Intellectuelle
du Canada

Un organisme
d'Industrie Canada

Office de la Proprieté

Canadian
Intellectual Property
Office

An agency of
Industry Canada

CA 2453971 C 2009/08/11

(11)(21) 2 453 971

(12 BREVET CANADIEN

CANADIAN PATENT
13) C

(22) Date de depot/Filing Date: 2003/12/23
(41) Mise a la disp. pub./Open to Public Insp.: 2005/06/23
(45) Date de délivrance/lssue Date: 2009/08/11

51) Cl.Int./Int.Cl. GO6F 71/7/00(2006.01),
GO6F 17/27(2006.01), GO6F 17/28(2006.01)

(72) Inventeurs/Inventors:
ROSE, DANIEL A., CA;
SOOR, BALDEV S., CA

(73) Proprietaire/Owner:
IBM CANADA LIMITED - |

(74) Agent: WANG, PETER

SM CANADA LIMITEE, CA

(54) Titre : CREATION SUR DEMANDE DE SOURCE LOCALE JAVA
(54) Title: ON-DEMAND CREATION OF JAVA LOCALE SOURCE

310

‘ Get file

<Zmore 7>

&No

'

Get

info

NUMEriC -

Get

language

country

and
330-A l o

330-B

Get
miscellaneous
info

| Getdate &
| time info

330-F

Get

calendar

info

et

info

(57) Abrégée/Abstract:

monetary

timezone
info

_— 340

store
values

A method, system, program product and signal bearing medium are provided for creating a specific Java style locale source file on
demand Iin a computer suitable for application use. In particular the method comprises receiving a request submitted for the specific

C an adg http:vopic.ge.ca - Ottawa-Hull K1A 0C9 - atp.//cipo.ge.ca

OPIC - CIPO 191

OPIC

oo NN S [] [
TR _:;f_‘a '1.'.
sy
S s CIPO
3 SARERRY 4
SRR ’-'\-E}:.‘{Q
4
3

CA 2453971 C 2009/08/11

anen 2 453 971
13) C

(57) Abrege(suite)/Abstract(continued):

Java style locale and obtaining a plurality of localization values related to the specific Java style locale. Next operation determines a
category containing elements therein within the plurality of localization values and selecting process routines dependent upon the
category and the element therein. The method continues by selectively extracting the localization values pertaining to the category
by the selected routines and storing the extracted localization values into a memory of the computer. The method completes with
assembling the extracted information into the Java style locale source file for application use. The method further comprises
determining additional categories, for each additional category, selecting process routines dependent upon the additional category
containing elements therein, and selectively extracting the localization values pertaining to the additional category and the elements
therein by the selected process routines; and the storing of the extracted localization values into a memory of the computer.

CA 02453971 2003-12-23

ABSTRACT

A method, system, progré;m_ product and signal bearing medium are
provided for creating a specific Java style locale source file on demand in a
computer suitable for application use. In particular the method comprises
receiving a request submitted for :the,spécific Java style locale and obtaining a
plurality of localization values relééted to the specific Java style locale. Next
operation determines a category containing elements therein within the plurality
of localization values and selecting process routines ‘dependent upon the
category and the element-therein. The methpd-continues by selectiveiy extracting
the Ioca!ization: values pertaining to the category by the selected routines and
storing the extracted localization values into a memory of the computer. The
method complietes with assemblfng the extracted information into the Java stylé
locale source file for application usé. .

The method furthefl comprises determining additional categories, for each
additional category, selecting proéess routines dependent upon the additional
category containing elements therein, and selectively extracting the localization
values pertainihg to the additional category and the elements theréin by the
selected process routines; and the storing cjf the extracted localization values into

a memory of the computer.

- CA9-2003-0114 4]

N e e T “ e e D A e g . - AP T bbbt 5ol - g e T ghainn
o : - v

CA 02453971 2003-12-23

ON-DEMAND CREATION OF JAVA LOCALE SOURCE

FIELD OF THE INVENTION!

[0001] This present invention relates generally to localization values in a
computer resource file, and more particularly to creating a Java™ style locale

source file from a plurality of localization values in a computer resource file.
BACKGROUND OF THE INVENTION

[0002] In the computer software marketing and distribution industry, it is
advantageous to make computer software available for use that reflects the
language and cUlture of the intended users. A locale source file is a computer
resource file typically made availab_le by a developer of a software application to
~assist in accomplishing this. A locale source file may include a combination of
specifications required to configure a software application program for a
particular geographic and cultural market. These specifications typically include a '
language specification to determine and control linguistic-' manipulaﬁon of
character'strings_ within the application program. In addition specificatio\\ns for
counfries, régions and territories (collectively referred to herein as “coﬁntry”)
define cultural conventions that may vary -wi-th languages, cultures or across '
countries. An example of a cultural convention is a date format identifying in
which order thé numerals representing day, month and year appear. :.Other-
- configuration preferences, such as those used to Specify mail settings or favorite

icons are known in the art, but are typically not included in locale source files but

CA9-2003-0114 1

L e e T D L T L e T L R LD Iy S e— p—— B T T cemermp o . .o '
) . -~ -QWMW‘" AT Rt i B b s snndeime P s e s ARiEr W) : - gLV .“Mm"'m""“""““““MW.WMQI-MPV . et - s mE ' R T eV AW ..b.mmwm,'v e et AU (Rt e i ———
ok v ==

' CA 024539.71 2003-12-23

may be included in other forms of personalization support.

[0003] Locale source files are usually prcjcessed into a form that can be
readily used by an application program. Compilation of a source form of a locale
file is one typical means of producing an object that can be accessed by an

application program needing the information provided by the locale file.

[0004] Ensuring computer application program processing of inf-ormation
according to local cultural and geographical preferences relies on the availability
of a locale objéct for a given combination of language and country. In order to
make a locale object available there is a need to have a number of ready-—made
locale objects or locale source files ready to be compiled. Creating locale source
flles is .typi_cal.ly' tedious work requiring significant time and effort on the part of
skilled programmers. Compiling objects in anticipation of use also takes tirhe and
effort as well as consuming computing resources. Locale objects that have been
created but not used or are used infrequently waste computing resources and
programmer time. Further locale objects themselves cannot be created until the
necessary locale source files on which they are based have been built. Typically
application programs also ship needed locale source or object files along with the
application to ensure their existence. This replication wastes storage space.
Further this practice may lead to' differing results among the applications. using
the various copies of the locales or maintenance problems when there are

differences in the locale source files or locale objects.

[0005] It is therefore desirable to have an easier more efficient centralized

CA9-2003-0114 , 2

T I R A T AT TR M ST Y AT 4w
2 :

~ CA 02453971 2003-12-23

manner of producing locale source files .for use in a computer.
SUMMARY OF THE INVENTION

[0006] Embodiments of the present invention are provided for creating locale
‘source files, as they are required from a plurality of localization values in a

computer resource file.

[0007] An embodiment of the present invention may be employed to generate
specific locale source files ,by requeét or also known as “on demand”. Results
provided by embodiments of the invention typically afford easier more efficient
centralized means of making selected locale source files available on a computer

as required.

[0008] In accordance with an aspect of the present invention, there is
provided a method for creating a ._specifi'c'Java- style locale source file on demand
in a computer suitable for application use, said method comprising, receiving a
request submitted for said specific Java style locale, obtaining a plurality of
localization values related to said specific Java style locale, determining a
category containing elements therein w1th|n sald plurality of localization :values
and selecting process routines dependent upon said category and said element
therein, selectiyely extracting said localization values pertaining to said category
by said selected routines, storing said extracted localization values .into a
memory of said comput'er, and assembl-ing sald extracted information into said

Java style locale source file for said application use.

CA9-2003-0114 . 3

CA 02453971 2003-12-23

[0009] According to another aspect of the present invention, there S provided
a system for creating a specific Java style locale source file on demand in a
computer suitable for application use, said system comprising, a receiver for
receiving a request submitted for'saidspecific Java style locale, a means for
obtaining a plUrality-of localization values related to said specific Java style
locale, a means for determining a category containing elements therein' within
said plurality of _Iocalization values and selecting process routines dependent
upon said category and said element therein, an extractor for -selectively
extracting said localization value-s pertaining to said category by said selected
routines, a storage means for ‘storing said.extracted_.localization values into a
memory of said computer, and an assembling means for assembling-said
extracted information into said Java style locale source file for said application

use.,

[0010] Acco-rding to yet.anOther aspect of the present invention, there is
provided a computer program prodUct having a computer readable medium
tangibly embodying computer readable program code for Instructing a computer
to perform themethodfor.Creating'aspecific Java style locale source file on
demand in a computer suitable -for application use, said method comprising,
recelving a request ‘submitted for said specific Java style locale, obtaining a
plurality of localization 'values related to said specific Java style iocale,.
determining a icategory containing élements therein within said plurality of
‘localization vaers and s-electing process routines dependent upon said category

and said element therein, selectively extracting said localization values pertaining

CA9-2003-0114 ' 4

CA 02453971 2003-12-23

to said category by said selected routines, storing said extracted localization
values into a memory of said computer, and assembling said extracted

information into said Java style locale source file for said application use. -

[0011] In accordance with another aspect of the invention there is provided a
signal bearing medium having a computer feadabl_e signal fangibly embodying
computer readable program code for instructing a computer to perform a method
for creating a specific Java style locale source :fi'le on demand in a odmputér
suitable for application use, said method comprising, receiving a request
submitted for said specific Java _stylelooal\e, obtaining a plurality of Ioca‘lization
values related to said speciﬁc Java style locale, determining a cétégory
containing elements therein within said plurality of localization values and
selecting process routines dependent upon said category and séid element
therein, selectiVer extracting said localization values p'e-rtaining to said category
by said selected routines, storing said extracted localization values into a
memory of said computer, and assembl‘ing said extracted information into said

Java style locale source file for said application use.

[0012] Other aspects and features of the present invention will become
apparent to those of ordinary skill in the art upon review of the following
description of specific embodiments of the invention in conjunction with the

accompanying figures.

CA9-2003-0114 5

CA 02453971 2003-12-23

BRIEF DESCRIPTION OF THE DRAWINGS

[0013] Preferred embodiments of the invention will now be described, by way

of example, with reference to the accompanying drawings, in which:

[0014] FIG.1 is a hardware overview of a computer system, exemplaryof an

embodiment of the present invention;

[0015] FIG. 2 is a block diagram of a high level view of components of an

embodiment of the present invention;

[0016] FIG. 3 is flow diagram showing the overview of the process used in

conjunction with the components of FIG. 2; and

[0017] FIG. 4 is a flow diagram detailing operations of elements 330 and 340

of FIG. 3.

[0018] Like reference numerals refer to corresponding comp'onents and steps
throughout the drawings. It is to be expressly understood that the description and
the drawings are only for the purpose of llustration and as an aid to

understanding, and are not intended as a definition of the limits of the invention. '
DETAILED DESCRIPTION

[0019] FIG. 1 depicts, in a simplified block diagram, a computer system 100
suitable for implementing embodiments of the present invention. Computer
system 100 has a central processing unit (CPU) -1 10, which is a programmable

processor for executing programmed instructions, such as instructions contained

CAS-2003-0114 | 6

CA 02453971 2003-12-23

in utilities (utility programs) 126 stored i-n. memory- 108. Memory 108 can also
Include hard disk, tape or other storage media. While a single CPU is depicted in
FIG; 1, it is understood that other forms of computer systems can be used to
iImplement the invention, including mul_tipte CPUS. It is also appreciated that the
present invention can be implemented in a distributed computing environment
having a plurality of compUters communicating via a suitable network 119, such

as the Internet.

[0020] CPU 110._is connected to memory 108 either through a dedicated
system bus 105 and/or a general system bus 106. Memory 108 can be a random
access semiconductor memory for storing language and culture data for each
country and cUltUre such as input file 122 and ecripts 124. Scripts ‘124 -provide
routines to process' input file 122 creating 0utput locale source file 128. Memory
108 Is depicted conceptually as a single monolithic entity but it is well known that
memory 108 can be arranged in a hierarchy of caches and other memory
devices. FIG. 1 illustrates that operating system 120, input file 122, scripts 124,

locale source file 128 and utilities 126, may reside in memory 108.

[0021] Operating system 120 provides functions such as device interfaces,
memory management, multiple taskmanagement, and the Iikeas known in the
art. CPU 110 can be suitably programmed to read, load, and execute insthtions
of operating system 120, scripts 124 and instructions of utilities 126. Computer
system 100 hasl the necessary subsystems and functional components to

implement testing of locale files as will be discussed later. Other programs (not

shown) include server software applications in which network adapter 118

CA9-2003-0114 ‘ 7

Y I ASS A AR At 1 e N pp— e _ N . - I . s —_—
e PN T R TV TR T AT T P A T S sl i Wi L7 s - o o AT A R T AT SAWITE) AP Ay § TR AT LA s PN b e st 4t e e T A A o D T I A DT Ty vyt T =2 = R A ~ - T YU T,
. . - - . " tmanate -

CA 02453971 2003-12-23

- interacts with the server software application to enable computer system 100 to

function as a network server via network 119.

[0022] General system bus 106 supports transfer of data, commands, and
other information between various subsystems of computer system 100. While

shOWn in simplified form as a single bus, bus 106 can be structured as multiple

buses arranged in hierarchical form. DiSpIay adapter 114 supports video display

“device 115, which is a cathode-ray tube display or a display based upon other
suitable display technology that may be used to depict test results. The
Input/output adapter 112 supports devices suited for input and output, such as
keyboard or mouse device 113, and a disk drive unit (not shown). Storage
adapter 142 supports one or more data storage devices 144, which could include
a magnetic hard disk drive or CD-ROM drive although other types of data storage
devices can be used, including removable media for storing input file 122 and the

output of scripts 124 being locale source file 128.

[002'3] Adapter 117 is used for operationally connecting many types of
peripheral computing devices to computer system 100 via bus 106, such as
printers, bus adapters, and other COm_puters using one or more protocols
Including Token Ring, LAN connections, as known in the art. Network adapter
118 provides a physical interface to a suitable network 119, such as the Internet.
Network adapter 118 includes a modem that can be connected to a telephone
line for accessing network 119. Computer system 100 can be connected to
another network server via a local area network using ah’ appropriate network

protOcol and the network server cah in turn be connected to the Internet. FIG. 1

CA9-2003-0114 ' ' 8

B b PO e

CA 02453971 2003-12-23

is intended as an exemplary representation of computer system 100 by which
embodiments ¢f the present invention can be implemented. It is understood that
in other computer systems, many variations in system configuration are possible

in addition to those mentioned here.

[0024] In one embodiment of the ihvention the process involves traversing the
input file of localization information seeking values that ahhounce categories qf
elements and asSociated values of interest. When ;such a category is
encountered a selection of 'an -appropriate script resource may be made. The
chosen script resource is optimized for the particular category and entries within

that category to be processed. For examplé, in ah embodiment of the invention,

to process a date and time category, upon locating such a category, one of a

plurality of p;f)ssible script modules may be invoked dependent updn that
particular category being prOC.essed,- A need for specialized script modules will

become apparent through later discussion of the process.

[0025] Standard utilities (as inut;ilities 126 of FIG.1) available on platforms are
used In conjunction with the s‘C'ripts. Stahdard- utilities used include those for
substring, case mapping, Umcode cohversuon strlng and character com@arlson
and table Iookup operatzons Comparisons may involve a user or may be

programmatic in nature using a c.omparator* in conjunction with reference data.

[0026] An exemplary process of an embodiment of the present invention
consists of a series of operations typically as follows: “prepare”, “process’,

‘compare” and “generate”. Upon receipt of a request for a locale source to be

CA9-2003-0114 9

CA 02453971 2003-12-23

created, a “prepare operation” obtains localization data as input, while a

“process” operation invokes appropriate scripts to parse, and analyse the

localization data to produce an output In Combination' with templates, as required

by the catégory being processed, to produce a well formed output. A “compare

operation” is used on the parséd_ data of the prepare operation {o cd'mpare
against selected reference str‘in'gs\as needed. In a “generate” operation, preVioufs
output that may have been stored as logical units will be typically combined into a

locale source file. The generate operation may also be used to combine other

- resources such as collation specifications which are typically outside of the

process Dbeing discussed. Collation specifications are separate from the
formatting specifications that are \thé subject at hand. Additionally no character
set information is provided as this has been assumed to be described inherently

with the character coding of Java resources.

[0027] The “prepare -proce‘ss"? pulls the category elements out of the
localization data file syntax and environment and into a simple text form for
collection into respective category entries. Out’put'-ﬁelds are used to store the

collection results of the prepare process in a combination of name-value pairs.

[0028] Script modules which process the input file use announcement strings
of the various categories and ~elem‘ent's_ to indicate what is to be processed.
Obtaining a match confirms the category to be processed and allows the main

routine to selectively and more correctly process the a-SSOCiated values.

[0029] The result of processing is a hierarchical collection of values. The

CA9-2003-0114 ' 10

CA 02453971 2003-12-23

highest level is the root or locale identif-ier for the whol_e'collection. The neXt level
is the various category identifiers and finally the associated substrings and
related values. Segments may also be available to use as overrides to previously

provided valueS, using a base plus modifications approach.

[0030] Referring to FIG. 2 is a block diagram depicting an overview of the
components in an embodiment of the invention performed on ah exempiary
system of FIG 1. Input file 122 is processed by scripts 124 in conjunctipn with
utilities 126 to produce data output.x‘ This data output is passed tﬁrough génerate

125 to produce output of locale source file 128. Scripts' 124, utilities 126 and

generator 125 may be provided by hardware, software or a combination of both

means. Input file 122 may be in a number of suitable forms for processing such
as records with associated fields of values, tabular, linear as in pairs of values of

a list ideally providing a plurality of -Vali_Jes and associated context of use.

[0031] Referring_ now to FIG. 3 is a flow diagram showing theoverallp-rooees
as performed by the components as shown in FIG. 2. Processing begins m
operation 300 where any necessary Setup may be performed (s-uch as importing
or including oiher resource files upon which the output file is based) and mo.vés-
to d.peratio_n 305. During operation 305 a request for a specific locale source file
to be createdis received. Upon.feceipt'of the request, the request is examined
for completeness. A weil-—formed .'re"quest needs to specify a desired locale. One
manner Is to provide an “id_ID” to co-lfrectly specify the locale. The use of :such an

identifier is common in the art where “id” represents language and “ID”

represents country or territory. Receipt of the request causes the process to

CA9-2003-0114 11

CA 02453971 2003-12-23

move to operation 310 during w.hich IS obtained input file 122 of FIG. 1. If there is
more than one input file they are merged. For example, an input file .may be a
logical file consisting of manyinput files wherein files' may be segmented to
contain a portion of the required localization information. Once obtained 'and
merged if necessary, a soripting ‘.ope_ration_ 320 is performed' to determfi_ne the
category being processed and Wh-.iCh routines o select based on the output
category determined. Extracting specific values occurs during operation 330,
wherein these values are then "'stored In a memory during operation 340 in a
predetermined form for later .u.se. The Drocess is repeated for each output
category required from input file 122 until all elements have been processed.
~ Intermediate re.sults may be stored |n any form as is known in the art providing
suiteble retrieval such as but not limited to, arrays, vectors, tables and lists. The
manner in which the output file is created may be varied so as not to re.strict the_
- process to batch collection and writing or incremental updating or adding to an

~open file, but may be any suitable means of managing the output.

[0032] Dur'ing operation 350 a determination is made regarding existence_of
more categories to process. If during operation 350 it is determined that more
categories exist to be processed, operations will move to operation 320 again
where processing will oocur as before. If there_ are h_o more categbries o
proCess, as determined -during_poperation 350, processing will move to operation
‘360. During operation 360~generator 125 of FIG. 1 and 2 assembles the output
from the previous operations. Having then aesemblled all output which may

include adding other resource fileS, processing moves to end at operation 370.

CA9-2003-0114 12

AR A

CA 02453971 2003-12-23

[0033] Details of scripting operation 330 will now. be described. Scripting
operation 330 uses a rea.dily available ~_scripting facility as is known in the art.
Scripting is a form of 'programming_Which is powerful .yet simple. The scripting
functions are knowledgeable of the predefined syntax of input file 122 and are
able to iterate th'rough the file invo.king.-various.lprocess modules (other '
specialized scripts) to perform selective | ‘actions dependent upon respective
portions. For eexample, an inpui _portion of locale file 122 may be typically
announced according to a convention using a comment string of the form /*
variable name */ wherein the name is the -idehﬁfier of a specific category and
element therein, such as /* month names */ denoting month name information.
Contained within, are the actual localization values and information of interest as

a plurality of elements orasa Si-n.g.le element as the case may be.

[0034] Dependent on the usage context of the value being processed a
respective module or scripting function is invoked to process the associated
string of data. The string of data may be composed in a series of name-value pair

format.

[0035] . Befdre any locale sou rce file can be creat-ed , a validity check shbuld be
performed on the localization data to ensure the information for the
country/language pair for which the locale will be created has been verified. In
this manner, the' integrity of the data in the composed locale is ensured. Such a
verification -process IS separate from 'the' su-bje_ct: matter diéclosed herein and will

not be addressed.

CA9-2003-0114 13

CA 02453971 2003-12-23

[0036] The following described order is not required but merely shown as an
example. The order of categoriés does not affect the outcome. It may be easier
to understand the process by looking at the outcome and then the process to
produce that outcome. The file containing a plurality of localization values can be

stored in a number of suitable formats such as arrays, tables or lists. It is

important however to have the.' information required in a form that provides

efficient retrieval of requested data. For these examples it is assumed that the

localization information has been provided in a single file restricted to that of a

single locale. Other cases containing Iocalization data for a plurality of locales
requires a filtering step to reduce the data to the specifically reql‘,lested\ locale o'f
interest first. Further it is assumed that the_' use of other category data such as
that needed by collation is by additional means such as'separate files. These
additional resources may be added to the output created by the deécri_bed

process to produce the requested locale source file.

[0037] This segment of Iocale ;source' file 128 typically begins with an
announcement string of the type just described and ends with a null string or
close brace. Between these two 'statements are other statements def'in_ing the
attributes of the segment in particular detail. Each element within the segment is
a name-value pair having a descriptor or _label as an aid in understandiing the

context of use. The name-value pairing also allows for more efficient processing

during the creation process of the locale source file 128 from the raw localization

iInformation of input file 122 of FIG\.”1_.. For simplicity the name of the output name-

value pair may also used as a field name for example in a record oriented

CA9-2003-0114 14

e e e R o

CA 024539'71 2003-12-23

version of 'input file 122. Such a linkage is'not required but is handy for this

example.

[0038] Tha relative po,sitioning of elements\.within a category is used to
create a template that is then‘f.i'll_edWith extracted information during the creation

process.

- [0039] The following process steps as ahown In FIG. 4 are illustrative of an
embodiment of the present invention. The pro’cess-steps detail operations-within
operations 330 and 340 of FIG. 3, particularly operation 330 beginning with
operation 310. During operation 310 one or ‘mOrefiles is obtained and merged to
provide necessary localization values to satisfy the request to create a specific
locale source ﬁle.' Through a 'se'ri.es. of opfe.rations each category of the locale
source file is addressed -beginning. 33_0-A for language and country identif-i'catioh'
processing, 330-B for calendar value processing,: 330-C for numeric information
processing, SSO-D for miscellaneous data processing, 330-E for monetary
information processing, 330-F for -date. and time processing and finally with 330-
G for timezone information. Within each 330-xy operation is a series of smaller
sub-operations denoted by 330-xy, where X is one of A-G denoting the cafegory
to which it applies and Whefe y is a sequential namber indicating the operation

relative to others in the category sat.

[0040] Next is operation 330-A1 during w_hich is obtained the structure within
the locale source file to be created deals with country and language information.

In a first operation there is extracted the locale based on 1SO codes.-i This

'CA9-2003-0114 - 15

WAV Pk o TimemmArr R S s sme i saife) e L T LT T Tt e e L I O T P P PP Ta s P P —— N
A ! . ”WW" . B I L R e L "

CA 02453971 2003-12-23

element is denoted by the identifier string'.'lf‘,IO(iale id based on iso codeé */. Tb
_obtain the value from the input file, extract the language code from the field
called “ISO639.1_Language_Code”. Convert this value to lower case if it is not
already in lowercase. Next extract lt'h'e extract the country code from the field
called “1SO3166_Country_Code”. Cbnvért it to upper case if it's not already in |
upper case. Then concatenate the language code to the country code with an _
(underscore) sepa.ratih'g thetwo\ and enclose .the- resulting string in quétation
mark. Place this' string next to the string /* Iocale:id based on iso codes "/ in the

locale source.

[0041] Next in operation 3305A2. extract-the element identifying the Windows®
based identifier string /* windows id */. If a value \is not obtained place the empty
string (i.e.) n_eXt to the string /* windoWs_ id */ in the output to indicaie the

information was not available.

[0042] Next in Qperation 330-A3 extract the element identifying the /* iso: 3
_character lang name */. If a value is not Obfained place the empty string (i.e.)
next to the string /* iso: 3 character lang name */ in the output to indicate the

information was not available.

[0043] Next in operation 330-A4 extract the elementridentifying the /* iso: 3
character country name */. If the valué is not obtained ~pllace the empty string

114,

(le. ™) next to the string /* -'iso: 3 character country name */ in the output to

- indicate the value was not available.

CA9-2003-0114 16

CA\ 02453971 2003-12-23

[0044] ‘Next in operation 320-A5 obtain thé value assoclated with identifier
string /* language names */. First extract thé language name from the field in the
input file called “Official_Language”. Then append this string to the end of en with
an- _ (underscbre) separating th'e\ thand- save thé.-stri'ng. Then extract the
language -code; from the field called “1SO839.1_Language_Code”. Next extract
the language name | in ‘nativie lan\guage‘ from the field calleci
“NTV_Language_Used". If this field has the value N/D, then extract the language
name from the field called “U__NTV_,,_Lahguage_Used” instead. If the Ianguagé
name contains any Unicode'values,-'convert them to the form \uxxxx, where XXXX
is the 4 letter code point of that <characier assigned by Unicode. Append the

resulting language name ‘st.ring to the language code with the underscore

character separating them. Join the reSuIt'in.gstring from the previous stepé; to the
string created in second step- with the semicolon character separating the two.
Finally enclose the new string in qUota'tion-,'marks and place next to the string /*

language names */ in the locale.

[0045] Next in operation 320_A6 obtain the value associated with ide'ntifier' ‘
string I*'count-i'y names */. Extract the cbuntry'.n'ame -frOm the field called

“Official_Country_Name”. Next append this\'string to the end of en with a _
(underscore)f ch@aracter separ‘ating. the two and save the string. Next extract the
language code from the field calied“ISO639.1MLanguage__Code”. Then extraci
the country name In native language from the field cailed “NTV_Country_Niame”.
If this field contains the value N/D, thené*tract t-h_e\ country name from the fiexld.

called ‘fU__NTV_Country_,Name” Instead. If the country name string contains any

CA9-2003-0114 ' 1T

CA 02453971 2003-12-23

Unicbde va,lues_, convert therh to bej-of the form \Woxx, where xxxx is the 4 letter
code point for that character assigned by Unicode. Then append the new country
name string to thé language code obtained in third 'st-ep, ‘with a undﬁe§rscore
character separating the two. Join the string from the previous stép to the string
from second step wiih a semicolon :separating the two._ Firially enclose the new
string in quotation marks and place next to the string /* country names */ :in the'

locale.

[0046] This completes the-gath‘e.ring_of information for country land language

codes.

[0047] To obtain information for calendaring there are a number of operations
to perform to extract the variousday,- week .ahd month elements. First to obtain
the month names, in operation 330-B1, for the identifier strings such as r*
january */ in the output file, extract the string from the field called
“‘NTV_ January”. If this field contains thé vaiue N/D, then extract required \. value
from field called "U_NTV_dJanuary’ :instead. If the string contains any Unicode
values, convert them to the form \uxxxx, where‘xxxx is the 4-letter code point of
that,cﬁhéracter éssigned by Unicode. Thenénclosé the new string In quqtation
marks and place it next to the string /’f. january */ in the oQtput file. Repeét this

series of steps for the remaining month names.

[0048] Next in operation 330-B2, obtain the abbreviated month names, such
as [* abb ianuar-‘y. VA extract the string from the field called

“NTV___AbbreViated_Jan”. If this field contains the value N/D, then extract the |

CA9-2003-0114 18

CA 02453971 2003.-12-23

string from the field called “U_NTV_Abbreviated_Jan” instead. If the string
contains any Unicode values, convert them to the form \uxx'xx, where xxXxg is the
4-letter code point of that character assigned by Unicode. Then enclose the new
string in quotation marks and place it next to the string /* .abb january */ 'in 'the'
output. Then repeat the same series of steps for the remaining abbre'v_iated

month names.

[0049] Nect in operatioh.330-83 obtain the days of the week or weekday
names such as /* monday */, first extract the string from the field called
“NTV_Monday”. If this field contains the value N/D, then extract the string from
the field called “U_NTVﬁ___MOnday” instead. If the string c_ontainsany Unicode
values, convert them to be of the form \uxxxx, where xxxx is the 4-letter code
point of that character assigned by Unicode. Next enclose the new string in
quotation marks and place it next to the string /* monday */ in the output fil_e. Next

repeat this same series of steps for the remairning required weekday names.

[0050] Next'--in operation 330-B4 obtain the abbreviated weekday na‘mes such
as /* abb monday */, extract the string from the field called
“‘NTV_Abbreviated_Mon”. f this field co’ntains the value N/D, then extract the
string from the fiéld called "U_NTV_Abbreviated_Mon” instead. If the string
contains any Unicode values, convert them to be of the form \UXXXX, where Xxxx
is the 4-letter code point of that character assigned by Unicode. Then enclose the
new string in quotation marks and place it next to the string /* abb monday */ in.'
the Iocale. Finally repeat this same series of 'steps to obtain the remaining

abbreviated weekday names. This completes the day and month names

CA9-2003-0114 . 19

T ey

~ CA 02453971 2003-12-23

elements.

[0051] Next in operation 330-CH obtain numeric format specifications such as
[* decimal pattern */, first extract the positive numeric example from the field

called “Numeric_Positive_Format” and the negative numeric example from the

field called “Numeric_Negative_Format”. If either of these two fields contain the

value N/A, skip the remaining steps of this section and put the empty string next
to the string /* decimal pattern */ in the output; otherwise, continue. Next scan

through both numeric examples and replace all digits -('Oto' 9) with the number

sign (i.e. #) character symbol. For each example, find the decimal separator

within the respective example and change the first number sign before it to 0.
Then concatenate the two ‘numeric examples into one string with a semicolon
separating the two examples. NeXt enclose the new string in quotation marks and

place it next to the string /* decimal pattern */ in the output.

[0062] Next in operation 330-02.obtain the /* percent pattern */, and place
next to the string /* percent pattern */ otherwise place the empty string (i.e.)
next to the string /* percent pattern */ in the outpUtto indicate the value was not

obtained.

[0053] Next in operation 330-C3 obtain the /* decimal separator */, by first '
extracting the decimal separator from the field called
“"Numeric_Decimal_Separator”. If this field contains the value NONE, then skip

the remaining steps of this section and place the empty string next to the string /*

decimal separator */ in the locale; otherwise, continue. Convert the decimal

CA9-2003-0114 20

'CA 02453971 2003-12-23

separator located from its symbolic name to its actual character value. Enclose

the character in quotation marks ,and place next to the string /* decimal separator

*/ in the output file.

[0054] Next in operation 330-C4 obtain the grouping separator, /* group

(thousands) separator */, by first extracting the thousahd separator from the
field called "Numeric_Thousands_Separator”. If this field contains the value
NONE, then skip the remaining steps of this section and print the empty string
next to the string /* group (thousands) separator */ in the output; otherwise,

continue. Then convert the .thousan.d separator from its symbolic name to its

“actual character value. Enclose the character In quotation marks and place it

next to the string /* group (thousands).Separator */ ih the output file.

[0055] Next in operation 330-C5 obtain 'the per cent sign /* percent sign */

and place next to the string /* percent sign */ otherwise place the empty string (i.e

. “”)next to the string /* percent sign */ in the locale, as this information was not

available.

[0056] Next i;n' operation 330-C6 obtain the /* native 0 digit */, and place the
value next to string /* native 0 digit ?“/~'othemisze: place the empty string (i.e. “”)'
next to the string /* native 0 digit */ in the output, as this information Was not

available.

[0057] Next in operation 330-C7 obtain the /* .pattern digit */, and place the
value next to string /* pattern digit .'_*/ :otherwise place the empty string (i.e. “’.’:) next

to the string /* pattern digit */ in the output as this information was not available.

CA9-2003-0114 - ' 21

CA 02453971 2003-12-23

[0058] Next i:’n ‘operation 330-C8 obtain the /* minus sign */, by first extracting
the negative sign from the field called “Numeric_Negative_Sign”. If this field
contains the value NONE, then skip the 'remaining steps -of' this section and put
the empty .strinzg next to the -s.tring: /* minus sign ’%‘/ iIn the locale; otheﬁ:rwise,
continue. Convért the negaﬁtive sign from thé symbolic namé located to its actual
character value. Enclose the negative sign in quotation marks and place it next to

the string /*minus sign */ in the output file.

[0059] Next in operation 330-C9 ob.tain-thefl* exponential */ value and place
it next to string /* exponential */ othelwise pl;ace the empty string (i.e. ™) next to

the 'string/* exponential */ in the output, as this information was not available.
[0060] This completes thegathering of numeric formatting specifications.

[0061] Next in operation 330-D1 obtain miscellaneous useful informat-ion_ such
as the list item sepérator [* list -sepa-ra-t-or. */ and place the value retrieved next to
the string /* list .:separator */ otherWiSe place the empty string (i.e.) next to the

string /* list separator */ in the output, as this information was not available.

[0062] Next in operation 330-E1 'obtain monetary information such as the
currency pattern, /* currency pattern *, by first extracting the . positive and
negative monetary ~ example ~ from the fields called
“‘Monetary_NAT_ Positive_Format”.' .' and Monetary__NAT,__Negative_Format”.
respectively. If either of these two fields contains the value N/A, then skip the
remaining st'eps :and put the empty string next to the strin_g /*currency pattern */ in 'i

the locale; otherwise, continue. For each string, scan through the example found

CA9-2003-0114 , 22

Tany VTR

R AT TP A7 AR I [aperer e sy VA= 3= 22 o man s

CA 02453971 2003-12-23

and replace all the digits (0 to 9) b'\.y the number sign*'character. Then find the
decimal separator in the example and ._change the first nurhber Sign preceding it
to 0 as well as all the number sign after it. Then join the tWo examples5 together

into one string with a semicolon in the middle. Enclose the new string in quotation

marks and place it next to the strin'g /* curfency pattern */ in the output file.

[0063] Next in operation 330-E2 obtain the /* local currency symbol- *, by
first extracting the - c'urrency symbol fro-m ‘the field called
“Monetary_NTV_Currency_Symbol”. If this field containé the value N/D, then
extract it from the field called “U_Monetary___NTV_Currehcy__Symbol” instead. I
the currency symbol string contains any Unicode value, coﬁvertthem to the form
\UXXXX, where XXXX 1S the '.4-—Ietter cod'e. point of that éharacter as‘Signed by

Unicode. Then enclose the currency Symbo| in quotation mark and place them

- nextto the string/ * local currency symbol */ in the output file.

[0064] Nextin operation 330-E3 obtain the /* intl currency symbol ¥/, by first
extracting the ISO 4217 Alphabetic Currency Code from the ﬁel-d called
“Monetary_IS04217_Alpha_Code”. If this field contains the value N/A, then skip
the remaining steps of this section and print the empty string next to tﬁe string /*
Intl currency symbol */ .in the locale; otherwise, continue. Append the Unicode
value \u0020 :\to the ~end\of the currency cod_e. Then enclose the new string in

quotation mark and print it next to the string /* intl currency code */ in the locale.

[0065] Next in operation 330-E4 obtain the I monetary decimal Qseparator '

*f, first extract the decimal separator from the ‘fiel;d called

CA9-2003-0114 - 23

CA 02453971 2003-12-23

“Monetary_NAT_Decimal_Separator”. |f this field -contains the value ‘N/A, then
skip the remaining steps ofthis section an'd\ put the empty string next to the
/*monetary decimal separator */ string in the\.locale; otherwise, con.tin.ue'..' Convert
the decimal separator from its symbolic name to its actual character value. Then
enclose the charac.ter in quotation ~mérks and place it next to the string /*

monetary decimal separator */ in the output file.
[0066] This completes the gathering of monetary information.

[0067] Next |n opération 330-Fi obtain the variety of -date and time fo'rmatting
specifications such as /* am marke:r; default is AM */, by first extracting the
morning string from the fie.l'd_- cal-led “Time_NTV_Morning_String”. If this field
contains the value N/A, then skip the femaining stepé of this section and put the
empiy string next to the string /* arh marker; default is AM */ in the -Iocélé. Eilse If
It contains the value N/D instead, then extract the morning string frdm the field
called .“U__*_Tim-e__Morning__String” - insiead. If the string contains any Unicode
values, then (:onveﬂ them to the form \uxxxx, where xxxx is the 4-letter code
point of the character as_signe.d by Unicode. ' The‘_n enclose the new string in
quotation marks and place it next to the string /* am marker; default i.s AM */ in

the output file.

[0068] Next in operation 330-F2 obtain the time of day indicator /* pm
marker; default is PM */, first extract the afternoon string from the field called
“Time_NTV_Afternoon_String”. If this field contains the value N/A, then skip the

remaining steps of this section and put the empty string next to the string /* pm

CA9-2003-0114 24

-~ Rt W STV L CR———

CA 02453971 2003-12-:23

marker; default}\is PM */ in the locale. HoWever, if the value contained in the field
is N/D instead, theh' extract the afternoon string frbm the field called
“U_Time_Afternoon_String” 'in‘stéad N the afternoon string fcontains anyﬂfUnicod‘e’
values, then convert them 'tc-) the form \uxxxx, where xxxx is the 4-letter code
point of that character. Then enclose the new string in quotation marks and place

it next to the string /* pm marker; default is PM */ in the output file.

[0069] Next in operation 330-F3 obtain th‘e.,era names éuch as that contained
within the /* era strings */, and place next to string /* era strings */ otherwise
place the empty string next to -'.th,e' string /* era strings */ in the output, as this

information was not available.

[0070] Next in operation 330-F4 obtain the /* full time pattern v/ by first
extracting the string in the field célled “Time___NTV;_FuIl;Format”. If this field
contains the wvalue N/D,'_ th_én ‘extract the string from the field called
“U_Time_NTV_Full_Format” instead. If the string contaihs any Uniche value,
then convert them to the fomm \uxxx'x,' where XXXX is the 4—!étter code point for the
character. Then parse the string to determine the location of the hour, minutes,
seconds, am/pm string, and timezone name if it exists. .Then replace each by
their corresponding value, wherei_n hour Is replaced by-h;?minutes IS ;eplaced:by
m; seconds is replaced bys;AM/PMstring is replaced by a, and Timezone name
Is replace by z. Then enclose thé string in quotation marks and place it next to

the string /* full timepattern */ in the output. -

{0071] Next in operation 330-F5 obtain the /* long time pattern */, from the

CA9-2003-0114 - 25

CA 02453971 '2003-12-23

localization values and place next to string /* long time pattern */ otherwise copy
the output string for the /* full ti'me pattern */ and place it next to the string /* long

time pattern ™/ as this information was not available.

[0072] Next in operation 330-F6 obtain the /* default time pattern */, by first

extracting the string in the field called “Time_NTV_Cormmon_Format”. If this field
contains the value ‘N/D,: h then ' extract it from; the field called
“U_Time_NTV_Common_Format” instead. Then repeat second, third and fourth
steps of the fulél time pattem -Operétion. Enclose the string in quotation I\marks-and

place it next to the string /* default ,t-i"m\e pattern */ in the output file.

[0073] Next in operation 330-F7 obtain the short t’imeij pattern /* short time

pattern */, by first extracting the string in the field called “Time_Short_Format”.

Repeat the second, third and fourth steps of the full time pattemn operation for this

string. Then enclose the string in quotation marks and place next to the string /*

short time pattern */ in the output file.

[0074] Next in operation 330-F8 obtain the full datgé pattern /* full date
pattern */, by first *extr'acting the string in the field called

“Date_NTV_Full_Format”. If this field contains the value N/D, then extract it from

the field called “U____Date;_‘NTV._._FuII__Format” instead. If the -string‘contains any

Unicode value, then convert them to be of the form \uxxxx, where xxxx '

represents the 4-letter code point for the character. Then parse the string to

determine the location of the day, month, year and weekday name, and replace

- each with their corresponding value as follows: Weekday name is replaced by

CA9-2003-0114 ‘ 26

CA 02453971 2003-12-23

EEEE; Month is [eplaced by MMMM; Date is replaced by D; and Year is replaced
by YYYY. Then enclose the string in quiotation mark and place next to the string

/* full date pattem */ in the output file.

[0075] Next ln operation 330-F9 obtain the /* long date pattern */, by first
extracting the string in the-field callied “Dété __'_;N"I"V_Long_;Format”..i If this field
contains the value N/D, th-en ~extract it from the -field called
“U_Date_NTV_Full_Format’ instead. Repeat second and third steps of the full
date pattern foi'-ihis string. Then ethOSe the string in quotation marks and place

next to the string /* long date pattern */in the output file.

[0076] Next in operation '330-'-F1:0 obtaixn_the default date pattern, /* default
date pattern. *, by first .eXtracting ~the string in the field called.
"Date_NTV_Common_Format”. If this field contains the value N/D, then extract it
from the field célled “U_Déte_;NTV_Co-mmon__Format”\ instead. Then repeat the
second and third steps of the full date pattern for this string. Next enclose the
- string in quotaﬁion marks and place néxt to the string /* default date pattern */ in

the locale.

[0077] Next in operation 330-F11 ..ob_tainjthe short date pattem /* short date
pattern */, by first extracting ' the string in the field called
“Date_NTV_Short_Format’. If this field contains the valué N/D, then extract it
from the field ?Ca'lled “U_Date_NTV_Short_Format” instaed. ‘Repeat--second and
third steps of the full date pattern for this. string. Next enciose the string in

quotation marks and place next to the string /* short date ;pattern */ in the output

CA9-2003-0114 ' 27

v Maatasato s 2o o Y Aot - WA e - - . L Ly m—— T T - —
ST S N ———-— T A ST T B WX NPT BT A A T, Sov v e e T
:

CA 02453971 2003-12-23

file.

[0078] Next*in operation330--F1;2 obtain.the/?‘dat-eftirhe p-attern */, by first
extracting the istring in thefield called “Date_ahd__Timeﬂ_Format”. If this field
contains_the value N/A, then place\theemptystring next to the string /* dafe~time
pattern */ in the locale; otherwise, continue. Scan through the string for t}he\words
“date” and ‘time”. Next replace each by their corresponcjingvalue a_s follows:
- date Is replaced by %1 and time is replaced by %0. Then enclose the string in
quotation marks and place next to the String A date-timg pattern */ in the

output file.

[0079] Next in operat\io-n '330-F13 obtain {h'e /* first day of wéek -‘"’/, by first
extracting the string from the field called “Calendar_First_Day_Of_Week”. Then
replace this string by its cor’reéponding n-uméric value. (i.e. Sunday 1S 1, Monday
Is 2 and so'on.) Next encloéethe numeric value in quotation marks and place

next to the string /* first day of week */ in the output file.

[0080] Next in operation -330_-’Ff1 4 obtain the minimum number of days in the
first 'week, [* min days in fir'st-,week */, by first extracting the value from the field
called “Calendar_DaysInFirstWeekOfYear”. Then enclose ~;§the value in quotation

marks and place next to the string /* min days in first week */ in the output file.
[0081] This completes the time and date ihform-a_tio.n .gathering. .

[0082] To obtain timezone;inform:a_tion, such as the ;timezone\ identiﬁer r* id */.

first in operation 330-G1 extract the string from the field called

CA9-2003-0114 . - 28

CA 02453971 2003-12-23

“Timezone_ShortName_1". I this field contains the value N/A, then skip the
remaining steps of this section and put the empty string next to the string /* id */
in the locale; otherwise, continue. Then enclose the string in quotation marks and

place next to the string /‘*, id */ in the output file.

[0083] Next in operation 330-G2 obtain the timezone offs.et from GMT, /* gmt
offset */, by first extracting the value from the field called “Timezone_Offset_1”.
Then enclose it in quotation marks and place next to the string /* gmt offset */ in

the output file.

[0084] Next in operation 330-G3 obtain the daylight savings speoificationS, [*
dayl.ight savi'ng delta */, first if the value contained in the fiel;d called
“Timezone_DST_Used_1” is NO -th.ens skip the remaining steps .of this section
and place the empty string ’,next to.the string /* daylight saving delta */ in the
locale; otherwise, extra¢t | the value from the field called
“Timezone_DST_Offset_1" and cdntinue. Then enclose the value in quotation

marks and place next to the string /* daylight saving delta */ in the outpu’t;file.

[0085] Next in' operation 330-G4 obtain the abbreviated timezone information,
I* abbreviatedti’mezone hame ~/, by first extracting the string from the field
called "Timezone_ShortName_17. If this field contains the value N/A or NONE,
then skip the remaining steps of this section and place the empty string next to
the string /* abbreviated timezohe name */ in the output file; otherwise, continue.
Next ~.enolose the string in quotation m_ark' and_print it next to the string /*

abbreviated timezone name / in the output file.

CA9-2003-0114 29

w‘m‘_‘ R R L L P b i — S — i o -~ - ~ -~ -~ °) : }
e WWWW - i ~r Yo i .- U RS s s ST A S 1T e ey bt i i e g i TS L. AN A S s A I = AN P R e L —

CA 02453971 2003-12-23

[0086] Next iin operatioh 330-G5 obtain the abbreviated daylight savings
name specificatibn, [* abb. daylight-savings name */, by .first extracting the
string contained in the field called “Timezone_DST_Used_1 > thisstring Is NO,
then print the empty string nextto the string ../*. Abb. Daylight-savings name */
in the output file; Otherwise,-_extract the string contained in the field called
“TimezOne_DSTﬁShortNameJ:”.. Thenenclose the string in; quo.tation marks and

place next to the string /* abb dayli-g'ht-s'avings name */ in the output file.

[0087] Next in operation 330-G6 obtain the full_ timezone name specification,
/* full timezone name */, by first extracting the string contained in the field called
“Timezone_FullName_17. If the-String Is N/A or NONE, then place -the empty
string next to the string /* fu H timezone name */ in the 0utput file; otherwise

enCl.ose the strihg in quotation ma-rks and place this string i-n': the 0utput file.

[0088] Next in operation 330--G7 Obta_in the full daylight savings names, [* full
daylight-savings name */, by first extracting the string Contained in the field
called “Timezone_DST__,,Used__t " this string is NO, then print the empty string
next to the string /* full daylight-savings name */ in the locale; otherwise, extract
the string contained in the field catl'ed “Timezone_DST_FullName_1 . and
continue. If the extracted string is N/A or NONE, ,_placethe empty string next to the ‘
string /* full daylight-saving name :*/ in the locale; otherwise, enclose it in

quotation marks and place this string.- In the output file instead.

[0089] Next in operation 330-G8 obtain a representative city name within the

timezone, /* representative city in timezone */, by first extracting the string

CA9-2003-0114 ' 30

IR I TR T ey sy Banatad d e TTARTR dmee ep as e e ey G t terwLE Ru-..-.»ww._mwmmmmwwwmuumhw- Fehamed b L B ek e A e e ke o e o gk | oy o p— - 2 L A A A d Boh s Por AT TR e RO A T TN ST T TR - # STy A1 7, —mt= =000 = = 22 ss e tmn gt ws et .

CA 02453971 2003-12-23

value contained in the field called “Timezone_Representative_City_1”. If this
field is N/A or NONE, then place the empty string next to the string /*
representative city in 'timezone- "/ in the output file; otherwise, .encloset'he string

in quotation mark and place this strihg-i_n the output file instead.

[0090] Next.ih' operation 330-G9 obtain the start month hame, [* start month
*. by first extracting the string contained in; the field called
“Timezone_DST_Used_17. If this field has the strihg NO as its value, then set the
empty string. as the value for the /* start month */ in the output file. If ;this field
has the. 'string YES, then . extract the value m the field called
“Timezone_DST_Rules_1”. If this field has the value RULES BASED, then
extract the string in the field' called “Timezone_DST_StartMonth”. Then enclose
the string in quotation marks and place next to the string /* start mOnth‘ */ in the

locale.

[0091] Next m operation 330-G10 obtain the start date of the month, /* start
date in month *l, by first extracting the str-ing. contained in thé fieid called
“Timezone_DST_Used_1". If this field has.the string NO as its value, then place
the empty string next to /* start date in month */ in the locale; othérwise, extract
the value in the field called “Timezone_DST_Rules_1". If this field has the value
RULES BASED, then place the empty string next to /* start date in 'mdnth */in
the locale; otherwise, enClos_e. the string In quotation marks and place this string

In the output file.

[0092] Next in operation 330-G11 _obtain the start day of the week, /* start

CA9-2003-0114 o ' 31

CA 02453971 2003-12-23

day-of-week In imonth. */, by firsf eXtracting the string Eon'tained in the field
called “Timezone__DST_UsedJ_”. If this field has the value NO then'jprint the
empty string next to /* start day-of-week in month */ in the locale; otherwise,
extract the v_aI.Qe In the field called ‘Ti‘mezone_DST_,StartWeek”. Then enclose
the string in quotation marks and place next to the string /* start day-of-week in

month */in the Qutputﬁle.

[0093] Next in operation 330-G12 thain the Start day of the week_-,.l* start
day-of-week ?l, by first \extracting the étring | m the field called
“Timezoe_DST_Used_1". If this field has the value NO, then place the empty
string next to the string /* start day-of-week */ in the output file; otherwise, extract
the string in the field called “Timezone_DST_StartDay_1". Then enclose the
- string in quOtatibh marks.and blace next tb the strihg /* starti day-of-week */ i-n the

output file.

[0094] "Next in operation 330-G1 3 o-btain the énd month for daylight savings, /*
end month *, by first_‘ ‘extra_cting the xstring in the field -called
“Timezone,,;DST_,;_Used_1”. If this field has the value NO, then print the empty
string next ‘to the-_ string /* end month */ in the locale; othem(isé, extract the- string
contained in the field called “Timezone_DST_EndMonth_1". Then .ehCIos.e the
string in quotatibn marks and place next to the string /* end i’honth */ in the output

file.

[0095] Next in operation 330-G14 obtain the end date m the month, /* end

date in month */, by first extracting the string m the field called

CA9-2003-0114 3

.
. .
. v, MR SRR A L L e . EE I | wemesad \ - =
v v " - -
" L v e L -t Napirs vhuivin i ot L I N T Y W AW ML s - — P a - - -
i we ————— e L NV — — pre ompbal. ot iyl ——— - T L O S Vvl“ N P —— AW B BT e B B AN N .~ e (SN R

CA 02453971 2003-12-23

‘Timezone_DST_Used_17. |f 'this field has the value NO, then place the empty
string next to the strihg /¥ end date in,. month */ in the output file; otherwise,
extract the strihg In the field called "Timezone_DST_Rules_17. If this string has
the value BY‘ DECREE, _th:en extract the string in the field called
. “Timezone_DST_EndDate_17; otherwise, place the empty st.ring next the string /*
end date in month */ in the output ﬁle. Then-enclose the string in quotation marks

and place it next to the string /* end date in month */ in the o:utput file.

[0096] Next in operation 3304615 obtain the end day of the week within the
month, /* end day—-of-week in month */, by first extracting the string in the field
called “Timezone_DST_Used_1". If this field has the value NO, then place the
empty string next to the string-/f“.ehd ’day_-of-'weekl in month */ in the output file;
otherwise, extract the string in the 'ﬁeld called "Timezone_DST_EndWeek_1".
Then enclose the string in quotation marks and place next to the string /* end

day-of-week in month */ in the o'utputfile. '

[0097] Next in operation 330-G16 obtain the end day of the week, [* .énd day-
of-week */, by first extracting the string in the field called
'“Timezone_DST_Used_J”. If this tield has the value NO, then place the empty
string next to the -,string/f end day-of-week “/ in the output fiéle; otherwise, eXtract
the string in the ;fiéld called "Timezone_DST_EndDay”. ThenE enclose the string in
quotation marks and place next to the string /* end .day~of-Week-*/ in the output

file.

[0098] This cOmpletes the timezone information gathe'ringf.

CA9-2003-0114 ' 33

. " o L eaym = o s s esges s @ e e s . ® e = mPa Srd P - = . . ’ N
20 TR R SRR TR ARG SN0 by (e oy e, v wmain vy VWMWWW g~ canes uim e e st A APAR Vet Ay e I . . e sam ey R - P A At " Wototdem s o ® . ._“_._ﬂ_w.._i.,.,*_,_“_

CA 02453971 2003-12-23

[0099] Other forms of input files using differing arrangements may lead to
other approaches to keeping related information to‘gether; The simple form of
name and value pairs has been used in these examples as a means of5 keeping

the value with a context of use.

[00100] The localization information does not ha\'/e:to be close to the
extraction functio.ns but it may be more efficient to do sd. Remote files can be
used s-uccessfuuy in these types of opekations provided the network has
sufficient speed and capacity. The localization may be amalgamated into one
consolidated file of data or it may be partitioned according to specific locale
information or_Specific -typ*es of information such as monetary formatting

specifications across locales.

[00101] Although the invention has been described with reference to
,illustrative embodiments, it is to be understood that the invention is not limited to
these precise embodiments, and that various changes and modifications may be
effected therein by one skilled in the art.'Ali' such changes and modifications are

intended to be encompassed in the appended claims.

CA9-2003-0114 _ 34

CA 02453971 2006-12-21

WHAT IS CLAIMED IS:
1. A method for creating a specific Java style locale source file on demand
suitable for application use in a computer, said method comprising:

receiving a request submitted for said specific Java style locale;

obtaining a plurality of localization values related to said specific Java

style locale;

determining a category containing elements therein where said category is
within said plurality of localization values and éélecting "":p'rocess routines
‘dependent upon said category and said elements therein;

selectively extracting said localization values pertaining to said category
by said selected routines;

storing said extracted localization values into a memory of said computer,

and

assembling said extracted information into said Java style locale source

file for said application use.

2. The method of claim 1, further comprising determining one or more additional
categories, for each said additional category:
selecting process routines dependent upoh ‘said additional category

containing elements therein;
selectively extracting localization values pertaining to each said additional

category and said elements therein by said selected process routines; and

storing said extracted localization values into said memory of said

computer.

CA9-2003-0114 35

CA 02453971 2006-12-21

3. The method of claim 1, wherein said plurality of localization values is sufficient

to populate at least one said category of said specific Java defined locale.

4. The method of claim 3, wherein said assembling said extracted information

further comprises addition of a collation resource file.

5. The method of claim 4, wherein said request is initiated by at least one of a

manual means involving a user and a programmatic means.

6. A computer program product having a computer readable medium tangibly
embodying computer readable program code for instructing a computer to

perform the method of claim 1.

7. A computer program product having a computer readable medium tangibly
embodying computer readable program code for instructing a computer to
perform the method for creating a specific Java style locale source file on
demand in a computer suitable for application use, said method comprising:

receiving a request submitted for said specific Java style locale;

obtaining a plurality of localization values related to said specific Java
style locale;

determining a category containing elements therein where said category is
within said plurality of localization values and selecting process routines
dependent upon said category and said elements therein;

selectively extracting said localization values pertaining to said category

by said selected routines:;

CA9-2003-0114 36

CA 02453971 2006-12-21

storing said extracted localization values into a memory of said computer;

and

assembling said extracted information into said Java style locale source

file for said application use.

8. A system for creating a specific Java style locale source file on demand in a
computer suitable for application use, said system comprising:

a receiver for receiving a request submitted for said specific Java style
locale;

a means for obtaining a plurality of localization values related to said
specific Java style locale;

a means for determining a category containing elements therein where
sald category is within said plurality of localization values and selecting process
routines dependent upon said category and said elements therein;

an extractor for selectively extracting said localization values pertaining to
said category by said selected routines;

a storage means for storing said extracted localization values into a
memory of said computer; and

an assembling means for assembling said extracted information into said

Java style locale source file for said application use.

9. The system of claim 8, further comprising means for determining one or more

additional categories, for each said additional category:

CA9-2003-0114 37

CA 02453971 2008-05-16

selecting process routines dependent upon each said additional category
containing elements therein;

selectively extracting localization values pertaining to each said additional
category and said elements therein by said selected process routines; and

storing said extracted localization values into said memory of said
computer.

10. The system of claim 9, wherein said plurality of localization values is
sufficient to populate at least one said category of a specific POSIX defined

locale.

11. A computer program product having a computer readable medium tangibly
embodying computer readable program code for execution by a computer for
instructing the computer to provide means comprising:

receiving code means for receiving a request submitted for said specific
Java style locale;

a code means for obtaining a plurality of localization values related to said
specific Java style locale;

a code means for determining a category containing elements therein
where said category is within said plurality of localization values and selecting
process routines dependent upon said category and said elements therein:;

extraction code means for selectively extracting said localization values
pertaining to said category by said selected routines;

a storage code means for storing said extracted localization values into a

memory of said computer; and

CA9-2003-0114 338

CA 02453971 2008-05-16

an assembling code means for assembling said extracted information into
said Java style locale source file for said application use.

12. The computer program product of claim 11 further comprising means for
determining one or more additional categories, for each said additional cétegory:

means for selecting process routines dependent upon each said additional
category containing elements therein;

means for selectively extracting localization values pertaining to each said
additional category and said elements therein by said selected process routines;
and

means for storing said extracted localization values into said memory of

said computer.

13. A computer program product having a computer readable medium tangibly
embodying computer readable program code where said category is for
instructing the computer to provide the means of any of claims 8 and 9 as code

means.

CA9-2003-0114 39

CA 02453971 2003-12-23

113 . 115
Keyboard/Mouse Display
Device Device

110 112

Central Input/Output
Processing Unit Adapter

118 Network
Adapter

114 Display
Adapter

106 Bus

Adapter

| omow%mwﬁ_:@ | 122 input file | locale source
.. -~ file 128

144 mmoqmmm
Device

124 scripts 126 utilities 125 generator

108 Memory

_
_
i
_
.
|
_
_
!
_
|
|
_
|
_
|
|
_
_
|
_
!
|
! - |
“ . R - . . _ 142 Storage
_ |
,
|
!
_
!
(
!
_
[
_
_
_
_
_
!
!
|
_
_
_
_
|

117 Adapter

TRy

CA 02453971 2003-12-23

T T e e e R R L R L L R R R L L R e R R A R e L Nl R L e L L R L R P T L R Y L T

somIN
00l

QZ1 9|l} 9294N0S 3]ed07
GZ | lojelausn)

(A K 4 E N B N L N & N 3 & 3 N X ¥-.6.....‘ LA A B N A B 2 2 2 4 Lk LR NEJXZZ L L NNENENELENENEEZREHNZSEHNZNRZL LI LN L ...Q........O.Q..’

zzL e indup

R R R Y R Ry P R R Y R L Y R R R R L R L R R L L R R L R T S Y R R R R E R N N R R R R R g o e L,

g Sy ALY S b R R e R R S T R B TTTR R
4) s . . v Dl o B . e .

. NPy

e

CA 02453971 2003-12-23

YES

oOU

305

receive request

. 310
Input file

Determine 320

Category & ,
Routines

330

- Extract Category

Information

340

Store values

350

More
Categories?

360

Assemble
Qutput

370

Figure 3

(A o Mg Yy AT LN VY T MDA A e AT AL R “oma hoh 0 R POy
2 AT L A B ke SR SR O S P S S S

ST B L SING A
' T -\.., Ve

1 AME
%A i

R T T A

I TS R

CA 02453971 2003-12-23

310

330-A .

330-B

Get file

Get
language
~and

country
info

calendar
info

" 330-C

Get
numeric
info

Get

miscellaneous

info

Get
- monetary

info

<Tnore 7>

No

Figure 4

ok

Get date & 4
:30 33

. 330-G
Get B
timezone

340
store
values

uuuuuu

310

. Get file

330-A

Get
language
and
country

info -

‘ (730-0
Get

NUMEriC -=
info

o

miscellaneous te—
info

@ Yes

| No

K_"‘ Get

330-B

calendar
info

@ Yes

No

Yes

No

Get
monetary
info

Yes

<fnore 7>

No

c 330-E

(Get date &
time Info

330-F

— 330-G
Get
timezone
info
l _— 340
store
values

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - abstract
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - claims
	Page 39 - claims
	Page 40 - claims
	Page 41 - claims
	Page 42 - claims
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - abstract drawing

