01/23998 Al

=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
S April 2001 (05.04.2001)

(10) International Publication Number

WO 01/23998 Al

(51) International Patent Classification’: GOG6F 9/44

(21) International Application Number: PCT/US00/25928

(22) International Filing Date:
22 September 2000 (22.09.2000)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
09/404,298
09/531,678

Us
Us

24 September 1999 (24.09.1999)
20 March 2000 (20.03.2000)

(71) Applicant: PHOENIX TECHNOLOGIES LTD.
[US/US]; 411 East Plumeria Drive, San Jose, CA 95134
(US).

(72) Inventors: COHEN, Frances; 65 Carson, Irvine, CA
92620 (US). BOMBET, Mare¢, Abraham; 22501 Chase
#8103, Aliso Viejo, CA 92656 (US). LUSINSKY, Robert,
Dennis; 1449 E. Holcomb Place, Placentia, CA 92870
(US). LEWIS, Timothy, Andrew; 33775 Shallow Ct.,
Freemont, CA 94555 (US). SANDUSKY, Mare, Shane;
7 Greenborrow Court, Aliso Viejo, CA 92656 (US).

(74) Agent: RITTMASTER, Ted, R.; Foley & Lardner, Suite

3500, 2029 Century Park East, Los Angeles, CA 90067-

3021 (US).

(81) Designated States (national): CN, DE, GB, JP.

Published:
— With international search report.

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: SOFTWARE DEVELOPMENT SYSTEM FOR FACILITATING SELECTION OF COMPONENTS

100
400~ pguppATE DATARASE
— FILE SCAN ACCESS 600
INTEGRATED DEVELOPMENT (FIG. 4) (6. 6)
ENVIRONMENT .
USER COMMAND
INTERFACE EXECUTOR COf‘l(f;II(éUR%TOR 200
(FIG. 2) (FIG. 3) : - ‘
[{
200 qgp 300 PRODUCT
— | BuID
PRODUCT PREPARE [900
MAKE (FIG. 9)
—= (FIG. 8)
PRODUCT
a0 BUILD [~1000
(FIG. 10)

(57) Abstract: A software development system develops a product from core library of source code elements, the core library being
categorized into components having one or more features. A configurator develops configuration state data based on a designated
platform type and the source code elements. A graphical user interface displays a visual and logical representation of the product
according to the configuration state data, including visual indications of any unresolved dependencies. A product make routine then
generates the product from the source code elements according to the configuration state data.

10

15

20

25

WO 01/23998 PCT/US00/25928

SOFTWARE DEVELOPMENT SYSTEM FOR FACILITATING SELECTION OF
COMPONENTS

BACKGROUND OF THE INVENTION

1. FIELD OF THE INVENTION/OVERVIEW

The present invention relates generally to methods and systems for developing
and integrating a software product by customizing and combining source code libraries
and integrating them to form the software product. More particularly and illustratively,
the present invention relates to a software system for maintaining and re-using the core
components of a Basic Input/Output System (BIOS) for a personal computer (PC) that
simplifies BIOS deployment and that provides the architecture for extensible yet
maintainable core libraries which enable rapid product development, enhancement, and

modification.

2. BACKGROUND AND STATE OF THE ART

A BIOS product is a piece of software code that executes when a PC is started
up or “booted” and that is later called upon to provide various services while the PC is
running. A development system for BIOS products must support all the peripherals that
may be installed on any type of PC from a low-end basic PC up to a state-of-the-art,
highly customized, high-end server or portable product. The various aspects of
building a BIOS are described below to illustrate the capabilities that a software system
for maintaining and using a library of core BIOS software components should provide.

A customer wishing to build a BIOS for a particular machine selects core BIOS
software components to support the peripherals installed on that machine from a library
of such components. Each software component may include one or more features and
may be configured by adding or removing code for features from the set of available
features and by specifying the values of optional parameters (“options”) for this code.
The customer may wish to add special BIOS code for peripherals custom manufactured

by the customer and not available from the BIOS vendor.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 01/23998 PCT/US00/25928

Configurable features are implemented as separate code in the core BIOS
component library that have external references and definitions in the code addressing
other code components by name and by directory/subdirectory or by library name so the
code for each feature can be linked into the final product only when it is properly
configured and addressed. The present state of the art is to replace the code for a
called, named, and addressed optional feature that is not selected with a stub routine
that merely returns to its caller. Another possibility is to reference the optional feature
indirectly through a pointer that can be set to null if the feature is removed; however,
this requires each caller to verify that the pointer is valid. Ideally, the code to call an
optional feature should be removed from the code when the component is built to
realize a savings in both execution time and memory size occupied by the program.

The present state of the art defines the optional parameters of a software
component (hereinafter called “options”) as manifest constants, e.g., “BUFFER_SIZE
EQU 256.” The name of a manifest constant (BUFFER_SIZE) and the value it
represents (256) are associated when the manifest constant is defined. Each reference to
the name of a manifest constant, such as the length of an array or the value of a
variable, for example, is replaced with the associated constant value when the source
code is compiled. This allows each option to be given a descriptive name and makes it
possible to change the option value in all the places it is referenced by changing the one
definition. Options such as these are typically set or adjusted by defining or modifying
an “include” file by hand. The “include” file is then incorporated by reference into the
other source code files. It is easy to miss a file containing a reference to an option
name, or to confuse options having the same names in different system components.

The producers and marketers of the core BIOS component library need to
respond rapidly to new devices that become available in the marketplace. One tried and
true method is to make a copy of the code for a similar existing device and to modify it
only where necessary to support the new device. The original code may have supported
several configurable features that are now also available for the new device. Copying
the code from another core component gives rise to two components in the same library
with not only the same features, but also identical external names to reference them.

This ambiguity can cause further confusion at compile and link time.

10

15

20

25

30

WO 01/23998 PCT/US00/25928

The customer may sell machines that incorporate either an old device or a new
device. The customer may therefore create a BIOS that incorporates both an old
software component supporting the old device and a new component, generated by
modifying the old component and having identical external names, supporting the new
device. The BIOS would contain additional code to intercept the calls to each procedure
in the old and new components. The customer then would add decision code for each
intercepted procedure that decides whether the procedure in the new component or the
old component should be called. This gives rise to a BIOS containing two components
having identical external names and decision code for each intercepted call that must
call one of the two procedures with identical names without being intercepted. Both
software components would have to be compiled and linked separately so that the
identical external names in each component would not conflict. They would also have
to be linked together with the decision code that calls them.

Suppose that both the old component and the new component, generated by
modifying the old component and having identical external names, had an initialization
feature named INIT. The additional decision code mentioned above must be called in
place of the INIT procedure so it can determine whether the INIT procedure in the old
or new component should be called. Present art would require that each call to INIT go
indirectly through a pointer table so that the pointer could be changed to intercept, or
hook, each such call. All calls to INIT throughout the BIOS would be intercepted, or
hooked, in this manner. The ability to intercept such calls is also important for
debugging purposes.

The producers of the core BIOS component library respond to new devices that
become available in the marketplace by rapidly releasing new versions of the library.
In the process of maintaining and enhancing the library, they may modify some
interfaces to add functionality or to fix bugs. The customer with an existing BIOS will
wish to incorporate the new functionality and bug fixes as well as the newly supported
devices. The customer must verify that calls to existing interfaces which have changed
are still compatible and quickly identify those interfaces that are now incompatible and
that must be changed. Present art validates interfaces by matching the number of

parameters, the type of each parameter, and the range of values.

10

15

20

25

30

WO 01/23998 PCT/US00/25928

The BIOS code for a particular device typically consists of initialization code
that executes when the PC is started up and support code that provides services when
called upon. There may be no references in the support code to the initialization code,
or vice versa, that would cause both pieces of code to be included in the BIOS build; yet
the support code clearly depends upon the initialization code. Present art requires
manual intervention to insure that both pieces of code are included in the build.

The conventional way of finally testing source code modules for consistency is
to compile and/or assemble the separate source code files, identifying and correcting all
errors and repeating this process; link the object code files, identifying and correcting
all errors and repeating both of these processes; and finally, combine the separately
linked system elements into an inter-linked image, identifying and correcting all errors
and repeating all three of these processes repeatedly and recursively until no more
errors are found. Even then, improper linkages may result from identical names being
used to mean different things in different sets of source files, from selection of the
wrong set of two very similar sets of source files, or from version incompatibilities that
compilers and assemblers cannot detect. All of these problems, in combination, make
software system development and integration more time consuming than ideally it
should be.

Accordingly, primary objects of the present invention are the achievement of a
software development system that can identify, and assist one to correct, the above
types of errors prior to any assembly, compilation, or linking; that permits one to view
and select components, features, and variations simply and without regard to where the
corresponding source code is stored; that permits one to specify globally that the
product is to be a “server” or a “portable” and to achieve thereby entirely different
system configurations; and that addresses the problems mentioned above of selecting the
proper one of several component variations, of adjusting and controlling the values and
scope of options, and of automating the selection of needed system components in

accordance with source code dependencies.
BRIEF SUMMARY OF THE INVENTION

Briefly described, and in accordance with these and other objects and

advantages, the present invention is embodied in a software development system that

10

15

20

25

30

WO 01/23998 PCT/US00/25928

manages a source code library for the purpose of creation of software products using
that library. The invention collects an abundance of information from a source code file
system which is structured to facilitate and enable the system designer to support this
collection. The information collected has a variety of uses, one of which is to configure
the product being developed. Product configuration includes choosing the source code
library parts that will be integrated into the final product image. Configuration is
automated for the type of product being created, as well as for satisfying code
dependencies by bringing in subroutines to create a complete and coherent product. The
system designer is presented with a view of the source code that applies and that willlbe
built into the product being developed, and he or she is given simplified customization
capabilities that are supported by the invention. The customization techniques provided
are maintainable for the product’s lifetime through upgrades and maintenance.

The product configuration is passed to the product build process, thereby
allowing the compilation and object creation to take advantage of the acquired product
knowledge. Configuration data is passed to the compilation process by means of equates
defined in dynamically created files added to the code tree. Preprocessor macros expand
to take advantage of these equates, either for size optimization or flow control. For
example, an optional procedure call can be compiled in or out depending upon the value
of an equate supplied in the created file. This equate’s value is based on whether the
procedure called is part of the product configuration. The product configuration
determines specific files to compile into the final product image. In the preferred
embodiment of this invention, Unix style Makefiles are dynamically created, based on
the product configuration. This process replaces the use of search object libraries; all
object libraries created are load libraries.

The invention also passes information through the compilation process to a
product linker of this invention. This product linker is capable of supporting additional
customization support, resource optimization, executioﬁ placement management, and
product validation beyond normal address linking.

As part of this invention source code files are placed into a directory hierarchy.
Different subdirectories may correspond to different software “components.” Each
“component” in the directory hierarchy, whether it be a true software component or a

“hardware component,” meaning software supporting the needs of a particular

10

15

20

25

30

WO 01/23998 PCT/US00/25928

hardware device, may be defined further by one or more “features” stored in lower
level subdirectories so that one or more features may comprise each component and
there may also be “sub-features” stored in yet lower level subdirectories. One or more
source code files may reside in each feature subdirectory. Each component and each
feature is further described by an information file that is placed into its corresponding
subdirectory defining what type of platform (server, notebook, etc.) a feature is
intended for, what class it is assigned to, etc.

In the preferred embodiment of the invention, the source code files call upon
special preprocessor macros to define each external procedure and to classify it as
public (callable between components) or private (callable by parents or siblings within
one component only). Each call to such an external procedure is also made with a
special macro routine, and each source file that contains such a call declares the
procedure is being referenced publicly or privately with a call to another special macro
routine. These special macro routines may pass, among other things, program revision
numbers and program class designations. Special macros are also used to define public
and private “include” files and to declare references to them. In addition, special
macros may be used to create a list, to define the entries that are to form such a list and
that are drawn from separate source code components, and to specify sort criteria for
the list entries.

The component information files and feature information files are scanned, and
their contents are stored within a special database. These files may relate a component
or feature to a particular class and may specify which types of platforms (desktop,
portable, server, etc.) for which a component is appropriate or essential. The source
code files assigned to each feature are also scanned, and the parameters associated with
the special macros such as classes and version numbers are also entered into the
database along with each feature’s directory address. This database then holds a
complete description of the source code library, including the available components, the
features each component provides, the way in which features are classed together so
that they later may be linked together, and the rules for selecting components and
features for inclusion into a particular platform type (portable, server, etc.). The
information for each feature includes the source files that must be compiled to provide

each feature, the external interfaces to each feature, the dependencies of each feature

10

15

30

WO 01/23998 PCT/US00/25928

upon externally-defined subroutines and options, and the class assignments that prevent
identical names within different classes from being confused, and cross-linked.

Once a system designer using the present invention has specified a type of
platform, the minimum information necessary to specify a configuration for such a
platform is extracted from the database, including all components and all features that
the specified type of platform requires. This platform specification identifies a
preliminary set of source code files that must be compiled and linked to provide the
desired system configuration. There is more than enough information from the
parameters of the macros of the present invention to associate each procedure call and
option with its proper definition.

The present invention acts in the manner of a linker in that it associates each
procedure call with its definition and identifies all missing procedures; however, this
test “linking” process takes place long before compilation or assembly and linking and
makes use of all the information available from the parameters of all the special macros
found within the library. This allows the present invention to associate a procedure call
with its definition using criteria other than and in addition to just the matching of
procedure names and argument counts, and to identify and signal any procedure calls
that are using an incompatible interface, such as incompatible versions of programs, as
well as differentiating between procedure calls by class designation.

The present invention quickly identifies problems and errors within the current
configuration before compilation or assembly and provides a visual interface through
which the designer can quickly locate and fix problems by selecting and editing source
code files. The same visual interface also allows the designer to add or remove
components and features with the click of a mouse button and to add or override source
file selections to adjust the configuration as needed.

Once the designer has selected a valid configuration, he or she may direct the
present invention to build the configured product. The present invention then compiles
or assembles only those source files specified by the configuration data, and links each
feature separately to resolve the private external references within the component,
converting class designations into specific addresses to resolve ambiguities in public
external references, and thereby produces a linked executable file for each component.

Finally, a special product component linker is called upon as a second stage linker that

10

15

20

25

WO 01/23998 PCT/US00/25928

can link the separate component executable files together into the final integrated
product. Each public procedure call is fixed up with the address of the public
procedure that it references. Lists defined by the list macros of the present invention
are gathered, sorted and are stored in the code segment where they were defined.

The product component linker is controlled and directed by data associated with
the macros and, in the preferred embodiment, passed to the component linker in special
code segments which are read and then discarded by the component linker. The
resolution of the various options and the linkages between procedure calls and
procedure entry points are also controlled in the preferred embodiment by automatically
generated, special “include” files which pass information into each source code file to
enable each macro to redefine, redirect, or even omit entirely any given procedure call
statement, to control the scope of each option, and to permit the designer, through the
visual interface, to adjust option values. Program calls made in a RAM-less
environment may also be achieved through macros that automatically use a register for
return address storage and that automatically provide, in ROM code, dummy stacks and
register controlled return jumps to intercept procedure “return” instructions.

Other objects, features, and advantages of the present invention are apparent in
the drawings and in the detailed description of the preferred embodiment that follows.
The features of novelty that characterize the invention are pointed out with particularity

in the claims annexed to and forming a part of this specification.
BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 presents an overview block diagram of a program development system
100 designed in accordance with the teachings of the present invention, emphasizing the
relationships between the various software elements;

Fig. 2 presents an overview summary of the visual user interface system, listing
user executable functions and also listing display functions;

Fig. 3 is a block diagram showing the routine that executes user-initiated
commands;

Fig. 4 is a block diagram of the database update routine;

10

15

20

25

30

WO 01/23998 PCT/US00/25928

Fig. 5A is a flow diagram illustrating the process of modifying a file, updating
the database, determining a revised product configuration, and displaying the newly-
revised configuration to the user or system designer;

Fig. 5B is a flow diagram illustrating the process of creating a final product,
including scanning all files, updating the database, revising the configuration (if
necessary), displaying any configuration revisions to the system designer, and building
the finished product;

Fig. 6 is a block diagram of the database access routines;

Fig. 7 is a block diagram of the configurator routine;

Fig. 8 is a flow diagram illustrating an overview of the product make procedure;

Fig. 9A is a flow diagram of the build prepare routine which creates the
“feature.inc” file for each feature;

Fig. 9B is a flow diagram of the build prepare routine which creates the
component makefiles and which calls upon the routine in Fig. 9A to create the
“feature.inc” files;

Fig. 10 is a flow diagram of the steps carried out by the make utility when
executing the product and component makefiles, causing source code selection,
modification, compilation, assembly, linking, and final component linking by the
product component linker;

Fig. 11 is a flow diagram illustrating an overview of the program development
system 100, emphasizing the data flow aspects of the invention;

Fig. 12 illustrates an outline of the contents of the component source code
library (1200 in Fig. 11);

Fig. 13 illustrates the contents of a typical IBM PC compatible assembly
language source code file 1300 occupying the component source code library 1200
shown in Fig. 11;

Fig. 14 illustrates the contents of a typical component information file
“compnent.inf” 1400 occupying the component source code library 1200 shown in Fig.
11;

Fig. 15 illustrates an example of what may be placed in component information

files;

10

15

20

25

30

WO 01/23998 PCT/US00/25928

Fig. 16 illustrates the contents of a typical feature information file “feature.inf”
1600 occupying the component source code library 1200 shown in Fig. 11,

Fig. 17 illustrates an example of what may be placed into feature information
files;

Fig. 18 illustrates an outline of the contents of the component database 1800
shown in Fig. 11;

Fig. 19 illustrates an outline of the contents of the configuration state data 1900
shown in Fig. 11;

Fig. 20 illustrates an outline of the portion of data shown in Fig. 19 that is
selected and fed into the product make routine 900 shown in Figs. 8 and 34 to govern
the building of the finished product;

Fig. 21 illustrates an exemplary set of product configuration commands
contained in the product configuration data file “platform.cfg” 2100 shown in Fig. 11;

Fig. 22 illustrates an outline of what may be placed into this “platform.cfg” file;

Fig. 23 illustrates the contents of an exemplary feature include file “feature.inc”
2300 (Fig. 11), these contents being generated automatically by the product make
routine 900 (Fig. 11) and more particularly generated by the build feature include file
routine 950 (Figs. 9A and 35);

Fig. 24 illustrates the contents of an exemplary component make file 2400 (Fig.
11) generated automatically by the product make routine 800 (Figs. 8 and 34) and more
particularly generated by the component build prepare routine 900 (Figs. 9B and 34);

Fig. 25 illustrates the contents of an exemplary product make file 2500 (Fig. 11)
generated automatically by the product make routine 800 (Figs. 8 and 34);

Fig. 26 is a block diagram of the database update routine 400, also shown in
Fig. 4;

Fig. 27 is a block diagram revealing the details of the feature and component file
scan routine 2700 shown in Fig. 26 (called by steps in Figs. 4, 11, and 26);

Fig. 28 is a block diagram of the configurator procedure 2800 shown in Fig. 11,
also shown in Fig. 7;

Fig. 29 is a block diagram of the initial activation routine 2900 portion of the

configurator procedure 2800 (Fig. 28);

-10-

10

15

20

25

30

WO 01/23998 PCT/US00/25928

Fig. 30 is a block diagram of the product configure routine 3000 portion of the
configurator procedure 2800 (Fig. 28);

Fig. 31 is a block diagram of the resolve external references routine 3100 within
the product configure routine 3000 (Fig. 30) of the configurator procedure 2800 (Fig.
28);

Fig. 32 illustrates the internal structuring of the RAM-based product
configuration data 1900 (Fig. 11), also shown in Fig. 19);

Fig. 33A presents a system designer view of the graphical user interface of the
present invention; including a logical view of a project and windowed views of specific
files;

Fig. 33B illustrates how errors are revealed to the system designer in the user
interface;

Fig. 33C illustrates how the system designer opens, removes, or overrides a
source code file, or learns of its properties from the graphical user interface;

Fig. 33D illustrates how the system designer opens and selects or de-selects a
component with the graphical user interface;

Fig. 33E illustrates how a system designer adjusts an option using the graphical
user interface;

Fig. 33F illustrates the icons and what they mean in the graphical user interface;

Fig. 34 is an overview block diagram of the product make routine 800 (Fig. 11),
also shown in Fig. 8;

Fig. 35 is a block diagram of the build feature include file routine 950, also
shown in Fig. 9A;

Fig. 36 presents a block diagram overview of the product component linker
routine 3600 (Fig. 11);

Fig. 37 presents a block diagram overview of the list creation and management
process 3700; ‘

Fig. 38 presents a block diagram illustrating the flow of control information
through the system 100 to guide the software development process;

Fig. 39 presents a block diagram to illustrate the allocation and management of

non-volatile RAM;

-11-

10

15

20

25

30

WO 01/23998 PCT/US00/25928

Fig. 40 presents a block diagram illustrating the allocation and management of
strings;

Fig. 41 presents a block diagram illustrating the public, private, and
“ShieldPrivates” dependency access features of the invention; and

Fig. 42 presents a block diagram that illustrates the use of the product compent

linker 3600 to customize single items taken from a table.
DETAILED DESCRIPTION OF THE INVENTION

The preferred embodiment of the invention is optimized for use in an IBM
compatible PC ROM code image software development environment in which a shared
library of code is used by many vendors to develop ROM BIOS code images for
portables, desktops, and servers having a variety of different processors, busses, and
peripherals. The invention was developed using conventional, unmodified assemblers,
compilers, and linkers, as well as a standard UNIX-style make utility. In addition, a
special product component linker 3600 (Fig. 36) was developed for use with the
invention. Th component linker 3600 is, in many respects, a conventional linker for
combining separately compiled and linked *.exe files into a single, integrated code
image suitable for ROM storage. The ways in which it differs from a conventional tool
used for this purpose are pointed out below.

The inventors contemplate that the invention has applicability beyond the
development of ROM BIOS images to embedded systems of all types, as well as to
software development in general. In its more general features, the invention is
applicable to any software development environment where software components and
features need to be managed, selected, and altered to meet the special requirements of
specific clients.

Because conventional compilers, assemblers, and linkers are used in the
preferred embodiment of the invention without any special file preprocessors, and
because it is desirable and convenient and efficient to have some steps of the present
invention (in its preferred embodiment) performed from within such compilers and
assembers, some way of altering the performance of these standard components was
needed. Accordingly, the preferred embodiment of the present invention contemplates

inserting specially-defined macros into the source code at many points where

-12-

10

15

20

25

30

WO 01/23998 PCT/US00/25928

conventional programming commands such as “CALL” or “PROC” or “INCLUDE” or
the like would normally appear. These special macros are described in complete detail
below, at the end of this specification, following the more general overview explanation
of the invention. But it is also possible to utilize preprocessors or to utilize modified
compilers and assemblers that can achieve the functionality of the present invention
without the need nor the use of some or all such special macros. In effect, the results
achieved in the preferred embodiment of the present invention through the use of special
macros can be achieved without the authors of source code files having to use special
macros by simply having a preprocessor or the compilers and assemblers respond to
commands such as “CALL” and “PROC” and “INCLUDE” in substantially the same
way in which the present invention has them respond to the macros substituted for these
commands. The present invention encompasses such variations in design as falling
within its scope.

In addition, the preferred embodiment of the invention places the data that is to
control the product component linker into special code segments defined and created by
the special macros, a technique that is particularly apt in the IBM PC environment
where segmentation is heavily used for other purposes as well. Once again, other
equivalent ways can readily be provided for collecting this data (such as the definition
and contents of lists) from the many source-code files, for example, at a much earlier
stage in the process, and for passing this data to the component linker or its equivalent
to thereby achieve the goals of the present invention.

An overview of the program development system 100, which is the preferred
embodiment of the present invention, is presented in Fig. 1. Fig. 1 emphasizes the
major software routines that form parts of the system and how they call upon and relate
to each other.

At the heart of the system 100 is an integrated development environment 102,
which includes a user interface 200, the functions of which are set forth in Fig. 2. The
user interface itself appears in Figs. 33A through 33F. With reference to Fig. 33A, the
designer is presented with a first window (to the left) in which he or she may view a
logical (as shown) or a directory-subdirectory view of a source code library. A “logical
view” is a user view of the code library that is organized, and the components and

features of the code library are displayed, hierarchically first by class, then by

-13-

10

15

20

25

30

WO 01/23998 PCT/US00/25928

component, then by feature, then by subfeature, and so on, with each individual source
code file associated with a corresponding component, feature, and sub-feature.

As shown in Fig. 33A, the logical view includes a root node 3308, which is
shown as Platform - Desktop - IA32. In the first level below the root node 3308 are a
series of components, such as FDisk 3310, Intel371ab (PIIX4) 3314, POST services
3306, etc. In the levels below each of the components, there may be one or more
features. For example, in Fig. 33A, the Post services component 3306 includes several
features, such as Decompress Manager 3304, Memory Manager3307, and POST
Dispatcher 3309. In addition to being in the level directly below a component, a feature
may also be viewed in a lower level as a sub-feature, which is a child feature to a parent
feature. In Fig. 33A, the LZINT feature 3311 is a subfeature to the Decompress
Manager feature 3304.

Hereinafter, the term “object” will be used generically to mean a “component,”
“feature,” or “subfeature”. (This special usage of the term “object” in this patent is
not to be confused with the entirely different meaning assigned to the term “object” in
the field of object-oriented programming.) The “logical view,” with the code
subdivided by class (note the class designations “post” 3321 for the component 3306
and “decompmgr” 3323 for the feature Decompress Manager 3304 in Fig. 33A), goes
beyond just the user view, however. In source code files, when references are made to
the names of externals, such as include files, procedures, and options, class
designations may replace these precise directory/subdirectory addresses, used in
conventional software development systems, and accordingly the programmer need not
be concerned with precisely where an external procedure or an included file resides -
only with the class to which the source code file containing the external procedure is
assigned.

Fig. 2 lists the primary functions performed and views provided by the user
interface 200. The designer can use the keyboard or mouse 202 to modify a file or
directory 302 (Fig. 3), build the product from a valid configuration 306, customize
features by forcing them into or out of the build 304, specify custom code (file
override) in addition to or in place of code from the component source code library 304,
and customize or change option values 304. The updated user view 204, as a result of

these changes, then displays the component and feature tree (left side of Fig. 33A):

-14-

10

15

20

25

30

WO 01/23998 PCT/US00/25928

with components and features clearly marked as in (bold) or out (faint) of the build
(Fig. 33A); with components and features clearly marked where the designer has forced
them into (marked with a check) or out of (marked with a “prohibit” slashed circle) the
build, overriding the default configuration (Fig. 33D); with original source files shown
plus custom 3332 and override files 3326 clearly marked (Fig. 33C); with dependencies
3325, 3327 listed individually and collapsable into an icon (Fig. 33B); with interface
declarations 3329 (Fig. 33B), option declarations 3336 (Fig. 33E) viewable; and with
feature/file errors and warnings clearly shown 3318, 3320, 3322, 3324, and 3325 (Fig.
33B).

The user interface 200 permits the designer to issue commands through a
command executor routine 300, an overview view of which appears in Fig. 3. In Fig.
3, and in all similar figures to follow, any rectangle that overlies the border of the large
rectangle that encompasses the components of the routine 300 contains one or more
entry points to the routine -- one or more commands that may be issued by the designer
or by a calling routine.

If the designer wishes to update or modify a source code file, or move a file into
a new directory, or change the directory structure of the system, the designer does so
using the user interface shown in Fig. 33A. For example, to revise a source code file,
the designer clicks on the file’s name 3326 (Fig. 33C) and selects “Open” using the
mouse and pointer. The file appears in an editable window (right half of Fig. 33A)
where the designer may review and optionally modify the source code file (step 502 in
Fig. 5A). When the designer is finished, the designer closes the window and “saves”
any modifications in the traditional way. The command executor 300 is then called
upon automatically to perform the steps shown, starting at 302, in Fig. 3, and also
shown in flow diagram form in Fig. 5A. First, at step 402 in Figs. 3, 4, and 5A, the
database update routine 400 (Fig. 4) is called upon to scan the file, assuming that it has
been changed (steps 404, 406, and 408 in Fig. 4). The routine 400 collects information
from source-code-resident special macros and from commands found in component and
feature information files (step 2700 in Figs. 4 and 27) defining each source code file’s
internal names, entry points, and exits, as indicated at 1826 to 1830 in Fig. 18 (source
library database 1800). The inforation gathered includes the “class” assigned to each

procedure call, to distinguish, for example, “TIMER” class procedures from “DMA”

-15-

10

15

20

25

30

WO 01/23998 PCT/US00/25928

class procedures so that identical procedure names will not be confused
(“TIMER.RESET” cannot be confused with “DMA.RESET”, for example); version
numbers, such as “3.2,” for later use to check for incompatible versions; and like
information. All this information is stored within the database 1800 (Figs. 6 and18) by
the data access routine 600 write API routine 602 (Fig. 6).

Next, a configurator routine 700 (Fig. 7), which maintains configuration status
data 1900 (Figs. 19 and 32) in RAM, is called upon at entry 704 to use the database
1800 to update the product configuration state data 1900 and to then configure 3000
(Fig. 30) the product to be built by redetermining which objects (components and
features) to include, which to exclude, which objects to make designer options with
what default values, depending upon which platform type (server, desktop, etc.) has
been selected, what dependencies (options, calls to functions, file inclusions, etc.) need
to be satisfied, and so on. Finally, at step 204 (in Figs. 3, 5A, and 7), the routine Ul
UPDATE VIEW (Fig. 2) is called upon to regenerate the logical view of the software
system within the left-hand window of Fig. 33A to share with the designer the new state
of the system, and to permit the designer to change default object selections (see the
menu 3334 in Fig. 33D) or to adjust the values of options (see the menu 3338 in Fig.
33E). In this quick and unobtrusive manner, all changes made by the designer are
quickly and accurately recorded, the product to be built is reconfigured accordingly,
and the designer is presented immediately with the results of all this activity.

If the designer does something, for example, that might cause the final linker in
a conventional system to fail because of a dependency that could not be satisfied, such
as by the absence within the library of any external procedure to which a “call”
statement can be linked (this could, for example, be caused simply by the misspelling of
a procedure’s name), then, as is shown in Fig. 33B, little “X”s will appear beside the
items that are causing the trouble. The designer may then, by simply clicking down
through the displayed tree, quickly find, for example, the particular “dependency” that
caused the problem (for example, the subroutine name “SendEOI” in the class “pic”
shown as “pic.SendEOI” at 3324 in Fig. 33B). A “find” utility enables the file
containing this reference to be quickly found, opened, corrected, and closed, with the
system again being updated and corrected automatically to reflect the correction (the

“X”s would then dissapear).

-16-

10

15

20

25

30

WO 01/23998 PCT/US00/25928

With reference now to Figs. 3 and 5B, when it comes time to build the final
product, the entry 306 “full product build” in the command executor routine 300 is
called upon by the user interface 200 in response to a user keyboard/mouse command
202. Once again, the database update routine 400 (in Fig. 4), entry 402, is called upon
to perform a scan, this time of the entire library: source code files; component
information files; and feature information files. With brief reference to Figs. 15 and
17, the “component.inf” and “feature.inf” component and feature information files
contain build commands that define the value of options (line 1528, for example), and
also contain formal rules to determine logically when a particular object (component or
feature) is to be selected (lines 1514, 1516, and 1518 in Fig. 15, for example). These
files also provide class designations (line 1504, for example) for the corresponding
components and/or features. Such a class designation is automatically applied to
procedures and labels within any source code files that are stored in the same
subdirectory with a “component.inf” or “feature.inf” file containing such a class
designation. this enables, for example, external calls to the procedures specifying a
class as if it were a “path” (“class path” designation, such as “TIMER.RESET” where
“TIMER?” is the class and “RESET” is the procedure name) may be found and linked
up properly without the individual calling source code files having to specify the actual
path through the source code library tree to the called procedure source code file. This
class designation also determines how the objects are organized in the user’s “logical,”
as opposed to “directory/subdirectory,” view of the library contents (Fig. 33A). Since
dependencies are slways designated as to their class, in addition to the class determining
which subroutine or procedure calls link to which subroutines or procedures in which
source code files, the class designations also determine other similar linkages whenever
any type of external reference by a dependency is satisfied. Identical function and
procedure names, and other names (include file names, for example) may accordingly
be used in features and objects assigned to different classes without causing any
confusion or mis-linking. And class designations enable include files and procedures to
be found without regard to where they are actually stored within the component source
code library file directory tree. For example, prior to assembly or compilation, include
file paths (or addresses) are automatically generated and inserted without user

intervention or knowledge of where the include files are actually stored.

-17-

L0

15

25

30

WO 01/23998 PCT/US00/25928

Next, the database 1800 (Fig. 6) is updated (step 602 in Figs. 4, 5B, and 6).
Then the configurator 700 is called upon again to revise the product configuration state
data (step 706); and if any changes are made, then the routine Ul UPDATE VIEW 204
(Fig. 2) is called upon to update the user’s view; and if any red “X”s appear (Fig.
33B), the product build is cancelled.

Note, in Fig. 7, that the configurator begins a configuration with product
configuration data 2100, which is retrieved from a file “platform.cfg.” With reference
to Fig. 22, this product configuration file designates such things as PLATFORMTYPE
2201 (server, desktop, etc., and specific architecture), system option values 2202,
features to be included or not included 2212, additional files to be included 2215, files
to be replaced 2216 (override), option values 2218-2220, and the like. All of this
information comes from the user interface, and all of it is created under user. A simple
question asking routine (not shown) can be used to create a new configuration by asking
the designer simple questions to determine the platform type, the system architecture,
and other such fundamental things. The remainder of the data contained in this file is
accumulated whenever the designer exercises his or her option to override the default
object selections and option values, again through interaction with the user interface.
(Of course, this file may also be edited manually; the entire program development
system may be run without the user interface, with the routines shown to the right in
Fig. 1 executed one-at-a-time manually; but much of the functionality of the invention
lies in the interactive user interface.)

The configurator 700 next goes to the database 1800 and loads itself up with all
of the data which the database contains, both data obtained from scans of source code
files, and in particular the parameters the programmer has supplied to the special macro
call statements (such as class, name, version number, and the like taken from each type
of macro), and also data gathered from special class and feature files which occupy the
same subdirectories as the corresponding class and feature source code files. All of this
information, in combination, is called the product configuration state data 1900. As
shown in Fig. 19, this data includes component names 1902, 1904, 1906, descriptions
of components 1908, feature names 1910 and 1912, and information associated with
each feature such as class 1914, files 1916, definitions 1917 and references 1919, etc.

This is the information that governs the nature of the user display. Note that the “in”

-18-

10

15

20

25

30

WO 01/23998 PCT/US00/25928

1922, 1926 and “out” 1924, 1928 status of each object (feature or component) is clearly
marked by a flag bit or number in the configuration state data (as is indicated by the
presence or absence of Xs in Fig. 19.)

Program control next continues with a call to the product make routine 800
shown in Fig. 8 (step 800 in Figs. 3 and 5B). The product make routine begins at step
802 by calling upon the configurator 700 to provide a list of all active (or selected)
components. The product make routine 800 eventually will retrieve all of the selected
(or “X”ed) information shown in Fig. 19. This selected information is shown at 2000
in Fig. 20.

Returning now to the product make routine 800 shown in Fig. 8, at step 900, for
each separate component, the product make routine calls upon the component build
prepare routine 900, shown in Fig. 9B. This routine, at step 902, calls upon the
configurator 700 and its RAM configuration state data 2100 to provide source code file
and file dependency information for the component. Next, at step 950, the build
prepare - feature include files routine (Fig. 9A) is called upon to go through each of the
feature subdirectories of the component. At step 952, the configurator 700 is again
called upon, this time to obtain information about a particular feature. The information
provided is compared to the existing information found within the feature’s
“feature.inc” file, if any exists, at step 954. If the information has changed (step 956),
then a new “feature.inc” file 2300 is generated and is written. Next, at step 960, if
there are more features, this process is repeated until, at step 962, all the features have
been checked out. Then program control returns to step 904, where the component
information is compared with the contents of any existing component makefile. If, at
step 906, there is any change, a new component makefile 2400 (Fig. 24) is created at
step 908 that governs the proper compilation and/or assembly and linkage of the
component and all of its features into an “*.obj” object file. The bild prepare -
component makefile routine 900 is repeatedly called in this manner, once for each
component that has been selected for inclusion in the finished product.

By way of brief explanation, to be supplemented below, the “feature.inc” files
are placed into each feature subdirectory along with the source code files that actually
define each feature. Each of the feature source code files contains the command

“INCLUDE feature.inc”. This causes the compiler or assembler to insert a feature’s

-19-

10

15

20

25

30

WO 01/23998 PCT/US00/25928

“feature.inc” file into all the source code files for the feature, where they may perform
such tasks as changing class references to file path references, define options, and set
switches that cause procedure calls to be deleted from the source code, if they call
unselected components (see, for example, Fig. 23, where the value TRUE is assigned to
“D_TIMER DELAY” to cause a subroutine call to the “TIMER_DELAY” function to
be included in the source code), or to be marked, for example, with a specific
component name (to require the procedure linked to a call statement to reside within a
feature of the named component). Likewise, a procedure entry point can be marked
“override” to cause it to be selected in preference to an identical procedure name in
some other source code file. Through the mechanism of the automatically-generated
“feature.inc” files, all such user-option mechanisms can be adjusted by the system
designer from the graphical user interface without the need to edit or alter the source
code files themselves. This gives the system designer unprecedented control over the
configuration of the finished product, with minimal effort.

After all components have been processed, program control returns to the
product make routine (Fig. 8), step 908, where a product makefile 2500 is created.
This product makefile 2500 contains directions that switch the computer’s focus to the
various component subdirectories and that then cause the computer to execute the
component makefiles 2400 found within each such subdirectory, thereby building an
object code module for each object. Then it calls upon the product component linker
3600 to link together all the component object code files 1104 (Fig. 11) into the finished
product 1106 (Fig. 11).

Next, at step 1000 in Fig. 8, a standard Unix “make” utility is called upon to
build the product under the control of the component and product makefiles 2400 and
2500 just described. This process is outlined in Fig. 10. At step 1002, a command is
read from the master make file that selects the subdirectory of a component (step 1006).
The make utility, governed by the product makefile 2500, then calls upon itself to
process the component makefile 2400 found within that component subdirectory which
carrys out the steps 1008 to 1016. At step 1008, a command is read from the
component makefile 2400 which calls for compiling 1010, assembling 1012, or linking
1014 a feature source code file, and this process continues repetitively until all the

commands have been executed (step 1016), thereby producing a built product

-20-

10

15

20

25

30

WO 01/23998 PCT/US00/25928

component file 1104 which also contains special segments that contain “fix-up” data
that the product component linker 3600 will later use to patch one or more separately
linked executable object code files into a finished, unified product (other special
segments may contain list elements, etc.). The make utility, at 1018, sensing more
commands in the product make file 2500, continues to read commands from this file
2500, to select additional component subdirectories, and to call upon itself to execute
component make commands found in makefiles associated with each additional
component, as was just explained, until finally all the component source code files have
been compiled or assembled and linked.

At step 1004, the make utility finally reaches the product component linker
instructions (2528 and 2530 in Fig. 25), which cause the product component linker
3600 to combine all of the separately linked component executable files to be merged
into a single code image, with the addresses fixed up such that class and name
references are all replaced with absolute image addresses, ready for incorporation into a
ROM-based finished product 1106.

With reference to Fig. 2, there are a number of other user commands available.
At entry 304, the designer may force a feature in or out by calling upon the configurator
700 to change the product configuration, and these changes are reflected in and stored
within the the project configuration data file 2100 “project.cfg.” Option values may be
changed in this same way, and files specified for inclusion within the manufacture of a
finished product may be overridden and replaced with other files designated by the
designer.

Another option is the quick product build or the single component or single file
build at entry 308, which bypasses the tree scan and configurator steps 402 and 706.
The new source tree entry 312 is used when the source code library tree has never
before been processed, thereby making it unnecessary to perform steps such as steps
956 and 904 in Figs. 9A and 9B that check for whether existing special files need to be
corrected (since it is likely no such files exist). The step 402 calls for a scan of the
entire tree (Fig. 4). The configure product entry 702 into the configurator 700 is then
taken which, at step 604, calls for access to the data in the database 1800 (Fig. 6) and
then configures the product in step 3000 (see Fig. 30 for details). At step 204 (Fig. 2) a

21-

10

15

20

25

30

WO 01/23998 PCT/US00/25928

report is generated for the designer, and the product configuration state data 1900 is
written out to disk storage.

The macros are described in full detail towards the end of this specification.
Their functioning is described here in overview.

The program development system 100 is useful in resolving dependencies
between references and declarations. One way the program development system 100
can resolve these dependencies is with the use of macros. For example, the macros can
be used to resolve dependencies in the situation where two routines with the same name
exist, and this commonly named routine is being referenced. Such a situation can occur
when two or more identical components are used in a system, each component having
the same routine names.

To overcome this problem, macros for branching the code execution, EXTIMP
and EXTCALL, are used. These macros must be preceded in the file by a PBUEXT
public external declaration macro. EXTIJMP and EXTCALL are macros used to branch
from a routine in one component to routines within another component. Both macros
generate fix-up data, destined for the product component linker (and placed into the
external segment 3802 shown in Fig. 38) that lists the address of EXTIMP or
EXTCALL macro and the name (class plus procedure name) of the routine that is to be
branched to. The fix-up data is stored in intermediate libraries, which reside in the
external segment 3802 from which it is accessible to the product component linker 3600
which actually performs the fix-ups. The name and class generated by an EXTIMP or
EXTCALL macro may be the default name and class; it may be an alternate name and
class, if the call or jump is declared by the PUBEXT to have an alternate name and
class; or the call or jump may be deleted entirely, and no fix-up data generated, if the
call or jump is declared by the PUBEXT to be optional. A data switch passed in as part
of the “feature.inc” file, calculated by the product make utility based upon whether the
default procedure exists or not, switches the macros between the default name and class
and the other two options. In this manner, an optional call destination can be achhieved
if the default destination does not exist, or the call or jump can be automatiéally deleted
if the default destination does not exist.

The PUBEXT, EXTCALL, and EXTIMP macros can all designate a component

by name. Then, if two components contain the same procedure name, the fixup data

22-

10

15

20

25

30

WO 01/23998 PCT/US00/25928

generated by the EXTIMP and EXTCALL macros will contain a component name
designation, and then the product component linker 3600 will link that call or jump only
to a procedure residing within the named component. In this way, the name ambiguity
discussed above can be resolved. |

A PUBLIC PROC macro indicates the location of a procedure within a
component. One of the arguments that this macro may accept is the key word
INTERCEPT, which is added to the “fex-up” data generated by this procedure. Every
public procedure macro generates fix-up data, including the name (class plus name) of
the procedure, plus its absolute address within the object code, and this fix-up data also
identifies the component that contains the procedure. This fix-up data is placed into the
public segment 3804 from which it can be accessed by the product component linker
3600, which does the actual fixing up of the data.

If the key work INTERCEPT is present in the fix-up data of a given procedure,
and if there are other procedures that have the same name (name plus class), then the
product component linker 3600 will link all procedure calls (identified by their fix-up
data in the external segment 3802) to the procedure designated the INTERCEPT
procedure instead of to other identically named procedures, for example, assigned to the
same class and possibly having the same component name.

The following is a more general discussion of macros and system development,
and of how macros can be used and of how systems can be designed. It is not fully in
accord with the preferred embodiment of the present invention, particularly in not
always assuming that the “fix-up” steps are performed by a product component linker.
Fix-up data, of course, may be stored in some form of intermediate library, and the
fixing up of the code can be done in other ways. (The description of the preferred
embodiment will begin again with the detailed description of Fig. 11 which commences
some paragraphs below.)

A PUBLIC_PROC macro may used to declare a dispatch routine. The dispatch
routine is a routine that acts as a dispatcher to branch to the two different routines. The
name and address of the routine will be stored as fix-up data. This fix-up data is also
stored in the intermediate librariés. The build tools discard the fix-up data generated by

these macros before generating the final binary image.

-23-

10

15

20

25

30

WO 01/23998 PCT/US00/25928

In addition to the argument in the EXTCALL and EXTIMP macros designating
the routine name, another argument in these macros designates the name of the
component library used to resolve the specific branch. The name of the component
library used to resolve the specific branch can be designated by the designer through the
user interface 200. The designer can obtain information from the user interface to
determine which component libraries can be designated. Alternatively, an automation
utility (a wizard) can parse the components in which the common routine is found and
generate a source code template with a dispatch routine for each common routine
between the components. This wizard would automate the search for common routines
and simplify the coding for the dispatch routines as well as provide a method to
automate debugging between the components.

Like the address of every branch, the name of the routine to be branched to, and
the name and address of the dispatch routine, the information regarding the designated
component library is stored as fix-up data in the intermediate libraries, which the build
tools discard before generating the final binary image. The binary linker uses all of this
fix-up data stored in the intermediate libraries to patch the branch instruction with the
address of the correct routine from the correct component library, thereby resolving the
dependency.

By using these macros to resolve such a dependency, existing component
routines do not need prior knowledge of the component to which it belongs since
routines are automatically distinguished by the component in which they were compiled
and linked into the component library. Existing component routines also need not be
recompiled. Mdreover, all component routines can be encapsulated within a single
component library and distinguished via the component, which enhances code
encapsulation.

These macros used to resolve a reference to a commonly named routine existing
in at least two components are not required. Any method for tracking external
references (i.e. branches) can be used. Other tracking mechanisms that can be used
include, for example, a preprocessor, assembler or compiler keywords, and a custom
linker. Likewise, the invention can utilize any method for tracking public declarations.
Any method that allows public declarations to be tracked and the declaration type (i.e.

intercept or non-intercept) can be used.

24-

10

15

20

25

30

WO 01/23998 PCT/US00/25928

Another way the macros can be used is to select among possible resolutions to
unresolved compilation references in the objects of a build. The names of objects and
their location are maintained in a database. There may be only one object per file-
system directory and each object directory contains either a COMPNENT.INF or a
FEATURE.INF file. The database may be updated either by scanning the file system
for such INF files or through manipulation of the database using an API.

The objects could be specified explicitly. A directory or list of directories could
be specified which would then be searched for objects, not to determine order, but to
determine presence or absence. The detection occurs in a timely fashion and can be
handled automatically. A database or some other storage means could be used.

The INF file includes ASCII text containing attributes used for browsing the
software project and controlling the compilation process. In addition, BaseClass is used
to identify that two features have the same interface and provide the same basis
functionality. Normally no final software product may contain two features having the
same BaseClass.

Since the build can be for numerous types of target hardware platforms, it is
useful to classify these platforms into general categories, such as BasicPC, Notebook or
embedded. For each of these platform types it is possible to specify the default
behavior, which can then be changed by the designer manually. One of these default
behaviors is an “OnDemand” attribute, which indicates that the object will be included
in the final software product if there is a reference to it by another object, another
object with the same BaseClass has not been explicitly included by the system designer,
and the system designer has specified that the hardware platform falls into the general
category listed in the PlatformType command.

The OnDemand attribute could be placed within a source file (rather than a
separate file). The attribute could also be in some sort of master database instead of in
the tree. Alternatively, the attribute could be for one or more platform types or not use
platform type at all in determining whether or not the OnDemand attribute should be
used. The OnDemand attribute could be linked to any number of user specified
software project attributes (not just Platform Type) or none at all. The On Demand
attribute could also be moved to the interface functions themselves (for function-level

exclusion).

-25-

10

15

20

25

30

WO 01/23998 PCT/US00/25928

Interface functions (i.e. functions which can be called between objects) are
declared using the macros PUBLIC PROC and PRIVATE PROC. These macros
specify the scope and other attributes information for the function. Objects which use
interface functions must either be in the same file as the function or else declare its
prototype using a PUBEXT or PRVEXT macro. The actual function calls use the
EXTCALL macro. Configurator 700 scans the source files before the normal
compilation process begins in order to determine the location of all interface functions
and all references to such functions. Then, based on the platform type and explicit
commands from the system designer, the list of references to interface functions is
compared against the list of interface function declarations. When there is a non-
optional reference with no declaration, this is considered unresolved.

The detection of unresolved references can be done without the use of the
macros. Standard methods could be used including leaving such detection until the link
stage of compilation. It could also be used in late binding with dynamic load libraries,
using a list of libraries and their attributes.

At this point, all objects listed as OnDemand are checked to see if including
them would resolve one or more unresolved references. If so, the object is included.
The determination that an object will be included in the final software product is
determined before normal compilation begins. This is accomplished by either including
or excluding the files in the object from the compilation process. For some objects, all
files therein are included or excluded. For other objects, this is done on a file-by-file
basis. In either case, the make file is modified. An error condition is detected when
two components with the same BaseClass are marked OnDemand and one or both of
them would resolve an unresolved reference. Although preferably done before
compilation, the decision to include an object in the final make product can alternatively
be done using link-stage binding or run-time binding.

This method for resolving references prior to compilation allows a developer of

~ the object to determine which object should be included by default. This lowers the

chance of errors and increases productivity. It also allows faster builds, since pre-
compilation knowledge of all objects and all dependencies limits the number of files to

be assembled to the exact minimum.

26-

10

15

20

25

30

WO 01/23998 PCT/US00/25928

The macros can also be used to resolve dependencies based on the versioning of
the objects being referenced and declared. The PUBLIC_PROC macro is used to
declare public function interfaces. One of the parameters in this macro is a version
number in the form x.y, where x is the major version number and y is the minor
version number.

Incrementing the major version number indicates a later revision of the
interface, which is not backwards compatible with regards to inputs, outputs and/or side
effects. Incrementing the minor version number indicates a later revision of the
interface, which is backwards compatible with versions of the interface having the same
major version number and lower minor version numbers. This indicates that all inputs
and outputs expected by lower minor version numbers are supported, as well as similar
side effects. However, new inputs may produce new outputs and different side effects.
This versioning scheme is just one of many possible, including non-numeric, single
version numbers, and dual version numbers with one being the current and one being
the backward compatibility version.

The PUBEXT macro is used to declare a reference to a public interface, either
function or array. One of the parameters includes the version number expected by the
caller. The version number has a similar format to that of the PUBLIC_PROC and
LIST CREATE macros. A warning is generated if the caller and callee differ in major
version numbers or if the caller has a higher version number than the callee.

The database is accessed to determine the location of the “callee” and its
version. The information in the database is updated using the DBUPDATE (database
update) utility, which, when invoked, scans for the previously described macros in all
source code files in each object and places the name of the interface and its version in
the database. It also finds the references to these interfaces by scanning for PUBEXT
and recording the location and the version of the caller in the database.

Then, the database is searched for each caller to see if the version is compatible
with the callee. The version is considered compatible if the major version number of
caller and callee are the same and the callee minor version number is greater than or
equal to the caller version number. This information can be displayed, output to a file,

etc. so that the designer is informed of any potential incompatibility.

27-

10

15

20

25

30

WO 01/23998 PCT/US00/25928

The database is not required, and the scanning process need not use a database at
all. Rather, the version information could be added to the data prototypes as a special
keyword handled by a preprocessor or special version of a compiler. For example, in
C, the version number of the function could be encoded as a _-style keyword in the
function prototype.

In addition, the exact manner by which the version number is attached to the
caller and callee could vary from programming language to programming language.
For example, in C, it can be attached to the function prototypes if MASM macros are
used. For other embodiments, the versions could be attached using an external file.
The versioning can also apply to static variables or data structures.

This use of versioning allows large software projects to be built more
independently by tracking semantic changes in input parameters (bug fixes-modified
parameter definitions). It also gives improved feedback as to whether the software
project is likely to work before compilation and run-time. The versioning may also
reduce errors because functional changes are readily identifiable by examining the
version numbers.

Another use for the macros is to intercept a call to a first routine and have the
call to the first routine replace by a second routine, which is the intercept routine.
First, the two macros used to branch code execution, EXTIMP and EXTCALL, are
used. EXTIMP and EXTCALL are macros used to jump to or call routines between
components. Both macros generate fix-up data that lists the address of every call and
jump and the name of the routine to be called. The fix-up data is stored in the
intermediate libraries and discarded before the build tools generate the final binary
image.

A routine that intercepts a call to another routine should have the same name as
the routine to be intercepted. The intercept routine uses the PUBLIC PROC macro to
declare itself as an interface routine with an INTERCEPT keyword specified as a macro
argument. The PUBLIC PROC macro generates fix-up information that lists the
address of the intercept routine, the name of the intercept routine (identical to the
original routine), and the attribute that the routine is used to intercept another routine.
Again, the fix-up data is stored in the intermediate libraries and discarded before the

build tools generate the final binary image.

228-

10

15

20

25

30

WO 01/23998 PCT/US00/25928

Using the generated fix-up data stored in the intermediate libraries, a linking
utility is used to correctly link each branch and generate the final binary image. The
address of the called routine is directly patched for the branch instruction in the
component initiating the branch if a routine is not intercepted. However, the address of
the intercept routine will be patched in pléce of the originally called routine whenever
the intercept routine is present.

Although the address of the intercept routine is patched in place of the originally
called routine, the originally called routine can be optionally branched to from within
the intercept routine using the EXTIMP and EXTCALL macros. The linking utility
will perform this by using the fix-up information in the intermediate libraries to
correctly link the branch instruction to the original routine. In addition, the originally
called routine can be optionally removed if the intercept routine never calls it and no
other piece of code in the final binary image would reference it.

This interception process can be extended to replace called routines with
referenced variables. It can also be extended to allow calls between routines within the
same component to also be intercepted. The process could be modified to allow the
intercept routine name to be different than that of the routine intercepted, i.e., the
originally called routine. This would simply require an alternate and separate
mechanism to couple the intercept routine with that of the caller.

With the use of this interception process, calls can be directly linked to their
routine and no indirection is needed. Furthermore, the caller does not need to
anticipate or know about any potential routines intercepting a call. The caller simply
declares itself as any other procedure. The process also does not require the originally
called routine to be in the final image if it is never called or referenced.

The elimination of an intercepted routine from the final binary image allows for
a more efficient use of space by eliminating code that is not used. This efficiency can
be extended to eliminate code that makes unnecessary calls. When all source files
composing a project are present, a scanning and update utility scans each project source
file for specific macros that reference declarations in other files. The two branch
macros EXTCALL and EXTIMP use the macros PUBEXT and PRVEXT to declare all
references. The scanning utility will scan for the PUBEXT and PRVEXT macros. The

names of the declarations that the branch instructions refer to (via the PUBEXT and

-29-

10

15

20

25

30

WO 01/23998 PCT/US00/25928

PRVEXT) are then recorded by the scanning utility into a database along with the
source file name and location.

The two branch macros EXTCALL and EXTIMP require one of two BIOS
external declaration macros: PUBEXT or PRVEXT. The macros have an attribute
field allowing the macro to declare the reference to the branch declaration to be
“optional.” To eliminate unnecessary code from the final binary image, a branch
instruction will not be compiled if the declaration that the branch instruction references
is optional and the source file defining the declaration is not in the build.

Every branch is reconciled with its public declaration, which is in a different
file. For each declaration reference, a flag indicates if a specific declaration is present
in the build. A flag will not be generated for any declaration referenced that is not in a
project source file. The flag is stored in an include file to be picked-up by the macros
during compilation.

The two branch macros EXTCALL and EXTIMP will interpret the data
generated by the scan utility (and passed via the include file) and optionally generate the
necessary branch instruction for compilation. No branching code will be generated if
the declaration is not in the project and the branch was marked as optional using either
the PUBEXT or PRVERT macro. The EXTCALL and EXTIMP macros also provide a
mechanism to insert additional code to be compiled if the declaration for the branch
instruction is resolved. Conversely, additional code in addition to the branch
instruction can be removed if the declaration for the branch instruction is not resolved.

This process can be extended to replace branched routines with referenced data
types. The mechanism used would be identical to that for code branches. Furthermore,
the macros discussed in the implementation of this process are not required for its
implementation. Instead of the macros, the process could be implemented by scanning
for the declarations dynamically as the project is pieced together as opposed to just
before the compilation. The macros used to declare declarations and record declaration
references could instead be keywords interpreted by the compiler or other utilities such
as a preprocessor. Also as discussed above, a different method other than the formal
database can be used to record the declarations and their references. A monolithic file

that was parsed for information could be used in addition to other methodologies of

-30-

10

15

20

25

30

WO 01/23998 PCT/US00/25928

recording data. In addition, a mechanism other than an include file could be used to
pass the flags.

This process of removing optional branch code allows for the removal of the
code before source compilation using prior knowledge of the system, which decreases
the compile time. The removal of the declaration reference in addition to the
declaration itself is completed without a stub. The process also operates across multiple
translation units.

The resolution of declarations and references and the use of versioning can also
be applied to labels. Similar to procedures, i.e., routines, the PUBLIC_PROC and the
PRIVATE_PROC macros are used to declare each label definition. Labels defined by
the PUBLIC PROC or the PRIVATE PROC macro may be used to resolve either
public or private label references. Each label definition includes the label’s name, the
label’s location, and the version of the label being defined. The PUBEXT and
PRVEXT macros are used to declare each label reference. Each label reference
includes the label’s name, label’s location, and the version of the label being referenced.

A validation utility is used to validate each label reference. The function of the
validation utility could be integrated with another utility, such as the compiler or the
integrated development environment. The utility ensures that each label reference has a
respective label definition. The utility then compares the version information for each
label. The utility will report an error if either a label being referenced does not exist or
if the label being referenced is of an incorrect version. The validation utility reports the
resolution status of each label reference once all label references have been resolved.
The resolution status for each label can be reported to aid in the debugging of the build
process.

This process allows the designer performing the build process to save time by
quickly detecting and correcting all build-related label resolution errors before the time
consuming build process is performed. It also does not require libraries or components
that are external to the software product’s code base to be previously built in order to
detect build-related label resolution errors.

In the program development system 100, the main data structure is called a
“list.” A list is an array of fixed size elements, which entries may be added by any

source code file. Lists must be created once, using a LIST CREATE macro. This

-31-

10

15

20

25

30

WO 01/23998 PCT/US00/25928

specifies the name of the list and the size of each list entry. List entries are added in
groups. The groups begin with a LIST START macro and end with a LIST END
macro. Each list entry is assigned a name.

For groups containing replacement list entries, an extra parameter on the
LIST START macro specifies the override priority. The override priority is applied to
all list entries within the group. If the software project contains two list entries with the
same name but different override priorities, the list entry with the higher priority is
retained and the other discarded. Two entries having the same name and priority is an
error condition.

The binary linker creates the final list, containing all list entries. The binary
linker finds all list entries. For those with the same name, it compares their override
priority. The highest priority entry is retained and the others discarded. The list
entries for a particular list are placed sequentially, given an address and all references to
the list and its entries are resolved.

This list process can be used with any statically initialized data structure. The
lists can use different keywords for creating and initializing the data structures or none
at all as long as the replacement data structure can be identified. The number of
override levels can be changed, from a simple one level to n levels, n being an integer
greater than one. The merging of the lists can be performed by the normal linker or
even the compiler.

Using the list process, data structures can be created normally. In addition,

7«

more than one level of replacement can be done, which allows for “core,” “product
line” and “platform” distinctions.

Program development system 100 also provides a mechanism for including
libraries in the build based on the existence of other libraries within the build. A load
library is a dynamically triggered load library similar to prior art load libraries because
the library’s entire code set is included in the build. A search library is a dynamically
triggered load library providing a mechanism similar to prior art search libraries for
conditionally including code in the build. The difference between these two types of
libraries is seen in the type of reference used.

Search libraries use a “forward” reference to include the library code in a build.

For example, if Library A depends upon an object in search Library B, then the object

-32-

10

15

20

25

30

WO 01/23998 PCT/US00/25928

code from search Library B will be included in the build. Dynamically triggered load
libraries, on the other hand, use a “backward” reference to include the library code in a
build. For example, Library B will declare that it should be included in the build when
Library A is in a build - even though Library A has no dependency upon Library B.

Three things are needed to implement the dynamically triggered load library: a
configuration script, a trigger command, and a build script generator. A configuration
script is necessary to identify which modules are intended to be included in the final
product. This may be a simple MAKEFILE, or it may be a custom file that simply lists
the module names.

An “External Trigger” command is associated with the library to be loaded
based on external criteria. For example, a special file (ModuleY.INF) can be
associated with the triggered component. The INF file includes an External Trigger
command indicating that “ModuleY” should be included in the final product if, for
example, “ModuleX” has been included. Although the trigger declarations in this
example is made within a .INF file, the trigger declarations can be included anywhere
within the library’s code. It is simply the responsibility of the script generator to locate
these declarations and use them appropriately.

The build script generator’s main task is to generate a MAKEFILE (or
appropriate compiler/linker script) for building the executable product. The generator
uses all potential library’s INF files and the configuration script as input. During the
script generation phase, the generator, based on external triggers, will determine if any
of the libraries should be included in the final build. The use of a MAKEFILE assumes
the use of tools that utilize such a script. This is not a requirement, however, and it
may be substituted with any manufacturer’s build tools to obtain the same effect.

The use of dynamically triggered load libraries provides the ability to include
libraries in a product without the need to directly modify the triggering module code or
build scripts. A benefit of dynamically triggered load libraries is also found as the
number of libraries and interdependencies among modules increases. For example,
when a designer chooses to include 20 modules into a software project build from 400
possible choices, it is difficult to know what “backward” referenced libraries may exist.
The externally triggered load library solves this problem because the backward

referenced libraries will bring themselves into the final product.

-33-

10

15

20

25

30

WO 01/23998 PCT/US00/25928

In program development system 100, a utility can scan the source code files of a
system to detect and record public declarations and external references. The public
declarations and external references are scan-able keywords in the source code files. A
list of the source files that will be used as source code libraries (as opposed to those
files assumed in the build) is created.

As discussed above, a utility can resolve external references to the public
declarations detected in the source code. Like a linker, the utility first finds references
to external declarations in files assumed in the build. It tries to resolve them with files
assumed in the build, followed by files in libraries. This is a recursive process; a file or
module brought into the build may reference other files or modules. This resolution
process needs to output the resultant list of source code files that will be part of the
build. Normal compilation and linking can follow, and no object libraries need to be
created.

In the generated list, files can be listed in a makefile, batch file, or command
line application, like it is done for the creation of object libraries. A centralized list can

list the library files of a project. The resolution of external references to public

declarations can be done at alternate phases of development and build. It can done

dynamically during edit of a source code file for real-time feedback to the developer, or
it can be done after individual file compilation, using compilation output to provide
public and reference information. In addition, the listing of object modules to compile
and link can be done form a batch file, or a list input for command line link execution.

The listings and resolution help save development time. First, they help prevent
the developer from mistakenly looking at the wrong source code during debug trouble
shooting, because the actual files and their location will be listed and viewable.
Knowledge of specific files used in a build also helps the developer detect the location
of problem features missing or undesired features added. Second, the developer also
gets immediate feedback of unresolved references prior to building the system. This
saves development time, because unresolved external references are normally reported
only at the end of the build process when the link is done.

Program development system 100 also provides flexibility to source code that
includes a file of a specific feature class by obviating the need to specify where the

include file is located. In the source code files used in program development system

-34-

10

15

20

25

30

WO 01/23998 PCT/US00/25928

100, there can be a macro class and a file name of an include file. The include file lists
its class information within a macro. Prior to compilation, the source code file is
scanned, and the location of the appropriate include file is determined by a system
utility.

The system utility source code file includes a local include file of a static system-
determined name. This included file is created dynamically by the system before
compilation of the source code. The source code file lists a local fixed name include
file before this macro is listed.

Using the system scan utility, the source code tree of the software system will be
scanned for the above defined macros before compilation. System configuration utilities
use the information retrieved from scanning the system and reconcile the class
information of the file with the include files found. The system utilities generate an
include file local to the source code file. The generated local include file provides the
macro expansion to specify the physical location of the included file. The system
utilities also dynamically create the makefile with the proper location of the include
dependency.

In order to maintain control of changes to the include files located in differing
locations, a versioning scheme can be used, where both the source code file and the
include file list the version of the included file as parameters of their macros. The
system utilities validate that they are compatible.

Using this system, the source code does not need to know which include file will
be used, and a deployment of the system does not need to manually specify it. This is
advantageous in polymorphic features with include files, or multiple versions of features
(upgrades...) in different locations. The system utilities automatically resolve the
include file to the appropriate file. The class information prevents multiple instances of
an include file of the same name being a problem.

The following description provides a more detailed description of program
development system 100. Fig. 11 presents an overview of the program development
system 100 which emphasizes the flow of information (right side of the figure) to, from,
and between the routines (center of the figure) and the designer managing the graphical
user interface 200, into the finished product 1106 (lower left corner of the figure). Data

flows are indicated by double-line arrows, while routine command paths are indicated

-35-

10

15

20

25

30

WO 01/23998 PCT/US00/25928

by single-line arrows. The description presented below of Fig. 11 places main
emphasis upon data, data structures, and the data flow aspects of the present invention.

Initially, the component source code library 1200 is set up within a directory on
a media such as a fixed disk drive. Within the library directory, subdirectories are
assigned to each component of the software product. Under the subdirectory of each
component, sub-subdirectories are set up for features each of which contains one or
more source code files corrsponding to that feature, and further sub directories under
the first layer of feature subdirectories may define sub-features, and so on. Each
component subdirectory also contains a “component.inf” file 1400 which defines how a
particular component is to be compiled and linked, what type of platforms it may, must,
or must not be used with, etc. Each feature subdirectory also contains a “feature.inf”
file 1600 that defines, among other things, how a particular component is to be
compiled and linked, what type of platforms it may, must, or must not be used with,
and so on. The options supported by these files are described in more detail in
connection with the descriptions presented below of Figs. 14 through 17.

The database update routine 400 scans all of these files and builds the database
1800, which then contains information extracted from the arguments passed to all of the
special macros calls to which macros are inserted into the source code files, plus all the
information gathered from the “feature.inf” and “compnent.inf” files. This data can
then be accessed by the configurator procedure 700. In particular, the database system
is designed and structured so that it can answer the following questions: What are the
components? What are the features? With respect to an object (component or feature),
what are its dependencies, including functional dependencies (jumps, calls, etc.),
options, and include file dependencies? What are its interfaces, including procedures,
labels, and lists? What are its options? What are its files? What are its details? It can
present a list of the components and/or features whose inclusion in the final product is
triggered by a special trigger type, such as: an external trigger (X must be in if Y is in);
recommended triggers (use recommended for servers; and “on demand” triggers (it
must go in because component Z requires its presence). It can make sure a file
(identified by name, path, data and time stamp) exists. It can also present information
on a specific option identified by name. And finally, it can present a list of the

“Enums” (or enumerated data names and values) for a specified option.

-36-

10

15

20

25

30

WO 01/23998 PCT/US00/25928

The configurator procedure 700 creates the configuration state data, defining the
configuration of the finished product, using information drawn from the database 1800
and information drawn from the product configuration file “platform.cfg” 2100. The
configurator 700, which in the preferred embodiment is written in C+ +, maintains this
information in a C+ + RAM data structure of classes (in the C programming sense of
the word class) as is shown in Fig. 32. As shown, any number of product
configurations 3202 may be stored in this RAM data structure. Each such product
configuration may be linked to any number of classes 3204 (in the sense of the present
invention), components 3206, and features 3208. The classes 3204 may also be linked
to any number of components 3206 and features 3208 (note that components do not
need to be assigned a class if they are not-associated with source code files, which
generally they are not). Each feature 3208 may be linked to any number of sub-features
3208. The components 3206 and features 3208 may be associated with files 3214
(source code files and include files) and also with options 3210 (such as equates or
manifest constants of the type formally represented as, for example, “START _DELAY
EQU 12” in conventional “include” files). In the case of source code files 3214, each
may be linked to any number of dependencies 3216 (“include”s, “option”s, macros,
and functions, where functions include lists, labels, function calls, and strings) as well
as any number of interfaces 3218 (anything that can be publicly (between components)
or privately (access limited to parents and siblings) referenced, such as procedures).
The “visibility” of a name in a source code file is thus first limited by class, and then
by component/function (parent/sibling) relationships if a name is not declared to be
public. In the case of options, any option may optionally be assigned a set of
enumerations 3212, as in Pascal computer programs, with each enumeration assigned a
numeric value, such as “Fast = 3; Slow = 2; Off = 1”7, to present a simple example.
Menus of enumerations may then be presented to the designer through the user interface
(when the “Modify” selection is made of the menu 3338 shown in Fig. 33E).

The graphical user interface 200 in Fig. 11 is described in more detail
elsewhere. Briefly summarized, the designer at 206 may double click on icons
representing source code files, “feature.inf” and “compnent.inf” files and may thereby
edit any files, with automatic calls being thereafter placed to the database update routine

400, the configurator procedure 700, and to the graphical configuration display 212 to

37-

10

15

20

25

30

WO 01/23998 PCT/US00/25928

update the database 1800, the configuration state data 1900, and the user display (Fig.
33A). At 208, the designer may use tools provided to reference and search for various
named system components, referencing them and navigating though the library looking
for where they may be defined, after which their definitions may be viewed and revised
as just described. At 210, the designer may call upon the configurator procedure 700 to
modify the finished product configuration, with changes dutifully recorded both in the
configuration state data 1900 (as in the “X”s shown in Fig. 19) and in the disk-resident
product configuration data file 2100 “platform.cfg.” All such changes, once again, are
displayed upon the graphical configuration display 212.

The final user command are the user build request commands 214 in Fig. 11.

As previously explained in connection with Fig. 7, this command causes user-selected
and system-selected configuration state data (as illustrated in Fig. 20 (compare to Fig.
19)) to be supplied to the product make routine 800 (described in overview in Fig. 8
and in more detail in Fig. 34) to first construct the component make files 2400 and the
product make files 2500, which together control all aspects of compilation and linking,
and also cause the feature include files 2300 “feature.inc” corresponding to each feature
and the switching on and off of feature dependencies (including or excluding “calls”
and the like) to be constructed or updated.

When it has finished its work, the product make routine 900 in Fig. 11 simply
calls upon a standard Unix make utility to execute the product make file 2500 and
thereby places into execution the product build routine 1000 described in overview in
Fig. 10, which calls upon the compiler, assembler, and linker to create built product
component files 1104 for each and every component under the control of the individual
component make files, with the source code modified as is required by the feature
include files 2300 for each individual feature.

Finally, the product component linker 3600 in Fig. 11 is called upon to accept
the built product component files 1104, strip from them data contained in special macro-
generated segments that are intended to control the product component linker as it
perfofms the final “fix-up” of the object code images, sewing them together into a
fully-linked, unitary ROM image, with calls by name and class replaced with the proper
calls to absolute addresses in the ROM image, with list components retrieved from their

special segments, organized into independent lists, sorted as commanded, and inserted

-38-

10

15

20

25

30

WO 01/23998 PCT/US00/25928

where indicated into the proper code segments, with options fully resolved, and with all
other final steps of linking fully completed. In this manner, the product component
linker generates the finished product 1106 ready for installation into an EEPROM or
flash ROM or the like.

Fig. 12 illustrates the general structure of the component source code library
1200. This library is constructed on the hard disk drive of a computer or server in any
convenient root directory. In the preferred embodiment, all system elements must
reside within the confines of this root directory, which is the only part of the disk drive
that is scanned by the database update routine 400.

There can be any number of system components. Each component resides
within its own subdirectory within the root directory assigned to the library. In Fig.
12, the outline structure of the lines of text represent symbolically the levels of
directories and subdirectories within which things are stored, and rectangles surround
single subdirectories and their contents.

Accordingly, the root directory in Fig. 12 is the source library A 1202.
Everything within this source library is scanned by the database update routine 400.
Within this root directory are shown two subdirecoties, one allotted to component A
1202 and one allotted to component B 1206. Each componend subdirectory contains a
component information file. The subdirectory for component A contains a component
A information file 1400 (the details of which are shown in Fig. 14), and the
subdirectory for component B likewise contains a component B information file 1210.
Each component subdirectory also contains one or more feature sub-subdirectories. In
Fig. 12, the component A subdirectory contains two feature subdiectories 1212 and
1214. Each feature sub-subdirectory contains feature source code files 1300, 1220,
1224, and 1226 and a feature information file 1600 and 1222, as shown. With
reference to the feature 1 sub-subdirectory, it contains the feature 1 information file
1600 the details of which are shown in Fig. 16 and the feature 1 source code file A the
details of which are shown in Fig. 13.

Fig. 13 presents the source code file “BEEP.ASM”, an assembly language
source file with macro calls of the present invention emphasized. This file is used to

illustrate the Configuration Display (Fig. 33A).

-39.

10

15

20

25

30

WO 01/23998 PCT/US00/25928

All source files used with the present invention should include “SYSTEM.INC”
1306, which includes other include files used by the present invention. Among other
things, these include files contain the special macros that may be used to implement
many aspects of the invention. All source files used with the present invention should
also include “FEATURE.INC” 1308, the feature include file that is generated by
Product Build Prepare (Fig. 9), which builds a feature include file for each feature (Fig.
35 Build A Feature Include File). The feature include file that was built by the present
invention for feature BEEP, and would be included by BEEP.ASM, is shown in Fig.
23. As will be explained, the “FEATURE.INC” include file contains macro variables
that control the code generated by the macros PUBEXT 1312 and EXTCALL 1318,
which permits direct designer control over the linkup of procedures without changes to
the source code.

The PUBEXT macro 1312 declares an external procedure DELAY in class
TIMER with interface version 1.0. The macro name itself declares the procedure to be
one that is defined by a PUBLIC PROC macro that is contained within a separately
linked component. These references are to be fixed up by the Product Component
Linker (Fig. 36). The PUBEXT macro is described in Section 2.1 of the Line-by-line
Description of Macros presented below.

The PUBLIC PROC macro 1316 defines an external procedure ERRORBEEP in
the class BEEP with an interface version 1.0. The macro name itself defines the
procedure as able to be referenced in separately linked components that declare it with a
PUBEXT macro. The PUBLIC_PROC macro is described in Section 3.1 of the Line-
by-line Description of Macros. As will be explained, the class designation is replaced
with an absolute library address by the macro prior to compilation or assembly.

The EXTCALL macro 1318 calls the external procedure DELAY assigned to
the class TIMER using its declaration in the PUBEXT macro 1312. Since this
procedure is defined in a seperately linked component, the reference to it will be fixed
up by the Product Component Linker (Fig. 36). The EXTCALL macro is described in
Section 1.1 of the Line-by-line Description of Macros.

The END_PROC macro 1320 ends the procedure opened by the
PUBLIC_PROC macro 1316. It is described in Section 3.3 of the Line-by-line

Description of Macros.

-40-

10

15

20

25

30

WO 01/23998 PCT/US00/25928

Each object, i.e. a component or feature, has a corresponding information file,
which can be represented as a .INF file. The purpose of these information files is to
include information required by the BIOS tools, or whatever tools for which the
software product being developed is used, that cannot be derived from the tree structure
or assembly file scan. A database update process scans these .INF files and the
assembly files to gather information and place it into a centralized database.

A component information file (COMPNENT.INF) is included at every
component tip. A feature information file (FEATURE.INF) is contained within each
subdirectory of a component or feature directory. Since the COMPNENT.INF and
FEATURE.INF files are virtually the same, the following description simply refers to
them as INF files and only distinguishes between the two types where differences exist.
In general, the information in the INF files includes the name of the object and
associated libraries or binaries, free flowing descriptive information about the object,
the class or subclass to which the object belongs, and option declarations.

Each of the INF files may include one or more commands. These commands
preferably are not case sensitive and do not exceed a single line. In addition, it is
preferable that only one command exists per line. Comments may be placed on any line
by itself, or at the end of any command line by preceding it with an identifier, such as
‘1.

The commands that may be used within the body of the INF files may be
optional, required, or conditionally required. In addition, some commands may be for
only a component information file or a feature information file. Among the optional
commands is the BringUp command. This command is used to identify that the object
should be included in a platform BIOS identified in the PLATFORM.CFG file as
‘BringUp.’ It is used to assist in quickly configuring a BIOS with the minimal objects
needed to boot a motherboard. When this command is addéd to the PLATFORM.CFG
file, only the objects required for booting a system to DOS will be installed in the
BIOS.

The Class command is a conditionally 'required command. It provides the name
of the class to which the object belongs. Only one class or subclass per INF file is
allowed. An object’s public procedures are referenced by their function name prefixed

with their class.subclass[.subclass ...] path. A component is not required to declare a

41-

10

15

20

25

30

WO 01/23998 PCT/US00/25928

class. A feature, however, is required to declare a class or subclass if it’s parent object
declares a class or subclass. In other words, a Class command in a feature information
file is conditionally required depending upon if it’s parent object declares a class or
subclass.

The Classification command applies to component information files only, but is
required of all component information files. This command is used for specifying
information that allows for sorting and classifying components using, for example,
BIOS tools. The Classification command may include one or more field names, such as
ComponentType, DeviceVendor, DeviceAlias, PartNumber, and Category.

The value of the ComponentType field name is either hardware or software and
is always required in the Classification Command. The DeviceVendor field name
defines the vendor and is only required and applicable to hardware component types.
The DeviceAlias field name defines a commonly known nickname for the component
type and is only optional and applicable to hardware component types. The
PartNumber field name defines the component part number and is only required and
applicable to hardware component types. The Category field name is used to define the
category the device or software component fits into and is optional for both software
and hardware component types.

A CompileUsing command is an optional command that identifies a custom
compile command to be used in the component’s MAKEFILE for the specified
extension instead of the default command generated by COMPMAKE. This command
includes three fields: Command, SourceExtension, and DestinationExtension. The
Command field is, for example, a custom DOS command having parameters identifying
where specific file information should be located and parameters for other control
information. The SourceExtension field provides a file extension of the source code
files that should be effected by the custom command. The DestinationExtension
provides a file extension of the destination file being created by the custom command.

A CoreVersion command is a required command that identifies the core versions
with which the object is compatible. This command may include one or more values,
each representing a compatible core version.

A Description command is a required command and provides a text comment

that may be used by high level interfaces to provide details regarding the component,

-42-

10

15

20

25

30

WO 01/23998 PCT/US00/25928

feature or option being described. The description may be up to, for example, 512
characters in length.

A LinkUsing command is an optional command that identifies a custom Link
command to be used in the component’s MAKEFILE instead of the default command

generated by COMPMAKE. Like the CompileUsing command, the LinkUsing

~command includes a Command field, a SourceExtension field and a

DestinationExtension field, which provide the same function as described above.

A Name command is a required command and provides the name of the object.
An identifier in the Name command, which specifies the name of the object, may be an
alphanumeric string of, for example, 40 characters in length, and preferably does not
begin with a number or include spaces.

An Option command is an optional command that declares a configurable option
and gives it a default value. The designer can change the setting of the option using the
PLATFORM.CFG file. This command supports a ‘body’ section for providing
descriptive names of the option’s supported values. These names may be used instead
of numeric values for declaring the default value or changing the value in the
PLATFORM.CFG file. The value name should be defined on a separate line.
Exclusion of the body section indicates that only numeric values may be used for setting
the value.

In addition to a name field defining the option name, there are several other
fields in the Option command. A DefaultValueName field provides a valid ‘value
name’ as defined in the body section and is required when value names have been
defined in the body section of the command. A Default_numeric_value field provides a
valid numeric value that preferably does not exceed the length specified. Numeric
values may not be used as a default when enumerated names exist. A Size field
specifies the size of the option space. A RomEditDescription field is an option
description string that is save in ROM if ‘Romedit’ is chosen by the designer in the
PLATFORM.CFG file. A ValueName field is a descriptive name that may be used in
place of a numeric value when setting the option’s value. A Value field represents the
specific numeric value to associate with the ValueName. A ValueDescription field

provides a textual description of the value’s meaning.

43-

10

15

20

25

30

WO 01/23998 PCT/US00/25928

An Owner command is a required command that provides a company name of
the object owner. This command is used for filtering a customer’s components when
releasing or replicating core trees to customer sites.

A PlatformType command is an optional command that describes when an object
should be included in a build by default based on the PLATFORM.CFG file’s
identification of platform type. This command includes a one or more PlatformType
fields, each having a corresponding Usage field. The PlatformType field can be, for
example, BasicPC, Desktop, Server, Notebook, PICO or AllOthers.

The Usage field is used to describe the conditions for including an object in a
build. If it is ‘Recommended’, an object is brought in by default, but the designer may
manually remove the recommended object from the build. If it is “Test’, an object will
be included in the build by default for testing purposes, but will be excluded from a
product release. ‘OnDemand’ an object is automatically brought in when needed to
resolve hard external references. For ‘Explicit’, an object is prevented from being
included in a build for the associated PlatformType unless it is explicitly added in the
PLATFORM.CFG file. ‘External Trigger’ identifies the name of a Class.SubClass that
will trigger an object to be included in a build

A class may combine ‘External Trigger’ with ‘OnDemand’ or ‘Recommended’
for a single platform type. Any other combination of Usage fields for a single platform
type, however, is not allowed and will cause a validation failure. Furthermore, only
one object for a single class may declare itself OnDemand, Recommended or Externally
Triggered within the core files. Otherwise, having more than one default resolution to
a dependency will result in a validation failure. Within a single component, only one
feature of a specific subclass may declare itself OnDemand, Recommended or
Externally Triggered. Having more than one may result in multiple resolutions to a
dependency causing a validation failure.

A ShieldPrivates command is an optional command that protects an object’s
private procedures from being accessed by' its sibling objects. This command is useful
for objects that are used as repositories of miscellaneous objects that are not functionally
related. Fig. 41 shows how the ShieldPrivates command further restricts code access

beyond the private access level. The diagram illustrates how the access of function calls

44-

10

15

20

25

30

WO 01/23998 PCT/US00/25928

is encapsulated to their approriate level, either public, private, or shielded at any feature
level. This applies to dependencies, including procedures, labels, and includes.

A SubClass command is a conditionally required command that provides the
name of a subclass to which a feature belongs. Each INF file is allowed only one class
or subclass. An object’s public procedures are referenced by their function name
prefixed with their class.subclass path. As described above with respect to the Class
command, a component is not required to declare a class, but a feature is required to
declare a class or subclass if it’s parent object declares a class or subclass

A Target command is an optional command applicable to component information
files only. This command provides the name of a library or binary that should result
from building the particular component. The Target command includes a TargetName
field and a TypeKey field. the TargetName field defines a character file name. The
TypeKey field is a four character code used to identify files of non-standard types. This
code is used by the BIOSMAKE utilities for fixup of dispatch tables referencing these
files.

A Uses command is an optional command that is used to identify the location of
shared code used by an object being described. The build tools may use this command
to identify the file as a dependency in the MAKEFILE created for the object. Use of
shared files is restricted. In particular, objects may only use files that identify
themselves as shared using, for example, a PRIVATE PROC or PRIVATE INCLUDE
command with the ‘Shared’ attribute. In addition, an object may only use shared source
files that are in sibling directories, or immediate children of upstream directory nodes.
The Uses command includes a FilePath field that provides the relative path and filename
of the shared file to be used by the object.

Fig. 14 presents the component information file for class CORE 1406. This is
the component that contains feature BEEP (Fig. 16), which contains the source code file
BEEP.ASM (Fig. 13). This part of the present invention contains commands describing
the component and commands used in the configuration of the component (Fig. 15).

The BRINGUP command 1412 indicates that this component should be included
as part of the configuration when a customer using the present invention begins to build

a new BIOS with minimal functionality to get started quickly.

-45-

10

15

20

25

30

WO 01/23998 PCT/US00/25928

The PLATFORMTYPE command 1424 indicates that this component may be
used when building a product that will run on an 1A32 architecture. The ALLOTHERS
command 1428 indicates that this component is RECOMMENDED for all platform
types that were not explicitly specified in the PLATFORMTYPE command 1424. This
CORE 1406 component will be included in all configurations produced by the present
invention that run on an IA32 architecture unless it is explicitly forced out.

Fig. 15 shows those commands in a component information file of the present
invention that are used in the configuration of the component. Names in bold are
keywords, and names not in bold are specified by the designer. The characters “//”
indicate that the rest of the line is a comment. All commands residing between the
braces {} of a command are considered within the scope of the command.

The PLATFORMTYPE command 1506 specifies the rules under which the
component will be included in the configuration. The rules apply to a configuration for
a specific PlatformType such as “DeskTop” or “NoteBook” or to any PlatformType not
explicitly mentioned (ALLOTHERS). The rules 1516 include RECOMMENDED:
include component unless explicitly forced out of the configuration, ONDEMAND:
include component if a procedure in the component is referenced by another component
already in the configuration, EXPLICIT: include component only if explicitly forced
into the configuration, and EXTERNALTRIGGER: include this component if the
component or feature specified by the ClassPath is in the configuration.

The OPTION command 1522 defines the name and default value of an option
that may be used in the source code files comprising a component. It may also define
the names of acceptable values for the option that may be specified in the product
configuration (Fig. 22)

Fig. 16 presents the feature information file for class BEEP 1602. This is the
feature which contains the source code file BEEP.ASM (Fig. 13). This part of the
present invention contains commands describing the feature and commands used in the
configuration of the feature (Fig. 17).

The BRINGUP command 1612 indicates that this feature should be included as
part of the configuration when a customer using the present invention begins to build a

new BIOS with minimal functionality to get started quickly.

-46-

10

15

20

25

30

WO 01/23998 PCT/US00/25928

The PLATFORMTYPE command 1616 indicates that this feature may be used
when building a product that will run on an IA32 architecture. The ALLOTHERS
command 1620 indicates that this feature is RECOMMENDED for all platform types
that were not explicitly specified in the PLATFORMTYPE command 1616. This BEEP
1602 feature will be included in all configurations produced by the present invention
that run on an IA32 architecture and include the CORE component unless it is explicitly
forced out.

Fig. 17 shows those commands in a feature information file of the present
invention that are used in the configuration of the feature. Names in bold are
keywords, and names not in bold are specified by the designer. The characters “//”
indicate that the rest of the line is a comment. All commands residing between the
braces {} of a command are considered within the scope of the command.

The PLATFORMTYPE command 1706 specifies the rules under which the
feature will be included in the configuration. The rules apply to a configuration for a
specific PlatformType such as DeskTop or NoteBook or to any PlatformType not
explicitly mentioned (ALLOTHERS). The rules include RECOMMENDED: include
feature unless explicitly forced out of the configuration, ONDEMAND: include feature
if a procedure in the feature is referenced by another component already in the
configuration, EXPLICIT: include feature only if explicitly forced into the
configuration, and EXTERNALTRIGGER: include this feature if the component or
feature specified by the ClassPath is in the configuration.

The OPTION command 1721 defines the name and default value of a manifest
constant that may be used in the source code files of the feature. It may also define the
names of acceptable values for the option that may be specified in the product
configuratioﬁ (Fig. 22)

The PLATFORM.CFG file is a text file that specifies the customizations to a
build and contains statements which direct the build. It is in the PLATFORM.CFG file
that OEMs may include information to identify OEM features, OEM hooks, and OEM
file overrides. Also, although the PLATFORM.CEFG file is maintained by the user
interface 200, it is an editable file that allows the designer to explicitly state

configuration parameters.

47-

10

15

20

25

30

WO 01/23998 PCT/US00/25928

The PLATFORM.CEFG file includes a minimal description of the BIOS. Based
on this information, the configurator 700 can derive a more comprehensive description
of the BIOS configuration. For example, if a designer explicitly declares that a
component should be included in the build, the configurator 700 can determine that
another component or feature should also be included in the BIOS, even if it has not
been explicitly declared within the PLATFORM.CFG file.

There are several commands associated with the PLATFORM.CEFG file. A
BuildOption command specifies information that is specific to the build of a particular
software product. The commands within the body of the BuildOption command specify
the details of the information to be stored. These commands include Type, which
specifies the type of build option, Name, which specifies the name of the item to which
the build option is being applied, and Value, which specifies a value to which the item
is being set. ‘

A BringUpBios command is used to indicate a special configuration override.
This special override instructs the configurator 700 to build a minimal BIOS containing
only the minimal set of elements needed to bring up the minimal BIOS. The
BringUpBios command may only appear once in the PLATFORM.CFG file.

A Classification command specifies platform specific information. This
information can define a name or value to a series of platform specific data, including a
vendor name, an alias, a platform number, a revision or version number, and a
category.

A Component command specifies the addition, configuration or removal of any
component from the build, regardless of the intended platform type. A component’s
configuration is defined by Features, Options, SystemOptions, Files and OverrideFiles
that are specified within the Component command. When brought in by default based
on the designated platform type, the component is not listed in the PLATFORM.CFG
file.

The Component command preferably includes a ForceFlag. This flag specifies
whether or not a component is forced into a build, forced out of a build, or set to use
the default build inclusion dependencies and triggers. When the flag is set to Forceln, it
will be merged with any exiting default definitions for the component. When a

component is set to NoForce, it will revert to its default state, meaning it will depend

48-

10

15

20

25

30

WO 01/23998 PCT/US00/25928

on other dependency and trigger selections. When a component is set to ForceOut, it is
expressly not included in the build.

Each Component command also includes a name of a component to be brought
into the system. The name used in the command is derived from the named
component’s .INF file. Since each component preferably has a unique name, there
should be no ambiguity in the component named in the Component command.

All commands residing within a Component command’s braces, which delineate
what is included in the Component command, are considered within the scope of the
named component. Examples of these commands include the Feature, Option, and
SystemOption commands. The components themselves may not be placed inside other
components. In addition, the Component command can only appear once for each
unique component. In other words, there cannot be two or more Component commands
describing the same component.

A Feature command allows the addition, configuration and removal of a feature
within a given component. The feature named in the command must be valid for the
component within which it resides. Like a component, a feature’s configuration is
defined by Features, Options, SystemOptions, Files and OverrideFiles that are specified
within the Feature command. Furthermore, like the Component command, the Feature
command includes a ForceFlag that specifies whether a feature is forced into a build,
forced out of a build, or set to use the default build inclusion dependencies and triggers.

Although all features must reside within a component definition, features may be
defined within the definition of another feature. When a feature is specified inside
another feature, the internal feature becomes the child feature and the external one
becomes the parent feature. All commands within a feature are considered within the
scope of that feature and also within the scope of the component under which the feature
is defined. Examples of commands or statements that can be placed inside a feature’s
braces, which delineate what is included in the Feature command, include Feature,
Option, SystemOption, File and OverrideFile.

A File command allows an additional file to be included within a build. This
command may only be used within the scope of a component or feature. Parameters

included in the File command include a FileName and a FilePath. The FileName

-49-

10

15

20

25

30

WO 01/23998 PCT/US00/25928

defines the name of the file to be brought into a build. The FilePath provides for the
relative physical location of a file to be brought into a build.

An Option command specifies the setting of an option that will be used to
generate component and feature include files. The Option command may only be used
within the scope of a component or feature. Parameters included in the Option
command include a Name, a Value, a RomEditFlag, and a Description. The Name
parameter defines the name of an option to change. The Value parameter sets forth any
valid value as defined by the option in the .INF file. The RomEditFlag parameter is a
Boolean value, which sets forth whether or not a RomEdit is enabled for the option.
The Description parameter is an option parameter that provides a description of the
option that may be displayed in the RomEdit utility.

An OverrideFile command overrides a component file. A file version allows a
warning to be displayed to a designer if the override is stale. This command may only
be used within the scope of a component or feature. The name of the new overriding
file must be identical to the file being overridden. The parameters in the OverrideFile
command include a FileName, which provides the name of the override file, a
NewPath, which provides the relative physical path of the override file, and an
OriginalVersion, which provides a version of the original file.

A PlatformType command specifies a type of platform for the build. This
command is used to bring in default components and features based on the specified
platform type. Only one PlatformType command may be used in the
PLATFORM.CFG file. Parameters in the PlatformType command include a Name,
which defines the name of the platform, and an Architecture, which is determined by
the CPU and instruction set and specifies a group of systems that will execute the same
code. The Architecture parameter may be, for example, IA32 for the IA-32 instruction
set architecture or IA64 for the IA-64 instruction set architecture.

A SystemOption command is used to establish an option that is visible across the
entire scope of the build description. Predefined options may be set and reset at
different levels of processing, such as a global level, a component level, or feature
level. Parameters in the SystemOption command include a Name and a Value. The

Name parameter gives the name of the SystemOption to be associated with the build

-50-

10

15

20

25

30

WO 01/23998 PCT/US00/25928

description. The name must be one of a set of pre-defined Options. The Value
parameter sets forth a value to associate with the named SystemOption.

Fig. 18 presents symbolically a representation of the component database 1800
for a source library A. The data for each component is shown contained within a
rectangle. Two components, component A 1802 and component B 1804, are shown,
with others assumedly also present but mmitted for clarity and simplicity. Only the
details of the data for the component A 1802 is shown.

Each component has a name and a description (line 1806). Each component has
a data options table, which is a table that lists all the user-settable options 1808 that
affect source code filess within this component. These options are adjusted through use
of the user interface (see Fig. 33E, for example), and the option values are actually
loaded into the binary image by the product component linker 3600 (Fig. 36) as part of
the “fix-up” process when the linker 3600 builds te finished product 1106. Any
compilation, assembly, and link options 1810 that are specified for a component are
present.

A component may be assigned to a class by its “component.inf” file if its
directory contains source code files, but the present practice with the preferred
embodiment is to place source code files into feature subdirectories and to have each
feature assigned to a class by its “feature.inf” file. Accordingly, every feature is
definitely assigned to a class. The several features may therefore be organized by class
within the database, as shown. Two classes, class A 1812 and class B 1814, are shown.
Within the class A 1812 are two features, feature 1 1816 and feature 2 1818 (no details
are shown for feature 2). Presumably, any normal system could have many features, as
well as sub-features, etc. The featre 1 1816 has a name and description 1820, a data
options table 1822 (essentially the same as that for the component but applicable to the
feature source code files), compiler and link options 1824 (if the feature source code
files are separately compiled, assembled, and/or linked), the names of the feature source
code files 1826, and a complete list of the entrys into 1828 and the exits from 1830
those source code files - elsewhere, more precisely, called interfaces and dependencies.

Figs. 19 and 20 are symbolic representations of the data structures contained
within the configuration state data 1900, organized similarly to the database shown in

Fig. 18. Three components - component A 1902, component B 1904, an component C

-51-

10

15

20

25

30

WO 01/23998 PCT/US00/25928

1906 are shown, each provided with a “select” or “unselect” flag symbolically
represented by a voting square with or without an “X” to indicate whether a given
component is selected or not selected for inclusion in the finished product 1106. The
flags 1922 and 1930 for the components A and B are shown with “X”s indicating that
these components are currently part of the finished product 1106. The flag 1928 for the
component B is shown without an “X”, indicating that either by default, or because of
system designer intervention, this component has not been selected. The component A
has a name and description 1908, and it has two features, feature 1 1910 whose flag
1924 indicates it has not been selected and feature 2 1912 whose flag 1926 indicates (by
an “X”) that it has been selected. Feature 1 1910 is shown as having a class assignment
1914, source code files assigned to it 1916, definitions of options 1917, and references
1919 - dependencies and interfaces. (A more detailed view of the structure of this data
within RAM is presented in Fig. 32 below, which was described above.)

Fig. 19 simply illustrates that selected components and features data 2000 are
taken from the from the configuration state data and passed on to the product make
routine 900 when a finished product 1106 is created. As shown, the global constants
for the options are passed along to be used as part of the “fix-up” data that is applied to
the finished product 1106 by the product component linker 3600. The selected
components A 2002 and C 2004 are passed along, together with feature data for each
feature selected that is part of a component that was selected. The selected feature 2
2006 corresponds to the feature 2 1912 in Fig. 19 whose selection flag 1926 was set.
This feature 2 2006 is accompanied by the names of its source code files 2998 as well as
the exits 2008 from those source code files and other dependencies and interfaces, as
well as feature-specific constants 2012 to be assigned to feature-specific options.

Fig. 21 presents the Product Configuration Data for a DeskTop platform 2102.
This is the configuration that contains component CORE (Fig. 14). This part of the
present invention contains commands used in the configuration of the product (Fig. 22).

The PLATFORMTYPE command 2102 indicates that this configuration is for a
PlatformType “DeskTop” that runs on an IA32 architecture. All components that
contain a PlatformType(IA32) command in their component information file that specify
DeskTop(Rule) or AllOthers(Rule) will be considered for inclusion in the configuration

according to their Rule. Similarly, all features of components considered for inclusion

-52-

10

15

20

25

30

WO 01/23998 PCT/US00/25928

that contain a PlatformType(IA32) command in their feature information file that
specify DeskTop(Rule) or AllOthers(Rule) will be considered for inclusion in the
configuration according to their Rule.

The COMPONENT command 2104 allows an additional source file to be
configured for component PNP.

The FILE command 2108 allows an additional source code file, MYFILE.ASM
from directory \DEVREF\INTEL\440BX in the current component source code library,
to be included as part of component PNP in the configuration.

Fig. 22 shows a list of the possible commands in a platform configuration file of
the present invention. Names in bold are keywords, and names not in bold are specified
by the designer. The characters “//” indicate that the rest of the line is a comment. All
commands residing between the braces {} of a command are considered within the
scope of the command.

The SYSTEMOPTION command 2202 is used to establish an option name and
value that is usable in any source code file in the product configuration. The
FEATURE command 2216 allows the addition, removal, or configuration of a feature
within a given component. A features configuration 2212 is defined by the present
invention as those Feature, Option, SystemOption, File and OverrideFile commands
that are defined within the opening and closing braces {} of that feature.

The OVERRIDEFILE command 2216 is used within a component or feature
command to override a file of that component or feature by instead using the specified
newpath. The OPTION command 2218 is used within a component or feature
command to specify the name and new value of an option defined in that component or
feature information file. The new value of the option will appear in the feature include
files generated for that component or feature.

Fig. 23 presents the Feature Include File. This is the Feature Include File that is
included when the source code file BEEP.ASM (Fig. 13) is assembled. The
D TIMER DELAY variable is the defineName that the macros PUBEXT 1312 (Section
2.1 of the Line-by-Line Description of Macros) and EXTCALL 1318 (Section 1.1 of
the Line-by-Line Description of Macros) in Fig. 13 are expecting.

Fig. 24 presents the component makefile for component CORE. Component

CORE (Fig. 14) contains feature BEEP (Fig. 16) that contains the source code file

-53-

10

15

20

25

30

WO 01/23998 PCT/US00/25928

BEEP.ASM (Fig. 13). A makefile, so called because the make program has historically
looked in the current working directory for a file named MAKEFILE by default,
contains commands that are interpreted by the make program.

EXTASMS 2404 is defined as a macro that contains the path of each external
assembly source file to be assembled. The backslash \ at the end of each line indicates
continuation. Generic rule 2436 specifies the assembler command line necessary to
convert any file with a . ASM extension into the same file with a .OBJ extension. The
COMPONENT_NAME rule 2440 specifies the linker command line that will link the
component from the object files produced from all the assembly source files defined by
the macros EXTASMS and ASMS. As a side effect, it causes object files that do not
exist to be generated from assembly source using the generic rule 2436. The CLEAN
rule 2456 must be explicitly specified on the make program command line (Fig. 25). It
deletes the files generated by the CORE component makefile so that the next time the
CORE component makefile is interpreted, all the files will be regenerated.

Fig. 25 presents the product makefile generated by the present invention and
used to build the product containing the component CORE (Fig. 24). The BIOS.ROM
rule 2502 goes to the directory containing each component in the configuration and runs
the NMAKER make utility program to interpret the component makefile generated in
that directory by the present invention. This will produce a linked set of object files,
“* exe” files, for each component. This format allows for execution of the component
as a statistical tool, designed to display the declared public interfaces, the dependencies,
and the resource usage. These linked files may then be merged into a single ROM
image executable file by the product component linker “BINLINK” 3600 (Fig. 36).

The CLEAN rule 2532 goes to the directory containing each component in the
configuration and runs the CLEAN rule of each component makefile (Fig. 24), then
goes to the directory containing the platform configuration file and cleans up the files
generated in the build process so all the files will be regererated by the next build.

Fig. 26 illustrates the database update routine 400 that scans the component
source code library 1200. The search begins 2602 in the root directory of the
component source code library 1200 looking for components, which are subdirectories
of the root directory containing a component information file named

“COMPNENT.INF” 2604. For each component 2606, the file scan routine 2700 is

-54-

10

15

20

25

30

WO 01/23998 PCT/US00/25928

called upon to scan the component information file 2610 and any source or include files
2612 that may be in the component directory. The search then continues in the
component directory looking for features of the component, which are directories
subordinate to the component directory containing a feature information file named
“FEATURE.INF” 2614. For each feature 2616, the file scan routine 2700 is called
upon to scan the feature information file 2620 and the source and include files in the
feature directory 2622.

Fig. 27 shows the file scan routine 2700. When called upon by the database
update routine (Fig. 26) to scan a file, the file scan routine obtains the date and time the
file to be scanned was last modified from the database 2716 and compares it to the date
and time last modified from the file itself 2702. If the file has not changed, the database
is not updated 2704. If the file has changed or the file scan routine was called upon by
the change input routine 206 (Fig. 11), the file is scanned 2706. If the file is a
component information file, named “COMPNENT.INF” 2708, the component
information 2709 is added to the database 2716. If the file is a feature information file,
named “FEATURE.INF” 2710, the feature information 2711 is added to the database
2716. Otherwise, the file is a source or include file 2712. Add information from the
parameters of any exit declaration macros, entry macros, include macros and list
macros in the file 2714 are added to the database 2716.

Fig. 28 shows the general flow of the configurator procedure 2800, beginning
with initial activation 2900 (Fig. 29), continuing through product configure 3000 (Fig.
30) and ending with a report of the configuration state 2806 indicating a valid
configuration (Fig. 33A) or incompatible interfaces, missing components and so on
(Fig. 33B).

The initial activation 2900 of the configurator procedure 2800 begins by
retrieving from product configuration data 2100 the platform type 2102. It then reads
604 from the database 1800 all component information relating to components that are
permitted or mandatory on the specified platform type and creates the product
configurator state data 1900 in random access memory. The product configurator state
data 1900 includes the source files of each feature and the parameters of each
PUBLIC_PROC macro and PUBEXT macro in those source files. As each feature is
activated (3004, 3008, 3010, 3014) by the product configure routine 3000, the

-55-

10

15

20

25

30

WO 01/23998 PCT/US00/25928

procedure referenced by each PUBEXT macro in its source files are added to a list of
unresolved references. The product configure routine 3000 proceeds with the following
steps, taking care 3002 not to activate any object that has been specified force out
(3335, 2204, 2210, 2208).

At step A 3004, all objects (component or feature) are set in the product
configurator state data 1900 that have been specified force in (3333, 2204, 2210, 2208)
and their parents to active state. At step B 3006, all recommended component objects
(1510, 1514, 1516) are set in the product configurator state data 1900 to active state.
At step C 3008, for all active objects in the product configurator state data 1900, all
recommended children (1710, 1714, 1716) are set to active state and repeat. At step D
3010, for each component object or child of an active object that has a class specified as
an external trigger (1518, 1718), if an object of that class is active in the product
configurator state data 1900, the externally triggered object is set to an active state. At
step E 3100, external references (Fig. 31) are resolved and a list of unresolved
references and mismatched versions of resolved references is maintained. At step F
3014, until no further objects can be set active or no references are left unresolved, if a
feature resolves an unresolved reference and is on demand (1716) and all parent objects
are active or on demand (1516, 1716), then the object and all parent objects in the
product configurator state data 1900 are set to active state and steps C, D, and E are
repeated.

The resolve external references routine 3100 takes a procedure reference that
was declared by a PUBEXT macro (Section 2.1 of the Line-by-Line Description of
Macros) from a list of unresolved references and finds all the procedures defined 3102
by PUBLIC_PROC macros (Section 3.1 of the Line-by-Line Description of Macros)
that have a matching name. The name parameter of the PUBEXT macro and the
procedurename parameter of the PUBLIC PROC macro that matched are both class
paths consisting of a class name, zero or more subclass names and the actual procedure
name seperated by periods. The class path serves to identify a specific procedure in a
hierarchy of components, features and subfeatures that is independent of the location of
the source file containing its definition within the component source code library 1200.
The class path does not conflict with procedures in other components that have the same

name because they would have a different class path. If there are multiple definitions

-56-

10

15

20

25

30

WO 01/23998 PCT/US00/25928

with the same class path 3104, then if the PUBEXT macro of the definition specified a
component name 3106, it chooses the definition in the named component 3108. Also, if
the PUBLIC_PROC macro of a definition specified the INTERCEPT keyword 3110, it
chooses that definition 3112. Otherwise, it removes the reference from the list of
unresolved references and returns an indication that multiple definitions were found
3114. If a matching definition was found 3116 and the definition is in a source file of
an active feafure 3118 or an inactive feature 3122 designated on demand (1716), the
reference is removed from the list of unresolved references and success is returned
3120. If the PUBEXT macro of the reference specified the ALTERNATE keyword
3124, the class path specified by the altname parameter 3126 is used and tried again
3128. If the PUBEXT macro of the reference specifies the OPTIONAL keyword 3130,
no definition is necessary, and the reference is removed from the list of unresolved
references and no definition is returned 3132. Otherwise, the reference is removed
from the list of unresolved references and no match is returned 3134.

Figs. 30 and 31, just described, present a general algorithm of the process of the
configuration to decide the active features of the product..

Fig. 32 is discussed above in the context of Fig. 11.

Fig. 33A presents the view that a designer would see while using the present
invention to modify source file WORKADDR.ASM 3302 in the “Decompress
Manager” feature 3304 of the “POST Services” component 3306 of a “Desktop”
platform for the IA32 architecture 3308. This is a logical view of a component source
code library (Fig. 12) using icons described in Fig. 33F to show components and
features as opposed to a physical view of the component source code library showing
the directory heirarchy. The icons show that the “Fdisk” 3310 and “kcManager” 3312
components have been forced out of the build while components “Intel371ab” 3314 and
“Intel440BX” 3316 have been forced into the build.

Fig. 33B presents a logical view of the same component source code library as
in Fig. 33A that a designer would see while using the present invention with component
“Fdisk” 3310 no longer forced out of the build. The icons (described in Fig. 33F)
indicate that component “Fdisk” 3310, feature “ata” 3318 and file “FDSKINIT. ASM”

3320 have errors and that the public functional dependencies for function

-57-

10

15

20

25

30

WO 01/23998 PCT/US00/25928

“protocolTable” in class “fdisk” 3322 and function “SendEO1” in class “pic” 3324
have errors.

Fig. 33C presents a logical view of another part of the component source code
library shown in Figs. 33A and 33B using icons described in Fig. 33F. This logical
view shows what a system designer using the present invention would see by right
clicking the override file “EARLYCFG.ASM” 3326 in feature “Memory
Configuration” 3328 of component “Intel440BX” 3330. It also shows that file
“oemfile.asm” 3332 is a custom file that would have been added using the “Add
Custom File” line of the window of the present invention shown if Fig. 33D.

Fig. 33D presents a logical view of part of the component source code library
shown in Fig. 33A using icons described in Fig. 33F. This logical view shows what a
system designer using the present invention would see by right clicking component
“Fdisk” 3310 that has been forced out of the build.

Fig. 33E presents a logical view of a different part of the component source
code library shown in Fig. 33B using icons described in Fig. 33F. This logical view
shows what a system designer using the present invention would see by right clicking
the “CacheLineSize” option 3336 in component “Intel440BX” 3330. The
“CacheLineSize” option currently has the value 04 hex. This window allows the
system designer to modify the current value or reset it to the default value specified in
the component information file.

Fig. 33F presents the icons that appear in a logical view of a component source
code library of the present invention as shown in Figs. 33A throilgh 33D. Each icon
represents a different element of the logical view and has a lighter color when the
element is not included in the BIOS configuration. The icons for components and
features that were forced into the configuration show a check mark while the icons for
components and features forced out of the configuration have a lighter color and show a
circle with a slash through it. Elements that have errors show an icon with an x, and
elements that have warnings show an icon with a triangle containing an exclamation
point.

Fig. 34 shows the product make routine 800. For each active component 3402
in the product configurator state data 1900, for each active feature of the active

component 3404, the routine builds a feature include file 950 (Fig. 35), then, for each

_58-

10

15

20

25

30

WO 01/23998 PCT/US00/25928

source code file in the current feature 3406, it adds a command to the component
“make” file of the current component 3408 explaining how that source code file is to be
compiled. When all active features of the current component have been processed, a
command is added to the component “make” file of the current component 3410
explaining how the linking is to be done to form a BIOS component. When all active
components have been processed, a product “make” file (Fig. 10) is created containing
commands to execute each component “make” file plus a command to execute the
product component linker 908. The make utility program is then called upon to execute
the commands in the product “make” file 1000.

Fig. 35 shows the build feature include file routine 950. For each PUBINC
macro (Section 6.2 in the Line-by-Line Description of Macros) in each file of the
feature 3502, the routine generates an I CLASSPATH symbol from its classpath
parameter 3504, then adds an assembler statement defining the I CLASSPATH symbol
as the path of the directory containing the include file 3506. If the classpath parameter
of the PUBINC macro is “post.dispatcher,” for example, then the PUBINC macro will
expect the I CLASSPATH symbol named I_POST_DISPATCHER to be defined.

When all the PUBINC macros have been processed, for each PUBEXT macro in each
file of the feature 3508, the routine generates a D NAME symbol from the name
parameter. If the public procedure specified by the name parameter was included in the
build, the routine adds an assembler statement defining the D NAME symbol as TRUE
3514 (Fig. 23), or else adds an assembler statement defining the D NAME symbol as
FALSE and, if the PUBEXT macro specifies the ALTERNATE keyword, generates a
D ALTNAME symbol from the altname parameter of the PUBEXT macro and adds an
assembler statement defining the D ALTNAME symbol as

TYPE RESERVED TRUE. If the name (or altname) parameter of the PUBEXT macro
is “timer.delay” 1312, for example, then the PUBEXT macro will expect the D NAME
(or D_ALTNAME) symbol named D_TIMER_DELAY to be defined.

Fig. 36 presents a flow diagram of the product component linker 3600, a routine
assigned the symbolic name “bin_link”. It accepts as input data the “*.exe” executable
binary files that are generated when the regular linker(s) is (are) called upon to link
togenter the “*.obj” object code files produced by the compiler(s) and assembler(s). It

also accepts as input the “*.map” files, also generated by the regular linker(s), and

-59-

10

15

20

25

30

WO 01/23998 PCT/US00/25928

learns from them the names of the code segments generated and where they reside
within the “*.exe” files. It also receives, directly from the designer, one or more script
command files “bios.scr” which contain directives on how it is to proceed with the
different executables — in what order are the segments to occupy the final ROM image,
the assignment of absolute addresses to some segments, etc. In the preferred
embodiment, product component linker “BINLINK” 3600 (Fig. 36), after fixing up the
addressing, etc. in all of the executable images and after combining together the pieces
of the various named segments extracted from the executables, does not stitch the
executables together to form a unified ROM image and peform such tasks as
compressing executable images and duplicating images where necessary. These tasks
are performed by a routine named “rom_image,” which receives the output file
“biosl.scr” from “bin_link” and then performs these final tasks, as well as the tasks of
integrating sound and image files into the actual final ROMable image.

The input control information which flows to the product component linker 3600
is shown in Fig. 37, described below. Starting with a list of the components that are to
be included in the finished product, and limiting the “*.exe” files examined to those
corresponding to the designer-selected components (typically found in the component
subdirectories); and using information obtained from the linker-generated “*.map” files
to locate and separate the named segments within each of the “*.exe” files; and by
operating directly upon the selected component “*.exe” files, the product component
linker 3600 is able to identify, withn each “*.exe” file, all of the named code segments,
which are hereinafter called “built components” of the finished product 1106.
Executable object code and data destined for inclusion within a single segment in the
finished product will frequently be found to be scattered throughout many different
“* exe” executable files. Likewise, data that is intended to control the operation of the
product component linker, and that will thereafter be discarded and not included in the
finished product 1106, will also typically be found scattered throughout many different
“* exe” files but always placed int the two “fix-up” data segments public segment 3804
(Fig. 38) (“publicSegment”), which contains the names of public procedures, tables,
etc.; and exteranl segment 3802 (Fig. 38) (“externSegment”), which contains the names
of all the calls, jumps, read, etc. statements the addresses for which must be fixed up by

the product component linker by insertion of the addresses of the public entry points,

-60-

10

15

20

25

30

WO 01/23998 PCT/US00/25928

once the segment and offset addresses are determined and fixed by the product
component linker 3600.

Accordingly, as its first step 3602, the product component linker 3600 collects
all the built components and sorts them by segment name, merging the segments with
the same name into unified segments (which may be called “modules”) even though
they were separately compiled and linked, and then linking up the calls to the
procedures, etc., to create unified executable program modules assembled from code
segment fragments provided by several different components. For example, the calls to
initialize the various components, created within many different component source files
but assigned to a single segment, can be brought together into a single module to form
a unified initialization routine, and can even be sorted into a particular order of
command execution automatically.

The majority of segments used to construct modules are simply read from the
various component files. However, some segments are created by the product
component linker 3600 to contain parts of the final binary image that do not exist until
execution of the linker 3600.

In cases where the additional content created by the linker 3600 is to be accessed
by ‘near’ addressing methods, the conteﬁt must reside in the same segment as the
reference. This means that the linker 3600 must increase the size of an existing
segment to create the room for the additional content. Note that the existing alignment
requirements must be preserved when dealing with the new segment size.

When collecting segments together to create modules, the possibility of gaps
presents itself. These gaps are the result of maintaining the alignment properties of the
individual segments. To reduce the impact of these gaps, the linker 3600 examines the
various orders in which the segments can be combined, choosing the order that
minimizes the amount of inter-segment gap space. Also, the binary data placed into
those gaps can be specified, which may allow an improvement in the compression ratio
of modules that are to be compressed.

In some cases, the destination for module placement may not consist of a single,
monolithic address range. This can occur when specific addresses within the
destination range are reserved for special purposes. This can lead to a situation where

no single sub-range is large enough to hold the entire module. The linker 3600 can be

61-

10

15

30

WO 01/23998 PCT/US00/25928

instructed to construct multiple segment groups that are small enough to fit into the
available sub-ranges, resulting in a fragmented module.

There are times when the same code must appear at more than one location in
the final binary image. The product component linker 3600 has the ability to make a
copy of a constructed module, and to place the copy at a different address than the
original. This eliminates the need to assemble/compile the source code more than once.

Modules can be placed at specific addresses, or they can be simply packed into
an address range. This is accomplished by specifying the region (or address range) that
a module is destined for. The use of regions also allows an address range to be
specified more than once for use during different phases of execution. Also, a module
can be placed into more than one region, allowing use of the module during more than
one phase of execution.

To allow a module to be present during more than one phase of execution, and
to be located at the same address, the module is marked (in the BIOS.SCR file 3812) for
mirrored placement into the desired regions. The linker 3600 will select a location that
resides at the same address within those regions.

This is accomplished by creating a ‘pool’ region object as a temporary data
structure (not shown) that contains only those address ranges that are available in all of
the target regions. In other words, if an address range is already occupied in any of the
target regions, then that range is not available in the pool region. Once the module has
been placed into the pool region, the address ranges it occupies are marked as occupied
in all the target regions.

When it is necessary for a module to reside at different addresses during
different phases of execution, the module is marked (in the file 3812) for copy
placement. The product component linker 3600 will determine a location, within each
of the regions specified, where the module will be placed.

There are times when specific address ranges within a region need to be
reserved for special purposes. These address ranges can be specified (in the public
sector 3804) as exclusion blocks, informing the product component linker 3600 that
they are not availble for the placement of modules.

Next, from the external segment 3802, the linker 3600 reads in (step 3604) the

external segment 3802 contents, which names the procedures and/or the label

-62-

10

15

20

25

30

WO 01/23998 PCT/US00/25928

definitions that the components contain; and the linker 3600 stores their locations in a
table for later use when calls and accesses from other built components to these
procedures, tables, etc. will be fixed up and assigned these same absolute addresses.

At step 3606, the product component linker 3600 reads in from the public
segment 3804 all dependent references to the external definitions of procedures, etc.,
just described, including calls, jumps, table lookup accesses, etc.; and it stores the
addresses of these references for later references as places in the code where absolute
addresses will need to be plugged in.

All of these addresses, both the addresses of externals contained within the
external segment 3802 and the addresses of the dependencies contained in the public
segment 3804, are marked in the source code by the special macros which place
absolute addresses into the external or public segment, as is appropriate, so that the
precise position within the code of the externals and publics is communicated to the
product component linker that will fix up the actual calls and jumps. As can be seen in
the macro code explained below, as an extra error check, each macro, in addition to
placing offset addresses within these special external and public segments, also inserts
these same addresses into the actual code so that the procuct component linker, when it
actually checks for an entry point within the linked object code, finds at each offset a
number equal to the offset address.

Next, at step 3608, the linker 3600 generates duplicate instances of both
definitions and of references which may be required by the execution-time information,
where a piece of executable code is to appear in duplicate in the ROM image or is to be
relocated at run time. For example, code may be moved about, or duplicated in
different locations, or overwritten, and this may require the duplication of both
definitions and of references.

This brings processing to step 3610, the point at which the references and
definitions are actually associated and eventually linked together. With reference to
Fig. 38, this is where, in the context of the present invention, the final choice is made
to link a given call to one procedure or to another, for example; and because the process
is done by the product component linker 3600 under the direct control of the macros
3806 (through the intermediary of the external and public sectors 3802 and 3804). But

these macros are themselves, through the intermediary actions of the feature include

-63-

10

15

20

25

30

WO 01/23998 PCT/US00/25928

files 2300, are commanded to edit the source code prior to compilation or assembly (for
example, eliminating unwanted “calls” to unselected components and replacing include
file class identifiers with the absolute addresses of those include files), and to control
what signals are sent to the product component linker by the configuration state data
1900, which reflects commands contained within the product configuration data 2100
and the component and feature information files. Since these files are created, and are
under the direct control of the designer through the user interface 200, the designer is
thereby given an unusual amount of detailed control over the entire process of
determining which components and features are selected, as has been explained.

The association of references with definitions is carried out in a certain order as
follows:

First, references (dependencies: for example, “call” statements) directed to a
specified component are associated with definitions (externals: for example, “proc”
statements) that are found within that named component. If two different conponents
contain procedures having the same name, then the component name determines which
is picked as the destination of a given call statement.

Secondly, system-designer-designated “intercept” externals (a substitute
procedure that is to “intercept” and take over the functions of a procedure called by the
source code), identified as such by the macro-generated “call” information, are linked
up to the intercepting references in preference over whatever reference would have been
utilized otherwise.

Thirdly, to the extent that the finished product will contain duplicated code, or
code generated by the product component linker 3600 (such as sorted tables, etc.), these
link references are established next.

And finally, all remaining references are linked to definitions, with all private
references scoped to limit the linking to parents and siblings within a given component.

At step 3612, the product component linker 3600 next collects and processes all
of the segments that require special handling, such as list references that require sorting
and insertion into segments, string segments that must be assembled and placed into the
code, non-volatile RAM code which also must be procesed specially, relocation tables

which indicate different locations where a given procedure may be found at different

-64-

10

15

20

25

30

WO 01/23998 PCT/US00/25928

times during system boot-up, and ROM stacks needed to serve as subroutine “return”
points during RAMlIess subroutine calls.

Of these, the ROM stacks require explanation: A ROM stack appears as follows
in assembler source code, and is generated by the macro CREATE_ROM_STACK:

returnAddr:
DW returnAddr + 4
DW SEGMENT returnAddr
jmp bx
The macro INIT ROM_STACK generates the following stack pointer and stack

segment pointer default values:

mov ss, SEGMENT returnAddr
mov sp, OFFSET returnAddr

The macro ROMCALL that generates the RAM-less CALL function generates

the following code at the point of the CALL statement:

mov bx, returnOffset
jmp FAR xyz

returnOffset:
[next instruction beyond the macro]

As can be seen, the ROM stack is simply a dummy stack frame to which any
standard called procedure may execute a RET instruction. Upon return of program
control, the RET instruction loads into the microprocessor’s program code address and
segment the address contained within the stack frame, which is the address just beyond
the dummy stack frame, “returnAddr +4.” Accordingly, the microprocessor executed
the instruction following the dummy stack frame, which is “jmp [bx]” and jumps back
into the calling program at the offset specified by the bx register.

This being the return procedure, clearly the special macro that creates the
RAMless other segment subroutine call must pre-load the bx register with the return
offset address of the next instruction following the calling point, the address
“returnOffset,” as shown above. Then the “call” is executed with a far “jmp”
command, which does not try and save anything in the dummy stack frame when the
call is executed, since the dummy stack frame is already pre-loaded with the return

address that is to be used by the RET instruction execution.

-65-

10

15

20

25

30

WO 01/23998 PCT/US00/25928

In this simple manner, ROM BIOS system initialization routines running in a
RAMless environment (befofre the memory controller of a PC is set up, for example)
may call subroutines that are conventional in their design. Note that the product
component linker 3600 needs only insert one dummy stack frame into each code
segment that requires one, since many different calls (actually jumps) to procedures can
share a single dummy stack frame, with the register bx in every case controlling the
return and directing it to the right offset within the code.

An alternative approach to implementing far subroutine calls before RAM is
available involves the creation of a table of return addresses that are used to return to
the calling code at completion of the subroutine. The caller loads a pre-determined
register with an index into the table before jumping to the subroutine. At completion,
the subroutine jumps to a common dispatch routine that uses the index value to access
the return address, and jumps back to the calling code. The liner 3600 creates the table
and assigns the index values.

The linker 3600 creates the table of return addresses based on housekeeping
information obtained from the components and passed through the public segment 3804.

Next, at step 3614, the modules of code, which now include lists, dummy ROM
stacks, strings, non-volatile RAM blocks and code, and relocation tables, may be
mapped into the final address space for the entire unified block of code, something that
could not be done before this. Within the IBM PC and compatible “real mode,” as
found on Intel 386 class computers (Pentiums, 486s, etc.), all intra-segment addressing
must be based upon real, absolute segment addresses and offsets within those segments.
Accordingly, at this time, the product component linker 3600 finalizes the addresses of
al externals - all reference addresses. And finally, the linker 3600 actually fixes up the
addresses in the code, thereby finally resolving and satisfying all the code dependencies.
The code is now completely ready for installation in the final image.

The final step performed by the product component linker, step 3616, is that of
writing out the rom modules, symbol maps, and logging information relating to lists,
strings, and non-volatile RAM for the system designer to examine and also to pass on to
the separate (in the preferred embodiment) “ROM_IMAGE” routine that inputs the
ROM modules along with BIOS.SCR and information about image portions that are to

be replicated, and performs the final assembly of the ROM code image, including

-66-

10

15

20

25

30

WO 01/23998 PCT/US00/25928

compressing some portions, adding compressed code for sound and images, and
creating the final ROM directory.

Fig. 37 shows the list creation and management process 3700. The
LIST_CREATE macro 3704 (Section 5.1 in the Line-by-Line Description of Macros)
shown in a code fragment of source code file A 3702, creates a list in the current
segment by preserving the list name and entry size specified by its parameters and
identifying the current segment at the time it was called. The code fragment of source
code file B 3706, contains a LIST START macro 3708 (Section 5.3 in the Line-by-Line
Description of Macros) that specifies and preserves the same list name and entry size as
the LIST CREATE macro 3704 as well as the list entry priority order. The
LIST_ENTRY macro (Section 5.5 in the Line-by-Line Description of Macros) in this
code fragment 3710 specifies and preserves the data for a list entry, the name of the
entry, its sort priority (a number used to sort list entries with the same sort key) and
sort key. The LIST END macro 3717 (Section 5.4 in the Line-by-Line Description of
Macros) ends the list entries begun by the LIST START macro 3708 and allows
multiple list entries to be specified. The code fragment of source code file C 3714
illustrates that multiple list entries can be specified in different source code filess that
may be a parts of different components. The product build process 1000 uses the
information preserved by the LIST CREATE macro 3704 to identify a list name,
combines the information preserved by the LIST START 3708 and LIST ENTRY 3710
macros, sorts the entry data and puts the sorted entry data into the finished product
3716 in the segment identified by the LIST CREATE macro 3704.

Each list entry declaration specifies a sort ‘key’ string 3711 that can be used to
determine the order of the entries in the list. When a master sort list (not shown) is
provided, the entries in the actual list are ordered to match the sort list order. The
master sort list may contain entries that do not have matching entries in the actual list.
Each actual list entry must have a sort key that appears in the master sort list (if the
master sort list is present), to determine the position of the list entry. If more than one
list entry has the same sort key string, then they are further sorted by using the entries
sort priority value 3713.

The product component linker 3600 reads the housekeeping segment (included in

the public segments 3804 in Fig. 38) that contains the master sort list, starting with the

67-

10

15

20

25

30

WO 01/23998 PCT/US00/25928

name of the list to be sorted. Then each sort key string is read, in order, and placed
into a container as a list object where the list object (not shown) is a temporary data
structure. The actual sorting of the list entries is accomplished by assigning an index
value to each entry. First, the index value is initialized to zero. Then, the first sort key
string is retrieved from the master list. The container of entry objects is searched for
entries that have a matching sort key string 3711. If one or more is found, the current
index value is assigned to the one with the highest sort priority value 3713, and the
index value is incremented. This continues until no more matching entries are
available. This process is repeated for each sort key string from the master list.

When multiple list entries have the same sort key string, or when a master sort
list is not provided, the sort priority value 3713 of the list entry is used to determine the
order of list entries. The sort priority value 3713 is numeric in nature, and the product
component linker 3600 will sort the entries so that smaller values appear in the list
before larger values. An error is reported when attempting to sort entries by priority,
when the priority values are equal.

List and list entry macros generate housekeeping information that finds its way
into the public segment 3804 and that is used by the product component linker 3600 to
determine list placement and entry ordering. These parameters control the actual
sorting process. Once the sorting has been performed, this housekeeping information
can be discarded, thereby reducing the size of the final executable code.

When a list entry data 3709 includes a ‘public declaration’, then references to it,
such as a “call” to it, can be made by name. Since the final location of the list, and the
position of this entry in the list, are not known until determined by the product
component linker, these references must be resolved after the list location and the list
entry location are known and finalized.

This is accomplished in two steps, one for the offset of the entry and one for the
segment. The offset of the entry can be determined after the list has been sorted by
multiplying the entry’s index by the size 3707 of the entry. This produces the distance
of the entry from the beginning of the segment. The computed offset value is used,
along with a pointer to the list segment object. The segment value of the entry will be
identical for all entries in the list and is determined when the list segment is placed into

destined region.

-68-

10

15

20

25

30

WO 01/23998 PCT/US00/25928

A list entry may contain a public definition within its data area that needs to be
resolved by the product component linker 3600 to an external reference. These
references cannot be resolved until after segment assembly and placement has occurred,
and segment placement cannot be completed until all the lists have been created. To
address this issue, an association object is created and stbred temporarily that contains
the original location of the list entry (in the public segment) and the new location of the
list entry (in the specified destination segment). As each reference is resolved, a check
is made to see if the location of the public definition is within the public segment. If so,
the associaiton object for the list entry that contains the definition is found, and the
reference is resolved to the new locaiton of the definition within the list entry.

As part of list processing, the product component linker 3600 produces a ‘source
listing’ of the resulting list structure which the user may save as part of the component
source code library. This listing (not shown) can be used on subsequent invocations of
the product component linker 3600 as a substitute for and override of the macros and
data 3704, 3708, 3714 that defined the list to ‘lock’ the contents and structure of an
actual list. When the locked listing is provided, a one-to-one correspondence is
enforced on all list declarations (i.e. each list declaration (3704, 3708, 3714, etc.) must
match one, and only one, entry in the locked listing).

To reduce the effort required to make a change to a list entry declaration, the
original declaration can be left in place, and a new declaration can be created with an
override modifier flag appended to its macro. This eliminates the need to modify an
existing file (which may be contained in a core directory) when a simple change to a list
entry is desired. When multiple list entries are detected with the same name, only the
declaration with the highest numeric override value 3705 is used in the creation of the
list. Multiple entries (with the same name) that have identical override values cause an
error.

An “exact fit segments” feature of the product component linker 3600 eliminates
the need for using separate ‘start’ and ‘end’ segments just to determine the size and
location of a list of entries. By including extra identification information with each list
definition, as well as each list entry definition, the source-level list declaration
statements can be compiled into the public segment 3804. The linker 3600 can then

create new segments of the exact size needed.

-69-

10

15

20

25

30

WO 01/23998 PCT/US00/25928

After all the list entry definitions have all been read, the required size of the list
segment can be determined from the number of entries in the list, and the size of the |
entries. A segment object is then created, and added to the container of segment objects
for the appropriate module.

The product component linker 3600 is able to allocate non-volatile RAM space,
such as battery backed-up C-MOS space, in sizes ranging from one bit up to 16 bytes,
contiguous (closely packed). Anything 8 bits or less is aligned so as not to cross a byte
boundary. Anything over 16 bits is rounded up to an integer multiple of bytes. (See
Fig. 39).

An NVRAM_MEDIA macro 3902 is provided to define a particular media, such
as battery backed-up CMOS. This macro assigns a name to the media, specifies its
size, and declares the reader and writer subroutines by name that are to be used to read
and write the non-volatile media.

An NVRAM_ITEM macro 3904 defines non-volatile RAM field by specifying
its name, size, default values, flags, media, and address. The flags indicate, for
example, whether the field is included in the checksum and whether it requires
initialization when the checksum fails or NV-RAM is cleared. The media parameter
assigns it to the particular one of several possible media defined by a NVRAM_MEDIA
macro. The address and media are both optional. But if an address is specified, the
media must also be specified.

An NVRAM RESERVED macro is similar but simply reserves space, for
example, for the real-time clock.

NVRAM_STRUCTURE START and NVRAM_STRUCTURE END macros can
bracket several NVRAM_STRUCTURE_ITEM macros to define a series of items to be
a single, larger data structure item for purposes of retrieval and storage.

A READNYV macro 3906 generates code to read a named NVRAM data item,
and a WRITENYV macro 3908 generates code to write a named data item.

The “READNV < name>” macro generates the following code:

MOV AX, <16 bit space>
call read.sub
which causes some index (inserted later by the product component linker 3600)

to call the appropriate subroutine (also inserted later by the product component linker)

-70-

10

15

20

25

30

WO 01/23998 PCT/US00/25928

to fetch the named value. This macro also generates, in the public segment 3804, a
record of the position of this call, an indication that it is a “read” call, plus the name of
the NV_RAM field to enable the product component linker 3600 to adjust the inserted
code properly. The “WRITE NV <name>” macro works similarly.

The product component linker 3600 allocates the NV_RAM to the fields defined
by the NVRAM_ITEM macros and maintains a temporary table relating each name to
an offset into NV_RAM. This table is then used to adjust the read and write code in the
program segments as just explained.

STR_DEFINE and STR_DEFINE_END macros 4002 accept a sring and assign
a name to the string. A string also has a “language” attribute (for example, “US” or
“IT”) specified by a STR_LANGUAGE macro as well as an ASCII value specified by a
STR_TEXT macro.

The linker collects all the strings defined by instances of this macro and
associates each with its name and language. The “active” language parameter for a
given PC is normally stored in NV_RAM and may be changed by the system designer.

A “LOADSTR <name > " macro 4004 generates the string write preparation
code:

MOV _SI, <16 bit space>

within a program segment, giving the program a “source index” pointer to the
string data (which will be explained below). As in the case of NV_RAM macros, data
including the string name, the address of the 16-bit space, and the nature of this
instruction are placed into the public segment 3804, thereby enabling the product
component linker 3600 to complete this reference.

The product component linker 3600 builds a separate table for each language
including a string value pointer array and the actual string values for each language.
The strings having the same meaning in each different language are pointed to within
each table by value pointers stored in corresponding positions within the value pointer
arrays. According, a “source index” value, si, such as “18” identifies within each
language table’s string value pointer array an index value to the start of the
corresponding string of text. Accordingly, the code that follows the “mov si” <ptr>?”

code can readily utilize the “si” value, which identifies a particular message, and the

71-

10

15

20

25

30

WO 01/23998 PCT/US00/25928

NV_RAM country value, which identifies the language, to find and retrieve the proper
message written in the proper language.

Fig. 38 presents, in one view, elements of the invention described elsewhere that
participate in enabling the system designer to maintain detailed control over the
assembly of features and components into a final finished procuct 1106.

The designer, through the user interface, views the configuration state data (Fig.
33A) and makes choices about components, features, and dependencies, as has been
explained. This user information is preserved in the product configuration data file
2100 and is fed back into the configuration state data. The component source code
library 1200 is also scanned, and detailed information about calls, procedures, includes,
etc. is gathered into the database 1800, including such things as component
designations, class designations, version designations, and other useful information.
Also, information concerning components and features, such as which platforms they ar
compatible with, or are required for, is gathered from the component and feature
information files and placed into the database 1800. The contents of the database 1800
are also transferred into the configuration state data 1900.

All of this information, contained within the configuration state data 1900, then
determines the configuration of the product, which is presented to the system designer
in logical form at the user interface. The designer may modify the configuration by
editing the files in the component source code library 1200 or by selecting or
deselecting features and components (Fig. 33D) and adjusting options (Fig. 33E) with
respect to dependencies and externals using the user interface. And of course, all errors
in the way in which the system fits together are signalled directly to the designer by red
Xs on the user interface (Fig. 33B).

Once the configuration is done, the product make routine 800 is called upon to
create the finished product 1106. First, component and product make files 2400 and
2500 are generated to instruct the assembler, compiler, and linker in their tasks. Next,
the feature include files 2300 are generated so the compiler and assembler will insert
them into the source code files prior to compilation and assembly. The feature include
files should be thought of as signal conduits leading directly from the system designer
and the configuration state data into the source code files to actually control the pre-

editing of the source code files prior to compilation and assembly, including deleting all

-72-

10

15

20

25

30

WO 01/23998 PCT/US00/25928

calls to components and features that have been deselected; replacing “class”
designations of include files with their absolute addresses within the component source
code library 1200; and passing control values to the macros to alter the way in which
the macros signal the product component linker as to what is to be finally connected up
to what.

The special macros, when executed by the compiler and assembler, generate
data for every procedure, label, and table (externals) that is designated for placement
into a special external segment 3802, a first dummy code segment. They generate data
for every call, jump, option, and global (dependencies) that is designated for placement
into a special external segment 3804, a second dummy segment. These dummy
segments should be thought of as communication pathways between the individual
source code file locations and the product component linker over which may be passed
information defining how the final address fix-up operations are to be carried out. Note
that this information originates with the system designer. The component and feature
information and the source code files are contained within the configuration state data,
are partly passed into the compilation/assembly process through the feature include files
2300, and are finally gathered, altered, and sent on to the product component linker
3600 by the special macros 3806.

The compilation, assembly, and linking process is next carried out, generating
executable files 1104 which are indexed into separate segments by the linker map files
3808. Accordingly, the product component linker 3600, when placed into operation,
can sift through the executable files, sorting their contents our by code segment, so that
the contents of all segments are drawn together. In this manner, the public and external
segment data 3802 and 3804 is drawn together so that it can control and direct the
operations of the product component linker, along with a list of the selected components
3810 and a BIOS.SCR file that specifies absolute sector addresses, the ordering of
sectors, and other such things. All of this enables the system designer to maintain an
unusual degree of control in the process of linking components and features together
into an integrated product, as has been explained.'

As previously discussed, the development system is dependent on the collection
of data from both source code files, and information files (INF files). INF files and

source code files are scanned throughout execution of the development environment.

-73-

10

15

30

WO 01/23998 PCT/US00/25928

Specifically, files of either type are scanned and the data placed in the database
whenever a file is added to the working directory or an existing file in the working
directory is modified. If a file is deleted from the working directory, the associated
data is removed from the database. This process ensures the database is always up-to-
date. The following paragraphs describe the specific data that is collected from source
and INF files, and presents specific uses for this data.

Program source files taking advantage of the development system are required to
use a standard set of macros previously presented and described.

INF files represent the preferred embodiment for storing various component and
feature information that is not stored in the source code macros but is needed to
facilitate many of the functions of the system. Note that the data contained within the
INF files could be stored using a variety of other methods, including but not limited to
data tables, source files, the PLATFORM.CFG file, or some other file created
specifically for that purpose. In the preferred embodiment, every component and
feature must have an INF file within its respective directory. INF files use a stringent
command language facilitating simple data collection during the scan process for storage
in the database.

During the scan process, a number of errors can be identified in the tree. This
is useful because the errors are identified early in the development process prior to an
attempt to use the source code, build the system, or more importantly, prior to
distribution of a compiled BIOS. The errors that can be identified include: 1)
identification of inappropriately named components, features, and options by parsing
each command to ensure compliance with the command specification. 2) Identificaton
of multiple components or features with the same component name by requiring unique
component names upon adding a record to the database. 3) Invalid trigger combinations
that could potentially result in indeterminate states during trigger resolution. 4)
Identification of incorrect macro usage including syntax errors or invalid data errors
that would ultimately result in an assembly errors or runtime errors during the build
process.

Additionally, following the initial scanning process, the database is used for
real-time evaluation of error conditions arising during the development process. Current

state of the art development systems do similar error checking only during the build

-74-

10

15

20

25

30

WO 01/23998 PCT/US00/25928

process. This invention accomplishes these tasks prior to the build process in an
efficient, real-time environment where the user receives immediate feedback (in most
cases <1 sec) on standard personal computer systems (Pentium 400 MHz) if an error
occurs. The errors that can be identified include 1) unresolved dependencies, 2) calls
that violate access levels such as a call from one component to a private procedure in
another component. 3) Calls to procedures that are outside of the appropriate program
segments. 4) Use of EXTCALL statements without first declaring PUBEXT or
PRVEXT, 5) Near calls to far procedures 6) Far calls to near procedures 7) Unresolved
dependencies, 8) Calls to invalid version numbers 9) Stale file overrides. 10)
Identification of indeterminate trigger conditions based on user changes in a working
tree.

A variety of statistical information is available from the database. This
information includes 1) Determination of unused interfaces, labels, or variables. 2)
Code flow analsysis. 3) The number of public and private interfaces declared for a
procedure. 4) Reports on components and features that do not meet minimum functional
interface requirements based on the class of the component or feature and others.
Figure 55 shows how function tracking can be used.

Information is also available from the configuration to provide filter searches to
only include the subset of the source code library that is part of a product. For
example, to search for a displayed string, it is less useful to see all instances of that
string in the source code library than to see the instances actually used by the product.
Reports can be generated giving the developer information such as 1) Features without
hard dependencies (optional features), 2)public interfaces available, 3) options and the
set values and default values, 4) Features using specified code segments, and many

others.

Customization Techniques

The invention supports methods of customization from both the pre-compilation
configuration, and the final image creation stage of the Binary Linker. Pre-compilation
configuration customizations allow “point and click” customization of the source code
libraries. Options, described above allow the user to change values without modifying

code. This methodology can be extended to tables. In the case of a BIOS, register and

-75-

10

15

20

25

30

WO 01/23998 PCT/US00/25928

CMOS tables can be customized without code modification. Source code library files
can be overridden, where the original file is physically left intact, but the override
resides in custom folders , but is built into the component image. Custom files can be
added to a feature, that physically reside in custom folders but also build into the
component image. Fig. 42 shows the steps involved in these techniques, illustrating the
customization of single items from a table, using the product component linker 3600 to
replace the original entry with a customized version, and to adjust the link references.
Customization is supported by the product component linker 3600 and allows
for table order locking as well as table entry overriding. Complete entries in the tables
can be overridden, and the original data in the code segment can be replaced by the
override. The product component linker 3600 also support customization by
intercepting the linkage of any callers to Public callees, when the intercept parameter is
declared on the Public Procedure Declaration. This method is useful for having custom

code execute before or after a Public procedure.

Archives

The development system defines an application programmer interface for
interacting with change management systems (Such as PVCS, Dimensions, Visual
Sourcesafe, etc). This interface includes the ability to port proprietary information
from a component’s or feature’s INF file directly into the change management system
database, thus forgoing the need to force a user to reenter this data into the change
management system when checking in new components or features. Information that
is ported includes all of the categorization information contained in the INF files. Note
however that any additionally information could be ported just as easily with the
addition of appropriate interfaces. Once in the change management system, this
information can be used for a variety of reporting purposes as well as for locating
components or features based on specific criteria. For example, a user of the change
management system could query the éhange management data to locate components or
features that support device number “371AB.”

The database scanning process also extends to provide support in the area of
information archiving and retrieval. In an environment where the software development

system is being used to describe a large core set of interchangeable components and

-76-

10

15

20

25

30

WO 01/23998 PCT/US00/25928

features, it becomes necessary to pick a subset of these components and features for use
in a specific project. The current state of the art requires a user to simply pick and
choose software parts from standard directory folder listings to accumulate the desired
parts, or a more advanced system may provide scripts for simplifying this process. In
the invention, the same scanning process previously described is applied to the core set
of components and features to obtain a complete database of the available software core
set. The graphical user interface (GUI) then uses this database to provide users the
ability to choose the components or features needed in a new product. The user
interface only needs the database to facilitate this selection process. The database can
be local or it can be located on a remote server. Additionally, the GUI is capable of
notifying the user immediately upon selection of a particular component or feature if the
part is dependent upon other components or features. Theoretically, a user has the
capability to choose in entirety all of the components and features needed for new
software product without error, prior to downloading a single bit of code from the
archives. '

Product release typically entails, among other things, creating a baseline label
that identifies all parts of the product being released. This labeling process allows for
product reproducibility at a later date. Using the state of the art development and
change management systems, if an interested party desires statistical information
regarding the released product, the information may only be obtained by re-
downloading all of the original files required to build the released product and then
using these files to compile the needed information. Or the change management system
may contain release notes for certain details. The development system provided by the
invention improves upon the state of the art by allowing a user to download only the
PLATFORM.CFG file and the archived database (two files from a typically large set of
files) for the product release to obtain a significant amount of information that would
otherwise be unavailable in today’s state of the art systems. This information includes
complete reporting of all installed components, features, dependencies, interfaces, their
version numbers, and any other information that can be obtained from the standard
database.

In addition to providing control do the developer using this system, the database

of information collected form the codebase can be used for a variety of purposes,

-77-

10

15

20

25

30

WO 01/23998 PCT/US00/25928

including source library quality management. Many errors in the system are viewable
before files are compiled. All dependencies and definitions of the codebase and
corresponding versions are captured, allowing for determination of codebase coherency.
Reports of all functions not referenced prevents dead code from existing in the
codebase. Reports of dependencies not available in the library with compatible version

numbers is a valuable tool.

DESCRIPTION OF THE SYSTEM MACROS USED IN THE PREFERRED
EMBODIMENT OF THE PRESENT INVENTION

The Procedure and Label Declaration Macros consist of the PUBLIC_PROC,
PRIVATE _PROC, END_PROC, PUBLIC_LABEL, PRIVATE_LABEL and
FBM _LABEL.

The PUBLIC_PROC macro marks the start of a procedure that can be called
from other components. It must be matched with an END PROC macro. Its
parameters are name, version and an optional INTERCEPT keyword. The name
parameter is made up of a class name, zero or more subclass names and the actual
procedure name, seperated by periods. The versipn parameter consists of major and
minor version numbers seperated by a period. Callers with different major version
number are incompatible. Callers with the same major version number but greater
minor version numbers are incompatible. Increasing the minor version number implies
backwards compatability. The optional INTERCEPT parameter indicates that the
product component linker will fixup callers to call this procedure if there are multiple
definitions.

The PRIVATE PROC macro marks the start of a procedure that can be called
only from within the component. It must be matched with an END_PROC macro. Its
parameters are name, scope keyword and an optional version. The name parameter is
made up of a class name, zero or more subclass names and the actual procedure name,
seperated by periods. The scope keyword parameter must be NEAR or FAR. The
optional version parameter is needed only if the private procedure is defined outside of
the component, such as a shared file or oem hook. If specified, it is the same as the

version parameter of the PUBLIC_PROC macro described above.

-78-

10

15

20

25

30

WO 01/23998 PCT/US00/25928

The END_PROC macro marks the end of a procedure and has no parameters. It
must be matched with a preceding PUBLIC_PROC or PRIVATE_PROC macro.

The PUBLIC LLABEL macro creates a label that can be used from other
components for code execution, for example, creating fixed entry points. Its parameters
are name, version and an optional INTERCEPT keyword. The name parameter is made
up of a class name, zero or more subclass names and the actual entry point name,
seperated by periods. The version parameter is the same as the version parameter of the
PUBLIC PROC macro described above. The optional INTERCEPT parameter
indicates that the product component linker will fixup callers to call this entry point if
there are multiple definitions.

The PRIVATE_LABEL macro creates a label that can be used only from within
the component for code execution, for example, creating fixed entry points. Its
parameters are name and an optional version. The name parameter is made up of a
class name, zero or more subclass names and the actual entry point name, seperated by
periods. The optional version parameter is needed only if the private entry point is
defined outside of the component, such as a shared file or oem hook. If specified, it is
the same as the version parameter of the PUBLIC_PROC macro described above.

The FBL_LABEL macro specifies future binary manipulation (FBM) by the
product component linker and does not generate any code. It informs the scan utilities
and the product component linker that the label represents data generated by the binary
linker at build time. The single name parameter is made up of a class name, zero or
more subclass names and the actual entry point name, seperated by periods.

The External Reference macros consist of the PUBEXT, PRVEXT, EXTCALL,
EXTIMP, EXTPTR, LOADADDR, LOADOFF, LOADSEG, EXTREF and
EVALREF macros.

The PUBEXT macro declares an external reference to a public procedure, public
label, public list or public list entry. Its parameters are name, version and the optional
parameters attribute keyword or component name, altname and altversion. The name
parameter is made up of a class name, zero or more subclass names and the actual entry ‘
point name, seperated by periods. The version parameter is the same as the version
parameter of the PUBLIC_PROC macro described above. When the optional third

parameter is the keyword OPTIONAL, references to the label will be removed if the

-79-

10

15

20

25

30

WO 01/23998 PCT/US00/25928

specified label does not exist. When the optional third parameter is the keyword
SUBSTITUTE, the hexadecimal value FFFFFFFF (far) or FFFF(near) will be used if
the specified label does not exist. When the optional third parameter is the keyword
ALTERNATE, the fourth parameter is the altname to use if name is not defined and
the fifth parameter is the version number of the altname procedure. When calls to a
procedure are intercepted by a second procedure defined as a PUBLIC_PROC with the
optional INTERCEPT parameter and this procedure wishes to call the original
procedure, the name of the original component is specified as the optional third
parameter.

The PRVEXT macro declares an external reference to a private procedure or
label. Its parameters are name, scope keyword, version and the optional parameters
attribute keyword, altname and altversion. The name parameter is made up of a class
name, zero or more subclass names and the actual entry point name, seperated by
periods. The scope parameter consists of the keyword NEAR or FAR. The version
parameter is the same as the version parameter of the PUBLIC_PROC macro described
above or the keyword NO_VER. The version is specified only if the label is defined
outside of the component, such as a shared file or override.. When the optional fourth
parameter is the keyword OPTIONAL, references to the label will be removed if the
specified label does not exist. When the optional fourth parameter is the keyword
SUBSTITUTE, the hexadecimal value FFFFFFFF (far) or FFFF(near) will be used if
the specified label does not exist. When the optional fourth parameter is the keyword
ALTERNATE, the fifth parameter is the altname to use if name is not defined and the
sixth parameter is the version number of the altname procedure.

The EXTCALL macro is used to call a public or private procedure and must be
used with a preceding PUBEXT or PRVEXT macro. Its parameters are name, optional
codetext string and optional component name. The name parameter is made up of a
class name, zero or more subclass names and the actual procedure name, seperated by
periods. The optional codetext string contains an instruction to be executed after the
call has returned. When calls to a procedure are intercepted by a second procedure
defined as a PUBLIC_PROC with the optional INTERCEPT parameter and this
procedure wishes to call the original procedure, the name of the original component is

specified as the optional third parameter.

-80-

10

15

20

25

30

WO 01/23998 PCT/US00/25928

The EXTIMP macro jumps to a public or private procedure and must be used in
conjunction with a preceding PUBEXT or PRVEXT macro. Its parameters are name,
an optional register name, an optional codetext string and an optional component name.
The name parameter is made up of a class name, zero or more subclass names and the
actual procedure name, seperated by periods. The optional register name specifies the
16-bit register that will hold the return address. The optional codetext string contains
an instruction to be executed after the call has returned. When calls to a procedure are
intercepted by a second procedure defined as a PUBLIC_PROC with the optional
INTERCEPT parameter and this procedure wishes to call the original procedure, the
name of the original component is specified as the optional fourth parameter.

The EXTPTR macro allocates a pointer to a procedure or a label and must be
used in conjunction with a preceding PUBEXT or PRVEXT macro. Its parameters are
name and an optional component name. The name parameter is made up of a class
name, zero or more subclass names and the actual procedure name, seperated by
periods. When calls to a procedure are intercepted by a second procedure defined as a
PUBLIC_PROC with the optional INTERCEPT parameter and this procedure wishes
to point to the original procedure, the name of the original component is specified as the
optional second parameter.

The LOADADDR macro loads the address of a procedure or a label into
registers and must be used in conjunction with a preceding PUBEXT or PRVEXT
macro. Its parameters are name, an optional segmentreg, an optional offsetreg and an
optional component name. The name parameter is made up of a class name, zero or
more subclass names and the actual procedure name, seperated by periods. The
optional segmentreg parameter specifies the 16-bit register to hold the segment portion
of the address (default is ES). The optional offsetreg parameter specifies the 16-bit
register to hold the offset portion of the address (default is DI). When calls to a
procedure are intercepted by a second procedure defined as a PUBLIC_PROC with the
optional INTERCEPT parameter and this procedure wishes to load the address of the
original procedure, the name of the original component is specified as the optional
fourth parameter.

The LOADOFF macro loads the offset of a public or private label into a 16-bit
register and must be used in conjunction with a preceding PUBEXT or PRVEXT

-81-

10

15

20

25

30

WO 01/23998 PCT/US00/25928

macro. Its parameters are offsetreg, name and an optional component name. The
offsetreg parameter names the 16-bit register that will hold the offset (default DI). The
name parameter is made up of a class name, zero or more subclass names and the actual
procedure name, seperated by periods. When calls to a procedure are intercepted by a
second procedure defined as a PUBLIC_PROC with the optional INTERCEPT
parameter and this procedure wishes to load the address of the original procedure, the
name of the original component is specified as the optional fourth parameter.

The LOADSEG macro loads the segment of a public or private label into a 16-
bit register and must be used in conjunction with a preceding PUBEXT or PRVEXT
macro. Its parameters are segmentreg, name and an optional component name. The
segmentreg parameter names the 16-bit register that will hold the segment (default DI).
The name parameter is made up of a class name, zero or more subclass names and the
actual procedure name, seperated by periods. When calls to a procedure are intercepted
by a second procedure defined as a PUBLIC_PROC with the optional INTERCEPT
parameter and this procedure wishes to load the address of the original procedure, the
name of the original component is specified as the optional fourth parameter.

The EXTREF macro is used to fixup a structure member to contain the address
of a public or private label and must be useed in conjunction with a preceding BUBEXT
or PRVEXT macro. Its parameters are name, an optional strucMem name, an optional
component name and an optional FORWARD_ REFERENCE keyword. The name
parameter is made up of a class name, zero or more subclass names and the actual
procedure name, seperated by periods. The optional strucMem name identifies the
structure member to fixup if fixup is far. When calls to a procedure are intercepted by a
second procedure defined as a PUBLIC_PROC with the optional INTERCEPT
parameter and this procedure wishes to fixup the address of the original procedure, the
name of the original component is specified as the optional third parameter. The
optional FORWARD REFERENCE keyword causes the macro to use a forward
referenced anonymous label to calculate offset.

The EVALREF macro allows the address of a label to be used within an
instruction. Its parameters are opcode, destination and source. The opcode parameter
is the name of the instruction to be generated. The destination parameter specifies a

register, label or procedure and the source parameter specifies a register, immediate

-82-

10

15

20

25

30

WO 01/23998 PCT/US00/25928

value, procedure or label. The procedure or label in the destination or source
parameter must be defined using an EXTREF macro enclosed in angle brackets (< >)
inline with the EVALREF macro.

The Include File Declaration macros are PUBLIC_INCLUDE_START,
PRIVATE INCLUDE_START, PRVINC and PUBINC.

The PUBLIC_INCLUDE_START macro declares the start of an include file that
can be used by other components. Its parameters are classheirarchy and version. The
classheirarchy parameter is the class name and zero or more subclass names seperated
by periods. The version parameter is the major and minor version numbers of the
interface defined by the include file seperated by a period.

The PRIVATE INCLUDE START macro declares the start of an include file
that can only be used within the current component. Its parameters are classheirarchy
and an optional version. The classheirarchy parameter is the class name and zero or
more subclass names seperated by periods. The version parameter is the major and
minor version numbers of the interface defined by the include file seperated by a period
and is used only if the include file resides outside of the component, such as a shared
include file.

The PRVINC macro includes a private include file. Its parameters are
classheirarchy, filename and an optional version. The classheirarchy parameter is the
class name and zero or more subclass names seperated by periods. The filename
paramater is the name of the include file. The version parameter is the major and minor
version numbers of the interface defined by the include file seperated by a period and is
used only if the include file resides outside of the component, such as a shared include
file.

The PUBINC macro includes a public include file. Its parameters are
classheirarchy, filename and version. The classheirarchy parameter is the class name
and zero or more subclass names seperated by periods. The filename paramater is the
name of the include file. The version parameter is the major and minor version
numbers of the interface defined by the include file seperated by a period.

The Procedure Header macros are DESCRIPTION, INPUT:, OUTPUT:,
MODIFIED:, MEM, REG, NONE and OEM_HOOK. None of these macros generate

any code, their purpose is to identify the location and type of information describing the

-83-

10

15

20

25

30

WO 01/23998 PCT/US00/25928

procedure defined by the preceding PUBLIC_PROC or PRIVATE_PROC macro when
the source file is scanned.

The Segment Macros are CODE_SEGMENT OPEN,

DATA _SEGMENT_OPEN, ASSUME CODE_SEGMENT,
ASSUME DATA SEGMENT and SEGMENT CLOSE.

The CODE_SEGMENT_ OPEN macro marks the opening of a code segment that
must be closed using the SEGMENT CLOSE macro. Its parameter is an expression of
attribute keywords combined using plus (+) that determines the placement and
“lifetime” of the code that follows.

The DATA_SEGMENT OPEN macro marks the opening of a data segment that
must be closed using the SEGMENT CLOSE macro. Its parameter is an expression of
attribute keywords combined using plus (+) that determines the placement and
“lifetime” of the data that follows.

The ASSUME _CODE_SEGMENT macro forces the assembler to assume that
the specified segment register points to the code segment that contains the specified
attributes. Its parameters are the segment register to make the assumption about and an
expression of attribute keywords combined using plus (+) that specifies the attributes.

The ASSUME DATA SEGMENT macro forces the assembler to assume that
the specified segment register points to the data segment that contains the specified
attributes. Its parameters are the segment register to make the assumption about and an
expression of attribute keywords combined using plus (+) that specifies the attributes.

The SEGMENT CLOSE macro marks the end of a code or data segment that
must have been opened by a preceding CODE_SEGMENT_OPEN or
DATA _SEGMENT_OPEN macro.

The Option macros are OPTEXT, OPTCHK, LOADOPT, DB_OPT, DW_OPT
and DD_OPT.

The OPTEXT macro declares a reference to an option from another component
or feature that was declared in the component or feature’s information file. Its
parameters are name and an optional component name. The name parameter is made up
of a class name, zero or more subclass names and the actual option name, seperated by
periods. When calls to a procedure are intercepted by a second procedure defined as a

PUBLIC PROC with the optional INTERCEPT parameter and this procedure wishes

-84-

10

15

20

25

30

WO 01/23998 PCT/US00/25928

to reference an option of the original component or feature, the name of the original
component is specified as the optional second parameter.

The OPTCHK macro tests the specified option (which must have been declared
with a preceding OPTEXT macro) with the specified condition and value. If true, the
truecodetext is executed; otherwise the falsecodetext is executed. Its parameters are
optionname, condition keyword, value, truecodetext and an optional falsecodetext. The
optionname parameter is made up of a class name, zero or more subclass names and the
actual option name, seperated by periods. The condition keyword is one of LE, LT,
GE, GT, NE or EQ with the usual and customary meaning. The value parameter is a
constant. The truecodetext parameter contains code to be executed if the condition is
true and the optional falsecodetext parameter contains code to be executed if the
condition is false.

The LOADOPT macro loads the specified destination with the specified option’s
value. The option must have been previously declared with the OPTEXT macro. Its
parameters are destination and optionname. The destination parameter specifies the
memory location or register to hold the options value and must be less or equal to the
option size. The optionname parameter is made up of a class name, zero or more
subclass names and the actual option name, seperated by periods.

The DB_OPT, DW_OPT and DD_OPT macros places a byte, word or double
word, respectively, in the current segment containing the value of the specified option
that must have been previously declared with the OPTEXT macro. The option name
parameter is made up of a class name, zero or more subclass names and the actual

option name, seperated by periods.
LINE-BY-LINE DESCRIPTION OF THE MACROS

The identifiers that name macros, macro parameters and macro variables in the
description of the macros in the preferred embodiment of the present invention that
follows, may begin with an upper case (A-Z) or lower case (a-z) letter or a question
mark (?) followed by zero or more letters, digits (0-9), underscore (_) or question mark
characters. Macro variable names that begin with three question marks (?7?)
distinguish those variables that are defined and referenced solely within the macros.

Macro variables referenced within a macro statement are normally replaced with their

-85-

10

15

30

WO 01/23998 PCT/US00/25928

current contents. When the macro statement begins with a percent (%), macro variables
are replaced with their current contents as normal; then, after replacement, any
identifier naming a macro variable that remains is replaced with its current value.

Strings are delimited by less than (<) and greater than (>) signs.

IF statements indicate a condition that, if true, cause macro statements up to the
matching ELSE or ENDIF statement to be evaluated. ELSE statements cause macro
statements up to the matching ENDIF statement to be evaluated if the preceding IF
statement was false. The ELSE statement may be combined with an IF to indicate that
macro statements up to the matching ENDIF statement are to be evaluated if the
preceding IF statement was false and the ELSEIF statement is true. Some of the If
statements are: IFE expression - if expression is equal to zero, IFNB <string> ----- if
string is not blank, IFDEF variable - if variable is defined, IF expression - if
expression is true, IFIDN <stringl >, <string2 > - if stringl is identical to string2,
and IFDIF <stringl >, <string2> - if string1 is different than string2.

1. Exit Macros

The Exit macros are EXTCALL and EXTIMP described here and ROMCALL
described in Section 4. The Exit macros identify points where the flow of control exits
the current procedure, goes to the procedure identified by the exit macro and later

returns.

DEFINE_PREFIX TEXTEQU <D_>
PROC_PREFIX TEXTEQU <P_>

These two textual equates define global macro variables containing the character

string prefixes that will be used in the macros that follow.
1.1 EXTCALL macro

The EXTCALL macro is used by the present invention to call a public
procedure in a different component or a private procedure in the current component.
The code generated by the EXTCALL macro depends on the Exit Declaration macro
and Entry Definition macro for its procedureName that are scanned by the present
invention. The information from these macros in turn, is used to generate a global

macro variable for the procedureName in the feature include file produced by the

-86-

10

15

20

25

30

WO 01/23998 PCT/US00/25928

present invention and included in each source code file that indicates what code, if any,

should be generated.

EXTCALL MACRO procedureName:REQ, optionalCode, component
BRANCH HANDLER procedureName, call, <optionalCode>, ,

< component >
ENDM

The EXTCALL macro generates a call instruction, fixup data for build, and
optional code if supplied. Usage: "EXTCALL pci.oprom.init, <jc exit>". Its
parameters are:

procedureName (required) - Name of procedure to be called in dot notation, e.g.

"class.subclass.procedure”;

optionalCode - Optional code to assemble, typically a jump on the carry flag set

by the procedure; and

component - May be used to specify the name of the component in which the

procedure is defined when multiple components define the same
procedureName.

The EXTCALL macro is implemented by invoking the BRANCH _HANDLER
macro with the appropriate parameters. Note that the fourth parameter of the

BRANCH HANDLER macro is deliberately omitted.

1.2 EXTIJMP macro

The EXTIMP macro is used by the present invention to call a public procedure
in a different component or a private procedure in the current component. The code
generated by the EXTIMP macro depends on the Exit Declaration macro and Entry
Definition macro for its procedureName that are scanned by the present invention. The
information from these macros in turn, is used to generate a global macro variable for
the procedureName in the feature include file produced by the present invention and
included in each source code file that indicates what code, if any, should be generated.

EXTIMP MACRO procedureName:REQ, register, optionalCode, component
BRANCH HANDLER procedureName, jmp, <optionalCode >,

<register >, <component>
ENDM

-87-

10

15

20

25

30

WO 01/23998 PCT/US00/25928

The EXTIMP macro is used to call a public or private procedure. It generates a
jump instruction, fixup data for build, and optional code if supplied. Usage: "EXTIMP
pci.oprom.init, <jc exit>". Its parameters are:

procedureName (required) - Name of procedure to be called in dot notation, e.g.

"class.subclass .procedur'e "

register - Optional register to hold the return address.

optionalCode - Optional code to assemble, typically a jump on the carry flag set

by the procedure; and

component - May be used to specify the name of the component in which the

procedure is defined when multiple components define the same
procedureName.

The EXTIMP macro is implemented by invoking the BRANCH HANDLER

macro with the appropriate parameters.
1.3 BRANCH HANDLER macro

The BRANCH HANDLER macro is an internal macro that provides a necessary

function to the present invention and is never called directly by a source code file.

BRANCH HANDLER MACRO externName:REQ, branchlnstruction:REQ, \
optionalCode, register, component

The BRANCH_HANDLER macro is used to call a public or private procedure.
The backslash (\) at the end of the first line specifies line continuation. Its parameters
are:
externName (required) - Name of external procedure to be called in dot notation,
e.g. "class.subclass.procedure”;
branchlnstruction (required) — A call or jmp;
optionalCode - Optional code to assemble, typically a jump on the carry flag set
by the called procedure;
register - Register containing return address offset; and
component - May be used to specify the name of the component in which the
procedure is defined when multiple components define the same

procedureName.

LOCAL 777addr
LOCAL 7?77retAddr

-88-

10

15

20

25

30

WO 01/23998 PCT/US00/25928

LOCAL 7?7?defineName
LOCAL ?7?procedureName
LOCAL 7??7extern

These are local variables used by the macro.
GET SYMBOL NAME <externName>, <component>

The GET_SYMBOL NAME macro returns externName (or
component.externName, if specified) in global variable ??7?symbol with dots (.) replaced

by underbars (); e.g. <pci.oprom.init> is returned as pci_oprom_init.

?77defineName CATSTR DEFINE PREFIX, ???symbol
77?procedureName CATSTR PROC_PREFIX, ?7?symbol

If externName is pci.oprom.init; then ???defineName is D_pci_oprom_init and
??7?procedureName is P_pci_oprom_init.
IFNB <component >
IFNB < optionalCode >
.ERR <BRANCH HANDLER: Cannot specify optionalCode with
component >

ENDIF
ENDIF

Generate an error if both the component and optionalCode parameters are
specified.

%IFDEF ?7?defineName

% IF ((7??defineName EQ TRUE) OR (???defineName EQ FALSE))

% .ERR <BRANCH HANDLER: The name !'externName!' has not been

PUBEXT or PRVEXT >
ENDIF

Verify that the externName (pci.oprom.init) has been declared using a PUBEXT
or PRVEXT macro. This will cause the system to define a global variable
(D_pci_oprom_init) and give it a value, neither TRUE nor FALSE, indicating its type.
The percent character (%) at the beginning of each line causes the IF statements to

reference the value of the global variable specified by ???defineName.

% IFE ???defineName AND TYPE SUBSTITUTE

_89-

10

15

20

25

30

35

WO 01/23998 PCT/US00/25928

If the value of the global variable specified by local variable ???defineName
does not have the TYPE SUBSTITUTE bit set, externName was not declared with the
SUBSTITUTE attribute and code can be generated.

% IFE ??7?defineName AND TYPE NOT _INSTALLED

If the TYPE_NOT_INSTALLED bit is not set, the component or feature
containing the definition of externName was included in the build and code can be

generated.

IFNB <register >
mov register, ???retAddr
ENDIF

Load the return address offset into the register if one was specified.

% IF 777defineName AND TYPE NEAR

% GET _SYMBOL_NAME ???procedureName
% 77?7extern CATSTR < ???symbol >

% branchlnstruction ???extern

If the TYPE_NEAR bit is set, generate the branchInstruction (call or jmp) as a
near branch. If the name parameter is pci.oprom.init then ???procedureName contains
P pci oprom_init, the name of the global variable defined by the PUBEXT macro
containing the name of this procedure. The GET SYMBOL NAME macro is passed
the value of this global variable (typically pci.oprom.init) so the PUBEXT macro can
use an alternate procedure name when required. The GET_SYMBOL_NAME macro
returns the ???procedureName in global variable ???symbol with dots (.) replaced by
underbars (_); e.g. <pci.oprom.init> is returned as pci_oprom_init, the name of the

procedure defined by the PUBLIC PROC macro.

ELSE
IFIDNI < branchlnstruction>, <call>
DB (09Ah ; Opcode for far call
ELSEIFIDNI < branchlnstruction>, <jmp >
DB OEAh ; Opcode for far jump
ELSE
% .ERR <BRANCH HANDLER: Unknown branch instruction
I"branchInstruction!' >
ENDIF
?77addr EQU $
DW §
DW §

90-

10

15

20

25

30

WO 01/23998 PCT/US00/25928

Generate far call (or jmp) code with a procedure address to be fixed up later.
An error is generated if the branchlnstruction parameter did not contain what was
expected. Note the physical address of the fixup location (???addr) will be stored
within the fixup location itself. The build tools will use the stored fixup address

(refering back to itself) as a sanity check.

% SAVE EXT FIXUP DATA ???procedureName, TYPE_EXT_FAR,
777addr, , component
ENDIF

Call the SAVE _EXT FIXUP DATA macro to save the fixup data for this
external reference (see below). The percent character (%) at the beginning of the line
causes the procedure name (pci.oprom.init) stored in the global variable specified by

7??procedureName (P_pci_oprom_init) to be saved as the target of the branch.
277retAddr EQU $
Define the return address that was loaded into a register above.

IFNB < optionalCode >

optionalCode
ENDIF
ENDIF

Generate optionalCode if it exists.

ELSE

.ERR <BRANCH_HANDLER: Cannot use the SUBSTITUTE attribute with

calls/jumps >
ENDIF

Generate an error if the TYPE SUBSTITUTE bit was set.

ELSE
% .ERR <BRANCH HANDLER: !'externName!" is not defined >
ENDIF

Generate an error if the global variable specified by ???defineName

(D_pci_oprom _init) was not defined.
ENDM

End the macro and return to its caller.

91-

10

15

25

30

35

WO 01/23998 PCT/US00/25928

1.4 SAVE_EXT_FIXUP DATA macro

The SAVE_EXT FIXUP_DATA macro is an internal macro that provides a
necessary function to the present invention and is never called directly by a source code

file.

SAVE EXT FIXUP DATA MACRO callProcedure:REQ, fixupType:REQ,
addr:REQ, \
addrOffset, component

The SAVE_EXT FIXUP DATA macro is an internal macro used to save the
fixup data specified by its parameters in a specially named segment. Its parameters are:

callProcedure (required) - Procedure name;

fixupType (required) - Fixup type, e.g. TYPE EXT FAR;

addr (required) - Address of fixup; |

addrOffset - Address of offset if offset fixup is split from segment fixup; and

component - may be used to specify the name of the component in which the
procedure is defined when multiple components define the same
procedureName.

The macro generates the following structure:

DB procedure name
DB 0

DB component name
DB 0

DB fixup type

DW offset of offset fixup
DW offset of segment fixup
DW segment for fixups

externSegment SEGMENT

DB '&callProcedure’ ; Procedure string

DB 0 ; Null terminate the string
IFNB <component >

DB '&component' ; Component to resolve to
ENDIF

DB 0 ; Null terminate the string

DB fixupType ; Fixup type

IFNB < addrOffset >

DW OFFSET addrOffset ; Offset of offset fixup
ELSE

DW OFFSET addr
ENDIF

92-

10

15

20

25

30

WO 01/23998 PCT/US00/25928

IFB < addrOffset >

DW OFFSET addr + 2 ; Offset of segment fixup
ELSE

DW OFFSET addr
ENDIF

DW SEG addr ; Segment for fixups
externSegment ENDS
ENDM

The structure containing the external fixup data is put in a special segment. The
callProcedure is stored as a null terminated string. If the component parameter is non-
blank, it is also stored as a null terminated string. If the component parameter is blank,
just the null terminator is stored. The null terminator is the ASCII character NUL
which has the value zero and is used to indicate the end of a character string. If the
addrOffset parameter is blank then the offset and segment to be fixed up are stored in
adjacent words, at addr and addr +2, respectively; otherwise, addrOffset specifies the
address of the offset to be fixed up and addr specifies the address of the segment to be
fixed up.

The fixup data generated by each call to this macro is merged into a single
externSegment when the source code files containing the calls are compiled, linked, and
processed by the product component linker. The externSegment in each object file is
merged into a single externSegment when the object files are linked to form the
component .EXE file. The fixup data in the externSegment of each component .EXE
file is used by the BIOS Component Linker to fixup the segment and offset of the

external reference.

2. Exit Declaration Macros

2.1 PUBEXT macro

The PUBEXT macro is used by the present invention to declare the name of the
public procedure that will be referenced by an Exit macro. The PUBEXT macro name
and its parameters are scanned from the source file by the present invention. The
information from this macro and the Entry Definition macro, is used to generate a
global macro variable for the procedure name in the feature include file produced by the
present invention and included in each source code file that indicates what code, if any,

the Exit macro should generate.

-93-

10

15

20

25

30

WO 01/23998 PCT/US00/25928

PUBEXT MACRO name, version, attribute, altName, altVersion
The PUBEXT macro is used to declare an external reference to a public
procedure or label. Usage: "PUBEXT memctrl.shadow.set, 1.0, OPTIONAL". Its
parameters are:
name - Name of procedure or label in dot notation, e.g.
"class.subclass.procedure";
version - Major.minor version of the external interface;
attribute -
OPTIONAL -> Code is genarated only if public procedure or label
exists,
ALTERNATE - > Use alternate reference if the public procedure or
label does not exist,
SUBSTITUTE -> Store OFFFFh if public label is undefined, or
component - > May be used to specify the name of the component in
which the procedure is defined when multiple components define the
same procedureName;

altName - Name of alternate public procedure or label; and
altVersion - Major.minor version of the alternate interface.

LOCAL 777defineName
LOCAL 77?attrib
LOCAL ??7component

These are local variables used by the macro.

??7?attrib CATSTR < attribute >
???7component TEXTEQU < >

The overloaded attribute parameter contains an attribute keyword or component
name. These two local variables are used to hold the attribute keyword and component
name specified by the attribute parameter. Since the parameter is overloaded, one or
the other will be blank. Initially, it is assumed that ???attrib contains an attribute

keyword and that ???component is therefore blank.

IFNB <attribute >
IFDIF < attribute >, <OPTIONAL >
IFDIF <attribute>, < ALTERNATE >
IFDIF < attribute >, <SUBSTITUTE >
??7?component CATSTR < attribute >

94-

10

15

20

25

30

WO 01/23998 PCT/US00/25928

?77attrib TEXTEQU < >
ENDIF
ENDIF
ENDIF
ENDIF

Check if the overloaded attribute parameter is really a component name. If so,

then ???component contains the component name and ???attrib is blank.

NAME _VER CHECKER <name>, <version>
%ATTRIB_CHECKER ?7?attrib, <altName>, <altVersion>

The NAME VER_CHECKER macro verifies that both the name and version
parameters were specified. The ATTRIB_ CHECKER macro verifies that if the
ALTERNATE attribute was specified then both the altName and altVersion parameters
were specified as well, or that if the ALTERNATE attribute was not specified then
neither the altName nor the altVersion parameter was present. These two macro calls
will produce errors if each of the names does not have a corresponding major.minor
version number. The version numbers are otherwise ignored by the generated code.

All the paramefers from each call of the PUBEXT macro are scanned from the
source file and entered in a database. This allows the BIOS Development System to
compare the version of the actual procedure interface used by the procedure definition
with the version of the procedure interface declared in the PUBEXT macro call and
used in the source code file containing the macro call. Since the version numbers of
both the procedure declaration and definition are stored in a database, the system can
determine if the interfaces are compatible by comparing version numbers before
compilation.

%GET _EXT _NAME name, ??7attrib, altName, ???component

Set bits in the global variable specified by ???defineName to indicate that the
public procedure or label has been declared by a PUBEXT macro call and is defined or

is to be handled according to the attribute specified. See description below.

GET SYMBOL_NAME name
977defineName CATSTR DEFINE_PREFIX, ???symbol

The GET_SYMBOL _NAME macro returns name in global variable ???symbol

with dots (.) replaced by underbars (_); e.g. <memctrl.shadow.set> is returned as

-95-

10

15

20

25

30

WO 01/23998 PCT/US00/25928

memctr]_shadow_set. If name is memctrl.shadow .set; then ???defineName is

D _memctrl shadow_set.

%IFDEF ???defineName
% ???defineName = ???defineName OR TYPE _PUBLIC
ENDIF

If the global variable containing the various type bits for this procedure is
defined, set the TYPE PUBLIC bit to indicate that it is a public procedure.

The BIOS Development System generates a feature include file that is included
by each source code file contained in the source library. It defines a global variable
??7?defineName, e.g D_memctrl shadow_set, for each procedure declared by a
PUBEXT macro containing various type bits. For instance, if the procedure is declared
to be OPTIONAL and the procedure definition is not included in the build then the
system will define the global variable with a TYPE_NOT INSTALLED bit indicating
that no code is to be generated for its calls (see the BRANCH_HANDLER macro

above).
ENDM

End the macro and return to its caller.

2.2 GET_EXT NAME macro

The GET _EXT_NAME macro is an internal macro that provides a necessary

function to the present invention and is never called directly by a source code file.

GET_EXT NAME MACRO name:REQ), attribute, altName, component

The GET_EXT NAME macro determines the name of the global variable
declared by a PUBEXT macro call and sets bits in it to indicate that the public
procedure or label has been declared and is defined or is to be handled according to the
attribute specified. Its parameters are:

name (required) - Name of procedure or label in dot notation, €.g.

"class.subclass.procedure”;

attribute -

OPTIONAL -> Code is genarated only if public procedure or label

exists,

-96-

10

15

20

25

30

WO 01/23998 PCT/US00/25928

ALTERNATE -> Use alternate reference if the public procedure or
label does not exist, or
SUBSTITUTE - > Store OFFFFh if public label is undefined,

altName - Name of alternate public procedure or label; and

component - > May be used to specify the name of the component in which the
procedure is defined when multiple components define the same
procedureName.
LOCAL 77?defineName

LOCAL 7?77publicName
LOCAL 77?tempDefineName

These are local variables used by the macro.

IFNB < attribute >
IFDIF <attribute >, <OPTIONAL >
IFDIF <attribute >, < ALTERNATE >
IFDIF <attribute >, <SUBSTITUTE >
- .ERR <GET_EXT NAME: Invalid !attribute supplied >
ENDIF
ENDIF
ENDIF
ENDIF

Validate the attribute parameter if non-blank.

GET _SYMBOL_NAME <name>, <component>
??77defineName CATSTR DEFINE PREFIX, 7?7symbol

The GET_SYMBOL_NAME macro returns externName (or

component.externName, if

specified) in global variable ???symbol with dots (.) replaced by underbars
(); e.g. <pci.oprom.init> is returned as pci_oprom_init. If name is

pci.oprom.init; then ???defineName is D_pci_oprom_init.

%IFDEF ?7?7?defineName

If the global variable whose name is specified by ???defineName is defined
by the build tools set bits in the global variable to specify the type of

the procedure declared.

% IF 7?7?defineName EQ TRUE

97-

10

15

20

25

30

35

WO 01/23998 PCT/US00/25928

If the global variable whose name is specified by ???defineName has the

value TRUE, the procedure was included in the build and can be called.

?7?publicName CATSTR PROC_PREFIX, ???symbol

% ?7?publicName TEXTEQU < name >
% 77?defineName = ???defineName OR TYPE_TRUE

Construct the name of the global variable that will contain the name of the
procedure to be called and store the string <name> in it. If name is
pci.oprom.init; then ???publicName is P_pci_oprom_init which contains the
string <pci.oprom.init>. Set the TYPE TRUE bit in the global variable

whose name is specified by ???defineName.
% ELSEIF ?77?defineName EQ FALSE

If the global variable whose name is specified by ???defineName has the
value FALSE, the procedure was not included in the build and its type is

determined by the attribute it was declared with.

IFIDN <attribute>, <SUBSTITUTE >

% ?7?defineName = ???defineName OR TYPE SUBSTITUTE
ELSEIFIDN <attribute >, <OPTIONAL >

% 777defineName = 7??defineName OR TYPE NOT _INSTALLED OR

TYPE_OPTIONAL

bits.

If the SUBSTITUTE or OPTIONAL attribute was specified, set the appropriate

ELSEIFIDN <attribute >, <ALTERNATE >
777publicName CATSTR PROC PREFIX, ?7?symbol
GET _SYMBOL_NAME altName
777tempDefineName CATSTR DEFINE PREFIX, ?7??symbol

If the ALTERNATE attribute was specified, construct the name of the global
variable that will contain the name of the procedure to be called.
Construct the name of the global variable that contains the type bits for

the altName.

% IFDEF 7?7tempDefineName
% IFE ??7tempDefineName AND TYPE RESERVED TRUE
.ERR <GET_EXT NAME: !"altName!' is not in the build >
ENDIF
ELSE
.ERR <GET_EXT NAME: !"altName!' is not defined >

98-

10

15

20

25

30

WO 01/23998 PCT/US00/25928

ENDIF

If the global variable containing the type bits for altName is not defined
or it is defined but the TYPE RESERVED TRUE bit is not set, produce an

error.

% ?7??publicName CATSTR <altName >

% 77?defineName = ???defineName OR TYPE_ALTERNATE
ENDIF

Set the name of the procedure to be called to <altName > and set the

TYPE_ALTERNATE bit in the global variable containing the type bits.

% ELSE
% .ERR <GET EXT NAME: !'name!" was already qualified with PUBEXT

or PRVEXT >

CITOT.

ENDIF

The global variable containing the type bits did not have the value TRUE or

FALSE so generate an error.

ELSE '
.ERR <GET EXT NAME: !'name!' was not picked up by the build tools >
ENDIF

The global variable containing the type bits was not defined so generate an

ENDM

End the macro and return to its caller.

Entry Definition Macros

3.1 PUBLIC PROC macro

The PUBLIC_PROC macro is used by the present invention to generate a PROC

statement defining a public procedure that will be referenced by an Exit macro. The

PUBLIC_PROC macro name and its parameters are scanned from the source file by the

present invention. The information from this macro and the Exit Declaration macro is

used to generate a global macro variable for the procedure name in the feature include

file produced by the present invention and included in each source code file that

indicates what code, if any, the Exit macro should generate.

-99-

10

15

20

25

30

35

WO 01/23998 PCT/US00/25928

PUBLIC_PROC MACRO procedureName:REQ, version: = <MISSING >,
attrib

The PUBLIC_PROC macro defines a procedure that can be called from other
components. Usage: "PUBLIC_PROC pci.oprom.init, 1.3" Its parameters are:
procedureName (required) - Name of procedure in dot notation, e.g.
"class.subclass.procedure”;
version - Major.minor procedure interface version number, it is given the value
< MISSING > by default so that a missing version number can be
detected; and
attrib - INTERCEPT, tells the BIOS Development System to call this procedure
if there are multiple definitions of the same procedureName in the
configuration.
It leaves the global variable ???procedureName containing the name of the
procedure.
LOCAL ??7?7addr
LOCAL 7?7procName

LOCAL 77?error
LOCAL 277procType

These are local variables used by the macro.

??%error = FALSE
IFDEF ??7procedureName
IFNB ???procedureName
% .ERR <PUBLIC PROC: The procedure ???procedureName is open >
77%error = TRUE
ENDIF
ENDIF

If an existing procedure has not been closed, generate an error. The local
variable ???error, set FALSE initially, is used to indicate that an existing procedure has
not been closed to prevent the generation of another PROC statement that would cause
additional more ambiguous errors.

IFIDNI < version>, <MISSING >

.ERR <PUBLIC_PROC: !Version information missing >

ENDIF

IFNB <attrib>

IFDIF <attrib>, <INTERCEPT >
% .ERR <PUBLIC PROC: !"attrib!' is an invalid attribute >

-100-

10

15

20

25

30

WO 01/23998 PCT/US00/25928

ENDIF
ENDIF

Verify that a version parameter was specified and validate the attribute

parameter.
IFE ?7??error

If no errors were detected, define the procedure.

GET_SYMBOL NAME procedureName
?7?procedureName CATSTR ???symbol

The GET_SYMBOL_NAME macro returns procedureName in global variable
?27symbol with dots (.) replaced by underbars (_); e.g. <pci.oprom.init> is returned
as pci_oprom_init. Set the global variable ???procedureName to the procedure name
for the assembler to resolve. If procedureName is pci.oprom.init; then

?77procedureName is pci_oprom_init.

% ?7?procedureName PROC FAR PRIVATE
??7?%addr EQU $

Create the public procedure and get its location so calls from other components

can be fixed up.

IFIDN <attrib>, <INTERCEPT >

7??7procType TEXTEQU <TYPE PUBLIC_INT _PROC>
ELSE

??7?procType TEXTEQU <TYPE PUBLIC_PROC>
ENDIF

Setup ???procType for the fixup data to indicate whether this is a normal public
(inter-component) procedure or a special procedure that intercepts calls to the normal

procedure with the same name.
% SAVE_PUBLIC_FIXUP DATA procedureName, ???procType, ???addr

Call the SAVE_PUBLIC FIXUP_DATA macro (described below) to save the

fixup data.

ENDIF
ENDM

End the macro and return to its caller.

-101-

10

15

20

25

30

WO 01/23998 PCT/US00/25928

32 SAVE PUBLIC FIXUP_DATA macro

The SAVE_PUBLIC_FIXUP_DATA macro is an internal macro that provides a
necessary function to the present invention and is never called directly by a source code

file.
SAVE_PUBLIC_FIXUP_DATA MACRO publicLabel, publicType, addr

The SAVE_PUBLIC_FIXUP_DATA macro is an internal macro used to save
the fixup data specified by its parameters in a specially named segment. Its parameters
are:

publicLabel - Public symbol name in dot notation, e.g.
"class.subclass.procedure”;

publicType - Public symbol type (Enumerated equate); and

addr - Address of the public symbol.

publicSegment SEGMENT
DB '&publicLabel' ; Public string
DB O ; Null terminate the string
DB publicType ; Public type
DW OFFSET addr ; Fixup offset
DW SEG addr ; Fixup segment
publicSegment ENDS

The fixup data generated by each call to this macro is merged into a single
publicSegment when the source code files containing the calls are compiled, linked, and
processed by the product component linker. The publicSegment in each object file is
merged into a single publicSegment when the object files are linked to form the
component .EXE file. The fixup data in the publicSegment of each component .EXE
file is used by the BIOS Component Linker to fixup the segment and offset of each

external reference.
ENDM
End the macro and return to its caller.
3.3 END_PROC macro

The END_PROC macro is used by the present invention to do some error

checking before marking the end of the procedure begun by the preceeding

-102-

WO 01/23998 PCT/US00/25928

PUBLIC PROC macro with an ENDP directive (i.e., command) required by the

assembler.
END_ PROC MACRO
The END_PROC macro defines the end of a public procedure.

5 IFNDEF ???7procedureName
.ERR <PROC _END: No procedure defined >
ELSE
.ERRB ???procedureName, <END_ PROC: No procedure currently open >

The global variable ???procedureName contains the name of the current

10 procedure. Generate an error if no procedure is defined or no procedure is currently

open.

IFNB ?7?procedureName
% ???procedureName ENDP
??7procedureName TEXTEQU < >
15 ENDIF

If a procedure is currently open, generate an ENDP statement for that procedure

and set the global variable ???procedureName to a null string.

ENDIF
ENDM

20 End the macro and return to its caller.

4, ROM Stack Macros

4.1 CREATE ROM STACK macro

The CREATE ROM_STACK macro is used by the present invention to create a
ROM stack. The ROM stack is a mechanism for returning to a caller in a different
25 segment while minimizing the impact on memory. It may be used in code that executes
when the processor is first powered on since no Random Access Memory is then

available to store the return address until that memory has been initialized.

CREATE ROM_STACK MACRO

The CREATE _ROM_STACK macro creates the ROM stack and provides a

30 small dispatcher to return to the caller. Register BP is used as the offset to return to.

LOCAL returnDispatcher

-103-

10

15

20

25

30

WO 01/23998 PCT/US00/25928

LOCAL romStackLabel
These are local variables used by the macro.
%romStackLabel CATSTR <romStack >, <??7currSegmentName >

Create the name of the romStackLabel from the string <romStack> and the

current segment name.

% PUBLIC romStackLabel
%romStackLabel LABEL BYTE
DW OFFSET returnDispatcher
DW SEG returnDispatcher

Define the name of the romStackLabel as an externally visible name containing

the far address of returnDispatcher in the current code segment.

returnDispatcher:
% mov sp, OFFSET romStackLabel
jmp bp

The returnDispatcher resets the stack pointer register to point to the top of the

ROM stack and branches to the return address offset stored in the BP register.

ENDM

The ROM stack is a mechanism for returning to a caller in a different segment
while minimizing the impact on memory. It may be used in code that executes when
the processor is first powered on since no Random Access Memory is then available to
store the return address until that memory has been initialized.

The CREATE ROM_STACK macro is called to create a ROM stack in the
current code segment. The INIT ROM_STACK macro is called to initialize the stack
registers, SS and SP, to point to the ROM stack in the current code segment. The
ROMCALL macro generates a far jmp instruction after the offset of the return address
in the current code segment is saved in the BP register.

The called procedure preserves the BP register and returns with a normal far
return instruction that pops the address of returnDispatcher off of the ROM stack, thus
returning to the current code segment. The returnDispatcher code resets the stack

pointer and uses the BP register to return to the caller.

-104-

10

15

20

25

30

WO 01/23998 PCT/US00/25928

4.2 INIT _ROM_STACK macro

The INIT_ROM_STACK macro is used by the present invention to initialize the
stack registers to point to the ROM stack in the current code segment. The ROM stack
is a mechanism for returning to a caller in a different segment while minimizing the
impact on memory. It may be used in code that executes when the processor is first
powered on since no Random Access Memory is then available to store the return

address until that memory has been initialized.
INIT ROM_STACK MACRO

The INIT_ ROM_STACK macro initializes the stack registers, SS and SP, to

point to the ROM stack in the current code segment.
LOCAL romStackl abel
This is a local variable used by the macro.
%romStackLabel CATSTR <romStack >, <???currSegmentName >

Create the name of the romStackLabel from the string <romStack> and the

current segment name.

% EXTERNDEF romStackLabel: NEAR
% mov sp, SEG romStackLabel

mov ss, sp
% mov sp, OFFSET romStackLabel
ENDM

Declare the name of the ROM stack in the current code segment as external and

initialize the stack registers to point to it.
4.3 ROMCALL macro

The ROMCALL macro is used by the present invention to call a public
procedure in a different component using the ROM étack. The code generated by the
ROMCALL macro depends on the Exit Declaration macro and Entry Definition macro
for its procedureName that are scanned by the present invention. The information from
these macros in turn, is used to generate a global macro variable for the procedureName
in the feature include file produced by the present invention and included in each source

code file that indicates what code, if any, should be generated.

-105-

10

15

20

25

30

WO 01/23998 PCT/US00/25928

ROMCALL MACRO jRoutineName, codeText, jComponent
EXTJMP jRoutineName, bp, codeText, jComponent
ENDM

The ROMCALL macro calls a far routine, jRoutineName, using the ROM stack.
It uses the EXTIMP macro to generate a far jmp instruction after saving the offset of

the return address in the BP register.

5. List Macros

A List is an array of sorted, same-sized data structures (called List Entries),
referenced by a List Name. One component (called the List Owner) creates the list,
giving it a name and format and assigning the segment where the list will be placed in
the ROM image. Any other component (including the List Owner) may add List
Entries to the list using the List Name. The BIOS Component Linker collects all the
Lists and List Entries, groups them by their List Names, sorts them and writes them out
to the ROM image. The BIOS Component Linker also fixes up references to the Lists

and List Entries.
5.1 LIST_CREATE macro

The LIST _CREATE macro is used by the present invention to create a list. It
generates information to identify the list that will be picked up by the BIOS Component
Linker part of the present invention that builds the list. The LIST CREATE macro and
its parameters are scanned by the present invention so they can be compared to the

parameters of the LIST START macros that define the entries of the list.

LIST CREATE MACRO listName, listVersion, listSize, listAttribute

The LIST CREATE macro creates a list. Its parameters are:

listName - Unique name to represent this list;

listVersion - Major.minor version number of list;

listSize - Size of list entry, may be the number of bytes, the name of a qualified
type (BYTE, WORD, etc.), or a structure name; and

listAttribute - PUBLIC keyword.

Usage: "LIST _CREATE postList, 1.0, postTaskStruc".

LOCAL 777entrySize
LOCAL 27?istAttr

-106-

10

15

20

25

30

35

40

WO 01/23998 PCT/US00/25928

These are local variables used by the macro.

77%entrySize = 0
IFNB <listAttribute >
IFIDN < listAttribute>, <PUBLIC >
77NistAttr = 1
ELSE
7NistAttr = 0
% .ERR <LIST CREATE: The attribute !'listAttribute!" is illegal >
ENDIF :
ELSE
277istAttr = 0
ENDIF

Initialize 7??entrySize. Validate the listAttribute, if specified, and translate it

into a 1 (PUBLIC attribute) or O (no attribute).

IFNB <listSize >
IF OPATTR listSize EQ 24h

Ensure the listSize is a structure, qualified type (BYTE, WORD, DWORD,

etc...), or an immediate value. If not, generate an error in the ELSE statement.

IF TYPE listSize NE O
7?%entrySize = SIZEOF (listSize)
ELSE
7?%entrySize = listSize
ENDIF
ELSE
% .ERR <LIST CREATE: !'listSize!' is not a structure, qualified type, or
immediate value >
ENDIF
ENDIF

If listSize has a type, it is a structure or qualified type. The SIZEOF function
will return the its size. Otherwise it is an immediate value (number) and no special

processing is required.

IFNB <listName >
IFNB <listVersion>
IFNB <listSize >
% SAVE_LIST CREATE DATA listName, ???currSegmentName,
7?77entrySize, listVersion, ??77listAttr
ELSE
.ERR <LIST_CREATE: Size of list entry is missing >
ENDIF
ELSE

-107-

10

15

20

25

30

35

WO 01/23998 PCT/US00/25928

.ERR <LIST _CREATE: List version is missing >
ENDIF
ELSE
.ERR <LIST CREATE: List name is missing >
ENDIF

Verify that the listName, listVersion, and listSize have all been specified. Call
the SAVE _LIST CREATE DATA macro, described below, to save the list creation

data. The global variable ???currSegmentName contains the name of current segment.
ENDM

End the macro and return to its caller.

5.2 SAVE_LIST_CREATE_DATA macro

The SAVE_LIST CREATE_DATA macro is an internal macro that provides a
necessary function to the present invention and is never called directly by a source code

file.

SAVE _LIST CREATE DATA MACRO listName:REQ, listSegment:REQ, \
entrySize:REQ, listVersion:REQ, listAttr:REQ

The SAVE_LIST CREATE_DATA macro is an internal macro used to save the
data needed to create a list specified by its parameters in a specially named segment. Its

parameters are:

listName (required) - The name of the list;

listSegment (required) - Segment name that the list lives in;
entrySize (required) - Size of list entry;

listVersion (required) - Version number of list; and

listAttr (required) - 1 (PUBLIC attribute) or O (no attribute).

listDeclarationSegment SEGMENT

DB '&listName' ; List Name
DB O ; Null terminate the string
DB '&listSegment'
DB O ; Null terminate the string
DW entrySize ; Size of list entry
DB '&listVersion' ; Version number
DB O ; Null terminate the string
DB listAttr ; List attributes
listDeclarationSegment ENDS
ENDM

-108-

10

15

20

25

30

WO 01/23998 PCT/US00/25928

The list creation data generated by each call to this macro is merged into a single
listDeclarationSegment when the code files containing the calls are compiled, linked,
and processed by the product component linker. The listDeclarationSegment in each
object file is merged into a single listDeclarationSegment when the object files are
linked to form the component .EXE file. The list creation data in the
listDeclarationSegment of each component .EXE file is used by the BIOS Component
Linker to generate a list header. The listName will become a (PUBLIC) label, pointing

to the list header in the specified segment of the final ROM image.

5.3 LIST_START macro

The LIST _START macro is used by the present invention to identify a list to
which entries are to be added. The LIST_START macro and its parameters are scanned
by the present invention so they can be compared to the parameters of the

LIST_CREATE macro that created the list.

LIST_START MACRO listName, listVersion, listType, I0verridePriority

The LIST_START macro starts adding entries to the specified version of the
specified list. It is used in conjunction with one or more LIST ENTRY, LIST_DATA,
and/or LIST SORT macros to define the entries and a matching LIST_END macro to
end the entries. Its parameters are:

listName - Unique name, declared by a LIST CREATE macro call;

listVersion - Major.minor version number of list;
listType - Data type of list entry, may be the name of a qualified type (BYTE,
WORD, etc.), or a structure name; and

10verridePriority - List entry priority order (CORE, PRODUCT or
PLATFORM keyword). This specifies whether the list entries that
follow will replace existing list entries with the same name but lower
override priority. PLATFORM replaces PRODUCT, PRODUCT
replaces CORE and CORE replaces the default.

It initializes the global variables:

?771istName - listName,

7?istType - listType, and

?777istOverride - List entry priority order,
and opens a specially named segment.

-109-

10

15

20

25

30

35

40

WO 01/23998 PCT/US00/25928

IFNDEF ???1istName
?277istName CATSTR <LIST UNDEFINED >
ENDIF

IFDIFI ??NistName, <LIST UNDEFINED >
% .ERR <LIST START: List !'&???listName!" is already open>
ELSE
IFB <listName>
.ERR <LIST START: List name is missing >
ELSEIFB <listVersion>
.ERR < LIST START: List version is missing >
ELSEIFB <listType >
.ERR <LIST START: List type is missing >
ELSE

Initialize global variable ???listName if necessary and perform some basic error

checking.

77MNistName CATSTR <listName >
??NistType CATSTR <listType >

IFNB <1OverridePriority >
IFIDN <I1OverridePriority >, <CORE>
?7NistOverride CATSTR <O0FOh >
ELSEIFIDN < 10verridePriority >, <PRODUCT >
??MNistOverride CATSTR <80h>
ELSEIFIDN < lOverridePriority >, < PLATFORM >
?7NistOverride CATSTR <010h>
ELSE
% .ERR <LIST START: Override priority type !'lOverridePriority!" is
invalid >
??NistOverride CATSTR <OFOh >
ENDIF
ELSE
7??listOverride CATSTR <OFFh>
ENDIF

No errors have been found so far. Initialize all global variables, translating the
override priority into a numeric value. When two list entries are found in the build
with the same name, this value allows the BIOS Component Linker to choose one.
CORE has lowest priority, PRODUCT is higher and PLATFORM is highest.

IF (OPATTR listType) NE 24h ,
% .ERR <LIST START: List type !'listType!' is not a structure or qualified
type >

?297istType CATSTR < ERROR >
ELSEIF TYPE listType EQ 0

-110-

10

15

20

25

30

35

WO 01/23998 PCT/US00/25928

% .ERR <LIST START: List type !'listType!' is an immediate value - not a
structure or qualified type >
27NistType CATSTR < ERROR >
ELSE
listEntrySegment SEGMENT
ENDIF
ENDIF
ENDIF
ENDM

Verify that listType is a valid structure or qualified type and open the segment

listEntrySegment.
5.4 LIST_END macro

The LIST END macro is used by the present invention to end a list to which

entries have been added.

LIST END MACRO

The LIST _END macro ends the entries for a list.

IFDEF ?7MistName
IFIDNI ???listName, <LIST UNDEFINED >
.ERR <LIST END: The open list has already been closed with
LIST END>
ELSE
listEntrySegment ENDS
?7?MistName CATSTR <LIST UNDEFINED >
ENDIF
ELSE
.ERR <LIST END: A list has not been opened with LIST_START >
ENDIF
ENDM

Verify that the global variable ???listName specifies an open list. Close segment
listEntrySegment and set ???listName to indicate a closed list.

The list entry data enclosed by this listEntrySegment is merged into a single
listEntrySegment when the source code files containing these segment declarations are
compiled, linked, and processed by the product component linker. The
listEntrySegment in each object file is merged into a single listEntrySegment when the
object files are linked to form the component .EXE file. The list entry data in the
listEntrySegment of each component .EXE file is merged and sorted by the BIOS

-111-

10

15

20

25

30

WO 01/23998 PCT/US00/25928

Component Linker to generate a sorted list in the final ROM image with the list header

specified by the LIST CREATE macro that created the list.

5.5 LIST_ENTRY macro

The LIST_ENTRY macro is used by the present invention to define the entries
to be added to a list.

LIST ENTRY MACRO entryName, entryData, ePriority: = <8000h >,
eSortKey, listAttribute

The LIST ENTRY macro creates a list entry by specifying the data to appear in
the list and the information necessary to sort the entry. It must appear after a
LIST START macro call and before a LIST_END macro call. Its parameters are:
entryName - Name of the individual list entry. Must be unique within the list;
entryData - The data, within (<) and (>), that will appear in the ROM image.
Structure data must be contained within additional curly braces ({) and
X
ePriority - Number used to sort list entries with the same sort key. Low
numbers are placed ahead of high numbers. Minimum is 0, maximum is
65535 (OFFFFh) and default is 32768 (8000h);
eSortKey - String used to match the list entry to a master reference list. The
entryName is the default sort key; and listAttribute - LABEL and/or
PUBLIC.
It also uses the values of three global variables provided by the preceeding

START_LIST macro call:

77?istName - Name of open list;

7?NistType - Entry type; and

?7?NistOverride - Override priority number (CORE, PRODUCT, PLATFORM,

Or none).
Usage: "LIST _ENTRY vgaData, <24h, 45h>".

LOCAL 777qualifiedType
LOCAL 7?77dataSize
LOCAL 7?77eData
LOCAL 777eSortKey

LOCAL 7?77rawData
LOCAL 7771istAttr

-112-

WO 01/23998 PCT/US00/25928

These are local variables used by the macro.

IFNB <listAttribute >
IFIDN <listAttribute >, <PUBLIC>
27NistAttr = 1
ELSEIFIDN <listAttribute >, <LABEL >
777NistAttr = 2
ELSEIFIDN <listAttribute >, <LABEL OR PUBLIC >
2?7MNistAttr = 3
ELSEIFIDN < listAttribute >, <PUBLIC OR LABEL >
777MistAttr = 3
ELSE
2?7MNistAttr = 0
% .ERR <LIST ENTRY: The attribute !'listAttribute!' is illegal >
ENDIF
ELSE
77 MNistAttr = 0
ENDIF

Parse the listAttribute parameter and translate it into a numeric value. The
PUBLIC keyword causes the entryName to be defined as a public label referencing the
entryData. The LABEL keyword causes the entryName to be defined as a label (a
PUBLIC LABEL if both keywords are specified) within the list without actually
generating a list entry. This attribute is useful if an index into a list is needed when the

list is composed of optional entries.

IFB <eSortKey >

777eSortKey CATSTR <entryName >
ELSE

77?7eSortKey CATSTR <eSortKey >
ENDIF

If the eSortKey parameter is blank, use the entryName parameter as the default

sort key.

IFB <entryName >

.ERR <LIST ENTRY: Entry name for list data is missing >
ELSEIFB <entryData >

.ERR <LIST ENTRY: List data is missing >
ELSEIFNDEF ?7??listName

.ERR <LIST ENTRY: A list has not been started with LIST START >
ELSEIFIDNI ???listName, <LIST UNDEFINED >

.ERR <LIST ENTRY: The open list has already been closed with

LIST END >

ELSEIFIDNI ?7?listType, < ERROR >
ELSE

-113-

10

15

20

25

30

35

WO 01/23998 PCT/US00/25928

Perform some sanity checking on the input data.

% 7?7dataSize = SIZEOF ?7?listType
?7?7qualifiedType = TRUE
IFIDNI ?7istType, <BYTE>
ELSEIFIDNI ???1istType, <WORD >
ELSEIFIDNI ???istType, <DWORD >
ELSEIFIDNI ??istType, <FWORD >
ELSEIFIDNI ??71istType, <QWORD >
ELSEIFIDNI ???1istType, <TBYTE >
ELSE

?77qualifiedType = FALSE

ENDIF

If we got here then there were no errors. Determine the size of the list type and
if it is a structure or qualified type.
IFE ???qualifiedType
777eData CATSTR ?7?istType, < !< >, <entryData>, <!> >
??7rawData CATSTR <!< >, <entryData>, <!> >
ELSE
?77%eData CATSTR ??MNistType, < >, <entryData>

?7??rawData CATSTR <entryData >
ENDIF

If the data is not a qualified type then build up the expression "structureName

< structureData> " else "dataType data" (e.g. BYTE data).

% SAVE LIST ENTRY_ DATA ??71istName, entryName, ???eSortKey,
ePriority, \
27istOverride, ?7??1istAttr, ??7?dataSize, <???eData>, <???rawData>
ENDIF
ENDM

Call the SAVE LIST ENTRY DATA macro to save the list entry and return to
the caller.
5.6 SAVE LIST ENTRY_DATA macro

The SAVE LIST ENTRY_DATA macro is an internal macro that provides a
necessary function to the present invention and is never called directly by a source code

file.

SAVE LIST ENTRY_DATA MACRO listName, entryName, \
sortKey, sortPriority, overridePriority, \
listAttr, dataSize, listData, listTextData

-114-

10

15

20

25

30

35

WO 01/23998 PCT/US00/25928

The SAVE_LIST_ENTRY_DATA macro saves the list entry data specified by

its parameters in segment listEntrySegment opened by the LIST_START macro.

DB '&listName' ; List Name

DB 0 ; Null terminate the
string

DB LISTMGR_ENTRY_TYPE ; Entry type

DB '&entryName' ; List entry name

DB 0 ; Null terminate the
string

- DB '&sortKey' ; List sort key

DB O ; Null terminate the
string

DW sortPriority ; Sort priority (multiple entries)

DB overridePriority ; Sort override (CORE, PLATFORM..)

DB overridePriority ; Data override (CORE, PLATFORM..)

DB listAttr ; List attributes

DW dataSize ; Size of data

@@:

listData ; Generate the data

DB "&listTextData" ; Raw list entry data

DB O ; Null terminate the
string

ENDM

The local label (@@:) defines a location that is filled with the values of the entry

data.
5.7 LIST_DATA macro

The LIST DATA macro is used by the present invention to override the data for
a list entry.

LIST _DATA MACRO entryName, entryData, eAttributes

The LIST_DATA macro must appear after a LIST_START macro call and
before a LIST _END macro call. Its parameters are:

entryName - Name of list entry that will have its entryData changed;

entryData - New data for list entry; and

eAttributes - LABEL and/or PUBLIC.

It also uses the values of three global variables provided by the preceeding
START _LIST macro call:

??7listName - Name of open list;
?7?1istType - Entry type; and

-115-

10

15

20

25

30

35

40

WO 01/23998 PCT/US00/25928

??7?istOverride - Override priority number (CORE, PRODUCT, PLATFORM, or
none).

LOCAL ?77dataSize
LOCAL ??77qualifiedType
LOCAL ?7?eData
LOCAL ??7rawData
LOCAL 27NistAttr

These are local variables used by the macro.

IFNB < eAttributes >
IFIDN <eAttributes>, <PUBLIC >
2MMistAttr = 1
ELSEIFIDN <eAttributes>, <LABEL >
7 NistAttr = 2
ELSEIFIDN < eAttributes>, < LABEL OR PUBLIC >
77?NistAttr = 3
ELSEIFIDN < eAttributes>, <PUBLIC OR LABEL >
7 MNistAttr = 3
ELSE
7MMNistAttr = 0
% .ERR <LIST DATA: The attribute !'eAttributes!" is illegal >
ENDIF
ELSE
77 MNistAttr = 0
ENDIF

Parse the eAttributes parameter and translate it into a numeric value. The
PUBLIC keyword causes the entryName to be defined as a public label referencing the
entryData. The LABEL keyword causes the entryName to be defined as a label (a
PUBLIC LABEL if both keywords are specified) within the list without actually
generating a list entry. This attribute is useful if an index into a list is needed when the

list is composed of optional entries.

IFB <entryName>

.ERR <LIST DATA: The list entry name is missing >
ELSEIFB <entryData>

.ERR < LIST DATA: The list entry data is missing >
ELSEIFNDEF ??7?1istName

.ERR <LIST DATA: A list has not been started with LIST START >
ELSEIFIDNI ??istName, <LIST UNDEFINED >

.ERR <LIST DATA: The open list has already been closed with

LIST _END > '

ELSEIFIDNI ?7?listType, <ERROR >
ELSE

-116-

WO 01/23998 PCT/US00/25928

% 7?7dataSize = SIZEOF ??7?listType

Verify that an open list exists and that all the required parameters are present.

Determine the size of a list entry.

7?77qualifiedType = TRUE
IFIDNI ???1istType, <BYTE>
ELSEIFIDNI ?7istType, <WORD >
ELSEIFIDNI ?7?istType, <DWORD >
ELSEIFIDNI ??7?1istType, < FWORD >
ELSEIFIDNI ?7?istType, <QWORD >
ELSEIFIDNI ???listType, <TBYTE >
ELSE

7?7?7qualifiedType = FALSE
ENDIF

Determine if the list type is a structure or qualified type.

IFE 7??qualifiedType
7?7eData CATSTR ??7istType, < !< >, <entryData>, <!> >
??7?7rawData CATSTR <!< >, <entryData>, <!> >

ELSE
777eData CATSTR ??71istType, < >, <entryData>
?7??rawData CATSTR <entryData >

ENDIF

If the data is not a qualified type then build up the expression "structureName

<structureData> " else "dataType data" (e.g. BYTE data).

% SAVE_LIST OVERRIDE DATA ???listName, entryName, ?7??dataSize, \
<?77?e¢Data>, <???rawData>, ???listOverride, ?7??listAttr

ENDIF

ENDM

Call the SAVE _LIST OVERRIDE DATA macro to save the list override data

and return to the caller.
5.8 SAVE_LIST OVERRIDE DATA macro

The SAVE _LIST OVERRIDE_DATA macro is an internal macro that provides
a necessary function to the present invention and is never called directly by a source

code file.

SAVE_LIST_OVERRIDE_DATA MACRO listName, entryName, dataSize,

listData, \
listTextData, overridePriority, attributes

-117-

10

15

20

25

30

WO 01/23998 PCT/US00/25928

The SAVE_LIST OVERRIDE DATA macro saves the list override data
specified by its parameters in segment listEntrySegment opened by the LIST START

macro.

DB '&listName' ; List Name
DB O ; Null terminate the string
DB LISTMGR OVERRIDE TYPE ; Override type
DB '&entryName' ; List entry name
DB O ; Null terminate the string
DB overridePriority ; Override priority
DB attributes ; List attributes
DW dataSize ; Size of data

@@:
listData ; Generate the data
DB "&listTextData" ; Raw list entry data
DB O ; Null terminate the string

ENDM

The local label (@@:) defines a location that is filled with the values of the entry

data.
5.9 LIST_SORT macro

The LIST _SORT macro is used by the present invention to change the sort

criteria for a list entry.
LIST SORT MACRO entryName, ePriority: = <8000h>, eSortKey

The LIST SORT macro must appear after a LIST_START macro call and
before a LIST _END macro call. Its parameters are:
‘entryName - Name of the list entry that will have its sort order changed,;
ePriority - Number used to sort list entries with the same sort key. Low
numbers are placed ahead of high numbers. Minimum is 0, maximum is
65535 (OFFFFh) and default is 32768 (8000h);
eSortKey - String used to match the list entry to a master reference list. The
entryName is the default sort key.
It also uses the values of three global variables provided by the preceeding
START LIST macro call:

7?7listName - Name of open list;
??MNistType - Entry type; and

-118-

10

15

20

25

30

35

WO 01/23998 PCT/US00/25928

??7istOverride - Override priority number (CORE, PRODUCT, PLATFORM, or
none).

LOCAL 777eSortKey

The local variable used by this macro.

IFB <eSortKey >

7??eSortKey CATSTR <entryName >
ELSE

77?7eSortKey CATSTR <eSortKey >
ENDIF

If the eSortKey parameter is blank, use the entryName parameter as the default

sort key.

IFB <entryName >
.ERR <LIST SORT: Entry name for list data is missing >
ELSEIFNDEEF ???listName
.ERR <LIST _SORT: A list has not been started with LIST_START >
ELSEIFIDNI ?7?listName, <LIST UNDEFINED >
.ERR < LIST SORT: The open list has already been closed with
LIST END>
ELSEIFIDNI ???1istType, <ERROR >
ELSE
% SAVE LIST SORT _DATA ?7?istName, entryName, ???eSortKey,
ePriority, ???listOverride
ENDIF
ENDM

Do some sanity checking, and if everything checks out, save the new sort data.

5.10 SAVE LIST SORT DATA macro

The SAVE LIST _SORT DATA macro is an internal macro that provides a
necessary function to the present invention and is never called directly by a source code

file.

SAVE _LIST SORT _DATA MACRO listName, entryName, sortKey, \
sortPriority, overridePriority

The SAVE_LIST SORT DATA macro saves the list sort data specified by its
parameters in segment listEntrySegment opened by the LIST START macro.

DB '&listName' ; List Name
DB O ; Null terminate the
string

-119-

10

15

20

25

30

WO 01/23998 PCT/US00/25928

DB LISTMGR SORT TYPE ; Sort type

DB '&entryName' ; List entry name

DB 0 ; Null terminate the
string

DB overridePriority ; The ultimate entry to use

DB '&sortKey' ; List sort key

DB 0 ; Null terminate the
string

DW sortPriority ; Sort priority (multiple entries)

ENDM

5.11 MASTER START macro

The MASTER_START macro is used by the present invention to start the
definition of a master index.

The BIOS Component Linker part of the present invention sorts List Entries
according to the order of the Sort Keys in the Master Index. There is, at most, one
Master Index per List. The Master Index, usually found in the List Owning
component, is in a seperate assembly source file to facilitate overriding. The Master
Index is created with three macros, MASTER START, MASTER_ENTRY and
MASTER_END.

MASTER _START MACRO listName, attrib

The MASTER START macro must be called before any MASTER_ENTRY or
MASTER END macros are called. Its parameters are:
listName - The fully qualified list name (including component path) that this

Master Index is associated with; and

attrib - LOCKED keyword. If LOCKED, then this is a Locked Index; otherwise

it is a Master Index.
A Locked Index is a special form of the Master Index. Instead of using the Sort
Key to determine the final ordering of List Entries, Locked Indexes use the List Entry
name instead. The MASTER START macro initializes the global variables:
?7?masterName - listName, and
??7?masterAttribs - Master or Locked index,
opens a specially named segment and saves the values of these global variables in this

segment.

IFNDEF ?7?7?masterName

-120-

10

15

20

25

30

35

WO 01/23998 PCT/US00/25928

???masterName CATSTR <MASTER_LIST_CLOSED >

ENDIF
IFIDN ???masterName, < MASTER LIST CLOSED >
masterIndexSegment SEGMENT

Initialize global variable ???masterName, if necessary, perform some

consistency checking and open segment masterIndexSegment.

IFNB < attrib >
77MmasterAttribs = 1
IFDIF <attrib>, <LOCKED >

% .ERR <MASTER _START: !"attrib!" is an invalid attribute >

ENDIF

ELSE
?7?7?7masterAttribs = 0

ENDIF

Translate the attrib parameter into a numeric value and set global variable

7?7masterAttribs to indicate whether a Master or Locked index was specified.

IFNB <listName >
??7masterName CATSTR <listName >
ELSE
.ERR <MASTER _START: The list name is missing >
???7masterName CATSTR < >
ENDIF
% SAVE_MASTER_INFO_START ???masterName, ???masterAttribs
ELSE
% .ERR <MASTER START: Master index list !'&???masterName!’ is already
open>
ENDIF
ENDM

Store the listName in global variable and call SAVE_MASTER_INFO_START
to save the values of the global variables. Generate errors if the parameters or global

variables were not consistent.
5.12 SAVE MASTER INFO START macro

The SAVE_MASTER INFO_START macro is an internal macro that provides a
necessary function to the present invention and is never called directly by a source code

file.

SAVE _MASTER INFO START MACRO masterListName, attributes
DB '&masterListName' ; Master List Name
DB O ; Null terminate the string

-121-

10

15

20

25

30

WO 01/23998 PCT/US00/25928

DW attributes ; List attributes
ENDM

The SAVE_MASTER INFO_START macro saves the values of its parameters
in the segment opened by the MASTER START macro.

5.13 MASTER_END macro

The MASTER _END macro is used by the present invention to end the definition

of a master index.

MASTER _END MACRO

The MASTER_END macro ends the definition of a master index. It must
appear following a MASTER_START macro call.
IFNDEF ??7masterName
.ERR <MASTER_END: A master index was not started with
MASTER START >
ELSEIFIDNI ???masterName, <MASTER_LIST CLOSED >
.ERR <MASTER END: The master index was already closed with
MASTER_END >
ELSE
SAVE _MASTER INFO 0
masterIndexSegment ENDS
77MmasterName CATSTR <MASTER _LIST CLOSED >

ENDIF
ENDM

Verify a master list is open. Save a null master list entry to mark end of list.
Close the master index segment and mark ???masterName as

MASTER LIST CLOSED.

5.14 MASTER ENTRY macro

The MASTER_ENTRY macro is used by the present invention to insert a list

entry into the master index.

MASTER_ENTRY MACRO keyName

The MASTER _ENTRY macro must follow a MASTER START macro call and
preceed a MASTER END macro call. Its parameter is:
keyName - Name used to create an association between a specific list entry and
this master index position. It must be either a Sort Key (Master Index)

or List Entry name (Locked Index).

-122-

10

15

20

25

30

35

WO 01/23998 PCT/US00/25928

IFNDEF ???masterName
.ERR <MASTER_ENTRY: A master index list has not been opened with
MASTER_START >
ELSE
IFDIF ???masterName, <MASTER _LIST CLOSED >
% SAVE MASTER_INFO keyName
ELSE
% .ERR <MASTER _ENTRY: The master index list has already been closed
with MASTER_END >
ENDIF
ENDIF
ENDM

Check that a master list has been started. Call the SAVE MASTER INFO
macro to store the Sort Key or List Entry name.

5.15 SAVE MASTER INFO macro

The SAVE_MASTER INFO macro is an internal macro that provides a
necessary function to the present invention and is never called directly by a source code

file.

SAVE MASTER INFO MACRO keyName
IFDIF <keyName>, <0>

DB '&keyName' ; Index name
ENDIF
DB O ; Null terminate the string

ENDM

The SAVE_MASTER_INFO macro saves the keyName specified by its
parameter in the special segment opened by the preceeding MASTER_START macro

call.

6. Include Macros

6.1 PUBLIC INCLUDE START macro

The PUBLIC_INCLUDE START macro is used by the present invention to
identify a public include file. The PUBLIC_INCLUDE_START macro and its
parameters are scanned by the present invention so they can be compared to the
parameters of the PUBINC macros that include the file.

Include files reside in the component that logically "owns" the definitions in

them. If the definitions are to be used by other components in other directories, the

-123-

10

15

20

25

30

WO 01/23998 PCT/US00/25928

include file will declare itself as public by using the PUBLIC_INCLUDE START
macro. External components will reference the include file using the class/subclass and
filename specified by a PUBINC macro. The physical location of the include file used
will be determined by the build process.

Like interfaces, the usage of a public include file will include the major and

minor version of the "interfaces" (not file version) expected for the file.

PUBLIC_INCLUDE _START MACRO classPath, version

The PUBLIC_INCLUDE START macro marks the start of a public include file
that can be used by other components in other directories. Its parameters are:
classPath - Class name and zero or more subclass names seperated by periods
(.); and

version - Major.minor version number of the interfaces expected for the file.

IFB <version>
.ERR<PUBLIC _INCLUDE START: !Version number for public include
missing > :
ENDIF :
IFB <classPath>
.ERR<PUBLIC INCLUDE START: Class path information is missing >
ENDIF
ENDM

Verify that both the classPath and version parameters have been specified.

The parameters of each PUBLIC INCLUDE START macro call are scanned
from the include file and entered in a database along with the include file name and
directory path. This allows the BIOS Development System to merge any interface
information it scanned from the include file with interface information from the source

file that included it, before compilation.

6.2 PUBINC macro

The PUBINC macro is used by the present invention to include a public include
file defined in a different component. The PUBINC macro and its parameters are
scanned by the present invention so they can be compared to the parameters of the

PUBLIC _INCLUDE_START macro that defines the file.

PUBINC MACRO classPath, fileName, version

-124-

10

15

20

25

30

35

WO 01/23998 PCT/US00/25928

The PUBINC macro includes an external include file into the build. The

external include file is outside of the current directory and component. Its parameters

are:

classPath - Class name and zero or more subclass names seperated by periods
G)
fileName - Name of include file; and

version - Major.minor version number of the interfaces expected for the file.

Usage: "PUBINC post.dispatcher, postdisp.inc, 1.0".
LOCAL 7?7incPath
The local variable used by the macro.

IFNB < classPath >
IFNB < fileName >
GET SYMBOL NAME classPath
?7?7incPath CATSTR <I_>, ?7?symbol
% INCLUDE ??77incPath\\fileName
IFB <version>
.ERR < PUBINC: The include file !version is missing >
ENDIF
ELSE
.ERR <PUBINC: The include file name is missing >
ENDIF
ELSE
.ERR < PUBINC: The include file feature path is missing >
ENDIF
ENDM

Verify that all the parameters are present. Call the GET_SYMBOL NAME

macro to return global variable ???symbol containing classPath with each period (.)

replaced with an underscore (). Form the name of the global variable containing the

directory path of the include file by prefixing the value of ???symbol with anI . If

classPath is post.dispatcher then ???incPath is I post dispatcher. Include the file with

an INCLUDE directive (i.e., command) that uses the directory path in the global

variable.

The BIOS Development System generates a feature include file “feature.inc”

that is included in each source code file in the source code library. It defines a global

variable for each public include file declared by a PUBINC macro call containing the

-125-

WO 01/23998 PCT/US00/25928

directory path of the include file, e.g. I_post_dispatcher TEXTEQU
< @Environ(MANTICORE)\post\dispatcher > .

-126-

10

15

20

25

WO 01/23998 PCT/US00/25928

WHAT IS CLAIMED IS:

1. A software development system (100) for developing a finished product

(1106) comprising:
product configuration data (2100) defining the finished product (1106);

at least one source code library (1200) containing source code elements (1220,
1224, 1226, 1300) defining one or more objects (1204, 1206, 1212, 1214) that include
interfaces (1316, 1322) and dependencies (1312, 1318, 1324);

directives (1502 to 1532, 1702 to 1728) defining the nature of said objects
(1204, 1206, 1212, 1214);

a configurator (700) which develops configuration state data (1900) from said
product configuration data (2100), said directives (1502 to 1532, 1702 to 1728), and
from data (1800) obtained from said source code library (1200);

a graphical user interface (200) for presenting a visual, logical representation of
the configuration state data (1900) representing the finished product (1106), missing and
selected and deselected objects (1204, 1206, 1212, 1214) and options (1524), said
interface (200) accepting commands to adjust the finished product (1106); and

routines (800, 1000, 1102, 3600) that generate the finished product (1106) from
said source code elements (1220, 1224, 1226, 1300) under the control of said

configuration state data (1900).

2. A software development system (100) in accordance with claim 1
wherein said objects (1204, 1206, 1212, 1214) include at least one source code element
(1220, 1224, 1226, 1300) and an object information data set (1400, 1600) containing
said directives (1502 to 1532, 1702 to 1728).

3. A software development system (100) in accordance with claim 2
wherein said directives (1502 to 1532, 1702 to 1728) include build directives (1502 to
1532, 1702 to 1728).

-127-

10

15

20

25

WO 01/23998 PCT/US00/25928

4. A software development system (100) in accordance with claim 1
wherein said objects (1204, 1206, 1212, 1214) include at least one component (1204,
1206) which includes at least one object (1204, 1206, 1212, 1214) that is a feature
(1212, 1214).

5. A software development system (100) in accordance with claim 4
wherein said components (1204, 1206) and features (1212, 1214) each include at least
one source code element (1220, 1224, 1226, 1300) and an object information data set
(1400, 1600) containing directives (1502 to 1532, 1702 to 1728) for the corresponding
component (1204, 1206) or feature (1212, 1214).

6. A software development system (100) in accordance with claim 5
wherein said directives (1502 to 1532, 1702 to 1728) include build directives (1502 to
1532, 1702 to 1728).

7. A software development system (100) in accordance with claim 1
wherein at least some of said interfaces (1316, 1322) and dependencies (1312, 1318,
1324) have both name (“ERRORBEEP” at 1316, “DELAY” at 1318) and also class
(“BEEP” at 1316, “TIMER” at 1318) designations which are replaced with proper

absolute addresses prior to the development of the finished product (1106).

8. A software development system (100) in accordance with claim 7
wherein said routines (800, 1000, 1102, 3600) that generate the finished product (1106)
convert class (“BEEP” at 1316, “TIMER” at 1318) and name (“ERRORBEEP” at
1316, “DELAY” at 1318) references for at least some dependencies (1312, 1318, 1324)
and interfaces (1316, 1322) into name (“ERRORBEEP” at 1316, “DELAY” at 1318)
and library (1200) references as they modify the source code elements (1220, 1224,
1226, 1300).

9. A software development system (100) in accordance with claim 7
wherein at least some class (“BEEP” at 1316, “TIMER” at 1318) designations
encompass multiple objects (1204, 1206, 1212, 1214).

-128-

10

15

20

WO 01/23998 PCT/US00/25928

10. A software development system (100) in accordance with claim 9
wherein said objects (1204, 1206, 1212, 1214) include cofnponents (1204, 1206) which
include features (1212, 1214), and at least some class (“BEEP” at 1316, “TIMER” at
1318) designations relate to the interfaces (1316, 1322) and dependencies (1312, 1318,
1324) of multiple features (1212, 1214).

11. A software development system (100) in accordance with claim 1
wherein at least some of said interfaces (1316, 1322) and dependencies (1312, 1318,
1324) have version indications (“1.0” at 1312, 1316, 1322).

12. A software development system (100) in accordance with claim 11
wherein at least some of said interfaces (1316, 1322) and dependencies (1312, 1318,
1324) have both name (“ERRORBEEP” at 1316, “DELAY” at 1318) and also class
(“BEEP” at 1316, “TIMER” at 1318) designations which are replaced with absolute
addresses prior to the development of the finished product (1106), as well as version

indications (“1.0” at 1312, 1316, 1322).

13. A software development system (100) in accordance with claim 11
wherein said graphical user interface (200) warns of incompatible version numbers in

matched interfaces (1316, 1322) and dependencies (1312, 1318, 1324).

14. A software development system (100) in accordance with claim 13
wherein at least some of said interfaces (1316, 1322) and dependencies (1312, 1318,
1324) have both name (“ERRORBEEP” at 1316, “DELLAY” at 1318) and also class
(“BEEP” at 1316, “TIMER” at 1318) designations which are replaced with absolute
addresses prior to the development of the finished product (1106), as well as version

indications (“1.0” at 1312, 1316, 1322).

-129-

10

15

20

WO 01/23998 PCT/US00/25928

15. A software development system (100) in accordance with claim 1 which
further includes, as part of the data associated with at least some dependencies (1312,
1318, 1324), object specification data, wherein the object specification data causes the
corresponding dependency (1312, 1318, 1324) to be linked to an interface (1316, 1322)
in a source code element (1220, 1224, 1226, 1300) included with the specified object
(1204, 1206, 1212, 1214) in preference to other interfaces (1316, 1322) having identical

identifiers.

16. A software development system (100) in accordance with claim 15
wherein at least some of said interfaces (1316, 1322) and dependencies (1312, 1318,
1324) have both name (“ERRORBEEP” at 1316, “DELAY” at 1318) and also class
(“BEEP” at 1316, “TIMER” at 1318) designations which are replaced with proper
absolute addresses prior to the development of the finished product (1106).

17. A software development system (100) in accordance with claim 16
wherein at least some class (“BEEP” at 1316, “TIMER” at 1318) designations
encompass multiple objects (1204, 1206, 1212, 1214).

18. A software development system (100) in accordance with claim 17
wherein said objects (1204, 1206, 1212, 1214) include components (1204, 1206) which
include features (1212, 1214), and at least some class (“BEEP” at 1316, “TIMER” at
1318) designations relate to the interfaces (1316, 1322) and dependencies (1312, 1318,
1324) of multiple features (1212, 1214).

19. A software development system (100) in accordance with claim 15
wherein at least some of said interfaces (1316, 1322) and dependencies (1312, 1318,
1324) have version indications (“1.0” at 1312, 1316, 1322).

-130-

10

15

20

25

WO 01/23998 PCT/US00/25928

20. A software development system (100) in accordance with claim 19
wherein at least some of said interfaces (1316, 1322) and dependencies (1312, 1318,
1324) have both name (“ERRORBEEP” at 1316, “DELAY” at 1318) and also class
(“BEEP” at 1316, “TIMER” at 1318) designations which are replaced with absolute
addresses prior to the development of the finished product (1106), as well as version

indications (“1.0” at 1312, 1316, 1322).

21. A software development system (100) in accordance with claim 19
wherein said graphical user interface (200) warns of incompatible version numbers in

matched interfaces (1316, 1322) and dependencies (1312, 1318, 1324).

22. A software development system (100) in accordance with claim 21
wherein at least some of said interfaces (1316, 1322) and dependencies (1312, 1318,
1324) have both name (“ERRORBEEP” at 1316, “DELAY” at 1318) and also class
(“BEEP” at 1316, “TIMER” at 1318) designations which are replaced with absolute
addresses prior to the development of the finished product (1106), as well as version

indications (“1.0” at 1312, 1316, 1322).

23. A software development system (100) in accordance with claim 22
wherein said objects (1204, 1206, 1212, 1214) include at least one component (1204,
1206) which includes at least one object (1204, 1206, 1212, 1214) that is a feature
(1212, 1214).

24. A software development system (100) in accordance with claim 1 which
includes source code elements (1220, 1224, 1226, 1300) designated to run in a RAM
free environment, wherein the routines (800, 1000, 1102, 3600) that generate the
finished product (1106) modify said source code elements (1220, 1224, 1226, 1300) at
call or jump dependencies (1312, 1318, 1324) insert code that emulates a subroutine

jump and return without the need for a RAM-based subroutine stack.

-131-

10

15

20

25

WO 01/23998 PCT/US00/25928

25. A software development system (100) in accordance with claim 24
wherein the inserted code at call or jump and return dependencies (1312, 1318, 1324)
sets up a dummy return stack that does a register branch following a return, and at the
point of a call or jump, generates and inserts code that loads the irhmediate address into

said register and then produces a jump to the specified interface (1316, 1322).

26. A software development system (100) in accordance with claim 24
wherein the inserted code at call or jump and return dependencies (1312, 1318, 1324)
preserves the return address, or an index indicating the location of the return address, in
a designated register and utilizes the register to perform a return to the proper point in

the calling program.

27. A software development system (100) in accordance with claim 1
wherein the configurator (700), when encountering a dependency (1312, 1318, 1324)
that depends upon the presence of an unselected object (1204, 1206, 1212, 1214) with a
corresponding interface (1316, 1322), automatically selects said object (1204, 1206,
1212, 1214) for inclusion in the finished product (1106).

28. A software development system (100) in accordance with claim 27
wherein at least some of said interfaces (1316, 1322) and dependencies (1312, 1318,
1324) have both name (“ERRORBEEP” at 1316, “DELAY” at 1318) and also class
(“BEEP” at 1316, “TIMER” at 1318) designations which are replaced with proper

absolute addresses prior to the development of the finished product (1106).

29. A software development system (100) in accordance with claim 28
wherein at least some class (“BEEP” at 1316, “TIMER” at 1318) designations
encompass multiple objects (1204, 1206, 1212, 1214).

30. A software development system (100) in accordance with claim 27
wherein said objects (1204, 1206, 1212, 1214) include components (1204, 1206) which
include features (1212, 1214), and at least some class (“BEEP” at 1316, “TIMER” at
1318) designations relate to the interfaces (1316, 1322) and dependencies (1312, 1318,
1324) of multiple features (1212, 1214).

-132-

10

15

20

WO 01/23998 PCT/US00/25928

31. A software development system (100) in accordance with claim 1
wherein some interfaces (1316, 1322) may optionally include an intercept designation,
and wherein said configurator (700) associates a dependency (1312, 1318, 1324) with
an interface (1316, 1322) having an intercept designation in preference over other

identically named interfaces (1316, 1322).

32. A software development system (100) in accordance with claim 31
wherein at least some of said interfaces (1316, 1322) and dependencies (1312, 1318,
1324) have version indications (“1.0” at 1312, 1316, 1322).

33. A software development system (100) in accordance with claim 31
wherein at least some of said interfaces (1316, 1322) and dependencies (1312, 1318,
1324) have both name (“ERRORBEEP” at 1316, “DELAY” at 1318) and also class
(“BEEP” at 1316, “TIMER” at 1318) designations which are replaced with proper

absolute addresses prior to the development of the finished product (1106).

34. A software development system (100) in accordance with claim 33
wherein at least some of said interfaces (1316, 1322) and dependencies (1312, 1318,
1324) have version indications (“1.0” at 1312, 1316, 1322).

35. A software development system (100) in accordance with claim 31
wherein said objects (1204, 1206, 1212, 1214) include at least one component (1204,
1206) which includes at least one object (1204, 1206, 1212, 1214) that is a feature
(1212, 1214).

36. A software development system (100) in accordance with claim 35

" wherein at least some of said interfaces (1316, 1322) and dependencies (1312, 1318,

1324) have version indications (“1.0” at 1312, 1316, 1322).

-133-

WO 01/23998 PCT/US00/25928

37. A software development system (100) in accordance with claim 35
wherein at least some of said interfaces (1316, 1322) and dependencies (1312, 1318,
1324) have both name (“ERRORBEEP” at 1316, “DELAY” at 1318) and also class
(“BEEP” at 1316, “TIMER” at 1318) designations which are replaced with proper

absolute addresses prior to the development of the finished product (1106).

38. A software development system (100) in accordance with claim 37
wherein at least some of said interfaces (1316, 1322) and dependencies (1312, 1318,
1324) have version indications (“1.0” at 1312, 1316, 1322).

39. A software development system (100) in accordance with claim 1
wherein said routines (800, 1000, 1102, 3600) that generate the finished product, when
confronted with at least some dependencies (1312, 1318, 1324) for which there is no
corresponding interface (1316, 1322) due to the non-selection of an object (1204, 1206,
1212, 1214), and where this is not an error condition, modify the source code element
(1220, 1224, 1226, 1300) by removing the dependency (1312, 1318, 1324) from the
source code element (1220, 1224, 1226, 1300) containing the dependency (1312, 1318,
1324).

40. A software development system (100) in accordance with claim 39
wherein at least some of said interfaces (1316, 1322) and dependencies (1312, 1318,
1324) have version indications (“1.0” at 1312, 1316, 1322).

41. A software development system (100) in accordance with claim 39
wherein at least some of said interfaces (1316, 1322) and dependencies (1312, 1318,
1324) have both name (“ERRORBEEP” at 1316, “DELAY” at 1318) and also class
(“BEEP” at 1316, “TIMER” at 1318) designations which are replaced with proper

absolute addresses prior to the development of the finished product (1106).

42. A software development system (100) in accordance with claim 41
wherein at least some of said interfaces (1316, 1322) and dependencies (1312, 1318,
1324) have version indications (“1.0” at 1312, 1316, 1322).

-134-

10

15

20

25

WO 01/23998 PCT/US00/25928

43. A software development system (100) in accordance with claim 39
wherein macro programs 3806 are used to identify dependencies (1312, 1318, 1324),
said macro programs 3806 including reference to a controlling argument 2300, set by
said configurator (700), which enables the removal of the dependency (1312, 1318,
1324) at the choice of the configurator (700) when the object (1204, 1206, 1212, 1214)

containing a corresponding interface (1316, 1322) is not selected.

44. A software development system (100) in accordance with claim 39
wherein said graphical user interface (200) indicates which dependencies (1312, 1318,
1324) are to be eliminated due to non-selection of the object (1204, 1206, 1212, 1214)
containing the corresponding interface (1316, 1322) and accepting commands to select

or to non-select the corresponding object (1204, 1206, 1212, 1214).

45. A software development system (100) in accordance with claim 44
wherein at least some of said interfaces (1316, 1322) and dependencies (1312, 1318,
1324) have version indications (“1.0” at 1312, 1316, 1322).

46. A software development system (100) in accordance with claim 44
wherein at least some of said interfaces (1316, 1322) and dependencies (1312, 1318,
1324) have both name (“ERRORBEEP” at 1316, “DELAY” at 1318) and also class
(“BEEP” at 1316, “TIMER” at 1318) designations which are replaced with proper

absolute addresses prior to the development of the finished product (1106).

47. A software development system (100) in accordance with claim 46
wherein at least some of said interfaces (1316, 1322) and dependencies (1312, 1318,
1324) have version indications (“1.0” at 1312, 1316, 1322).

48. A software development system (100) in accordance with claim 1
wherein said configurator (700) may cause the graphical user interface (200) to give a
visual error indication with respect to at least some dependencies (1312, 1318, 1324)

for which there is no interface (1316, 1322).

-135-

10

15

20

25

WO 01/23998 PCT/US00/25928

49. A software development system (100) in accordance with claim 48
wherein at least some of said interfaces (1316, 1322) and dependencies (1312, 1318,
1324) have version indications (“1.0” at 1312, 1316, 1322).

50. A software development system (100) in accordance with claim 48
wherein at least some of said interfaces (1316, 1322) and dependencies (1312, 1318,
1324) have both name (“ERRORBEEP” at 1316, “DELAY” at 1318) and also class
(“BEEP” at 1316, “TIMER” at 1318) designations which are replaced with proper

absolute addresses prior to the development of the finished product (1106).

51. A software development system (100) in accordance with claim 50
wherein at least some of said interfaces (1316, 1322) and dependencies (1312, 1318,
1324) have version indications (“1.0” at 1312, 1316, 1322).

52. A software development system (100) in accordance with claim 1
wherein the data (1210, 1222, 1400, 1600) defining the nature of said objects (1204,
1206, 1212, 1214), in at least some cases, includes an indication
(“EXTERNALTRIGGER” at 1518) that the selection of one object (1204, 1206, 1212,
12'14) is triggered by the selection of another object (1204, 1206, 1212, 1214); and said
configurator (700), when encountering such data, selects said another object (1204,

1206, 1212, 1214) whenever said one object (1204, 1206, 1212, 1214) is also selected.

53. A software development system (100) in accordance with claim 53
wherein said directives (1502 to 1532, 1702 to 1728) include build directives (1502 to
1532, 1702 to 1728).

54. A software development system (100) in accordance with claim 52
wherein said objects (1204, 1206, 1212, 1214) include at least one component (1204,
1206) which includes at least one object (1204, 1206, 1212, 1214) that is a feature
(1212, 1214).

-136-

10

15

20

WO 01/23998 PCT/US00/25928

55. A software development system (100) in accordance with claim 54
wherein said directives (1502 to 1532, 1702 to 1728) include build directives (1502 to
1532, 1702 to 1728).

56. A software development system (100) in accordance with claim 54
wherein at least some of said interfaces (1316, 1322) and dependencies (1312, 1318,
1324) have both name (“ERRORBEEP” at 1316, “DELAY” at 1318) and also class
(“BEEP” at 1316, “TIMER” at 1318) designations which are replaced with absolute
addresses prior to the development of the finished product (1106).

57. A software development system (100) in accordance with claim 56
wherein at least some of said interfaces (1316, 1322) and dependencies (1312, 1318,
1324) have version indications (“1.0” at 1312, 1316, 1322).

58. A software development system (100) in accordance with claim 1
wherein at least some of said source code elements (1220, 1224, 1226, 1300) contain
list elements (3704, 3708, 3710), and wherein said routines include a product
component linker 3600 that modifies the source code elements (1220, 1224, 1226,
1300) by bringing those list elements (3704, 3708, 3710) together and inserts them into
the final product (1106) at a designated point (3716) and establishes linkages to list item

references.

59. A software development system (100) in accordance with claim 58

wherein said list elements (3704, 3708, 3710) include sort priority specifications.

60. A software development system (100) in accordance with claim 58

wherein said list elements (3704, 3708, 3710) include sort key specifications.

61. A software development system (100) in accordance with claim 58

wherein said list elements (3704, 3708, 3710) include list entries

-137-

10

15

20

25

WO 01/23998 PCT/US00/25928

62. A software development system (100) in accordance with claim 58
wherein multiple lists 3704 may be defined, each list entry 3710 assigned a list name
(“ENTRY NAME” at 3710) to facilitate identifying and collecting the elements
(“ENTRY DATE” at 3710) of the lists 3704.

63. A software development system (100) in accordance with claim 62
wherein said list elements (3704, 3708, 3710) include list entries 3710 at least some of
which designate sort priority (“SORT PRIORITY” at 3710) as well as sort keys
(“SORT KEY” at 3710).

64. A software development system (100) in accordance with claim 1
wherein at least some of said interfaces (1316, 1322) are declared public and are
accessible by any dependency (1312, 1318, 1324) in any object (1204, 1206, 1212,
1214), or are declared private and are accessible only by dependencies (1312, 1318,
1324) within the same object (1204, 1206, 1212, 1214).

65. A software development system (100) in accordance with claim 1
wherein said objects (1204, 1206, 1212, 1214) include at least one component (1204,
1206) which includes at least one feature (1212, 1214), and at least some interfaces
(1316, 1322) are declared public and are accessible by any dependency (1312, 1318,
1324) in any object (1204, 1206, 1212, 1214), some are declared private and are
accessible only by dependencies (1312, 1318, 1324) within the same component (1204,
1206), and some are declared shielded and are accessible only by the dependencies

(1312, 1318, 1324) within the same feature (1212, 1214).

66. A software development system (100) in accordance with claim 1
wherein at least some of said source code elements (1220, 1224, 1226, 1300) contain
string elements (4002) defining the text (“STR_TEXT” in FIG. 40) and the language
(“STR_LANGUAGE?” in FIG. 40) of strings, and wherein said routines (800, 1000,
1102, 3600) that generate the finished product (1106) inserts code that permits the
proper language strings to be selected by means of a value 3904 stored in non-volatile

memory 3902.

-138-

10

15

20

25

WO 01/23998 PCT/US00/25928

67. A software development system (100) in accordance with claim 1
wherein said product configuration data (2100) includes data defining the type of

platform to be built (“DESKTOP” at 2102).

68. A software development system (100) in accordance with claim 76
wherein said data defining the type of platform to be built (“DESKTOP” at 2102) can

designate a platform to be desktop.

69. A software development system (100) in accordance with claim 67
wherein said data defining the type of platform to be built (“DESKTOP” at 2102) can

designate a platform type to be portable.

70. A software development system (100) in accordance with claim 67
wherein said data defining the type of platform to be built (“DESKTOP” at 2102) can

designate a platform type to be server.

71. A software development system (100) in accordance with claim 67
wherein said data defining the type of platform to be built (“DESKTOP” at 2102) can

designate a platform type to be desktop, portable, or server.

72. A software development system (100) in accordance with claim 1
wherein said routines that generate the finished product (1106) include a product
component linker 3600 which permits the provision of override data (“REGISTER
TABLE ENTRY #2 OVERRIDE DATA” IN FIG. 42) to replace some items of data in
a data table (“REGISTER TABLE ENTRY #1 ENTRY #2 ENTRY #3 ENTRY #4” in
FIG. 42).

73. A software development system (100) in accordance with claim 1
wherein said routines that generate the finished product (1106) include a product
component linker 3600 which establishes intra-segment linkages between separately

compiled and linked blocks of executable code.

-139-

WO 01/23998 PCT/US00/25928

74. A software development system (100) in accordance with claim 1
wherein code elements 3904 in said source code library (1200) may be designated as
resident in non-volatile memory 3902, and wherein said routines (800, 1000, 1102,
3600) that generate the finished product (1106) include a product component linker
3600 which allocates non-volatile memory 3902 for the storage of such elements 3904
and also inserts into the finished product (1106) the necessary code to give program
access (3906, 3908) to such variables (3904) in non-volatile memory 3902 in such a
manner that the system designer does not have to be concerned with the nature of the

non-volatile memory 3902.

75. A software development system (100) in accordance with claim 74
wherein at least some of said source code elements (1220, 1224, 1226, 1300) contain
string elements (4002) defining the text (“STR_TEXT” at 4002) and the language
(“STR_LANGUAGE?” at 4002) of strings, and wherein said routines (800, 1000, 1102,
3600) that generate the finished product (1106) inserts code that permits the proper
language strings to be selected by means of a value 3904 stored in non-volatile memory

3902.

76. A software development system (100) in accordance with claim 1
wherein said graphical user interface (200) includes an editor for viewing and
modifying the source code elements (1220, 1224, 1226, 1300) of objects (1204, 1206,
1212, 1214).

77. A software development system (100) in accordance with claim 76
wherein an editing window may be opened in said graphical user interface (200) by
clicking on one of the elements in said visual, logical representation of the configuration

state data (1900).

-140-

10

15

20

WO 01/23998 PCT/US00/25928

78. A software development system (100) in accordance with claim 1
wherein macro directives (1502 to 1532, 1702 to 1728) are used to mark said interfaces
(1316, 1322) and dependencies (1312, 1318, 1324), and wherein code modification is
performed by macro programs (3806) driven and controlled by the configuration state
data (1900) developed by said configurator (700), such that standard assemblers,
compilers, and linkers 1102 may be used in implementing the software development

system (100).

79. A software development system (100) in accordance with claim 78
wherein said configuration state data (1900) is fed into a product make routine 900
which generates feature include files (2300) and make files (2400, 2500) after which a
product build routine (1000) causes compilers and linkers 1102 controlled by said make
files (2400, 2500) to combine source code elements (1220, 1224, 1226, 1300) taken
from said source code library (1200) and said feature include files (2300) into built

product components (1104) that define the finished product (1106) (1106).

80. A software development system (100) in accordance with claim 79
wherein said make files include component make files (2400) and product make files

(2500).

81. A software development system (100) in accordance with claim 79
wherein a product component linker (3600) transforms said built product components

(1104) into said finished product (1106).

82. A software development system (100) in accordance with claim 81
wherein said make files include component make files (2400) and product make files

(2500).

-141-

10

15

20

25

30

WO 01/23998 PCT/US00/25928

83. A method (100) for developing a finished product (1106) comprising:

producing product configuration data (2100) defining the finished product
(1106); |

providing at least one source code library (1200) containing source code
elements (1220, 1224, 1226, 1300) defining one or more objects (1204, 1206, 1212,
1214) that include interfaces (1316, 1322) and dependencies (1312, 1318, 1324);

providing directives (1502 to 1532, 1702 to 1728) defining the nature of said
objects (1204, 1206, 1212, 1214);

developing (700) configuration state data (1900) from said product configuration
data (2100), said directives (1502 to 1532, 1702 to 1728), and from data (1800)
obtajned from said source code library (1200);

utilizing a graphical user interface (200), examining a visual, logical
representation of the configuration state data (1900) representing the finished product
(1106), missing and selected and deselected objects (1204, 1206, 1212, 1214) and
options (1524), and providing commands to adjust the finished product (1106); and

generating (800, 1000, 1102, 3600) the finished product (1106) from said source
code elements (1220, 1224, 1226, 1300) under the control of said configuration state
data (1900).

84. A method in accordance with claim 83 including providing for said
objects (1204, 1206, 1212, 1214) include at least one source code element (1220, 1224,
1226, 1300) and an object information data set (1400, 1600) containing said directives
(1502 to 1532, 1702 to 1728).

85. A method in accordance with claim 83 including providing at least one
object (1204, 1206, 1212, 1214) which is a component (1204, 1206) that includes at
least one object (1204, 1206, 1212, 1214) which is a feature (1212, 1214).

86. A method in accordance with claim 83 including assigning to at least
some of said interfaces (1316, 1322) and dependencies (1312, 1318, 1324) both name
(“ERRORBEEP” at 1316, “DELAY” at 1318) and also class (“BEEP” at 1316,
“TIMER” at 1318) designations and replacing them with proper absolute addresses
prior to the development of the finished product (1106).

-142-

10

15

20

25

WO 01/23998 PCT/US00/25928

87. A method in accordance with claim 83 including assigning, as part of the
data associated with at least some dependencies (1312, 1318, 1324), object specification
data, and then guided by the object specification data linking the corresponding
dependency (1312, 1318, 1324) to an interface (1316, 1322) in a source code element
(1220, 1224, 1226, 1300) included with the specified object (1204, 1206, 1212, 1214)

in preference to other interfaces (1316, 1322) having identical identifiers.

88. A method in accordance with claim 83 including designating source code
elements (1220, 1224, 1226, 1300) to run in a RAM free environment, and generating
(800, 1000, 1102, 3600) modified source code elements (1220, 1224, 1226, 1300) at
call or jump dependencies (1312, 1318, 1324) that emulates a subroutine jump and

return without the need for a RAM-based subroutine stack.

89. A method in accordance with claim 83 including, when encountering a
dependency (1312, 1318, 1324) that depends upon the presence of an unselected object
(1204, 1206, 1212, 1214) with a corresponding interface (1316, 1322), automatically
selecting (700) said object (1204, 1206, 1212, 1214) for inclusion in the finished
product (1106).

A 90. A method in accordance with claim 83 including adding intercept
designations for at least some interfaces (1316, 1322) and associating (700) a
dependency (1312, 1318, 1324) with an interface (1316, 1322) having an intercept

designation in preference over other identically named interfaces (1316, 1322).

91. A method in accordance with claim 83 including modify the source code
elements (1220, 1224, 1226, 1300) by removing dependencies (1312, 1318, 1324) from
the source code elements (1220, 1224, 1226, 1300) when confronted with dependencies
(1312, 1318, 1324) for which there is no corresponding interface (1316, 1322) due to
the non-selection of an object (1204, 1206, 1212, 1214), and where this is not an error

condition.

-143-

10

15

20

25

WO 01/23998 PCT/US00/25928

92. A method in accordance with claim 83 including signaling with the
graphical user interface (200) a visual error indication with respect to dependencies

(1312, 1318, 1324) for which there is no interface (1316, 1322).

93. A method in accordance with claim 83 including designating the selection
of one object (1204, 1206, 1212, 1214) to be triggered by the selection of another
object (1204, 1206, 1212, 1214); and selecting the one object (1204, 1206, 1212, 1214)
whenever the another object (1204, 1206, 1212, 1214) is selected.

94. A method in accordance with claim 83 including providing list elements
(3704, 3708, 3710) in at least some of said source code elements (1220, 1224, 1226,
1300), and then modifying the source code elements (1220, 1224, 1226, 1300) by
bringing those list elements (3704, 3708, 3710) together and inserting them into the
final product (1106) at a designated point (3716) and establishing linkages to the list

item references.

95. A method in accordance with claim 83 including declaring some
interfaces (1316, 1322) to be public and making them accessible by any dependency
(1312, 1318, 1324) in any object (1204, 1206, 1212, 1214), and declaring other
interfaces (1316, 1322) private and making them accessible only to dependencies (1312,
1318, 1324) within the same object (1204, 1206, 1212, 1214).

96. A method in accordance with claim 83 including adding at least some
string elements (4002) to at least some of said source code elements (1220, 1224, 1226,
1300), defining the text (“STR_TEXT” in FIG. 40) and the language
(“STR_LANGUAGE?” in FIG. 40) of the strings, and inserting code that permits the
proper language strings to be selected by means of a value 3904 that is placed into non-

volatile memory 3902.

97. A method in accordance with claim 83 including adding to said product
configuration data (2100) data defining the type of platform to be built (“DESKTOP” at
2102).

-144-

10

15

20

WO 01/23998 PCT/US00/25928

98. A method in accordance with claim including providing at least some
override data (“REGISTER TABLE ENTRY #2 OVERRIDE DATA” IN FIG. 42) and
having it replace some items of data in a data table (“REGISTER TABLE ENTRY #1
ENTRY #2 ENTRY #3 ENTRY #4” in FIG. 42).

99. A method in accordance with claim 83 including following assembly or
compilation establishing intra-segment linkages between separately compiled and linked

blocks of executable code.

100. A method in accordance with claim 83 including designating some code
elements 3904 in said source code library (1200) as destined to be resident in non-
volatile memory 3902, and later allocating non-volatile memory 3902 for the storage of
such elements 3904 and inserting into the finished product (1106) the necessary code to
give program access (3906, 3908) to such variables (3904) in non-volatile memory 3902
in such a manner that the system designer does not have to be concerned with the nature

of the non-volatile memory 3902.

101. A method in accordance with claim 83 including using said graphical
user interface (200) to view and modify the source code elements (1220, 1224, 1226,
1300) of objects (1204, 1206, 1212, 1214).

102. A method in accordance with claim 83 including identifying with macro
directives (1502 to 1532, 1702 to 1728) the interfaces (1316, 1322) and dependencies
(1312, 1318, 1324), and then performing code modification by executing macro
programs (3806) under the control of the configuration state data (1900) and using
standard assemblers, compilers, and linkers 1102 to assemble or compile and link the

source code elements.

-145-

WO 01/23998 PCT/US00/25928

1/36
100
400~ pgyppaTE DATABASE 500
—»| FILE SCAN |—{ ACCESS |
INTEGRATED DEVELOPMENT (FIG. 4) (FIG. 653
ENVIRONMENT \
USER > COMMAND
INTERFACE EXECUTOR - CO"%E%“@’\)TOR 700
(FIG. 2) le—] (FIG. 3) . : .
200 4o 300 PRODUCT
— , BUILD
PRODUCT PREPARE 900
| e (FIG. 9)
FIG. 1 800 PRODUCT
> BUILD ~1000
(FIG. 10)
200
\‘

202~ USER_ KEYBOARD/MOUSE COMMAND

FILE/TREE MODIFICATION
PRODUCT BUILD
FEATURE CUSTOMIZE | CALL

FORCE IN/OUT | COMMAND EXECUTOR
CUSTOM FILE CREATE | WITH USER COMMAND
OPTION CUSTOMIZE | (FIG. 3)

204~ Ul UPDATE VIEW \

USER VIEW (FIG. 33) 300
COMPONENT/FEATURE TREE
COMPONENT /FEATURES IN/OUT OF BUILD
USER FORCE IN/OUT
FEATURE FILES
ORIGINAL, CUSTOM OR OVERRIDE
FIG. 2 DEPENDENCIES
INTERFACES, INCLUDE FILES, OPTIONS
DECLARATIONS
INTERFACES, OPTIONS
FEATURE/FILE ERRORS AND WARNINGS
UNRESOLVED DEPENDENCIES
MISMATCHED DEPENDENCY /DECLARATION
VERSIONS

WO 01/23998

2/36

PCT/US00/25928

R
FIE/ |-302 506~ FULL
DIRECTORY PRODUCT
MODIFY 409 402 BUILD
VJ \ \ J
CALL DBUPDATE CALL DBUPDATE
TO SCAN CHANGED FOR TREE
ITEMS (FIG. 4) SCAN (FIG. 4)
\d \ 4
CALL CONFIGURATOR CALL CONFIGURATOR 308
TO HANDLE CHANGE 706="] RESET (FIG. 7) /
ITEMS (FIG. 7) QUICK
/| —! PRODUCT
704 1 BUILD
204~ CALL Ul UPDATE COMPONENT/
VIEW (FIG. 2) FILE BUILD
9 [Y y ’ \
304 CALL PropUCT | 310
/ MAKE (FIG. 8)
FEATURE FORCE 7
IN/OUT
/ 800 312~J"\ew SOURCE
OPTION VALUE TREE
CHANGE 402
\ J
FILE OVERRIDE 704 CALL DBUPDATE
/ FOR TREE SCAN
CALL CONFIGURATOR (FIG. 4)
TO CHANGE PRODUCT !
CONFIGURATION CALL CONFIGURATOR
(FIG. 7) PRODUCT (FIG. 7) [>-702
I |

FIG. 3

WO 01/23998

3/36

400

R

DBUPDATE SCAN FOR
TREE/COMPONENT/FILE

| -402

Y

READ FILE DATE/TIME

_~404

Y

CALL DATABASE READ
FOR LOGGED DATE/TIME

%
406 408

CHANGED
DATE/TIME
?

2700 :
N YES

SCAN FILE FOR SYSTEM
MACROS AND
INFORMATION FILE
DIRECTIVES (FIG. 27)

Y

CALL DATABASE WRITE
API (FIG. 6)

-

(
602

MORE FILES
TO SCAN?

PCT/US00/25928

WO 01/23998

PCT/US00/25928

4/36
50\(') 550
USE EDITOR TO MODIFY PERFORM TREE SCAN
A SOURCE FILE (xC, | 500 407—_| OF SOURCE, COMPONENT
xH, ASM, *INC) OR A AND FEATURE FILES
FEATURE.INF FILE (FIG. 4)
Y Y
PERFORM A SCAN 100 602~ UPDATE DATABASE
OF THE MODIFIED |-~ (FIG. 6)
FILE (FIC. 4) 7
Y DETERMINE REVISED
UPDATE DATABASE | 602 706~ PRODUCT CONFIGURATION
(FIC. 6) (FIG. 7)

Y Y
DETERMINE THE REVISED DISPLAY REVISED
PRODUCT CONFIGURATION _704 94—~ PRODUCT CONFIGURATION

(FIG. 7) (FIG. 7)
/ Y
DISPLAY THE REVISED MAKE PRODUCT
PRODUCT CONFIGURATION 04 800" (FIG. 8,9,10)
(U1 UPDATE VIEW—FIG. 2)
FIG. 5B
FIG. 54
600
WRITE APl 602
!
~603
CREATE TABLE <>
INFORMATION [——
R0 L g DATABASE
! 1800

PROCESS TABLE ¢
INFORMATION

No605

FIG. 6

WO 01/23998

700

5/36

PCT/US00/25928

%
702

CHANGE CONFIGURATION

604

/08

. 704~
CONFIGURE PRODUCT
\ i |
CALL DATA ACCESS
(FIC. 6) 706~ REVISE CONFIGURATION
/ < L
604 2100 CALL DATA ACCESS
/ FOR MODIFIED
PRODUCT DATA (FIG. 6)
CONFIGURATION I
2000 DATA COMPARE TO
¢ —> STATE DATA
\
CONFIGURE PRODUCT
(FIG. 30)
/ prODUCT [
CONFIGURATION MODIFY
STAT/E DATA CONFIGURATION
I
1900 v

REPORT CONFIGURATION
(UT UPDATE VIEW-FIG. 2)

~-204

FIG. 7

WO 01/23998

PCT/US00/25928

6/36
800
CALL CONFIGURATOR TO 4
802~ GET ACTIVE COMPONENTS
(FIG. 7)
v
FOR FACH COMPONENT 2300
900~ CALL COMPONENT BUILD
PREPARE (FIC. 9B) PRODUCT MAKEFILE
] - COMPILE AND LINK
908~ WRITE PRODUCT MAKEFILE J=>{ FACH COMPONENT
- LINK COMPONENTS
Y
CALL (STANDARD UNIX) ° BUILD PRODUCT IMAGE
1000—-1 MAKE TO EXECUTE o
MAKEFILE (FIG. 10)
y
FIG. 8
1104 BUILT PRODUCT
'350

CALL CONFIGURATION
AP TO GET FEATURE 992
INFORMATION

!

COMPARE TO 2300
EXISTING feature.inc 3 /

956

YES

N 954 NEEDED FOR
REFERENCED
958 DEPENDENCIES

\ Feature.inc EQUATES

/
WRITE NEW |

Feature.inc FILE

Y

MORE

YES

FEATURES

960

FIG. 9a

WO 01/23998

902—| AP TO GET ACTIVE FILE

950~ FEATURE, CREATE/UPDATE

904~ COMPARE TO | -

7/36

CALL CONFIGURATION

AND FILE DEPENDENCY
INFORMATION (FIG. 7)

!

FOR EACH COMPONENT

feature.inc FILE (FIG. 9A)

PCT/US00/25928

900

FIG. 9b

2400
/

!

EXISTING MAKEFILE

908~"| COMPONENT MAKEFILE

1202~_gQURCE LIBRARY A

CREATE NEW

MAKEFILE

COMPILE AND LINK ALL
ACTIVE FILES, LISTING
INCLUDE DEPENDENCIES

» IF MAKEFILE NEWER THAN

EXE CLEAN ALL OBU’s
AND .EXE IN COMPONENT

_{\

1200

'/

1204~ cOMPONENT A

14001~ COMPONENT A INFORMATION FILE (FIG. 14)

12121

L FEATURE 1

1600-T——FEATURE 1 INFORMATION FILE (FIG. 16)
1300-—1—FEATURE 1 SOURCE CODE FILE A (FIG. 13)
1220~ FEATURE 1 SOURCE CODE FILE B
1214~ FEATURE 2

1222-1~—FEATURE 2 INFORMATION FILE

12241 _{—FEATURE 2 SOURCE CODE FILE A
1996~——FEATURE 2 SOURCE CODE FILE B

1206~-COMPONENT B

12101~

COMPONENT B INFORMATION FILE

FIG.

12

WO 01/23998

8/36

1000

PCT/US00/25928

'

1002~

READ COMMAND FROM
MASTER MAKEFILE

BINLINK

YES

3600

COMMAND
?

1006~

SELECT DIRECTORY
OF COMPONENT

/
RUN PRODUCT
COMPONENT
LINKER (FIG. 36)

d

Y

1008~

READ COMMAND FROM
COMPONENT MAKEFILE

1010
\

Y

1012

A

1014
\ 4

CALL
COMPILER

CALL

ASSEMBLER

CALL
LINKER

1022

gl g

Y

LAST\ NO

1016

COMMAND
?

LAST NO

COMMAND
?

FIG.

10

WO 01/23998 PCT/US00/25928

9/36
100
GRAPHICAL USER FIC.
INTERFACE (FIG. 2) e ' G 11
|
PROGRAM —> COMPONENT |
AND FEATURE 1200~ SOURCE CODE
LIBRARY CHANGE — LIBRARY JX
INPUT (EDITOR/ DATABASE - (FI6. 12)
FILE MOVE) ~{ UPDATE (FIGS. 1800 ———
/ 4 AND 26) :&D
DATABASE
206 210 ((FIG. 18)
) 400 —
USER > PRODUCT
CONFIGURATION Y CONFIGURATION
INPUT CONFIGURATOR [K—— DATA (FIG. 21)
PROCEDURE — 2100
700{ 7 AND 28) >[
REFERENCE AND | | CONFIGURATION
NAVIGATION { (FIG. 19 AND 20)
208 @
=212 PRODUCT 1300
GRAPHICAL MAKE (FIGS.
CONFIGURATION KG—— | 8 AND 34) 2400
DISPLAY —> 900 N
COMPONENT
214 v MAKE FILES
\ ——— (FIG. 24) -
m
USER BUILD 2300 .
REQUEST PRODUCT N
(FE[’(E”L?O) ——>> FEATURE INCLUDE
; | ' FILES (F16. 23) [~
200 1000 -
————> PRODUCT MAKE

FILE (FIG. 25)

COMPILER AND

LINKER
1102

[

1106 BUILT PRODUCT
\ — Cgslg%lfflELT COMPONENTS WITH

FINISHED LINKER LINKER DATA
PRODUCT (FIG. 36) [™-3600 —<
1104

e —
! CA —_
COMPONENT 2500
<
—>
<__—__

WO 01/23998

PCT/US00/25928

10/36
1300

\

1302~-SUBTTL BEEP.ASM — BEEPING SUPPORT CODE

1304~ xLisT
INCLUDE SYSTEM.INC—1306

13508~ INCLUDE FEATURE.INC

1310——"LIST

1312~_pUBEXT TIMER.DELAY, 1.0
1314~—CODE_SEGMENT_OPEN POST + RUNTIME

1316~-PUBLIC_PROC BEEP.ERRORBEEP, 1.0

1317-— +++ ; CODE
1318-—EXTCALL TIMER.DELAY ; GATE TIMER AND WAIT
*++ ; CODE~-1319

1320~—END_PROC

PUBLIC_PROC BEEP.BEEP, 1.0—1322
1323‘\— ® o @ ; CODE
1324~ EXTCALL TIMER.DELAY : DURING POWER ON
1306-—DIAGNOSTICS |
1328_/" . ; CODE

1330~—END_PROC
1339 ——SEGMENT_CLOSE FIG. 183
1334 —END

1600
N

1602\NAME(“BEEP’2

DESCRIPTION(*BIOS BEEP SUPPORT ROUTINES.”)—~1604

1606~ CLASS(BEEP)

1608~ COREVERSION(7.00§
OWNER(“PHOENIX")~_1510

1612~ BRINGUP()

1614~ SHIELDPRIVATES()

FIG. 16

PLATFORMTYPE(1A32) — 1616

18~

ALLOTHERS(RECOMMENDED) ~_ 15
§~-1622

WO 01/23998 PCT/US00/25928

11/36

1400

1402~ NAME(“CORE RUNTIME SERVICES”)
DESCRIPTION(“BIOS CORE ROUTINES”)-—1404
1406~ CLASS(CORE)
COREVERSION(7.00)— 1408
1410~ OWNER(”BHOENIX”
_~ BRINGUP
1412 SHIELDPRIVATES()—1414

© CLASSIFICATION—"1416
1418~ §

COMPONENTTYPE(SOFTWARE) 1420
1422}

PLATFORMTYPE(1A32) 1424
1426~_§

ALLOTHERS(RECOMMENDED) —~ 1428

1430~}
FIG. 14

1500

1902~ NAME(“COMPONENTNAME”)
1504~ CLASS(CLASSNAVE)
PLATFORMTYPE(ARCHITECTURE) ~_1506

1508—1
1519 PLATFORMTYPE (RULE)~-1510

ALLOTHERS(RULE) —1214
1516——// RULE := RECOMMENDED | TEST | ONDEMAND
1520~ // | EXPLICIT | EXTERNALTRIGGER (CLASSPATH)~_451g
1522~ OPTION(OPTIONNAME,OPTIONVALUE, OPTIONSIZE, "DESCRIPTION
152&3/8\1524
VALUENAME,VALUE, “DESCRIPTION"——1528
"t T1530

FIG. 15

15324

WO 01/23998

PCT/US00/25928

12/36
1700

1702\NAME(“FEATURENAME") FIG. 17

1704—— CLASS(CLASSNAME) | SUBCLASS (SUBCLASSNAME | ..)
PLATFORMTYPE(ARCHITECTURE) ~_1706

—14
1703712 PLATFORMTYPE (RULE) ~1710

ALLOTHERS(RULE) ——1714
1716——// RULE := RECOMMENDED | TEST | ONDEMAND
/7 | EXPLICIT | EXTERNALTRIGGER (CLASSPATH)~_
1720~ 1718
1721_/OPTION(OPTIONNAME,OPTIONVALUE,OPTIONSIZE,"DESCRIPTION
)~1722
VALUENAME, VALUE, “DESCRIPTION" ——1724
* T TTN1726

17234
1728

1800

/

COMPONENT DATABASE FOR SOURCE LIBRARY A

1802~ coMPONENT A

1806~ NAME, DESCRIPTION
1808~ DATA OPTIONS TABLE
1810~1— COMPILE/LINK OPTIONS

1812-1—CLASS A

18161~ FEATURE 1
1820—~—NAME, DESCRIPTION
1822~~—{—DATA OPTIONS TABLE
1824 -~~—COMPILER/LINK OPTIONS
1826 -~—PROGRAM NAMES

1898 L —A—ENTRYS

18301 EXITS

18187~ FEATURE 2

1814-+—CLASS B

[il

1804—1 COMPONENT B

FIG. 18

WO 01/23998 PCT/US00/25928

13/36

1900

N\

1922~ | 1902~ COMPONENT A
NAME, DESCRIPTION—"1 908

1910~]
1924~] 1914
1916~ FILES

DEFINITIONS— 1917
1919~ REFERENCES

1926~ 1912~ FeATURE 2

1928~ 1904~ COMPONENT B

1930~ > | 1906+ COMPONENT €

FIG. 19

2000

2001~-GLOBAL CONSTANTS
2002~ SELECTED COMPONENT A

9006 SELECTED FEATURE 2
5008 |1 PROGRAM NAME1,NAME2,NAMES, + = *

—EXIT NAME1,NAME2,NAME3, + « *
201011 CONSTANTS~

.o 2012

2004 —1 SELECTED COMPONENT C

FIG. 20

WO 01/23998 PCT/US00/25928

14/36

2100

\

2102 oy pTrORMTYPE (“DESKTOP", 1A32)
2104~ COMPONENT (“PNP”, NOFORCE)

3
210675 bl (“MYFILEASW, “\DEVREF\INTEL\440Bx") 2108
2110
FIG. 21
2283

PLATFORMTYPE?“PLATFORMTYPE” ARCHITECTURE) —2201
2202~ SYSTEMOPTION(“OPTIONNAME” ,“OPTIONVALUE”
COMPONENT(“COMPONENTNAME” [, FORCEFLAG]) —2204
2206~ { FEATURE/OPTION/SYSTEMOPTION ..}
// FORCEFLAG := FORCEIN | FORCEOUT | NOFORCE (DEFAULT)——2208
2210~ FEATURE(“FEATURNENAME” [, FORCEFLAG])
§ FEATURE /OPTION/SYSTEMOPTION,/FILE /OVERRIDEFILE — 2212

2214~y T

9915~ FILE(“FILENAME” ,“PATH") |
OVERRIDEFILE(“FILENAME" ,“NEWPATH" ,“ORIGINALVERSION") ~_991
9918~ OPTION(“OPTIONNAME" ,“OPTIONVALUE” EDITFLAG,
[“DESCRIPTION"]) ~_990,

FIG. 22

2300

\‘

2302~ p_TIMER_DELAY = TRUE

FIG. 23

WO 01/23998 PCT/US00/25928

15/36
2400

N

0404—~EXTASMS = $ (MANTICORE) \BUILD\COMPHEAD\EXEASM \
2405~ COMPAT\COMPAT.ASM" LISTMGR\GETNEXT.ASM \
BEEP\BEEP.ASM DISPMGR\DISPINTFASM \~_2408
2410~ DISPMGR\ DISPINITASM \
DISPMGR\MODULE.ASM DISPMGR\SERVICE.ASM \~ 2412
2414~ DISPMGR\ DISPUTILASM \
DISPMGR\ DISPUTIL.ASM \~—2416
2418~ VECTOR\FILLINT.ASM \
UTILS\ CHECKSUM\ CHKSUM.ASM —— 2420
2422~ DIRLIST = BEEP COMPAT LISTMGR DISPMGR VECTOR NVRAMMGR
COMPONENT_NAME = COMPNENT~_
2426~ FILE_LISTING = FALSE 2424
p40g——ML_FLAGS = /FE$ (COMPONENT_NAME) EXE /NOLOGO

0430—IF “$ (FILE_LISTING) » == “TRUE”
ML_FLAGS = § (ML_FLAGS) /FL~-2432
2434 'ENDIF

2436_/‘.ASM.OBJ:
@ML § (ML_FLAGS) /C /1$ (MANTICORE) \INCLUDE $(**)~\2438

2440~ (COMPONENT_NAME) .EXE:$ (EXTASMS:ASM=0BJ) $ (ASMS:ASM=0BJ)
LINK /NOLOGO @<<~_9449
Fr= 4a~C
2446—\§F (e 2444
2448_~$ (COMPONENT_NAME
$ (COMPONENT_NAME)~_2450

2452~
<K<~-2454

2456 CLEAN:
2458~ @DEL $ (COMPONENT_NAME) .MAP
@DEL *LST~-2460
2462 —@DEL *.0BJ
@DEL § (COMPONENT_NAME EXE~-94p4
2466_/'_@DEL $ (COMPONENT_NAME) .OUT

FIG. 24

WO 01/23998 PCT/US00/25928

16/36
25%0
2502~ 103 ROM:

CD $ (MANTICORE) \CPU\INTEL\PENTIUM——2504
2506~ NMAKER

CD $ (MANTICORE) \PoST——2208
2510~ NMAKER

CD § (MANTICORE) \ISA—2212
2514~ NMAKER

CD $ (MANTICORE) \MEMC\INTEL\440BX—2°16
2518~ NMAKER

CD $ (MANTICORE) \CORE—2520
2522~ NMAKER

CD $ (MANTICORE) \PNP——2524
2526~ NMAKER

CD $ (MANTICORE) \DEVREF\INTEL\ 440BX—2528
2550~-BINLINK >BINLINK.OUT

2032~ CLEAN:

CD § (MANTICORE) \CPU\INTEL\PENTIUM—~_9534
2536-—NMAKER CLEAN

CD § (MATICORE) \POST\2538
2540-—NMAKER CLEAN

CD § (MANTICORE) \ISA_2542
2544 ——NMAKER CLEAN

CD § (MANTICORE) \MEMC\INTEL\44OBX\2546
2548 NMAKER CLEAN

CD § (MANTICORE) \CORE~_955(
2552 ——NMAKER CLEAN

CD § (MANTICORE) \PNP-\2554
2556_/NMAKER CLEAN
CD § (MANTICORE) \DEVREF\INTEL\44OBX_2558
2560~ DEL *.SCR

DEL *. —~_925p2
2564 DEL *EXE

DEL *.MAP ~_9566
7568 DEL *.ROM

DEL *.0UT ~-92570

FIG. 25

WO 01/23998

17/36

DATABASE UPDATE

!

PCT/US00/25928

400

2602~

ROOT = ROOT
DIRECTORY OF COMPONENT
SOURCE CODE LIBRARY

Y

2604~

COMPONENT = SUBDIRECTORY
OF ROOT CONTAINING FILE
NAMED “COMPONENT.INF”

»

A

FOR EACH COMPONENT

Y

FILE SCAN (FIG. 27)
2700

K— COMPONENT.INF

Y

SOURCE AND
< INCLUDE FILES

FEATURE = DIRECTORY
SUBORDINATE TO COMPONENT
CONTAINING FILE
NAMED “FEATURE.INF”

\
2612
2614

K

y

FOR EACH FEATURE

2676 pone

A

FILE SCAN (FIG. 27)
2700

K— FEATURE.INF

~-2620

SOURCE AND
-

FIG. 26

INCLUDE FILES

\
2622

WO 01/23998

CHANGE INPUT

18/36

DATABASE UPDATE 400

2700

PCT/US00/25928

206 (FIG. 11) (FIGS. 4 AND 26)
DATE /TIME CHECK %
FOR CHANGED FILE
\
CHANy NO
]
' DONE
JYES
SCAN FILE - FILE
\
2706
FILE IS
“COMPONENT.INF" >1E2] 2709
2 /
ADD COMPONENT
INFORMATION
\
(" DONE)
FILE IS YES
“FEATURE.INF" l
f)
' 2711 ADD FEATURE
NO ™1 INFORWATION [
1y A PROGRAM FILE T
OR INCLUDE FILE
(DONE)
y
ADD INFORMATION FROM:
EXIT DECLARATION MACROS
EXIT MACROS >
2714="] ENTRY MACROS v
INCLUDE MACROS
LIST MACROS 2716~ _ DATABASE
T L
DONE

FIG. 27

WO 01/23998 PCT/US00/25928

19/36

2800
\‘ CONFIGURATOR
PROCEDURE

'

INITIAL ACTIVATION 2900
(FIG. 29)

Y

PRODUCT CONFIGURE
(FIG. 30) 3000

/

REPORT CONFIGURATION STATE:
VALID CONFIGURATION, OR
INCOMPATIBLE INTERFACES, [-2806
MISSING COMPONENTS, ETC.

(DO‘;\IE)
FIG. 28

2900
INITIAL ACTIVATION

RETRIEVE FROM PRODUCT
CONFIGURATION DATA | -2902
THE PLATFORM TYPE

Y

RETRIEVE FROM THE DATABASE
ALL COMPONENT INFORMATION
RELATING TO COMPONENTS | -9904
THAT ARE PERMITTED OR
MANDATORY ON THE SPECIFIED
PLATFORM TYPE

Y
CREATE IN RANDOM
ACCESS MEMORY THE ~-2006

CONFIGURATOR STATE DATA

CooNeD)
FIG. 29

WO 01/23998 PCT/US00/25928

20/36

3000

R

(FOR STEPS BELOW, NO OBJECT IS SET TO ACTIVE——3002
IF IT HAS BEEN SPECIFIED FORCED OUT.)

STEP A:
SET ALL FORCED IN OBJECTS (COMPONENT OR L —3004
FEATURE) AND THEIR PARENTS TO ACTIVE

Y

STEP B:
SET ALL RECOMMENDED COMPONENT L ~3006
OBJECTS TO ACTIVE STATE

STEP C:
FOR ALL ACTIVE OBJECTS: 3008
SET ALL RECOMMENDED CHILDREN TO ACTIVE STATE
AND REPEAT
\
STEP D:
FOR EACH COMPONENT OBJECT OR CHILD OF ACTIVE OBJECT 3010

THAT HAS A CLASS SPECIFIED AS AN EXTERNAL TRIGGER:
IF AN OBJECT OF THAT CLASS IS ACTIVE, SET TO ACTIVE

Y

STEP E:
RESOLVE EXTERNAL REFERENCES, MAINTAIN LIST OF
UNRESOLVED REFERENCES AND MISMATCHED VERSIONS OF ~-3100
REFERENCES (FIG. 31)
!
STEP F:

UNTIL NO FURTHER OBJECTS CAN BE SET TO ACTIVE OR NO
FURTHER REFERENCES ARE LEFT UNRESOLVED:
IF A FEATURE RESOLVES AN UNRFSOLVED REFERENCE AND IT
IS OF TRIGGER TYPE ON_DEMAND, AND ALL PARENT OBJECTS [™-3014
ARE ACTIVE OR TYPE ON_DEMAND THEN:
SET OBJECT AND ALL PARENT OBJECTS TO ACTIVE
REPEAT STEPS C, D AND E

FIG. 30

WO 01/23998 PCT/US00/25928

21/36

RESOLVE EXTERNAL REFERENCES ?100

FIND ALL DEFINITIONS
WITH SAME CLASSPATH |—3102
AS REFERENCE

3104 X
Muum YES

OEFINITIONS 3106

NO REFERENCE
3108 YES SPECIFIED COMPONENT
NAME?

CHOOSE DEFINITION IN
NAMED COMPONENT

]
3112 YES
N

A
DEFINITION SPECIFIED
INTERCEPT?

CHOOSE THAT DEFINITION
|

RETURN
311471 “MULTIPLE DEFINITIONS”

YES

3118

DEFINITION

IN SOURCE FILE OF

ACTIVE FEATURE
?

YES

REFERENCE
SPECIFIED
ALTERNATE?

YES

3122

FEATURE
DESIGNATED ON
DEMAND?

REFERENCE

YES

SPECIFIED
OPTIONAL? 3120 vesY]
3134 \ v
\ RETURN “SUCCESS™
RETURN “NO MATCH” *
! P CLASSPATH=ALTNAME
{
3132 FIND ALL DEFINITIONS
3128~ WITH SAME CLASSPATH

FIG. 31 |

WO 01/23998

22/36

PCT/US00/25928

1900
S| CCONFIG o
32021 ?
32041 CCLASS
?Smo?
| /]
CCOMPONENT k>—— COPTION |——-< CFEATURES |—3208
/O [0
3206 <L
3919--| COPTIONENUMS
| I
3218 CFILE 3216
\ /
CINTERFACE — K>——— CDEPENDENCY
\
3214

FIG. 32

Ves oId

PCT/US00/25928

23/36

7 |4 1D
4 xo9 ysnd — £
xge ysnd H
isa ysnd T /7 ”
93000 |ypuswbagnanyiom auf _ L0 soDLIaL oh__m_m.ﬁuhﬂ (s
0 ‘juswbagpanypiom dwo ¢0g¢ mm_oc%uc_ma__oc %uz_om__ MM
] xpo ysnd sejouapuadag DUOLOUN] (56
[<0 ysnd | gg_—Sseiduioop — N7 (3-8
|| : ¢ 70¢—Ibwdwodap Ewmy
‘aunnos ssaudwiodaq JuI7] 8yl 0} Xy Ul juswbas paip ylom ayy ssod \dwoseq\ysod\ @3-
| | PUD PBJOICIID 10U S Ji ‘DaD U0jssaIduiod Wad @jdoly ! Jwduwiosep — Jaboupy sseduwosq B
NISS300dd - / Hopous'isod — Hopoyg SOig -3
INON jsod F}--
:q314100W vOLt FN,mmASn_/E -
mz@z 9008 _~isod - muu_zomu hmomﬁm
1Nd1N0 dud - qud @&
Diop passasdwos jo 87ig X3 97y ndo - || wnyueq &
DIop pesseldwodsp JO SSeJppD WPIS a3 93y 7| 0o_~Woy - Jebounpoy (ES-@
DJOp Passaldwiod 10 SSaUppD DS ST 93y oSt - S| (@@
uswbas op s 93y 9LEC~owew - xgopylep @
z LNdN _~9snq ~ (vXild) oI5| (-
. IpPDYJOM B rIEE 0 - NI -8
PPDYoM _ Addojy - Addopy =
*4314100W | _o_‘m,m\/b_m__u_ - v_m_/E E>-#
= XqOvplielul \jadAeq <8 LHUDW\:) kxma}-
= XQ/oW |
£ DLAWS oA] 80C¢——z¢y) - dopiseq - wioypd g2
[ST i ek | ||

gl o EMEHcs)|lee | BEA<E MLy | ¥w|[co

djafi MOpUIfi s|00] Pping MIA 4IP3 e|i]

ppoyiop — olpnis s Jadojaasg SQId o

WO 01/23998

WO 01/23998

24/36

PCT/US00/25928

@8 Platform - Desktop — 1A32
----- ﬂ Dir>] C:\Mant18> Devrel\ Intel\ 440bx

a...@m
- i \Fdisk\ 3310
44444 +{Closs] fdisk
EE} X4 ata - fdisk. atg 3318
2-%2] Functional Dependenclesfz’z)25
I @ fdisk.nit
%0 fdisk.profocolTable— 3922
b 'O listMgr.getNext
%0 pic.SendE0l—3324
- £ fdisk.ata.ColdConfigure
- & fdisk.Interrupt
- - P fdisk.SetupInterrupt
Include Dependenc1es—/‘~7’327
Label Inferface
Procedure Inferface\3329
@ Documentation
; ----- %% fdisk.INC
---- FDSKINIT.ASM~_
D FEATURE.INC 3320
+) Floppy - floppy
+1 IBM - kbc
1) Intel371ab(PIIX4) - busc
+] Intel440BX — memc
=] ISA - isa
chonager - kem
) Pentium Il - cpu
<) PnP - pnp

B-8-5-0-8-08-8-8
aa@a&&aa

|

FIG. 33B

WO 01/23998

PCT/US00/25928

25/36
FIG. 33C

B¢ Intel440BX — memc——333()

~[Dird \ Memc\ Intel\ 440bx\

el meme 3328

& (F ECC - memo.ece

EJ@ Memory Configuration”— memc.config
iy \ Memc\ Intel\ 440bx\ Config\

~{Class) memc.config

B (@ Functional Dependencies

& (¥ Include Dependencies

EH-»» Procedure Interface
[CONFIG.ING 3326
..... @ [EARLYCFG.ASM =
3337 - [feature.inc Open
N1 LATECFG.ASM Remove
- [N oemfile.asm v Override

-~ [REGTBL.ASM

fnd

3-- (8} Memory Sizing — memd|| Build File

PCl Register Loader - Update file in database
Shadow tables — memx Properti
- (@ Options roperties

-8 Functional Dependencies
-[® Include Dependencies
-(® Procedure Interface

- & Documentation

i [feature.inc

..) MEMC.INC

t.. [REGISTER.ASM

BB T

3310

B Plaiform - Desk’rq/:/ A32

[Dir3] C:\Mant18> Degref\Intel\ 440bx

E} @IFDlsk fdisk

- (0 Floppy — floppy]| Open Component.int

o B Kbe Force In—3333
‘ Intel371ab (Pl || v Force Out—3335

Intel440BX - m

ISA - isq Add Custom File—3334
@ keManager = k|| Prep Component
- (&) Pentium Il = ¢l Byild Component
~ (&) PnP ~ pnp Update component in database
- &J POST Service =P P
- [#]) Runtime Servi Properties

- (7 SMC70x - sio

FIG. 33D

WO 01/23998 PCT/US00/25928

26/36

B4 Intel440BX - memc—~3330

D] \ Memc\ Intel\ 440bx\
~{Class] memc

~ [ECC - memc.ecc]
- Memory Configuration - memc.config
- Memory Sizing -~ memc.sizing
- (4 PCl Register Loader — memc.regld
-4 Shadow tables = memc.shadow
- [l Options -
. i~ [CacheLineSize — 04h 5536
it ShadowGranularity — Modify
@-- (@ Functional Dependencies || Reset to default
@ (@ Include Dependencies :
B0 Procedure Interface 3338
m-- & Documentation
... [feature.inc
. [MEMC.INC
i.. [REGISTER.ASM
(&) ISA - isa
- (&) keManager — kem
- (&) Pentium Il - cpu
-(x) PnP - pnp
- (¥ POST Services - post
--irs] \ Post\
= post
- () BIOS Shadow — post.shadow
& (4 Decompress Manager — decompmgr [+

|7 Logical || % Physical
FIG. 33F

53 R 2

0388

WO 01/23998

27/36

PCT/US00/25928

DESCRIPTION OF

O e T | N BIoS Blos | I | Tour | cmoks | wamiNs
PLATFORM 58 58 EE 58 ig8 A=l
COMPONENT 0/ O /A N i/ B R o IO
FEATURE e T T e T N e N o T T Yyt
CLASS Class] |Class| (Class] |Class| (Class| [Class]
PATH Dir>| IDir>| [Dir>| IDir>| Dir>| [Dir>|
FILE 0 3 3 [ui 47
OVERRIDE FILE Ei A
CUSTOM FILE N
FOLDER OF OPTIONS (a1 @ @ © | O 48]
OPTION O O O O X0 iy}
FOLDER OF INTERFACES
PUBLIC INTERFACE Q Q Q Q x 25
PRIVATE INTERFACE & & & & | % A%
FOLDER OF DEPENDENCIES 2%
PUBLIC DEPENDENCY 0 Q0 e O | X0 296
PRIVATE DEPENDENCY | & | & | & | % | %
FOLDER OF DOCUMENTS SRR Q@
DOCUMENTATION FILE

FIG. 33F

WO 01/23998

REPEAT

28/36

PRODUCT MAKE

Y

PCT/US00/25928

800

5402~

FOR EACH ACTIVE COMPONENT IN
THE CONFIGURATOR STATE DATA

DONE

REPEAT

3

y

3404~

FOR EACH ACTIVE FEATURE OF
THE ACTIVE COMPONENT

DONE

Y

950 ~

BUILD A FEATURE
INCLUDE FILE (FIG. 35)

REPEAT

d

Y

DONE

FOR EACH PROGRAM FILE
IN THE FEATURE

3406

Y

3408~

ADD A COMMAND TO THE COMPONENT
“MAKE" FILE EXPLAINING HOW
THAT PROGRAM FILE IS COMPILED

'

ADD A COMMAND TO THE COMPONENT
“MAKE” FILE EXPLAINING HOW THE
LINKING 1S TO BE DONE TO FORM

A BIOS COMPONENT

~3410

900

'

9087

CREATE PRODUCT *“MAKE” FILE CONTAINING

COMMANDS TO EXECUTE EACH COMPONENT

“MAKE” FILE AND A COMMAND TO EXECUTE
THE PRODUCT COMPONENT LINKER

Y

1000

CALL UPON THE MAKE PROGRAM TO
EXECUTE THE COMMANDS IN THE
PRODUCT “MAKE” FILE (FIG. 10)

(DO‘;\JE)
FIG. 34

WO 01/23998

PCT/US00/25928

29/36
FIG. 385 050
FEATURE INCLUDE FILE /
REPEAT N
\
3500 —_| FOR EACH PUBINC MACRO IN DONE
FACH FILE OF THE FEATURE
3504~ | GENERATE I_CLASSPATH SYMBOL FROM
CLASSPATH PARAMETER OF PUBINC MACRO
ADD DIRECTIVE DEFINING I_CLASSPATH
3506~ SYMBOL AS PATH OF DIRECTORY
CONTAINING INCLUDE FILE
[
. REPEAT
\/
3508~T"""FoR EACH PUBEXT MACRO IN THE
PROGRAM FILES OF THE FEATURE
DONE '
GENERATE D_NAME SYMBOL FROM NAME
35107 PARAMETER OF PUBEXT MACRO
PUBLIC
PROCEDURE INCLUDED 3514
IN BUILD? !
ADD DIRECTIVE
DEFINING D_NAME
SYMBOL AS TRUE
N
ADD DIRECTIVE DEFINING
35167 D_NAME SYMBOL AS FALSE
3518
PUBEXT NO
MACRO SPECIFIES .
ALTERNATE?
GENERATE D_ALTNAME SYMBOL FROM
35207 ALTNAME PARAMETER OF PUBEXT MACRO
ADD DIRECTIVE DEFINING D_ALTNAME
3522-71 SYMBOL AS TYPE_RESERVED_TRUE

l

WO 01/23998

30/36
3600

PCT/US00/25928

COLLECT ALL BUILT COMPONENTS AND
SORT THEM BY SEGMENT NAME, MERGING

SEGMENTS WITH THE SAME NAME

~5602

Y

READ IN, FROM EACH BUILT COMPONENT,
PROCEDURES OR LABEL DEFINITIONS
AND STORE THEIR LOCATIONS

3604

Y

READ IN ALL REFERENCES TO
DEFINITIONS AND STORE LOCATIONS

L ~35606

Y

GENERATE ANY DUPLICATE INSTANCES OF
DEFINITIONS AND REFERENCES REQUIRED
BY EXECUTION TIME INFORMATION

3608

Y

ASSOCIATE REFERENCES TO DEFINITIONS
IN THE FOLLOWING ORDER:

REFERENCES TO SPECIFIED COMPONENTS
ARE ASSOCIATED WITH THEIR DEFINITIONS

ASSOCIATE INTERCEPT DEFINITIONS TO
REFERENCES LINK REFERENCES TO BINARY
LINKER GENERATE CODE AND LABELS

LINK ALL REMAINING REFERENCES TO
DEFINITIONS, SCOPING PRIVATE

REFERENCES TO THEIR COMPONENTS

~-3610

Y

COLLECT AND PROCESS SEGMENTS
REQUIRING SPECIAL HANDLING (LISTS,
STRINGS, NVRAM, RELOCATION
TABLES, AND ROM STACKS)

~-3612

Y

DETERMINE ADDRESS SPACE FOR MODULES
BASED ON THEIR EXECUTION TIME
ATTRIBUTES. FIX-UP REFERENCE

ADDRESSES TO DEFINITION DESTINATION

~-3614

Y

WRITE OUTPUT TO FILES INCLUDING ROM
MODULES, SYMBOL MAPS, AND LOGGING
INFORMATION (LISTS, STRINGS, NVRAM)

~-3616

FIG. 36

WO 01/23998

SOURCE PROGRAM A

31/36

3704~ | 1ST_CREATE

LIST NAME
3702~ ENTRY SIZE
CURRENT SEGMENT

SOURCE PROGRAM B

3708~ LIST_START

LIST NAME 3707
ENTRY SIZE-
OVERRIDE PRIORITY
3710~ LIST_ENTRY

ENTRY NAME

3706~

SORT KEY STRING
3712~ LIST_END

3705

ENTRY DATA — 3709
SORT PRIORITY ~ 3713

3711

SOURCE PROGRAM C

LIST_START

*¥x

LIST_ENTRY
ST41 s

¥¥¥

LIST_END

PCT/US00/25928

3700

PRODUCT
BUILD
(FIG. 10)

1000

!

FINISHED PRODUCT

FIG. 37

LIST_CREATE SEGMENT

ENTRY DATA (SORTED)

*k¥

~-3716

WO 01/23998

32/36

PCT/US00/25928

1 200
' /
COMPONENT USER)
SOURCE CODE {1200 INTERFACE
LIBRARY |
Y __ 1800 2100~ propucT
DATABASE CONFIGURATION
DATA
, 1900
y | Y \ \ 4
] fﬁé[ﬂgg . CONFIGURATION
FILES STATE DATA COMPONENT
= AND PRODUCT
2300 MAKE FILES
SOURCE CODE N
FILES 3884 2400,2500
—— PUBLIC
SPECIAL SEGMENT
" MACROS —1 (PROCEDURES,
P, ETC.)
3606 1102
\ _I"I Y /
Y
EXTERNAL L EXE COMPONENT
SEGMENT —l FILES [[— COMPILER
(CALLS, ETC.) ; AND LINKER
) 1104 | |
3802 ‘ MAP ‘FILES |_-3808
PRODUCT
BIOS.SCR ~ COMPONENT TV
LINKER ||
(3600~ PRODUCT
3812 . .
SELECTED 1106
A COMPONENT |
3810 NAMES

FIG. 38

WO 01/23998 PCT/US00/25928

33/36

FIG. 39 NVRAM ALLOCATION AND MANAGEMENT

SOURCE PROGRAM A

NVRAM_MEDIA
3902
— PRODUCT
BUILD
"l (FIG. 10)
—
SOURCE PROGRAM B
NVRAM_ITEM
-~ 3904
PRODUCT
COMPONENT
LINKER
(FIG. 36)
SOURCE PROGRAM C
READNV —~
... 3906
WRITENV —

3908

WO 01/23998 PCT/US00/25928

34/36

FIG. 40 STRING ALLOCATION AND MANAGEMENT

SOURCE PROGRAM A
STR-DEFINE
STR_LANGUAGE PRODUCT
STR_TEXT [—_—— BUILD
STR_DEFINE_END —. > (FIG.10)
4002
PRODUCT
COMPONENT
SOURCE PROGRAM B LINKER
LOADSTR (FIG. 36)

4004

PCT/US00/25928

35/36
FIG. 41 HIERARCHICAL ACCESS TO
DEPENDENCIES

WO 01/23998

III

: m %) m !

i 0 | :_._I._ ' i

" P o m m

: Q P9 AVan " m

: Q : e w (=1 :

" o m o O |« m

LS < {0Q ¥ "

! O vl i wi {

" 3 L= L ol " o~
" o S L N I " &
! 5 P2 1 Mm1m Ll
m B B R| 2
m : b3 T =
| ' 'l “Rm H
i i mR “w" ™
m ! b2 bl

| = |l |m)

" |E | e

m “_m e i : =

" | w e : “ z

| | 2 | g
o | il g e

i S| | & m =

! o H o " Q
o | 1 °

m D lllllllllllllllllllllllllllllllllll - |

m m

WO 01/23998

—

36/3

PCT/US00/25928

6

FIG. 42 CUSTOMIZATION OF SINGLE ITEMS
FROM A TABLE

OVERRIDE INFO IN '
HOUSKEEPING
(THROWAWAY) SEGMENT

REGISTER TABLE
ENTRY #2
OVERRIDE DATA

DEFINITION INFO IN
CODE SEGMENT

|

|

|

: REGISTER TABLE
| ENTRY #1

| ENTRY #2

| ENTRY #3

| ENTRY #4

|

|

— —— —————t ———— — — —

PRODUCT COMPONENT
LINKER 3600

REGISTER TABLE
ENTRY #1
OVERRIDE ENTRY #2
ENTRY #3
ENTRY #4

IMAGE

FINAL CODE SEGMENT

INTERNATIONAL SEARCH REPORT

Inter| Application No

PCT/US 00/25928

A. CLASSIFICATION OF 4U48JECT MATTER

IPC 7 GO6F9

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

IPC 7 GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that

such documents are included in the fields searched

EPO-Internal, INSPEC, IBM-TDB

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category °

Citation of document, with indication, where appropriate, of the relevant passages

US 5 574 918 A (HURLEY DANIEL F
12 November 1996 (1996-11-12)
column 1, line 36 —-column 2, lin

US 5 325 533 A (MCINERNEY PETER
28 June 1994 (1994-06-28)

column 2, line 66 -column 3, lin
column 5, 1ine 14 - line 33

WO 98 14869 A (DSC TELECOM LP)
9 April 1998 (1998-04-09)
page 2, line 13 -page 4, l1ine 15

ET AL) 1,83
e 21
J ET AL) 1,83

e 53

1,83

/=

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents :

*A" document defining the general state of the art which is not
considered to be of particular relevance

earlier document but published on or after the international
filing date

document which may throw doubts on priority claim(s) or

which is cited to establish the publication date of another
citation or other special reason (as specified)

document referring to an oral disclosure, use, exhibition or
other means

document published prior to the international filing date but
later than the priority date claimed

e

o

Qr

pe

T later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the

invention

document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu-
ments, such combination being obvious to a person skilled
in the art.

document member of the same patent family

o

vye

g

Date of the actual completion of the international search

15 December 2000

Date of mailing of the international search report

22/12/2000

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Brandt, J

Form PCT/ISA/210 (second sheet) (July 1992)

page 1 of 2

Relevant to claim No.

INTERNATIONAL SEARCH REPORT

Inten Application No

PC1/USs 00/25928

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication,where appropriate, of the relevant passages

Relevant to claim No.

A KRAMER J ET AL: "GRAPHICAL CONFIGURATION
PROGRAMMING"

COMPUTER,US,IEEE COMPUTER SOCIETY, LONG
BEACH., CA, US,

vol. 22, no. 10,

1 October 1989 (1989-10-01), pages 53-65,
XP000072735

ISSN: 0018-9162

the whole document

A LOQUES O ET AL: "P-RIO: A MODULAR
PARALLEL-PROGRAMMING ENVIRONMENT"

IEEE CONCURRENCY,US,IEEE SERVICE CENTER,
PISCATAWAY, NY,

vol. 6, no. 1, 1998, pages 47-56,
XP000737884

ISSN: 1092-3063

the whole document

1,83

1,83

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

page 2 of 2

INTERNATIONAL SEARCH REPORT Inters

Information on patent ramily mempers

—

Application No

PCT/US 00/25928

Patent document Publication Patent family Publication

cited in search report date member(s) date

US 5574918 A 12-11-1996 us 5933637 A 03-08-1999
CA 2128387 A 24-02-1995
CN 1124379 A 12-06-1996
DE 69423158 D 06-04-2000
DE 69423158 T 21-09-2000
EP 0640914 A 01-03-1995
ES 2142912 T 01-05-2000
JP 7168710 A 04-07-1995
us 5524246 A 04-06-1996

US 5325533 A 28-06-1994 AU 6021994 A 17-01-1995
CA 2144877 A 05-01-1995
CN 1105507 A 19-07-1995
DE 69404439 D 04-09-1997
DE 69404439 T 26-02-1998
EP 0664027 A 26-07-1995
JP 9506722 T 30-06-1997
WO 9500903 A 05-01-1995

WO 9814869 A 09-04-1998 us 5950209 A 07-09-1999
AU 4667497 A 24-04-1998

Form PCT/ISA/210 (patent family annex) (July 1992)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

