>5.0</td>
<td>>5.0</td>
</tr>
<tr>
<td>(L1210)月桂基二甲铵羟丙基月桂基葡萄糖苷氯化物</td>
<td>0.5</td>
<td>1.95</td>
<td>>5.0</td>
<td>>5.0</td>
</tr>
<tr>
<td>(S1218)硬脂基二甲铵羟丙基月桂基葡萄糖苷氯化物</td>
<td>0.5</td>
<td>1.95</td>
<td>>5.0</td>
<td>>5.0</td>
</tr>
<tr>
<td>(TM8610)椰油葡萄糖苷羟基三甲铵氧化物</td>
<td>0.5</td>
<td>1.95</td>
<td>>5.0</td>
<td>>5.0</td>
</tr>
<tr>
<td>(TM1212)月桂基葡萄糖苷羟基三甲铵氯化物</td>
<td>0.5</td>
<td>1.95</td>
<td>>5.0</td>
<td>>5.0</td>
</tr>
<tr>
<td>(L1010P)聚(月桂基二甲铵羟丙基癸基葡萄糖苷氯化物)</td>
<td>0.5</td>
<td>1.95</td>
<td>>5.0</td>
<td>>5.0</td>
</tr>
<tr>
<td>(S1010P)聚(硬脂基二甲铵羟丙基癸基葡萄糖苷氯化物)</td>
<td>0.5</td>
<td>1.95</td>
<td>>5.0</td>
<td>>5.0</td>
</tr>
<tr>
<td>(S1210P)聚(硬脂基二甲铵羟丙基月桂基葡萄糖苷氯化物)</td>
<td>0.5</td>
<td>1.95</td>
<td>>5.0</td>
<td>>5.0</td>
</tr>
<tr>
<td>(TM8610P)聚(三甲铵羟丙基椰油葡萄糖苷氯化物)</td>
<td>0.5</td>
<td>1.95</td>
<td>>5.0</td>
<td>>5.0</td>
</tr>
</tbody>
</table>
[0172] 表 10

[0173] 如表 10 阐述的，对于季化糖衍生的表面活性剂和聚季化糖衍生的表面活性剂二者来说，对金黄色葡萄球菌和大肠杆菌细菌的显著对数下降得到维持。可改变季化糖衍生的表面活性剂的链长且仍然维持高的功效。

[0174] 表 11, 12 和 13（用于硬表面测试的配方）：

[0175] 下表 11-13 阐述了对于针对对比泡沫体积和抗微生物功效进行的试验所使用的试验配方。

[0176] 表 11- 中性的消毒清洁剂浓缩物（pH: 7.2-8.5）

<table>
<thead>
<tr>
<th>组分</th>
<th>对照物(wt%)</th>
<th>配方 X(wt%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>水</td>
<td>83.04</td>
<td>83.04</td>
</tr>
<tr>
<td>助剂(螯合剂，pH 添加剂)</td>
<td>3.3</td>
<td>3.3</td>
</tr>
<tr>
<td>阳离子活性成分</td>
<td>10.16</td>
<td>10.6</td>
</tr>
<tr>
<td>泡沫促进表面活性剂</td>
<td>3.5</td>
<td></td>
</tr>
<tr>
<td>季化糖衍生的表面活性剂</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[0177] 表 12- 碱性消毒清洁剂浓缩物（pH: 10.8-11.8）

<table>
<thead>
<tr>
<th>组分</th>
<th>对照物(wt%)</th>
<th>配方 Y(wt%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>水</td>
<td>84.7</td>
<td>80.8</td>
</tr>
<tr>
<td>助剂(螯合剂，pH 添加剂)</td>
<td>5.2</td>
<td>5.2</td>
</tr>
<tr>
<td>阳离子活性成分</td>
<td>6.2</td>
<td>6.2</td>
</tr>
<tr>
<td>泡沫促进表面活性剂</td>
<td>3.9</td>
<td></td>
</tr>
<tr>
<td>季化糖衍生的表面活性剂</td>
<td></td>
<td>7.8</td>
</tr>
</tbody>
</table>

[0178] 表 13- 浴盆和瓷砖消毒清洁剂浓缩物（pH: 9.5-10.8）

<table>
<thead>
<tr>
<th>组分</th>
<th>对照物(wt%)</th>
<th>配方 Z(wt%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>水</td>
<td>56.2</td>
<td>54.5</td>
</tr>
<tr>
<td>助剂(螯合剂，pH 添加剂)</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>泡沫促进表面活性剂</td>
<td>2.8</td>
<td></td>
</tr>
<tr>
<td>阳离子活性成分 1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>阳离子活性成分 2</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>季化糖衍生的表面活性剂</td>
<td></td>
<td>4.5</td>
</tr>
</tbody>
</table>

[0182] 图 4 和 5（用于硬表面应用的对比泡沫体积）：

[0183] 对于中性消毒清洁剂和浴盆与瓷砖清洁剂来说，测试泡沫体积。根据图4和5可看出，添加季化糖衍生的表面活性剂替代泡沫促进表面活性剂实际上产生较大的泡沫体积。
显然，本发明的配方产生比已有的化学品更丰富的泡沫。

[0184] 表 14 和 15（重要有机物的对数下降）：

[0185] 大肠杆菌和单增李斯特菌是两种重要的环境病原体。已知二者会引起具有宽的医学影响的急性肠感染。这两种有机物是环境污染物，且在制造过程中可转移到食品上。表 14 和 15 中包括的数据例举了含有阳离子活性成分和季化糖衍生的表面活性剂的组合物在甚至短的暴露时间下在控制这些环境有机物方面的效用。

[0186] 表 14 对应于图 6，且示出了对于硬表面消毒（30 秒暴露）来说，重要有机物在使用溶液的应用范围内的对数下降。

<table>
<thead>
<tr>
<th>抗微生物组合物</th>
<th>配方(ppm Quat)</th>
<th>30 秒内的对数下降</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>大肠杆菌</td>
</tr>
<tr>
<td>中性消毒剂</td>
<td>50</td>
<td>4.0</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>5.5</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>5.5</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>5.5</td>
</tr>
<tr>
<td></td>
<td>1500</td>
<td>5.5</td>
</tr>
<tr>
<td>碱性消毒剂</td>
<td>50</td>
<td>5.3</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>4.2</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>5.5</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>5.5</td>
</tr>
<tr>
<td></td>
<td>1500</td>
<td>5.5</td>
</tr>
<tr>
<td>浴盆和瓷砖消毒剂</td>
<td>50</td>
<td>4.2</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>5.5</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>5.5</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>5.5</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>5.5</td>
</tr>
</tbody>
</table>

[0188] 表 14

[0189] 表 15 显示了对于借助以上所述的杀菌喷雾试验测试的大肠杆菌和单增李斯特菌来说，在 10 分钟暴露下，重要配方的功效。在使用溶液的应用范围的极限下测试配方。

[0190]
<table>
<thead>
<tr>
<th>抗微生物组合物</th>
<th>配方(活性成分极限)</th>
<th>#阴性试管/#测试的载体</th>
</tr>
</thead>
<tbody>
<tr>
<td>中性消毒剂</td>
<td>下限 9/10</td>
<td>绿脓杆菌 9/10</td>
</tr>
<tr>
<td></td>
<td>上限 10/10</td>
<td>单增李斯特菌 10/10</td>
</tr>
<tr>
<td>碱性消毒剂</td>
<td>下限 10/10</td>
<td>单增李斯特菌 10/10</td>
</tr>
<tr>
<td></td>
<td>上限 10/10</td>
<td>绿脓杆菌 9/10</td>
</tr>
<tr>
<td>浴盆和瓷砖消毒剂</td>
<td>下限 10/10</td>
<td>单增李斯特菌 10/10</td>
</tr>
<tr>
<td></td>
<td>上限 10/10</td>
<td>绿脓杆菌 9/10</td>
</tr>
</tbody>
</table>

[0191] 表 15

[0192] 图 6（用于硬表面应用的抗微生物功效）

[0193] 针对重要的有机物测试含有阳离子活性成分和季化糖衍生的表面活性剂的硬表面化学品的功效。根据图 6，清楚地表明在本发明中公开的硬表面化学品在少至 30 秒的暴露时间内对重要的有机物是有效的。

[0194] 表 16 和图 7 与 8：

[0195] 显示出降低的组织刺激性潜力的抗微生物组合物在市场上是尤其有用的。皮肤兼容的有效产品增加使用频率，从而有助于良好的卫生和降低的操作者的负面影响。另外，通过皮肤的完整性和符合手册的消毒图表的清洁指南，提高的皮肤兼容性导致较大的操作者安全度和较良好的操作者健康。以下列出的表 16 清楚地证明与对照物相比较，通过实验配方的 MT-50 值或者温和指数增加表明在本发明范围内的皮肤相容性。

[0196] 例举配方 | MT-50（“温和指数”） |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>配方 X（对照中性消毒剂）</td>
<td>1.0</td>
</tr>
<tr>
<td>配方 X（实验中性消毒剂）</td>
<td>3.9</td>
</tr>
<tr>
<td>配方 Z（对照浴盆和瓷砖消毒剂）</td>
<td>14.7</td>
</tr>
<tr>
<td>配方 Z（实验浴盆和瓷砖消毒剂）</td>
<td>>24</td>
</tr>
</tbody>
</table>

[0197] 表 16

[0198] 这些结果清楚地表明，通过宽的边界范围，这些消毒剂配方在降低皮肤刺激性和 / 或增加皮肤相容性方面，这一新型方法的相互作用的影响，从而使得化学品从刺激转向非刺激的种类。图 7 阐述了当季化糖衍生的表面活性剂与阳离子活性成分结合使用时，中性消毒剂改进的皮肤相容性。图 8 阐述了当季化的糖衍生的表面活性剂与阳离子活性成分结合使用时，浴盆和瓷砖消毒剂的改进的皮肤刺激性。

[0199] 显然，可在没有脱离本发明的精神和范围的情况下，做出本发明前面列出的本发明的许多改性和变化，因此，仅仅应当将这些通过所附权利要求书表明强烈的这些限制。
金黄色葡萄球菌和大肠杆菌在30秒暴露于在1.95%泡沫促进表面活性剂和1.25%聚（三甲胺氢丙基椰油葡萄糖苷氮化物）的共混物中的主要活性成分后的Log下降

图1

0.5% Quat 2% CHG 1% PHMB

活性成分体系
金黄色葡萄球菌和大肠杆菌在30秒暴露于增加浓度的
聚（三甲铵羟丙基椰油葡糖苷氯化物）后的Log下降

聚（三甲铵羟丙基椰油葡糖苷氯化物）后的Log下降（固体%）
浴盆&瓷砖清洁剂制剂的泡沫高度

泡沫高度 (mL)

352
350
348
346
344
342
340
338
336
334

浴盆&瓷砖清洁剂，对照 配方Z
图 6

在 30 秒暴露出中性（配方 X）、碱性（配方 Y）和酸性（配方 Z）溶液中，活性物质浓度的上限和下限后的 Log 下降。
当季化的糖一衍生的表面活性剂与阳离子活性成分
结合使用对中性消毒剂的改进的皮肤相容性

中性消毒剂制剂

MT-50 (温和指数)

配方X（对照）

配方X（实验）
当季化的糖一衍生的表面活性剂与阳离子活性成分结合
使用时浴盆和瓷砖消毒剂的改进的皮肤相容性

图8

配方Z（对照） 配方Z（实验）