wo 20137112288 A1 [0000000 0 A O

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2013/112288 A1l

1 August 2013 (01.08.2013) WIPO | PCT
(51) International Patent Classification: (81) Designated States (uniess otherwise indicated, for every
GO6F 11/36 (2006.01) GO6F 9/44 (2006.01) kind of national protection available). AE, AG, AL, AM,
21) International Apolication Number- AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
(21) International Application Number: PCTIUS2013/020795 BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
(22) International Filing Date: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
9 January 2013 (09.01.2013) KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
- . ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
(25) Filing Language: English NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU,
(26) Publication Language: English RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ,
TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,
(30) Priority Data: M, ZW.
61/590,042 24 January 2012 (24.01.2012) us
13/736.158 8 January 2013 (08.01.2013) Us (84) Designated States (unless otherwise indicated, for every
’ kind of regional protection available): ARIPO (BW, GH,
(71) Applicant: NEC LABORATORIES AMERICA, INC. GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
[US/US]; 4 Independence Way, Suite 200, Princeton, New UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
Jersey 08540 (US). TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
(72) Tnventors: LUMEZANU, Cristian; 25 Rock Run Road, EE, ES, FL, FR, GB, GR, HR, HU, IL, IS, IT, LT, LU, LV,
. ", MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SL, SK, SM,
East Windsor, New Jersey 08520 (US). JIANG, Guofei; 5
. TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
Danby Court, Princeton, New Jersey 08540 (US). ML, MR, NE, SN, TD, TG)
ZHANG, Yueping; 95 Harvard Circle, Princeton, New ’ > e ’ ’
Jersey 08540 (US). SINGH, Vishal; 602 Blue Spring Published:
Road, Princeton, New Jersey 08540 (US). AREFIN, Ah- g .
san; 508 S. First Street, Apt. 402, Champaign, Illinois with international search report (drt. 21(3))
61820 (US).
(74) Agent: KOLODKA, Joseph; NEC Laboratories America,
Inc., 4 Independence Way, Suite 200, Princeton, New Jer-
sey 08540 (US).
(54) Title: NETWORK DEBUGGING
104 108
Modeling Debugging
112« Task Ranat ! Fugeligg Inft Frarpihting Ter
108 ~ Spphoition Saatue 114 « R E 118 ~ Fraddem olas
110 - hfragionehive St 116 «Validaion 420 « Bdent Compinsats
:

1T

Trattic Momtoring

penFow based ol seemudoniog o the readyedber

102

(57) Abstract: A debugging system used for a data center in a network is disclosed. The system includes a monitoring engine to
monitor network traftic by collecting traffic information from a network controller, a modeling engine to model an application signa-
ture, an infrastructure signature, and a task signature using a monitored log, a debugging engine to detect a change in the application
signature between a working status and a non-working status using a reference log and a problem log, and to validate the change us -
ing the task signature, and a providing unit to provide toubleshooting information, wherein an unknown change in the application
signature is correlated to a known problem class by considering a dependency to a change in the infrastructure signature. Other
methods and systems also are disclosed.

WO 2013/112288 PCT/US2013/020795

NETWORK DEBUGGING

[0001] This application claims the benefit of U.S. Provisional Application No. 61/590,042,
entitled, “OFDiff: A Debugging Tool for OpenFlow Based Data Center,” filed on January 24,
2012, the contents of which are incorporated herein by reference. This application is related to
U.S. Patent Application No. 13/554,632 and U.S. Patent Application No. 13/556,930, the

contents of both of which are incorporated herein by reference.

BACKGROUND OF THE INVENTION

[0002] The present invention relates to network debugging and, more particularly, to network
debugging for a data center.

[0003] Modern data centers are very large in the order of thousands of servers and network
components. They all claim on-demand resource provisioning and 24x7 system availability to
the users though it is very hard to eradicate all hardware and software failures in such complex
and large scale infrastructures. There have been many incidents recently where failures has lead
to unavailability of services and the lack of efficient debugging has caused heavy commercial
losses to the businesses. The fact is, efficient debugging of failures and misconfiguration in such
large scale data centers is very difficult. Applications not only interact with each other but also
interact with infrastructure services in diverse ways. Moreover, there is a strict line of visibility
restriction between the application layer and the infrastructure layer, which limits the data center
operators to look inside the applications for any debugging purposes. There is currently also no
casy way for the operators to verify the success of management operations in the data center.
Therefore, efficient data center wide debugging is still an open research area in computer
science.

[0004] Existing commercial or academic [1, 2, 5, 6] solutions have taken a microscopic
approach, where people try to diagnose issues on specific servers or processes using domain
knowledge (like agents) or statistical techniques. Data center wide debugging using coarse-
grained and light-weight monitoring remains a challenge. The previous techniques are focused
on extracting per application dependency graph (in most cases, using network flow concurrency

or delay properties) and use it for diagnosis purposes. Commercial solutions have been relying

WO 2013/112288 PCT/US2013/020795

on enterprise management solutions, which require agents to be installed with semantic
knowledge of application protocols and applications configuration files. Efforts have been
ongoing to apply model checking to distributed states. Furthermore, people have tried
instrumentation for tracing [3] requests and use of record and replay using distributed system
logging [4] and using network traffic [7]. The current approaches are far from practically
deployable. Typically, the solutions require heavy instrumentation resulting in a lot of overhead.
Also the commercial cloud is heterogencous, which poses additional problems for
instrumentation. To sum up, intrusive monitoring, scalability issues in deployment, network
overhead and insufficient data availability are some of the challenges in data center debugging.
[0005] OFDiff approaches the problem from a unique angle and takes advantage of OpenFlow’s
monitoring capabilities built upon message exchange in its control plane. Basically OFDiff
captures network traffic from the OpenFlow controller for debugging purpose. The debugging is
done by using logs of working and non-working states. To compare them, OFDiff models
application and infrastructure level behavior of the data center of the corresponding logging
period. Any changes in the application signatures (e.g., a different connectivity graph, or change
in application response time) captured from those logs are considered to explain using
operational tasks. The operational tasks are also identified from the traffic logs using a pattern
matching algorithm to the previously known tasks’ patterns (learned offline also from OpenFlow
traffic logs). Application layer changes (detected by OFDiff), which cannot be attributed to well
known operational tasks are further correlated to the infrastructure level changes to identify
problem class in the data center. Finally we correlate the problem class to the system components
for further troubleshooting purposes.

[0006] [1] P. Bahl, R. Chandra, A. Greenberg, S. Kandual, D. Maltz, and M. Zhang,
"Towards highly reliable enterprise network services via inference of multi-level dependencies,”
in Proc. SIGCOMM'07, Aug. 2007, pp. 13-24.

[0007] [2] X. Chen, M. Zhang, Z. Morley, and M. P. Bahl,"Automating Network
Application Dependency Discovery:Experiences, Limitations, and New Solutions," in Proc. of
OSDI, 2008.

[0008] [3] R. Fonseca, G. Porter, R. H. Katz, S. Shenker, and 1. Stoica, "X-Trace: A
Pervasive Network Tracing Framework," in Proc. USENIX NSDI, Cambridge, MA, USA, 2007.

WO 2013/112288 PCT/US2013/020795

[0009] [4] D. Geels, G. Altekar, S. Shenker, and 1. Stoica, "Replay debugging for distributed
applications," in Proc.Proceedings of the annual conference on USENIX '06 Annual Technical
Conference.

[0010] [5] S. Kandula, R. Mahajan, P. Verkaik, S. Agarwal, J. Padhye, and P. Bahl,
"Detailed diagnosis in enterprise networks." in Proc. SIGCOMM, 2009.

[0011] [6] L. Popa, B.-G. Chun, 1. Stoica, J. Chandrashekar, and N. Taft, "Macroscope: End-
Point Approach to Networked Application Dependency Discovery," in Proc. ACM CoNEXT,
2009.

[0012] [7] A. Wundsam, D. Levin, S. Seetharaman, and A. Feldmann, "OFRewind: Enabling
Record and Replay Troubleshooting for Networks," in Proc. Proceedings of Usenix ATC 2011.

BRIEF SUMMARY OF THE INVENTION

[0013] OFDiff offers very powerful data center debugging capabilities by using available logs
from the OpenFlow’s unique messaging mechanism.

[0014] An objective of the present invention is to contribute to achieving system situation
awareness in a network and to troubleshooting (or debugging) for a system such as a data center.
[0015] An aspect of the present invention includes, in a debugging system used for a data center
in a network, a monitoring engine to monitor network traffic by collecting traffic information
from a network controller, a modeling engine to model an application signature, an infrastructure
signature, and a task signature using a monitored log, and a debugging engine to detect a change
in the application signature between a working status and a non-working status using a reference
log and a problem log, and to validate the change using the task signature, and a providing unit to
provide toubleshooting information, wherein an unknown change in the application signature is
correlated to a known problem class by considering a dependency to a change in the
infrastructure signature.

[0016] Another aspect of the present invention includes, in a debugging method used for a data
center in a network, monitoring network traffic by collecting traffic information from a network
controller, modeling an application signature, an infrastructure signature, and a task signature
using a monitored log, detecting a change in the application signature between a working status

and a non-working status using a reference log and a problem log, validating the change using

WO 2013/112288 PCT/US2013/020795

the task signature, and providing toubleshooting information, wherein an unknown change in the
application signature is correlated to a known problem class by considering a dependency to a

change in the infrastructure signature.

BRIEF DESCRIPTION OF THE DRAWINGS

[0017] FIG. 1 depicts system architecture.

[0018] FIG. 2 depicts a flow chart which system architecture is mapped to.
[0019] FIG. 3 depicts component interaction (CI) in Procedure 1.3.

[0020] FIG. 4 depicts a flow chart for Procedure 1.6.

[0021] FIG. 5 depicts a flow chart for Procedure 2.

[0022] FIG. 6 depicts a flow chart for Procedure 3.

[0023] FIG. 7 depicts a flow chart for Procedure 4.

[0024] FIG. 8 depicts a flow chart for Procedure 5.1.

[0025] FIG. 9 depicts a flow chart for Procedure 5.2.

DETAILED DESCRIPTION

[0026] System architecture:

[0027] As illustrated in Fig. 1, OFDiff collects traffic information from the OpenFlow controller
PacketIn and PacketOut messages in step 102. Other active traffic monitoring protocol at the
switches can also be used. The system has three major components: Monitoring 102, Modeling
104 and Debugging 106. As explained before, the monitoring engine collects the traffic
information in step 102. The modeling engine models data center application (108),
infrastructure (110) and task (112) signatures using monitored logs in step 104. Regarding step
106, the debugging engine first finds the differences in application signatures between the
working and non-working states using the reference and problem logs, respectively, in step 114.
Then it validates the changes by using task signatures in step 116. The unknown changes are
correlated to the known problem classes considering their dependencies to the changes in
infrastructure signatures in step 118. We use class specific correlation enquiry to finally find the

problematic or faulty system components in step 120.

WO 2013/112288 PCT/US2013/020795

[0028] The above system architecture can be mapped to Fig. 2. OFDiff collects reference log
204 and problem log 206 from the OpenFlow controller (not shown). It parses reference log 204
to model application signatures under normal behavior (for example, connectivity graph, delay
distribution, component interaction, partial correlation, and flow statistics) in block 208. OFDiff
also parses problem log 206 to model application signatures under suspicious behavior in block
210. It then compares the signatures in the two logs in block 216. Using task sequence of known
operator tasks 214, it identifies the changes between the reference and problem logs as either
known changes 218 (e.g., due to a known operator task) or unknown changes 220. Further,
OFDiff analyzes the unknown changes using infrastructure signatures 212 extracted from the
flows and provides troubleshooting information 222 to operator.

[0029] Procedure 1: Modeling Application Signatures

[0030] The goal of modeling application signatures is to capture the application behavior
running inside the data center. To cover the spatial, temporal and volume dimension of
applications, OFDiff models application signatures, for example, in terms of Procedure 1.1
Connectivity Graph (CG), Procedure 1.2 Delay Distribution (DD), Procedure 1.3 Component
Interaction (CI), Procedure 1.4 Partial Correlation (PC) and Procedure 1.5 Flow Statistics (FS).
We next elaborate each procedure.

[0031] Procedure 1.1: Connectivity Graph (CG)

[0032] Using source and destination IP (Internet Protocol) metadata that comes in the Packetln
message or the IP header in TCP (Transmission Control Protocol) packets, OFDiff detects who
(which application node) is talking to whom. A connectivity graph or CG is built out of it for
cach application group.

[0033] Procedure 1.2: Delay Distribution (DD)

[0034] OFDiff uses peaks of the delay distribution as the application signature with the goal to
detect the shift in peaks or their disappearance due to the anomalies in the data center (such as
node overload, link congestion, etc.).

[0035] Procedure 1.3: Component Interaction (CI)

[0036] As shown in Fig. 3, to measure component interaction or CI at each node 302, 304, 306,

308, or 310 in CG, OFDiff uses flow volumes at each of input and output edges 312 and 314 of

WO 2013/112288 PCT/US2013/020795

node 306. The value is normalized with the total number of communication to and from the node
and represented using histogram 316.

[0037] Procedure 1.4: Partial Correlation (PC)

[0038] Though the delay distribution captures the dependent flows and their delay bound, the
strength of the dependency is still unknown. To measure this, we use the partial correlation
between adjacent edges in the Connectivity Graph using flow volume statistics. The logging
interval is divided into equal spaced epoch intervals. Using the PacketIn message at each epoch
interval OFDiff measures the flow count for each edge in the CG. We then use Pearson's
coefficient for computing correlation over these time-series data.

[0039] Procedure 1.5: Flow Statistics (FS)

[0040] Using the controller log, we measure statistical values of application flows at each
application edge as well as application node. The statistical measurement includes flow counts
per unit time and flow size. As the statistical value can be biased depending on time (e.g., some
applications are used heavily during the day time compared to the night time), we keep or save
max, min and average values for each case.

[0041] Procedure 1.6: Stability of Signatures

[0042] However, in some application groups, some of the signatures may not be stable e.g., if an
application node does not use any linear decision logic across its outgoing flows, the component
interaction signature becomes unstable, similar instability is found when we measure the delay
distribution or partial correlation between two independent flows. Unstable signatures may not
be used in the application signatures for the comparison purpose to avoid the false positive in
raising the debugging flag. Therefore, the flow chart in Fig. 4 is executed for each application
signature. Given a reference log in step 402 to compute the application behavior, OFDiff only
considers the stable application signatures. To detect signatures stability, OFDiff partitions the
log into several time intervals in step 404 and computes the application signatures for all
intervals in step 406. If for an application group, a signature does not change significantly across
all partitions in step 408, it is considered as a stable signature for that application group in step
410. If the signature changes substantially in step 408, OFDiff discards the signatures as being
unstable in step 412.

[0043] Procedure 2: Modeling Infrastructure Signatures

WO 2013/112288 PCT/US2013/020795

[0044] In reference to Fig. 5, the goal of infrastructure signature is to characterize the physical
infrastructure in step 504 using the captured log in step 502. The physical infrastructure
comprises different physical components (switches, routers and physical hosts). The signature of
physical topology captures how physical hosts, switches and routers are physically connected
and their link characteristics such as latency and utilization.

[0045] In particular, we can use Procedure2.1 Physical topology, Procedure 2.2 Inter-switch
latency, and Procedure 2.3 OpenFlow controller characterization to model the infrastructure
signature.

[0046] Procedure 2.1: Physical topology

[0047] We build a physical topology map based on Packetln and PacketOut messages. The
Packetln message contains information about the switch, the ingress port and other packet fields.
The PacketOut contains information about the output port it needs to be sent. Subsequently,
another Packetln is received from the next switch. This gives enough information to stitch the
physical connectivity of switches and construct the physical topology.

[0048] Procedure 2.2: Inter-switch latency

[0049] The Inter-switch latency measures the delay between any two switches in the data center.
When a flow arrives at a switch that has no matching entry in the flow table, it sends a PacketIn
message to the controller. For a new flow, such reporting is done by all the switches along the
path. Using the timestamp of the receiving message at the PFC (OpenFlow controller), OFDiff
computes the inter-switch latency.

[0050] Procedure 2.3: OpenFlow controller characterization

[0051] OpenFlow controller can be characterized in terms of its response time and throughput.
Controller Response Time defines the time the controller takes to reply a PacketOut message in
response to a Packetln. The controller response time is measured by taking the difference in
timestamp between a Packetln message and its corresponding PacketOut message. For an
efficient switching protocol and data center communication, it is desirable that this time
difference be fairly small. Similar to the previous signature, we use a statistical mean of the
response time along with the standard deviation as the Controller Response (CRT) Time
signature.

[0052] Procedure 3: Modeling Tasks Signatures — Operator Task Sequence

WO 2013/112288 PCT/US2013/020795

[0053] The goal of the task signature is to capture the stable sequence of flows for each
operational task (e.g., common tasks in data centers like VM (virtual machine) migration,
attaching a device, rebooting a server) and to represent them by sequence automata. A flow chart
for computing a task signature for a specific task is given in Fig. 6. First, OFDiff collects
multiple traces T for a task in step 602 and finds common flow patterns across the traces in step
604. Next, OFDiff keeps or stores only the common flows in the traces T in step 606, meaning
that T > T°, where T’ denotes the common flows. OFDiff further finds sequential frequent
patterns in T’ in step 608 and sorts them in terms of length in step 610. For the same length,
OFDiff sorts them in terms of the support value or the minimum support (min_sup) value in step
610. Then, OFDiff constructs task automata or task signatures in step 612.

[0054] It should be noted that the operator task sequence increases the accuracy of debugging,
but is not compulsory for debugging method. Also, it could be used stand alone to validate
network operations initiated by the operator or operator’s agent.

[0055] Procedure 4: Validating Changes

[0056] Referring to Fig. 7, changes identified by comparing the models in the previous sections
are checked for known (714) and unknown (712) changes in both application and infrastructure
layers. Known changes 714 are the changes that are done intentionally and can be explained by
valid operational tasks in the systems. To differentiate between known (714) and unknown (712)
changes, we use task signature. The task signature builds a task sequence from the given log in
step 708. When an application change is detected in step 706, OFDiff checks the task-time series
to find related operational tasks around the same time when the change happened in step 710.
[0057] Here, n in Fig. 7 is the list of application nodes related to the unknown changes, e in Fig.
7 is list of application flows related to the unknown changes.

[0058] Procedure 5: Debugging

[0059] The debugging comprises two procedures: Procedure 5.1 includes correlating to problem
class, which finds the possible problem class in the data center. Procedure 5.2 including
correlating to system contexts, which finds the problematic or faulty data center components
causing the problem in the data center.

[0060] Procedure 5.1: Correlating to problem class

WO 2013/112288 PCT/US2013/020795

[0061] Referring to Fig. 8, once we detect a change in the application signatures for the given
logs in step 802, we compute related changes in their infrastructure signatures in step 804 and
correlate the dependency of application and infrastructure changes in step 806. Using the
correlation output, we classify the current data center problems to one of these known classes in
step 808.

[0062] Before this comparison, we initially build a correlation mapping table (MT) that includes
the mapping of the application and related infrastructure signature changes to different problem
classes such as host failure, host performance problem, network disconnectivity and so on. For
example, if the delay distribution (DD), partial correlation (PC) values and flow statistics (FS) of
some applications change along with the related inter-switch latency, there is a possibility of the
network bottleneck problem class.

[0063] Procedure 5.2: Correlating to system components

[0064] Referring to Fig. 9, to detect the faulty component in step 908 from problem class 902,
OFDiff first generates three tables using infrastructure signature: a link table, a switch table and a
PM (physical machine) table in step 904. The link table maps the application level flows to the
sequence of underlying physical links that the flows traverse. The switch table maps the
application level flows to the sequence of switches the flows traverse and finally the PM table
maps the application processes to the physical hosts. Depending on problem class 902, specific
tables are selected in step 904 to correlate the changes to specific components in the data center
in step 906.

[0065] Procedures 5.1 and 5.2 scale the debugging techniques.

[0066] OFDiff contributes to achieving system situation awareness and troubleshooting using a
combination of multiple novel signature modeling techniques. Although, these goals are
achieved by leveraging the unique light-weight sensing mechanism of OpenFlow technologies,
many of the proposed techniques are general and can be applied to other systems. In particular,
Procedure 3 modeling task signature is a supervised learning based mechanism to create
fingerprints of common data center tasks using network flows, and can be used standalone to
validate these tasks at later time and also as a part of OFDiff in debugging.

[0067] The foregoing is to be understood as being in every respect illustrative and exemplary,

but not restrictive, and the scope of the invention disclosed herein is not to be determined from

WO 2013/112288 PCT/US2013/020795

the Detailed Description, but rather from the claims as interpreted according to the full breadth
permitted by the patent laws. It is to be understood that the embodiments shown and described
herein are only illustrative of the principles of the present invention and that those skilled in the
art may implement various modifications without departing from the scope and spirit of the
invention. Those skilled in the art could implement various other feature combinations without

departing from the scope and spirit of the invention.

10

WO 2013/112288 PCT/US2013/020795

What 1s claimed is:

1. A debugging system used for a data center in a network, the system comprising:

a monitoring engine to monitor network traffic by collecting traffic information from a
network controller;

a modeling engine to model an application signature, an infrastructure signature, and a
task signature using a monitored log;

a debugging engine to detect a change in the application signature between a working
status and a non-working status using a reference log and a problem log, and to validate the
change using the task signature; and

a providing unit to provide toubleshooting information,

wherein an unknown change in the application signature is correlated to a known

problem class by considering a dependency to a change in the infrastructure signature.

2. The debugging system as in claim 1,
wherein the network comprises an OpenFlow network and the traffic information is

collected through at least one of Packetln and PacketOut messages.

3. The debugging system as in claim 2,
wherein the application signature is modeled by at least one of connectivity graph (CG),
delay distribution (DD), component interaction (CI), partial correlation (PC), and flow statistics

(FS).

4. The debugging system as in claim 3,

wherein the debugging engine detects which application node talks and which application
node is talked to by using source and destination IP (Internet Protocol) data included in the
PacketIn message or in an IP header in a TCP (Transmission Control Protocol) packet, and

generates the connectivity graph (CG) for each application group.

5. The debugging system as in claim 3,

11

WO 2013/112288 PCT/US2013/020795

wherein the application signature comprises a peak of the delay distribution (DD), and

wherein the debugging engine detects a shift in the peak or disappearance.

6. The debugging system as in claim 3,
wherein the debugging engine measures the component interaction (CI) at a node in the

connectivity graph (CG) by using a flow volume at each of input and output edges of the node.

7. The debugging system as in claim 3,
wherein a logging interval is divided into epoch intervals that are equal spaced, and
wherein the debugging engine measures a flow count for each of two adjacent edges in
the connectivity graph (CG) by using a Packetln message at each epoch interval, and computes

the partial correlation (PC) over time-series data by using Pearson's coefficient

8. The debugging system as in claim 3,
wherein the debugging engine measures a statistical value of an application flow at an

application edge of an application node,

9. The debugging system as in claim 8,
wherein the statistical value includes at least one of a flow count per unit time and a flow

size.

10. The debugging system as in claim 8§,

wherein the debugging engine stores max, min, and average values of the statistical value.

11. The debugging system as in claim 3,
wherein the debugging engine partitions the monitored log into a plurality of time
intervals, and computes the application signature for the plurality of time intervals, and
wherein the debugging engine determines that the application signature is a stable
signature if the application signature for an application group does not change substantially

across the plurality of time intervals.

12

WO 2013/112288 PCT/US2013/020795

12. The debugging system as in claim 2,
wherein the infrastructure signature is modeled by at least one of physical topology, inter-

switch latency, and OpenFlow controller characterization.

13. The debugging system as in claim 12,
wherein the physical topology comprises a physical topology map, and
wherein the debugging engine generates the physical topology map based on the PacketIn

and PacketOut messages.

14. The debugging system as in claim 12,

wherein the inter-switch latency comprises a delay between two network switches,

wherein the debugging engine computes the inter-switch latency by using a timestamp of
the PacketIn message, and

wherein the Packetln message is transmitted from each of the two network switch in
response to a flow that has no matching entry and received at the network controller at the

timestamp.

15. The debugging system as in claim 12,
wherein OpenFlow controller characterization comprises a controller response time, and
wherein the debugging engine measures the controller response time by using a
difference between timestamps of the PacketIn message and the PacketOut message, and
wherein the PacketOut message is transmitted from the network controller in response to

the PacketIn message.

16. The debugging system as in claim 2,
wherein the task signature comprises a task automaton obtained by:
collecting multiple traces for a task;
finding one or more common flow patterns across the multiple traces;

storing said one or more common flow patterns in the multiple traces;

13

WO 2013/112288 PCT/US2013/020795

finding one or more sequential frequent patterns in said one or more common
flow patterns;
sorting said one or more sequential frequent patterns in length; and

constructing a task automaton.

17. The debugging system as in claim 2,
wherein the change is categorized into the unknown change or a known change in an

application layer and an infrastructure layer by using the task signature.

18. The debugging system as in claim 2,
wherein the correlation is performed by:
computing a change in the infrastructure signature;
correlating the unknown change in the application signature to the change in the
infrastructure signature; and

obtaining the known problem class with reference to a predefined mapping table.

19. The debugging system as in claim 2,
wherein the debugging engine correlates the unknown change to a system component by
using one or more of:

a link table to map an application level flow to a sequence of underlying physical

links,
a switch table to map the application level flows to a sequence of switches, and
a physical machine (PM) table to map an application process to a physical host.
20. A debugging method used for a data center in a network, the method comprising:

monitoring network traffic by collecting traffic information from a network controller;

modeling an application signature, an infrastructure signature, and a task signature using
a monitored log;

detecting a change in the application signature between a working status and a non-

working status using a reference log and a problem log;

14

WO 2013/112288 PCT/US2013/020795

validating the change using the task signature; and
providing toubleshooting information,
wherein an unknown change in the application signature is correlated to a known

problem class by considering a dependency to a change in the infrastructure signature.

15

WO 2013/112288 1/9 PCT/US2013/020795

112 Ta
108 ~ Appl
110 ~

i Ar

OFINg

% e condrlley

FIG. 1

SUBSTITUTE SHEET (RULE 26)

WO 2013/112288

2/9

204
¥ Refersnoslog oy T
N 1
N 3o

N N

N N

.}‘I }

A\

AN

o

206

Froblemblog

tnrrcrecet?

hdfvanbucture
Fdended

s
eeiBvrens,
CIIIIIIIII

FIG. 2

SUBSTITUTE SHEET (RULE 26)

PCT/US2013/020795

Traubleshooting
informasion

3/9
WO 2013/112288 PCT/US2013/020795

304 @“}\ .

N
™

{QG } 310 ﬁ
11+ 1,, 316 N - N

b '\“ ,.f"‘
® 312 N 314 # -

Y Dutput edges 8 2
H\""\L &

-~

o fff 3 @ E_{ ~ “*x-‘.“\' “““““““““““““““““““““

o T1 7/_> cog R R

) (D) LU ElEEE
208 \‘* 12 ... nn+d k

e
v

FIG. 3

SUBSTITUTE SHEET (RULE 26)

4/9
WO 2013/112288 PCT/US2013/020795

&) - 4
Aodding N
\] . A
4086 . Procedurel B
r ¥ 412
& ¢ . 7 ot - :
i Discard this |
[S | signame |
Partion monitorsd ' ”
404 Log

&

402

rrrerrrrn,

Nlomtor Tratfic ‘

FIG. 4

SUBSTITUTE SHEET (RULE 26)

5/9
WO 2013/112288 PCT/US2013/020795

502 204

Infrastrocturs
Muodel

Add to Infrastmchure
signatres

FIG. 5

SUBSTITUTE SHEET (RULE 26)

6/9
WO 2013/112288 PCT/US2013/020795

802 804

Find common
flow patiems
#oross fraces

Colled multiple waces
T for z task

i 808
Keep only the common

80¢g o traces T T
flows in traces T. Thus

T=>T

Find sequential frequent
pattems in T

—

Sort them in tenn s of length

: Conebnzct task - : N 5 .
812 Cﬁmr,ﬁfttai For smmne length, sort them in
axfoniata{signafures)) - ‘

ferms of min sp valus

510

FIG. 6

SUBSTITUTE SHEET (RULE 26)

WO 2013/112288

702

Application signatres of

12

taonitorediog Lland L2
706 |

et alt changes of apphication
sighatyes with hmestamy

710

712

7/9

PCT/US2013/020795

Application signaures of
maonitorediog 1.2

708 |

Build a task-tme sertes

<Hrmestamp, tasks

Can explain
the changes
with tash™

714

Unknovwn changes }q

{

I and e

FIG. 7

» | Known changes

SUBSTITUTE SHEET (RULE 26)

8/9
WO 2013/112288 PCT/US2013/020795

802 804

RS
Geat undmioen changes of { Compute changes in]

spplication sigratures infrastructure signatures

| 808

Correlare application
806 changes to infrastructure
changes

(et Problem Classfrom the
corralated cutpuat using pre-
defined meappings table MT

FIG. 8

SUBSTITUTE SHEET (RULE 26)

WO 2013/112288

802

C et Prohlem class

9/9
PCT/US2013/020795

904

| Select component mapping table vsing problem dass.
l Three mapping tables
S - flow to switch map {switch tabla}
§ - flow to physical Bk map (link tahle}
- application to host map (PM table}

908 fap node Hst » and adge list ato
= . the tahle wsing Jaccard Coefficient ¢

P

N
N
| d

»

I K}
908 | Rank the trouble component |
i s with ¢ values
‘: _.lz

FIG. 9

SUBSTITUTE SHEET (RULE 26)

International application No.

PCT/US2013/020795

INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

GOGF 11/36(2006.01)i, GOGF 9/44(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
GO6F 11/36; GO6F 11/07;, HO4Q 7/00; GO6F 15/173; GO6F 17/30; HO4L 12/26

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean utility models and applications for utility models
Japanese utility models and applications for utility models

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
eKOMPASS(KIPO internal) & Keywords: debugging, network, application, modeling, traffic and similar terms.

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
Y US 2006-0029016 Al (AMIR PELES) 09 February 2006 1-3,8-10,12,14-15
See paragraphs 21-29, 61-90; figures 2a—-2b; and claim 13. ,17-18,20
A 4-7,11,13,16,19
Y US 2009-0182794 Al (ATSUJI SEKIHUCHI) 16 July 2009 1-3,8-10,12,14-15
See paragraphs 30, 52, 89-90,; figure 10A; and claim 1. ,17-18,20
A US 7894357 B2 (WILLIAM J. PURPURA) 22 February 2011 1-20
See column 3, line 39 - colum 6, line 10; and figures 1-2.
A US 7916652 B1 (PAULO LIMA et al.) 29 March 2011 1-20
See column 6, line 4 — column 8, line 10; and figures 3—4.
A US 7769851 B1 (KOWSIK GURUSWAMY et al.) 03 August 2010 1-20
See colum 6, line 61 — colum 7, line 40, and figure 5.

|:| Further documents are listed in the continuation of Box C.

& See patent family annex.

* Special categories of cited documents:

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is

cited to establish the publication date of citation or other

special reason (as specified)

document referring to an oral disclosure, use, exhibition or other

means

"P" document published prior to the international filing date but later
than the priority date claimed

Q"

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be

considered to involve an inventive step when the document is
combined with one or more other such documents,such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

25 April 2013 (25.04.2013)

Date of mailing of the international search report

25 April 2013 (25.04.2013)

Name and mailing address of the ISA/KR

Korean Intellectual Property Office
189 Cheongsa-ro, Seo-gu, Daejeon Metropolitan
City, 302-701, Republic of Korea

Facsimile No. 82-42-472-7140

Authorized officer

BYUN, Sung Cheal

Telephone No. 82-42-481-8262

Form PCT/ISA/210 (second sheet) (July 2009)

INTERNATIONAL SEARCH REPORT International application No.

Information on patent family members PCT/US2013/020795

Patent document Publication Patent family Publication

cited in search report date member(s) date

US 2006-0029016 A1 09.02.2006 None

US 2009-0182794 A1l 16.07.2009 GB 0822370 DO 14.01.2009
GB 2456619 A 22.07.2009
JP 05119935 B2 02.11.2012
JP 2009-169609 A 30.07.2009

US 7894357 B2 22.02.2011 US 2007-0206506 A1l 06.09.2007
US 2007-0206511 A1 06.09.2007
US 2007-0274337 A1 29.11.2007
US 20070297447 A1 27.12.2007
US 2011-0004686 A1 06.01.2011
US 7817536 B2 19.10.2010
US 7929542 B2 19.04.2011
US 7969879 B2 28.06.2011

US 7916652 B1 29.03.2011 None

US 7769851 B1 03.08.2010 None

Form PCT/ISA/210 (patent family annex) (July 2009)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - claims
	Page 13 - claims
	Page 14 - claims
	Page 15 - claims
	Page 16 - claims
	Page 17 - drawings
	Page 18 - drawings
	Page 19 - drawings
	Page 20 - drawings
	Page 21 - drawings
	Page 22 - drawings
	Page 23 - drawings
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - wo-search-report
	Page 27 - wo-search-report

